The in vitro effects of retrograded starch (resistant starch type 3) from lotus seed starch on the proliferation of Bifidobacterium adolescentis
Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-L...
Saved in:
Published in | Food & function Vol. 4; no. 11; pp. 169 - 1616 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the
in vitro
effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L
−1
. Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria.
Resistant starch type 3 prepared from lotus seed starch could become potential prebiotics which have the ability to modify the human gastrointestinal environment. |
---|---|
AbstractList | Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L(-1). Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria. Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L(-1). Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria.Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L(-1). Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria. Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L −1 . Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria. Resistant starch type 3 prepared from lotus seed starch could become potential prebiotics which have the ability to modify the human gastrointestinal environment. Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L⁻¹. Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria. |
Author | Zheng, Baodong Wang, Ying Zhang, Yi Zhuang, Weijing Lu, Xu |
AuthorAffiliation | Institute of Food Science and Technology College of Food Science Fujian Agriculture and Forestry University |
AuthorAffiliation_xml | – name: Fujian Agriculture and Forestry University – name: College of Food Science – name: Institute of Food Science and Technology |
Author_xml | – sequence: 1 givenname: Yi surname: Zhang fullname: Zhang, Yi – sequence: 2 givenname: Ying surname: Wang fullname: Wang, Ying – sequence: 3 givenname: Baodong surname: Zheng fullname: Zheng, Baodong – sequence: 4 givenname: Xu surname: Lu fullname: Lu, Xu – sequence: 5 givenname: Weijing surname: Zhuang fullname: Zhuang, Weijing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24056635$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhkNpaWvtpnsl7qpwNZOvSZZa_IKCmwruQiY5sdGZyTXJCP0X_mRTb6-lUmo2ObznOS_n4xHandMMCJ105GVHmH7lWEiSUCK_76BDSjhdSUG-7G5jruUBOi7lG2mPaa202kcHlBMhJROH6NfFJeA445-x5oQhBHC14BRwhiZ8zdaDx6Xa7C7xaYYSWzzXrVKv1oDZcxxymvCY6lJwgduCNOPa7Nc5jTFAtjU2pXm_iSH6NFhXIcdlwtanEYqDucbyGO0FOxY4vvmP0Od3by_OPqzOP73_ePb6fOU443WliLKgqBs67Unfe8c8k1SIzrURreuVIqC4YgPoMNgQ-gABuBgGCjQwcOwInW58W3c_FijVTLG1MI52hrQUQxntdS-oJP9FO86F7phUoqFPb9BlmMCbdY6TzVdmu_AGkA3gciolQzAu1j-LqdnG0XTEXJ_V3J61lbz4p2Trei_8ZAPn4v5yd_LPHsqbtQ_sNyNYuvI |
CitedBy_id | crossref_primary_10_1016_j_fct_2019_110731 crossref_primary_10_1016_j_jff_2022_105040 crossref_primary_10_1016_j_ijbiomac_2020_04_155 crossref_primary_10_2174_1573401313666171004145740 crossref_primary_10_1017_S0007114516001537 crossref_primary_10_1111_nyas_13351 crossref_primary_10_1016_j_ijbiomac_2021_11_196 crossref_primary_10_6066_jtip_2019_30_1_36 crossref_primary_10_1080_87559129_2021_2024221 crossref_primary_10_1016_j_ijbiomac_2019_10_124 crossref_primary_10_1016_j_foodhyd_2023_108501 crossref_primary_10_1016_j_foodhyd_2016_08_034 crossref_primary_10_1002_fsn3_1601 crossref_primary_10_1016_j_carbpol_2025_123264 crossref_primary_10_1016_j_ultsonch_2020_105199 crossref_primary_10_3390_polym16050597 crossref_primary_10_1016_j_jfoodeng_2018_05_020 crossref_primary_10_1039_C7FO01919J crossref_primary_10_1039_D1FO00488C crossref_primary_10_1016_j_ijbiomac_2018_11_163 crossref_primary_10_1016_j_ijbiomac_2022_06_077 crossref_primary_10_1590_fst_92622 crossref_primary_10_1016_j_nut_2021_111217 crossref_primary_10_3390_nu11020297 crossref_primary_10_7314_APJCP_2015_16_10_4185 crossref_primary_10_3390_molecules21070932 crossref_primary_10_1111_jam_14353 crossref_primary_10_1186_s13568_021_01318_1 crossref_primary_10_1002_star_201800231 crossref_primary_10_1016_j_foodhyd_2021_106899 crossref_primary_10_3390_foods11162473 crossref_primary_10_1016_j_foodchem_2024_140968 crossref_primary_10_1002_star_202200064 crossref_primary_10_1016_j_ijbiomac_2017_07_091 crossref_primary_10_1016_j_csbj_2020_10_042 crossref_primary_10_1039_D3FO00845B crossref_primary_10_1016_j_ijbiomac_2024_131174 crossref_primary_10_3389_fnut_2022_860086 crossref_primary_10_1021_acs_jafc_7b02860 crossref_primary_10_1002_jsfa_9260 crossref_primary_10_1016_j_ijbiomac_2021_11_210 crossref_primary_10_1016_j_foodchem_2022_134599 crossref_primary_10_1016_j_jff_2022_105094 crossref_primary_10_1016_j_foodchem_2018_05_070 crossref_primary_10_1016_j_ijbiomac_2020_02_197 crossref_primary_10_1002_star_202000139 crossref_primary_10_1016_j_foodchem_2022_132895 crossref_primary_10_1007_s11101_015_9401_9 crossref_primary_10_1016_j_foodchem_2018_08_029 crossref_primary_10_1016_j_foodchem_2015_03_143 crossref_primary_10_1021_acs_jafc_1c06000 crossref_primary_10_1111_1750_3841_16680 crossref_primary_10_1016_j_carbpol_2023_120939 crossref_primary_10_1016_j_foodhyd_2023_108770 crossref_primary_10_3389_fmicb_2018_02114 crossref_primary_10_1016_j_foodchem_2020_128001 crossref_primary_10_1021_acs_jafc_9b06094 crossref_primary_10_1016_j_foodchem_2018_01_057 crossref_primary_10_1039_C9RA10798C crossref_primary_10_1111_1750_3841_14747 |
Cites_doi | 10.1007/s10620-008-0451-3 10.1146/annurev.food.080708.100746 10.1080/09637480701663862 10.1046/j.1365-2672.1999.00836.x 10.1128/AEM.67.8.3469-3475.2001 10.1016/j.carbpol.2006.04.002 10.1080/07315724.2009.10719798 10.1016/j.foodchem.2006.01.005 10.1093/jn/127.9.1822 10.1093/ajcn/80.6.1658 10.1371/journal.pone.0015046 10.1016/j.foodres.2006.04.001 10.1016/j.carbpol.2010.08.066 10.1080/07315724.1998.10718810 10.1016/S0144-8617(00)00147-8 10.1016/j.anaerobe.2003.12.002 10.1016/j.anifeedsci.2004.09.003 10.1128/AEM.70.10.5810-5817.2004 10.1128/AAC.00261-06 10.1016/j.jff.2012.07.001 10.1016/S0308-8146(97)00025-3 10.1002/star.201000099 10.3945/jn.111.140509 10.1263/jbb.105.503 10.1016/j.ijfoodmicro.2003.07.001 10.1016/j.clnu.2010.05.005 10.1021/jf903820s 10.1006/fmic.2001.0452 10.1016/j.imbio.2010.01.001 10.1079/BJN20051577 10.1016/j.jff.2012.02.013 10.17221/18/2011-CJFS 10.1016/S0144-8617(98)00095-2 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1039/c3fo60206k |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 2042-650X |
EndPage | 1616 |
ExternalDocumentID | 24056635 10_1039_c3fo60206k c3fo60206k |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0-7 0R~ 4.4 53G 705 7~J AAEMU AAHBH AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ACPRK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF EBS ECGLT EE0 EF- EJD FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY SKF SKH SKJ SKM SKR SKZ SLC SLF CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c434t-808ae82cb19d077dc3d362551c989ac7880e8483be9fbaff7fefe45bb2e2f3ec3 |
ISSN | 2042-6496 2042-650X |
IngestDate | Fri Jul 11 07:28:48 EDT 2025 Thu Jul 10 23:14:09 EDT 2025 Thu Apr 03 06:49:27 EDT 2025 Thu Apr 24 22:52:59 EDT 2025 Tue Jul 01 02:37:30 EDT 2025 Thu May 19 04:17:38 EDT 2016 Thu May 30 17:41:48 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-808ae82cb19d077dc3d362551c989ac7880e8483be9fbaff7fefe45bb2e2f3ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24056635 |
PQID | 1445913685 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2327975260 crossref_primary_10_1039_c3fo60206k crossref_citationtrail_10_1039_c3fo60206k proquest_miscellaneous_1445913685 rsc_primary_c3fo60206k pubmed_primary_24056635 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Food & function |
PublicationTitleAlternate | Food Funct |
PublicationYear | 2013 |
References | Wang (c3fo60206k-(cit17)/*[position()=1]) 1999; 87 Rendon-Huerta (c3fo60206k-(cit22)/*[position()=1]) 2011; 5 Jenkins (c3fo60206k-(cit31)/*[position()=1]) 1998; 17 Bouhnik (c3fo60206k-(cit2)/*[position()=1]) 2004; 80 Lin (c3fo60206k-(cit19)/*[position()=1]) 2011; 2 Regmi (c3fo60206k-(cit14)/*[position()=1]) 2011; 141 Tarahomjoo (c3fo60206k-(cit36)/*[position()=1]) 2008; 105 Zeng (c3fo60206k-(cit18)/*[position()=1]) 2009; 38 Zhang (c3fo60206k-(cit9)/*[position()=1]) 2011; 83 Bullock (c3fo60206k-(cit12)/*[position()=1]) 1999; 38 Brown (c3fo60206k-(cit15)/*[position()=1]) 1997; 127 Onyango (c3fo60206k-(cit21)/*[position()=1]) 2006; 66 Schmiedl (c3fo60206k-(cit16)/*[position()=1]) 2000; 43 Siew-Wai (c3fo60206k-(cit20)/*[position()=1]) 2010; 58 Martinez (c3fo60206k-(cit1)/*[position()=1]) 2010; 5 Gonzalez-Soto (c3fo60206k-(cit10)/*[position()=1]) 2007; 40 Fuentes-Zaragoza (c3fo60206k-(cit8)/*[position()=1]) 2011; 63 Wronkowska (c3fo60206k-(cit11)/*[position()=1]) 2008; 59 Wronkowska (c3fo60206k-(cit4)/*[position()=1]) 2012; 30 Rastall (c3fo60206k-(cit5)/*[position()=1]) 2010; 1 Al-Sheraji (c3fo60206k-(cit27)/*[position()=1]) 2012; 4 Crittenden (c3fo60206k-(cit28)/*[position()=1]) 2001; 67 Escarpa (c3fo60206k-(cit6)/*[position()=1]) 1997; 60 Hansen (c3fo60206k-(cit37)/*[position()=1]) 2002; 19 Kheadr (c3fo60206k-(cit3)/*[position()=1]) 2007; 51 Niven (c3fo60206k-(cit23)/*[position()=1]) 2004; 117 Paturi (c3fo60206k-(cit29)/*[position()=1]) 2012; 4 Huang (c3fo60206k-(cit35)/*[position()=1]) 2004; 91 Bailón (c3fo60206k-(cit34)/*[position()=1]) 2010; 215 Rodríguez-Cabezas (c3fo60206k-(cit13)/*[position()=1]) 2010; 29 Wang (c3fo60206k-(cit7)/*[position()=1]) 2007; 101 Bird (c3fo60206k-(cit26)/*[position()=1]) 2009; 54 Zhang (c3fo60206k-(cit24)/*[position()=1]) 2001; 19 Drzikova (c3fo60206k-(cit25)/*[position()=1]) 2005; 94 Maathuis (c3fo60206k-(cit33)/*[position()=1]) 2009; 28 Duncan (c3fo60206k-(cit30)/*[position()=1]) 2004; 70 Zampa (c3fo60206k-(cit32)/*[position()=1]) 2004; 10 |
References_xml | – volume: 54 start-page: 947 year: 2009 ident: c3fo60206k-(cit26)/*[position()=1] publication-title: Dig. Dis. Sci. doi: 10.1007/s10620-008-0451-3 – volume: 1 start-page: 305 year: 2010 ident: c3fo60206k-(cit5)/*[position()=1] publication-title: Annu. Rev. Food Sci. Technol. doi: 10.1146/annurev.food.080708.100746 – volume: 59 start-page: 80 year: 2008 ident: c3fo60206k-(cit11)/*[position()=1] publication-title: Int. J. Food Sci. Nutr. doi: 10.1080/09637480701663862 – volume: 2 start-page: 018 year: 2011 ident: c3fo60206k-(cit19)/*[position()=1] publication-title: Journal of Fujian Agriculture and Forestry University (Natural Science Edition) – volume: 87 start-page: 631 year: 1999 ident: c3fo60206k-(cit17)/*[position()=1] publication-title: J. Appl. Microbiol. doi: 10.1046/j.1365-2672.1999.00836.x – volume: 67 start-page: 3469 year: 2001 ident: c3fo60206k-(cit28)/*[position()=1] publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.8.3469-3475.2001 – volume: 66 start-page: 494 year: 2006 ident: c3fo60206k-(cit21)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2006.04.002 – volume: 28 start-page: 657 year: 2009 ident: c3fo60206k-(cit33)/*[position()=1] publication-title: J. Am. Coll. Nutr. doi: 10.1080/07315724.2009.10719798 – volume: 101 start-page: 20 year: 2007 ident: c3fo60206k-(cit7)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2006.01.005 – volume: 127 start-page: 1822 year: 1997 ident: c3fo60206k-(cit15)/*[position()=1] publication-title: J. Nutr. doi: 10.1093/jn/127.9.1822 – volume: 80 start-page: 1658 year: 2004 ident: c3fo60206k-(cit2)/*[position()=1] publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/80.6.1658 – volume: 5 start-page: e15046 year: 2010 ident: c3fo60206k-(cit1)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0015046 – volume: 40 start-page: 304 year: 2007 ident: c3fo60206k-(cit10)/*[position()=1] publication-title: Food Res. Int. doi: 10.1016/j.foodres.2006.04.001 – volume: 83 start-page: 865 year: 2011 ident: c3fo60206k-(cit9)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2010.08.066 – volume: 5 start-page: 3404 year: 2011 ident: c3fo60206k-(cit22)/*[position()=1] publication-title: Afr. J. Microbiol. Res. – volume: 17 start-page: 609 year: 1998 ident: c3fo60206k-(cit31)/*[position()=1] publication-title: J. Am. Coll. Nutr. doi: 10.1080/07315724.1998.10718810 – volume: 43 start-page: 183 year: 2000 ident: c3fo60206k-(cit16)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/S0144-8617(00)00147-8 – volume: 10 start-page: 19 year: 2004 ident: c3fo60206k-(cit32)/*[position()=1] publication-title: Anaerobe doi: 10.1016/j.anaerobe.2003.12.002 – volume: 38 start-page: 417 year: 2009 ident: c3fo60206k-(cit18)/*[position()=1] publication-title: Journal of Fujian Agriculture and Forestry University (Natural Science Edition) – volume: 117 start-page: 339 year: 2004 ident: c3fo60206k-(cit23)/*[position()=1] publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2004.09.003 – volume: 70 start-page: 5810 year: 2004 ident: c3fo60206k-(cit30)/*[position()=1] publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.10.5810-5817.2004 – volume: 51 start-page: 169 year: 2007 ident: c3fo60206k-(cit3)/*[position()=1] publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00261-06 – volume: 4 start-page: 933 year: 2012 ident: c3fo60206k-(cit27)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2012.07.001 – volume: 60 start-page: 527 year: 1997 ident: c3fo60206k-(cit6)/*[position()=1] publication-title: Food Chem. doi: 10.1016/S0308-8146(97)00025-3 – volume: 63 start-page: 406 year: 2011 ident: c3fo60206k-(cit8)/*[position()=1] publication-title: Starch/Staerke doi: 10.1002/star.201000099 – volume: 141 start-page: 1273 year: 2011 ident: c3fo60206k-(cit14)/*[position()=1] publication-title: J. Nutr. doi: 10.3945/jn.111.140509 – volume: 105 start-page: 503 year: 2008 ident: c3fo60206k-(cit36)/*[position()=1] publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.105.503 – volume: 91 start-page: 253 year: 2004 ident: c3fo60206k-(cit35)/*[position()=1] publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2003.07.001 – volume: 29 start-page: 832 year: 2010 ident: c3fo60206k-(cit13)/*[position()=1] publication-title: Clin. Nutr. doi: 10.1016/j.clnu.2010.05.005 – volume: 58 start-page: 2274 year: 2010 ident: c3fo60206k-(cit20)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf903820s – volume: 19 start-page: 294 year: 2001 ident: c3fo60206k-(cit24)/*[position()=1] publication-title: West China Journal of Stomatology – volume: 19 start-page: 35 year: 2002 ident: c3fo60206k-(cit37)/*[position()=1] publication-title: Food Microbiol. doi: 10.1006/fmic.2001.0452 – volume: 215 start-page: 863 year: 2010 ident: c3fo60206k-(cit34)/*[position()=1] publication-title: Immunobiology doi: 10.1016/j.imbio.2010.01.001 – volume: 94 start-page: 1012 year: 2005 ident: c3fo60206k-(cit25)/*[position()=1] publication-title: Br. J. Nutr. doi: 10.1079/BJN20051577 – volume: 4 start-page: 520 year: 2012 ident: c3fo60206k-(cit29)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2012.02.013 – volume: 30 start-page: 9 year: 2012 ident: c3fo60206k-(cit4)/*[position()=1] publication-title: Czech J. Food Sci. doi: 10.17221/18/2011-CJFS – volume: 38 start-page: 225 year: 1999 ident: c3fo60206k-(cit12)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/S0144-8617(98)00095-2 |
SSID | ssj0000399898 |
Score | 2.2626276 |
Snippet | Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 169 |
SubjectTerms | absorbance amylose beneficial microorganisms Bifidobacterium - growth & development Bifidobacterium - metabolism Bifidobacterium adolescentis butyric acid carbon cecum colon corn starch Fermentation fructans glucose Humans Intestine, Large - metabolism Intestine, Large - microbiology Loteae - chemistry Loteae - metabolism Models, Biological oligosaccharides prebiotics Prebiotics - analysis Prebiotics - microbiology resistant starch Seeds - chemistry Seeds - metabolism Starch - chemistry Starch - metabolism |
Title | The in vitro effects of retrograded starch (resistant starch type 3) from lotus seed starch on the proliferation of Bifidobacterium adolescentis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24056635 https://www.proquest.com/docview/1445913685 https://www.proquest.com/docview/2327975260 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9sIF8SpsecgIhKiqQBI7iXPsAqXi0VMrltPKcWwpYpVUuwkHfgUHfjAzeThud5EKlyiaOM5u5ov9zXg8Q8gLocM0jJT0ZO5zjyeKezI20sPUTkLILBYKNzh_OY1PzvnHeTSfTH47UUtNnb1WP7fuK_kfrYIM9Iq7ZP9Bs7ZTEMA56BeOoGE4XlvHRXn4o6hXlRuZsdJ1G3aVA5sE9oduDSCSYFgjWSzrQda6X9HT2m0yWVZ1sz5c6_GmbiEBY7iWGAFj2eWsMEUOA0Gb6Bmjm21aqGLtst1jTJmM2MLZ013xt27qb8Xo0R8k_VzaNtOdcCbBeh7lnxsUzhvXZRGwfu-eHdlC3BMU87TPge3IIn_uDs3cRWDgjLNB3CZV2JwAfIb5UxUzVQxEOP4-TnPD0v6V2c_GJLar8SxdjPfeILshGB8weu4efZp9-Gp9d9AMy25i3cLhnwyZb1n6ZuzgMtfZMGCAzqyGMjMtnTm7TW71dgg96kB1h0x0eZdM3xW6pi9pnyx2SU-HWg33yC8AGy1K2oKN9mCjlaEO2GiHG_rKQm2QINQoO6AINNoCjSLQhstVSQFo9BLQsO8rQKMu0O6T8-P3Z29PvL6ch6c44zVwISG1CFUWpLmfJLliObAnYOwKXqZUCcwkWnDBMp2aTBqTGG00j7Is1KFhWrE9slNWpX5IqB-LJEnjBPrxuWS5EEpEYRoYPzNAucSUHAwvfqH6XPdYcmW52NTylDy3bS-6DC9bWz0b9LeAARhX1WSpq2YNtjOP0gDrOPy9DZgtSZpEYexPyYNO-fZZQKkjpP1TsgdosGL30fvbLywucrN_rV__iNwcv8PHZKdeNfoJkOk6e9pj-w_nZ859 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+in+vitro+effects+of+retrograded+starch+%28resistant+starch+type+3%29+from+lotus+seed+starch+on+the+proliferation+of+Bifidobacterium+adolescentis&rft.jtitle=Food+%26+function&rft.au=Zhang%2C+Yi&rft.au=Wang%2C+Ying&rft.au=Zheng%2C+Baodong&rft.au=Lu%2C+Xu&rft.date=2013-11-01&rft.issn=2042-6496&rft.eissn=2042-650X&rft.volume=4&rft.issue=11&rft.spage=1609&rft_id=info:doi/10.1039%2Fc3fo60206k&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_c3fo60206k |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon |