The in vitro effects of retrograded starch (resistant starch type 3) from lotus seed starch on the proliferation of Bifidobacterium adolescentis

Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-L...

Full description

Saved in:
Bibliographic Details
Published inFood & function Vol. 4; no. 11; pp. 169 - 1616
Main Authors Zhang, Yi, Wang, Ying, Zheng, Baodong, Lu, Xu, Zhuang, Weijing
Format Journal Article
LanguageEnglish
Published England 01.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L −1 . Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria. Resistant starch type 3 prepared from lotus seed starch could become potential prebiotics which have the ability to modify the human gastrointestinal environment.
AbstractList Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L(-1). Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria.
Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L(-1). Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria.Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L(-1). Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria.
Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L −1 . Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria. Resistant starch type 3 prepared from lotus seed starch could become potential prebiotics which have the ability to modify the human gastrointestinal environment.
Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L⁻¹. Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria.
Author Zheng, Baodong
Wang, Ying
Zhang, Yi
Zhuang, Weijing
Lu, Xu
AuthorAffiliation Institute of Food Science and Technology
College of Food Science
Fujian Agriculture and Forestry University
AuthorAffiliation_xml – name: Fujian Agriculture and Forestry University
– name: College of Food Science
– name: Institute of Food Science and Technology
Author_xml – sequence: 1
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
– sequence: 2
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
– sequence: 3
  givenname: Baodong
  surname: Zheng
  fullname: Zheng, Baodong
– sequence: 4
  givenname: Xu
  surname: Lu
  fullname: Lu, Xu
– sequence: 5
  givenname: Weijing
  surname: Zhuang
  fullname: Zhuang, Weijing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24056635$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhkNpaWvtpnsl7qpwNZOvSZZa_IKCmwruQiY5sdGZyTXJCP0X_mRTb6-lUmo2ObznOS_n4xHandMMCJ105GVHmH7lWEiSUCK_76BDSjhdSUG-7G5jruUBOi7lG2mPaa202kcHlBMhJROH6NfFJeA445-x5oQhBHC14BRwhiZ8zdaDx6Xa7C7xaYYSWzzXrVKv1oDZcxxymvCY6lJwgduCNOPa7Nc5jTFAtjU2pXm_iSH6NFhXIcdlwtanEYqDucbyGO0FOxY4vvmP0Od3by_OPqzOP73_ePb6fOU443WliLKgqBs67Unfe8c8k1SIzrURreuVIqC4YgPoMNgQ-gABuBgGCjQwcOwInW58W3c_FijVTLG1MI52hrQUQxntdS-oJP9FO86F7phUoqFPb9BlmMCbdY6TzVdmu_AGkA3gciolQzAu1j-LqdnG0XTEXJ_V3J61lbz4p2Trei_8ZAPn4v5yd_LPHsqbtQ_sNyNYuvI
CitedBy_id crossref_primary_10_1016_j_fct_2019_110731
crossref_primary_10_1016_j_jff_2022_105040
crossref_primary_10_1016_j_ijbiomac_2020_04_155
crossref_primary_10_2174_1573401313666171004145740
crossref_primary_10_1017_S0007114516001537
crossref_primary_10_1111_nyas_13351
crossref_primary_10_1016_j_ijbiomac_2021_11_196
crossref_primary_10_6066_jtip_2019_30_1_36
crossref_primary_10_1080_87559129_2021_2024221
crossref_primary_10_1016_j_ijbiomac_2019_10_124
crossref_primary_10_1016_j_foodhyd_2023_108501
crossref_primary_10_1016_j_foodhyd_2016_08_034
crossref_primary_10_1002_fsn3_1601
crossref_primary_10_1016_j_carbpol_2025_123264
crossref_primary_10_1016_j_ultsonch_2020_105199
crossref_primary_10_3390_polym16050597
crossref_primary_10_1016_j_jfoodeng_2018_05_020
crossref_primary_10_1039_C7FO01919J
crossref_primary_10_1039_D1FO00488C
crossref_primary_10_1016_j_ijbiomac_2018_11_163
crossref_primary_10_1016_j_ijbiomac_2022_06_077
crossref_primary_10_1590_fst_92622
crossref_primary_10_1016_j_nut_2021_111217
crossref_primary_10_3390_nu11020297
crossref_primary_10_7314_APJCP_2015_16_10_4185
crossref_primary_10_3390_molecules21070932
crossref_primary_10_1111_jam_14353
crossref_primary_10_1186_s13568_021_01318_1
crossref_primary_10_1002_star_201800231
crossref_primary_10_1016_j_foodhyd_2021_106899
crossref_primary_10_3390_foods11162473
crossref_primary_10_1016_j_foodchem_2024_140968
crossref_primary_10_1002_star_202200064
crossref_primary_10_1016_j_ijbiomac_2017_07_091
crossref_primary_10_1016_j_csbj_2020_10_042
crossref_primary_10_1039_D3FO00845B
crossref_primary_10_1016_j_ijbiomac_2024_131174
crossref_primary_10_3389_fnut_2022_860086
crossref_primary_10_1021_acs_jafc_7b02860
crossref_primary_10_1002_jsfa_9260
crossref_primary_10_1016_j_ijbiomac_2021_11_210
crossref_primary_10_1016_j_foodchem_2022_134599
crossref_primary_10_1016_j_jff_2022_105094
crossref_primary_10_1016_j_foodchem_2018_05_070
crossref_primary_10_1016_j_ijbiomac_2020_02_197
crossref_primary_10_1002_star_202000139
crossref_primary_10_1016_j_foodchem_2022_132895
crossref_primary_10_1007_s11101_015_9401_9
crossref_primary_10_1016_j_foodchem_2018_08_029
crossref_primary_10_1016_j_foodchem_2015_03_143
crossref_primary_10_1021_acs_jafc_1c06000
crossref_primary_10_1111_1750_3841_16680
crossref_primary_10_1016_j_carbpol_2023_120939
crossref_primary_10_1016_j_foodhyd_2023_108770
crossref_primary_10_3389_fmicb_2018_02114
crossref_primary_10_1016_j_foodchem_2020_128001
crossref_primary_10_1021_acs_jafc_9b06094
crossref_primary_10_1016_j_foodchem_2018_01_057
crossref_primary_10_1039_C9RA10798C
crossref_primary_10_1111_1750_3841_14747
Cites_doi 10.1007/s10620-008-0451-3
10.1146/annurev.food.080708.100746
10.1080/09637480701663862
10.1046/j.1365-2672.1999.00836.x
10.1128/AEM.67.8.3469-3475.2001
10.1016/j.carbpol.2006.04.002
10.1080/07315724.2009.10719798
10.1016/j.foodchem.2006.01.005
10.1093/jn/127.9.1822
10.1093/ajcn/80.6.1658
10.1371/journal.pone.0015046
10.1016/j.foodres.2006.04.001
10.1016/j.carbpol.2010.08.066
10.1080/07315724.1998.10718810
10.1016/S0144-8617(00)00147-8
10.1016/j.anaerobe.2003.12.002
10.1016/j.anifeedsci.2004.09.003
10.1128/AEM.70.10.5810-5817.2004
10.1128/AAC.00261-06
10.1016/j.jff.2012.07.001
10.1016/S0308-8146(97)00025-3
10.1002/star.201000099
10.3945/jn.111.140509
10.1263/jbb.105.503
10.1016/j.ijfoodmicro.2003.07.001
10.1016/j.clnu.2010.05.005
10.1021/jf903820s
10.1006/fmic.2001.0452
10.1016/j.imbio.2010.01.001
10.1079/BJN20051577
10.1016/j.jff.2012.02.013
10.17221/18/2011-CJFS
10.1016/S0144-8617(98)00095-2
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1039/c3fo60206k
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 2042-650X
EndPage 1616
ExternalDocumentID 24056635
10_1039_c3fo60206k
c3fo60206k
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0-7
0R~
4.4
53G
705
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ACPRK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
EBS
ECGLT
EE0
EF-
EJD
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c434t-808ae82cb19d077dc3d362551c989ac7880e8483be9fbaff7fefe45bb2e2f3ec3
ISSN 2042-6496
2042-650X
IngestDate Fri Jul 11 07:28:48 EDT 2025
Thu Jul 10 23:14:09 EDT 2025
Thu Apr 03 06:49:27 EDT 2025
Thu Apr 24 22:52:59 EDT 2025
Tue Jul 01 02:37:30 EDT 2025
Thu May 19 04:17:38 EDT 2016
Thu May 30 17:41:48 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-808ae82cb19d077dc3d362551c989ac7880e8483be9fbaff7fefe45bb2e2f3ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24056635
PQID 1445913685
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2327975260
crossref_primary_10_1039_c3fo60206k
crossref_citationtrail_10_1039_c3fo60206k
proquest_miscellaneous_1445913685
rsc_primary_c3fo60206k
pubmed_primary_24056635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food & function
PublicationTitleAlternate Food Funct
PublicationYear 2013
References Wang (c3fo60206k-(cit17)/*[position()=1]) 1999; 87
Rendon-Huerta (c3fo60206k-(cit22)/*[position()=1]) 2011; 5
Jenkins (c3fo60206k-(cit31)/*[position()=1]) 1998; 17
Bouhnik (c3fo60206k-(cit2)/*[position()=1]) 2004; 80
Lin (c3fo60206k-(cit19)/*[position()=1]) 2011; 2
Regmi (c3fo60206k-(cit14)/*[position()=1]) 2011; 141
Tarahomjoo (c3fo60206k-(cit36)/*[position()=1]) 2008; 105
Zeng (c3fo60206k-(cit18)/*[position()=1]) 2009; 38
Zhang (c3fo60206k-(cit9)/*[position()=1]) 2011; 83
Bullock (c3fo60206k-(cit12)/*[position()=1]) 1999; 38
Brown (c3fo60206k-(cit15)/*[position()=1]) 1997; 127
Onyango (c3fo60206k-(cit21)/*[position()=1]) 2006; 66
Schmiedl (c3fo60206k-(cit16)/*[position()=1]) 2000; 43
Siew-Wai (c3fo60206k-(cit20)/*[position()=1]) 2010; 58
Martinez (c3fo60206k-(cit1)/*[position()=1]) 2010; 5
Gonzalez-Soto (c3fo60206k-(cit10)/*[position()=1]) 2007; 40
Fuentes-Zaragoza (c3fo60206k-(cit8)/*[position()=1]) 2011; 63
Wronkowska (c3fo60206k-(cit11)/*[position()=1]) 2008; 59
Wronkowska (c3fo60206k-(cit4)/*[position()=1]) 2012; 30
Rastall (c3fo60206k-(cit5)/*[position()=1]) 2010; 1
Al-Sheraji (c3fo60206k-(cit27)/*[position()=1]) 2012; 4
Crittenden (c3fo60206k-(cit28)/*[position()=1]) 2001; 67
Escarpa (c3fo60206k-(cit6)/*[position()=1]) 1997; 60
Hansen (c3fo60206k-(cit37)/*[position()=1]) 2002; 19
Kheadr (c3fo60206k-(cit3)/*[position()=1]) 2007; 51
Niven (c3fo60206k-(cit23)/*[position()=1]) 2004; 117
Paturi (c3fo60206k-(cit29)/*[position()=1]) 2012; 4
Huang (c3fo60206k-(cit35)/*[position()=1]) 2004; 91
Bailón (c3fo60206k-(cit34)/*[position()=1]) 2010; 215
Rodríguez-Cabezas (c3fo60206k-(cit13)/*[position()=1]) 2010; 29
Wang (c3fo60206k-(cit7)/*[position()=1]) 2007; 101
Bird (c3fo60206k-(cit26)/*[position()=1]) 2009; 54
Zhang (c3fo60206k-(cit24)/*[position()=1]) 2001; 19
Drzikova (c3fo60206k-(cit25)/*[position()=1]) 2005; 94
Maathuis (c3fo60206k-(cit33)/*[position()=1]) 2009; 28
Duncan (c3fo60206k-(cit30)/*[position()=1]) 2004; 70
Zampa (c3fo60206k-(cit32)/*[position()=1]) 2004; 10
References_xml – volume: 54
  start-page: 947
  year: 2009
  ident: c3fo60206k-(cit26)/*[position()=1]
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-008-0451-3
– volume: 1
  start-page: 305
  year: 2010
  ident: c3fo60206k-(cit5)/*[position()=1]
  publication-title: Annu. Rev. Food Sci. Technol.
  doi: 10.1146/annurev.food.080708.100746
– volume: 59
  start-page: 80
  year: 2008
  ident: c3fo60206k-(cit11)/*[position()=1]
  publication-title: Int. J. Food Sci. Nutr.
  doi: 10.1080/09637480701663862
– volume: 2
  start-page: 018
  year: 2011
  ident: c3fo60206k-(cit19)/*[position()=1]
  publication-title: Journal of Fujian Agriculture and Forestry University (Natural Science Edition)
– volume: 87
  start-page: 631
  year: 1999
  ident: c3fo60206k-(cit17)/*[position()=1]
  publication-title: J. Appl. Microbiol.
  doi: 10.1046/j.1365-2672.1999.00836.x
– volume: 67
  start-page: 3469
  year: 2001
  ident: c3fo60206k-(cit28)/*[position()=1]
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.67.8.3469-3475.2001
– volume: 66
  start-page: 494
  year: 2006
  ident: c3fo60206k-(cit21)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2006.04.002
– volume: 28
  start-page: 657
  year: 2009
  ident: c3fo60206k-(cit33)/*[position()=1]
  publication-title: J. Am. Coll. Nutr.
  doi: 10.1080/07315724.2009.10719798
– volume: 101
  start-page: 20
  year: 2007
  ident: c3fo60206k-(cit7)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2006.01.005
– volume: 127
  start-page: 1822
  year: 1997
  ident: c3fo60206k-(cit15)/*[position()=1]
  publication-title: J. Nutr.
  doi: 10.1093/jn/127.9.1822
– volume: 80
  start-page: 1658
  year: 2004
  ident: c3fo60206k-(cit2)/*[position()=1]
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/80.6.1658
– volume: 5
  start-page: e15046
  year: 2010
  ident: c3fo60206k-(cit1)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015046
– volume: 40
  start-page: 304
  year: 2007
  ident: c3fo60206k-(cit10)/*[position()=1]
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2006.04.001
– volume: 83
  start-page: 865
  year: 2011
  ident: c3fo60206k-(cit9)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2010.08.066
– volume: 5
  start-page: 3404
  year: 2011
  ident: c3fo60206k-(cit22)/*[position()=1]
  publication-title: Afr. J. Microbiol. Res.
– volume: 17
  start-page: 609
  year: 1998
  ident: c3fo60206k-(cit31)/*[position()=1]
  publication-title: J. Am. Coll. Nutr.
  doi: 10.1080/07315724.1998.10718810
– volume: 43
  start-page: 183
  year: 2000
  ident: c3fo60206k-(cit16)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/S0144-8617(00)00147-8
– volume: 10
  start-page: 19
  year: 2004
  ident: c3fo60206k-(cit32)/*[position()=1]
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2003.12.002
– volume: 38
  start-page: 417
  year: 2009
  ident: c3fo60206k-(cit18)/*[position()=1]
  publication-title: Journal of Fujian Agriculture and Forestry University (Natural Science Edition)
– volume: 117
  start-page: 339
  year: 2004
  ident: c3fo60206k-(cit23)/*[position()=1]
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2004.09.003
– volume: 70
  start-page: 5810
  year: 2004
  ident: c3fo60206k-(cit30)/*[position()=1]
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.10.5810-5817.2004
– volume: 51
  start-page: 169
  year: 2007
  ident: c3fo60206k-(cit3)/*[position()=1]
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00261-06
– volume: 4
  start-page: 933
  year: 2012
  ident: c3fo60206k-(cit27)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2012.07.001
– volume: 60
  start-page: 527
  year: 1997
  ident: c3fo60206k-(cit6)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/S0308-8146(97)00025-3
– volume: 63
  start-page: 406
  year: 2011
  ident: c3fo60206k-(cit8)/*[position()=1]
  publication-title: Starch/Staerke
  doi: 10.1002/star.201000099
– volume: 141
  start-page: 1273
  year: 2011
  ident: c3fo60206k-(cit14)/*[position()=1]
  publication-title: J. Nutr.
  doi: 10.3945/jn.111.140509
– volume: 105
  start-page: 503
  year: 2008
  ident: c3fo60206k-(cit36)/*[position()=1]
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.105.503
– volume: 91
  start-page: 253
  year: 2004
  ident: c3fo60206k-(cit35)/*[position()=1]
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2003.07.001
– volume: 29
  start-page: 832
  year: 2010
  ident: c3fo60206k-(cit13)/*[position()=1]
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2010.05.005
– volume: 58
  start-page: 2274
  year: 2010
  ident: c3fo60206k-(cit20)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf903820s
– volume: 19
  start-page: 294
  year: 2001
  ident: c3fo60206k-(cit24)/*[position()=1]
  publication-title: West China Journal of Stomatology
– volume: 19
  start-page: 35
  year: 2002
  ident: c3fo60206k-(cit37)/*[position()=1]
  publication-title: Food Microbiol.
  doi: 10.1006/fmic.2001.0452
– volume: 215
  start-page: 863
  year: 2010
  ident: c3fo60206k-(cit34)/*[position()=1]
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2010.01.001
– volume: 94
  start-page: 1012
  year: 2005
  ident: c3fo60206k-(cit25)/*[position()=1]
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN20051577
– volume: 4
  start-page: 520
  year: 2012
  ident: c3fo60206k-(cit29)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2012.02.013
– volume: 30
  start-page: 9
  year: 2012
  ident: c3fo60206k-(cit4)/*[position()=1]
  publication-title: Czech J. Food Sci.
  doi: 10.17221/18/2011-CJFS
– volume: 38
  start-page: 225
  year: 1999
  ident: c3fo60206k-(cit12)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/S0144-8617(98)00095-2
SSID ssj0000399898
Score 2.2626276
Snippet Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 169
SubjectTerms absorbance
amylose
beneficial microorganisms
Bifidobacterium - growth & development
Bifidobacterium - metabolism
Bifidobacterium adolescentis
butyric acid
carbon
cecum
colon
corn starch
Fermentation
fructans
glucose
Humans
Intestine, Large - metabolism
Intestine, Large - microbiology
Loteae - chemistry
Loteae - metabolism
Models, Biological
oligosaccharides
prebiotics
Prebiotics - analysis
Prebiotics - microbiology
resistant starch
Seeds - chemistry
Seeds - metabolism
Starch - chemistry
Starch - metabolism
Title The in vitro effects of retrograded starch (resistant starch type 3) from lotus seed starch on the proliferation of Bifidobacterium adolescentis
URI https://www.ncbi.nlm.nih.gov/pubmed/24056635
https://www.proquest.com/docview/1445913685
https://www.proquest.com/docview/2327975260
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9sIF8SpsecgIhKiqQBI7iXPsAqXi0VMrltPKcWwpYpVUuwkHfgUHfjAzeThud5EKlyiaOM5u5ov9zXg8Q8gLocM0jJT0ZO5zjyeKezI20sPUTkLILBYKNzh_OY1PzvnHeTSfTH47UUtNnb1WP7fuK_kfrYIM9Iq7ZP9Bs7ZTEMA56BeOoGE4XlvHRXn4o6hXlRuZsdJ1G3aVA5sE9oduDSCSYFgjWSzrQda6X9HT2m0yWVZ1sz5c6_GmbiEBY7iWGAFj2eWsMEUOA0Gb6Bmjm21aqGLtst1jTJmM2MLZ013xt27qb8Xo0R8k_VzaNtOdcCbBeh7lnxsUzhvXZRGwfu-eHdlC3BMU87TPge3IIn_uDs3cRWDgjLNB3CZV2JwAfIb5UxUzVQxEOP4-TnPD0v6V2c_GJLar8SxdjPfeILshGB8weu4efZp9-Gp9d9AMy25i3cLhnwyZb1n6ZuzgMtfZMGCAzqyGMjMtnTm7TW71dgg96kB1h0x0eZdM3xW6pi9pnyx2SU-HWg33yC8AGy1K2oKN9mCjlaEO2GiHG_rKQm2QINQoO6AINNoCjSLQhstVSQFo9BLQsO8rQKMu0O6T8-P3Z29PvL6ch6c44zVwISG1CFUWpLmfJLliObAnYOwKXqZUCcwkWnDBMp2aTBqTGG00j7Is1KFhWrE9slNWpX5IqB-LJEnjBPrxuWS5EEpEYRoYPzNAucSUHAwvfqH6XPdYcmW52NTylDy3bS-6DC9bWz0b9LeAARhX1WSpq2YNtjOP0gDrOPy9DZgtSZpEYexPyYNO-fZZQKkjpP1TsgdosGL30fvbLywucrN_rV__iNwcv8PHZKdeNfoJkOk6e9pj-w_nZ859
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+in+vitro+effects+of+retrograded+starch+%28resistant+starch+type+3%29+from+lotus+seed+starch+on+the+proliferation+of+Bifidobacterium+adolescentis&rft.jtitle=Food+%26+function&rft.au=Zhang%2C+Yi&rft.au=Wang%2C+Ying&rft.au=Zheng%2C+Baodong&rft.au=Lu%2C+Xu&rft.date=2013-11-01&rft.issn=2042-6496&rft.eissn=2042-650X&rft.volume=4&rft.issue=11&rft.spage=1609&rft_id=info:doi/10.1039%2Fc3fo60206k&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_c3fo60206k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon