Porous polymers via emulsion templating: pore deformation during solidification cannot be explained by an osmotic transport

Using microfluidics, we were able to synthesize monodisperse water-in-monomer emulsions with styrene and divinylbenzene (DVB) as monomers. When polymerizing and drying these emulsions, we found that the structure of the resulting macroporous polymer strongly depends on the type of initiator. With th...

Full description

Saved in:
Bibliographic Details
Published inColloid and polymer science Vol. 299; no. 2; pp. 233 - 242
Main Authors Koch, Lukas, Drenckhan, Wiebke, Stubenrauch, Cosima
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2021
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using microfluidics, we were able to synthesize monodisperse water-in-monomer emulsions with styrene and divinylbenzene (DVB) as monomers. When polymerizing and drying these emulsions, we found that the structure of the resulting macroporous polymer strongly depends on the type of initiator. With the oil-soluble azobisisobutyronitrile (AIBN), an open-cell structure with spherical pores was obtained. However, with the water-soluble potassium peroxydisulfate (KPS), a closed-cell structure with rhombic dodecahedron-shaped pores and thick, layered pore walls was formed. In the latter case, a yet unexplained mechanism counteracts the capillary pressure arising from surface minimization: the surface area of a rhombic dodecahedron is ~ 10% larger than that of a sphere. In our previous work, we suggested that the underlying mechanism may be osmotic transport of DVB from the plateau borders to the films. We argued that this transport also explains the layered pore walls, i.e., the formation of two outer poly-DVB-rich layers and one inner polystyrene-rich layer. In order to prove or disprove this mechanism, we carried out additional experiments. However, none of those experiments corroborated our hypothesis of osmotic transport! This study provides clear experimental evidence that our previously suggested mechanism via which spherical droplets become polyhedral pores is incorrect. We will describe (a) the rationale behind the additional experiments, (b) our expectations, and (c) our findings. Last but not least, we will discuss all of this in the light of the proposed osmotic transport.
AbstractList Abstract Using microfluidics, we were able to synthesize monodisperse water-in-monomer emulsions with styrene and divinylbenzene (DVB) as monomers. When polymerizing and drying these emulsions, we found that the structure of the resulting macroporous polymer strongly depends on the type of initiator. With the oil-soluble azobisisobutyronitrile (AIBN), an open-cell structure with spherical pores was obtained. However, with the water-soluble potassium peroxydisulfate (KPS), a closed-cell structure with rhombic dodecahedron-shaped pores and thick, layered pore walls was formed. In the latter case, a yet unexplained mechanism counteracts the capillary pressure arising from surface minimization: the surface area of a rhombic dodecahedron is ~ 10% larger than that of a sphere. In our previous work, we suggested that the underlying mechanism may be osmotic transport of DVB from the plateau borders to the films. We argued that this transport also explains the layered pore walls, i.e., the formation of two outer poly-DVB-rich layers and one inner polystyrene-rich layer. In order to prove or disprove this mechanism, we carried out additional experiments. However, none of those experiments corroborated our hypothesis of osmotic transport! This study provides clear experimental evidence that our previously suggested mechanism via which spherical droplets become polyhedral pores is incorrect. We will describe (a) the rationale behind the additional experiments, (b) our expectations, and (c) our findings. Last but not least, we will discuss all of this in the light of the proposed osmotic transport.
Using microfluidics, we were able to synthesize monodisperse water-in-monomer emulsions with styrene and divinylbenzene (DVB) as monomers. When polymerizing and drying these emulsions, we found that the structure of the resulting macroporous polymer strongly depends on the type of initiator. With the oil-soluble azobisisobutyronitrile (AIBN), an open-cell structure with spherical pores was obtained. However, with the water-soluble potassium peroxydisulfate (KPS), a closed-cell structure with rhombic dodecahedron-shaped pores and thick, layered pore walls was formed. In the latter case, a yet unexplained mechanism counteracts the capillary pressure arising from surface minimization: the surface area of a rhombic dodecahedron is ~ 10% larger than that of a sphere. In our previous work, we suggested that the underlying mechanism may be osmotic transport of DVB from the plateau borders to the films. We argued that this transport also explains the layered pore walls, i.e., the formation of two outer poly-DVB-rich layers and one inner polystyrene-rich layer. In order to prove or disprove this mechanism, we carried out additional experiments. However, none of those experiments corroborated our hypothesis of osmotic transport! This study provides clear experimental evidence that our previously suggested mechanism via which spherical droplets become polyhedral pores is incorrect. We will describe (a) the rationale behind the additional experiments, (b) our expectations, and (c) our findings. Last but not least, we will discuss all of this in the light of the proposed osmotic transport.
sing microfluidics, we were able to synthesize monodisperse water-in-monomer emulsions with styrene and divinylbenzene (DVB) as monomers. When polymerizing and drying these emulsions, we found that the structure of the resulting macroporous polymer strongly depends on the type of initiator. With the oil-soluble azobisisobutyronitrile (AIBN), an open-cell structure with spherical pores was obtained. However, with the water-soluble potassium peroxydisulfate (KPS), a closed-cell structure with rhombic dodecahedron-shaped pores and thick, layered pore walls was formed. In the latter case, a yet unexplained mechanism counteracts the capillary pressure arising from surface minimization: the surface area of a rhombic dodecahedron is ~ 10% larger than that of a sphere. In our previous work, we suggested that the underlying mechanism may be osmotic transport of DVB from the plateau borders to the films. We argued that this transport also explains the layered pore walls, i.e., the formation of two outer poly-DVB-rich layers and one inner polystyrene-rich layer. In order to prove or disprove this mechanism, we carried out additional experiments. However, none of those experiments corroborated our hypothesis of osmotic transport! This study provides clear experimental evidence that our previously suggested mechanism via which spherical droplets become polyhedral pores is incorrect. We will describe (a) the rationale behind the additional experiments, (b) our expectations, and (c) our findings. Last but not least, we will discuss all of this in the light of the proposed osmotic transport.
Author Stubenrauch, Cosima
Koch, Lukas
Drenckhan, Wiebke
Author_xml – sequence: 1
  givenname: Lukas
  surname: Koch
  fullname: Koch, Lukas
  organization: Institut für Physikalische Chemie, Universität Stuttgart
– sequence: 2
  givenname: Wiebke
  surname: Drenckhan
  fullname: Drenckhan, Wiebke
  organization: CNRS, Institute Charles Sadron UPR22, Université de Strasbourg
– sequence: 3
  givenname: Cosima
  surname: Stubenrauch
  fullname: Stubenrauch, Cosima
  email: c.stubenrauch@ipc.uni-stuttgart.de
  organization: Institut für Physikalische Chemie, Universität Stuttgart, Institute of Advanced Studies (USIAS), Université of Strasbourg
BackLink https://hal.science/hal-03004376$$DView record in HAL
BookMark eNp9UU1r3DAUFGUD3Wz6B3oS9NSDkydLlr29LUvzAQvJoYHehCw_t1psyZHsJUv_fLRxSW45PZg3Mwwz52ThvENCvjK4ZADlVQTga5lBDhkIWVZZ8YksmeBFxgouF2QJHHgmIP_9mZzHuAcAsZZySf49-OCnSAffHXsMkR6spthPXbTe0RH7odOjdX9-JEZA2mDrQ5-Q9GymkB40-s42trVmRo12zo-0RorPSWsdNrQ-Uu2oj70fraFj0C4mt_GCnLW6i_jl_12Rx-ufv7a32e7-5m672WVGcDFmZV0yYDmrEAQa5K1pTMuQc2TV2tS1hsoUUpQoBJdcSGmqqspzKXiLsioLviLfZ9-_ulNDsL0OR-W1VbebnTphqRwQvJQHlrjfZu4Q_NOEcVR7PwWX4qlcrCE1KKVMrHxmmeBjDNi-2TJQp0HUPIhKg6jXQdQpBp9FcTgVh-Hd-gPVC-fzkUg
CitedBy_id crossref_primary_10_3390_bioengineering10020236
crossref_primary_10_1039_D1PY01175H
crossref_primary_10_1016_j_cocis_2024_101822
crossref_primary_10_1016_j_polymertesting_2022_107490
Cites_doi 10.1038/nbt0794-689
10.1103/PhysRevLett.93.208301
10.1002/macp.1962.020570105
10.1016/j.cis.2015.05.004
10.1002/adem.200600167
10.1063/1.3122665
10.1002/smll.200801498
10.1002/polc.5070530113
10.1021/acs.langmuir.6b03762
10.1007/BF00655236
10.1016/j.biomaterials.2011.06.018
10.1016/S0032-3861(00)00820-X
10.1039/c1sm05371j
10.1039/b517731f
10.1021/ma00001a019
10.1209/epl/i2003-10295-7
10.1021/la303788z
10.1021/acs.macromol.6b00494
10.1039/c3tb21227k
10.1002/cphc.201600834
10.1002/adem.201500040
10.1016/j.colsurfa.2005.02.037
10.1021/la00081a027
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOI 10.1007/s00396-020-04678-5
DatabaseName SpringerOpen
CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Materials Science Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
DatabaseTitleList CrossRef
ProQuest Materials Science Collection


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1435-1536
EndPage 242
ExternalDocumentID oai_HAL_hal_03004376v1
10_1007_s00396_020_04678_5
GrantInformation_xml – fundername: Universität Stuttgart (1023)
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C6C
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D1I
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KC.
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9N
PDBOC
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZE2
ZMTXR
~02
~EX
~KM
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGJZZ
AGQEE
AGRTI
AIGIU
CITATION
H13
7SR
8FD
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
ID FETCH-LOGICAL-c434t-7b7101218e04ece3fcdcf1e33e189cbba08c5647e44363466c88822643fe68753
IEDL.DBID 8FG
ISSN 0303-402X
IngestDate Fri Sep 06 12:35:31 EDT 2024
Fri Sep 13 02:21:46 EDT 2024
Thu Sep 12 16:27:52 EDT 2024
Sat Dec 16 12:09:38 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Emulsion templating
Macroporous polystyrene
Microfluidics
Pore deformation
Osmotic transport
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-7b7101218e04ece3fcdcf1e33e189cbba08c5647e44363466c88822643fe68753
ORCID 0000-0002-1247-4006
0000-0002-3879-4956
OpenAccessLink http://link.springer.com/10.1007/s00396-020-04678-5
PQID 2490402666
PQPubID 2034526
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_03004376v1
proquest_journals_2490402666
crossref_primary_10_1007_s00396_020_04678_5
springer_journals_10_1007_s00396_020_04678_5
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Kolloid-Zeitschrift und Zeitschrift für Polymere
PublicationTitle Colloid and polymer science
PublicationTitleAbbrev Colloid Polym Sci
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References LinJYLinWJHongWHHungWCNowotarskiSHMontenegro GouveaiSCristoILinKHMorphology and organization of tissue cells in 3D microenvironment of monodisperse foam scaffoldsSoft Matter2011710010100161:CAS:528:DC%2BC3MXhtlejsL%2FK10.1039/c1sm05371j
MillsNPolymer foams handbook: engineering and biomechanics applications and design guide2007AmsterdamElsevier
http://gestis.itrust.de/nxt/gateway.dll/gestis_de/038850.xml?f=templates$fn=default.htm$3.0 (04.05.2020)
CameronNRSherringtonDCAlbistonLGregoryDPStudy of the formation of the open-cellular morphology of poly(styrene/divinylbenzene) polyHIPE materials by cryo-SEMColloid Polym Sci199627465925951:CAS:528:DyaK28XlsVSrtLw%3D10.1007/BF00655236
BartlHvon BoninWÜber die Polymerisation in umgekehrter EmulsionMacromol Chem Phys19625774951:CAS:528:DyaF3sXitV2ruw%3D%3D10.1002/macp.1962.020570105
WilliamsJMWrobleskiDASpatial distribution of the phases in water-in-oil emulsions. Open and closed microcellular foams from cross-linked polystyreneLangmuir198846566621:CAS:528:DyaL1cXitVGmt7k%3D10.1021/la00081a027
ColosiCCostantiniMBarbettaAPecciRBediniRDentiniMMorphological comparison of PVA scaffolds obtained by gas foaming and microfluidic foaming techniquesLangmuir20132982911:CAS:528:DC%2BC38XhslyltbrL10.1021/la303788z
QuellASottmannTStubenrauchCDiving into the finestructure of macroporous polymer foams synthesized via emulsion Templating: a phase diagram studyLangmuir2017335375421:CAS:528:DC%2BC2sXivVSisg%3D%3D10.1021/acs.langmuir.6b03762
QuellAElsingJDrenckhanDStubenrauchCMonodisperse polystyrene foams via microfluidics – a novel templating routeAdv Eng Mater2015176046091:CAS:528:DC%2BC2MXos1aktrk%3D10.1002/adem.201500040
SunYSPengSWLinKHChengJYElectrotaxis of lung cancer cells in ordered three-dimensional scaffoldsBiomicrofluidics20126014102-(1-14)
HilgenfeldtSKraynikAMReineltDASullivanJMThe structure of foam cells: isotropic plateau polyhedraEPL20046734844901:CAS:528:DC%2BD2cXnsFWmur8%3D10.1209/epl/i2003-10295-7
KraynikAMReineltDAvan SwolFStructure of random foamPhys Rev Lett20049320208301-(1-4)10.1103/PhysRevLett.93.208301
KraynikAMThe structure of random foamAdv Eng Mater2006899009061:CAS:528:DC%2BD28Xht1egtLvP10.1002/adem.200600167
SchwachulaGCalculation of the copolymerization parameters in the ternary copolymerization system of styrene/m-divinyl-benzene/p-divinylbenzeneJ Polym Sci Polym Symp1975531071121:CAS:528:DyaE28Xhs1Ght7s%3D10.1002/polc.5070530113
DrenckhanWHutzlerSStructure and energy of liquid foamsAdv Colloid Interf Sci20152241151:CAS:528:DC%2BC2MXhtVSisbzP10.1016/j.cis.2015.05.004
LandrockAHHandbook of plastic foams – types, properties, manufacture and applications1995Park RidgeNoyes Publications
LeeSTParkCBRameshNSPolymeric foams2007Boca RatonTaylor & Francis Group
http://gestis.itrust.de/nxt/gateway.dll/gestis_de/002310.xml?f=templates$fn=default.htm$3.0 (04.05.2020)
http://gestis.itrust.de/nxt/gateway.dll/gestis_de/001180.xml?f=templates$fn=default.htm$3.0 (04.05.2020)
QuellAde BergolisBDrenckhanWStubenrauchCHow the locus of initiation influences the morphology and the pore connectivity of a monodisperse polymer foamMacromolecules201649505950671:CAS:528:DC%2BC28XhtVyhtbzN10.1021/acs.macromol.6b00494
KraynikAMReineltDAvan SwolFStructure of random bidisperse foamColloids Surf A Physicochem Eng Asp200526311171:CAS:528:DC%2BD2MXltlais7Y%3D10.1016/j.colsurfa.2005.02.037
QuellAHeitkamSDrenckhanWStubenrauchCCreating honeycomb structures in porous polymers by osmotic transportChemPhysChem2017184514541:CAS:528:DC%2BC2sXhtlCrtrc%3D10.1002/cphc.201600834
TaiHSergienkoASilversteinMSOrganic-inorganic networks in foams from high internal phase emulsion polymerizationsPolymer200142447344821:CAS:528:DC%2BD3MXhtFyltr4%3D10.1016/S0032-3861(00)00820-X
WangCCYangKCLinKHLiuHCLinFHA highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technologyBiomaterials201132711871261:CAS:528:DC%2BC3MXpsFWhtbw%3D10.1016/j.biomaterials.2011.06.018
MennerAPowellRBismarckAA new route to carbon black filled polyHIPEsSoft Matter200623373421:CAS:528:DC%2BD28XjvFarur0%3D10.1039/b517731f
ChoiSWCheongIWKimJHXiaYPreparation of uniform microspheres using a simple device and their crystallization into close-packed latticesSmall2009544544591:CAS:528:DC%2BD1MXjt12ksLk%3D10.1002/smll.200801498
HaineyPHuxhamIMRowattBSherringtonDCTetleyLSynthesis and Ultrastructural studies of styrene-divinylbenzene polyhipe polymersMacromolecules1991241171211:CAS:528:DyaK3MXisFWltg%3D%3D10.1021/ma00001a019
http://gestis.itrust.de/nxt/gateway.dll/gestis_de/010110.xml?f=templates$fn=default.htm$3.0 (04.05.2020)
ChungKYMishraNCWangCCLinFHLinKHFabricating scaffolds by microfluidicsBiomicrofluidics20093022403-(1-8)10.1063/1.3122665
FreedLEVunjak-NovakovicGBironRJEaglesDBLesnoyDCBarlowSKLangerRBiodegradable polymer scaffolds for tissue engineeringNat Biotechnol1994126896931:CAS:528:DyaK2cXkvFWksb4%3D10.1038/nbt0794-689
CostantiniMColosiCGuzowskiJBarbettaAJaroszewiczJSwieszkowskiWDentiniMGarsteckiPHighly ordered and tunable polyHIPEs by using microfluidicsJ Mater Chem B20142229023001:CAS:528:DC%2BC2cXkvF2jtb0%3D10.1039/c3tb21227k
N Mills (4678_CR3) 2007
NR Cameron (4678_CR19) 1996; 274
H Tai (4678_CR20) 2001; 42
A Quell (4678_CR14) 2017; 18
W Drenckhan (4678_CR27) 2015; 224
KY Chung (4678_CR5) 2009; 3
YS Sun (4678_CR9) 2012; 6
LE Freed (4678_CR4) 1994; 12
4678_CR29
CC Wang (4678_CR8) 2011; 32
AH Landrock (4678_CR1) 1995
JY Lin (4678_CR7) 2011; 7
4678_CR28
S Hilgenfeldt (4678_CR24) 2004; 67
G Schwachula (4678_CR22) 1975; 53
AM Kraynik (4678_CR26) 2006; 8
A Quell (4678_CR12) 2015; 17
A Menner (4678_CR21) 2006; 2
M Costantini (4678_CR11) 2014; 2
JM Williams (4678_CR17) 1988; 4
P Hainey (4678_CR18) 1991; 24
4678_CR30
C Colosi (4678_CR10) 2013; 29
4678_CR31
ST Lee (4678_CR2) 2007
H Bartl (4678_CR16) 1962; 57
AM Kraynik (4678_CR23) 2004; 93
A Quell (4678_CR15) 2017; 33
SW Choi (4678_CR6) 2009; 5
AM Kraynik (4678_CR25) 2005; 263
A Quell (4678_CR13) 2016; 49
References_xml – volume: 6
  start-page: 014102-(1-14)
  year: 2012
  ident: 4678_CR9
  publication-title: Biomicrofluidics
  contributor:
    fullname: YS Sun
– volume: 12
  start-page: 689
  year: 1994
  ident: 4678_CR4
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0794-689
  contributor:
    fullname: LE Freed
– volume: 93
  start-page: 208301-(1-4)
  issue: 20
  year: 2004
  ident: 4678_CR23
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.93.208301
  contributor:
    fullname: AM Kraynik
– volume: 57
  start-page: 74
  year: 1962
  ident: 4678_CR16
  publication-title: Macromol Chem Phys
  doi: 10.1002/macp.1962.020570105
  contributor:
    fullname: H Bartl
– volume: 224
  start-page: 1
  year: 2015
  ident: 4678_CR27
  publication-title: Adv Colloid Interf Sci
  doi: 10.1016/j.cis.2015.05.004
  contributor:
    fullname: W Drenckhan
– ident: 4678_CR29
– volume: 8
  start-page: 900
  issue: 9
  year: 2006
  ident: 4678_CR26
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200600167
  contributor:
    fullname: AM Kraynik
– volume: 3
  start-page: 022403-(1-8)
  year: 2009
  ident: 4678_CR5
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3122665
  contributor:
    fullname: KY Chung
– volume: 5
  start-page: 454
  issue: 4
  year: 2009
  ident: 4678_CR6
  publication-title: Small
  doi: 10.1002/smll.200801498
  contributor:
    fullname: SW Choi
– ident: 4678_CR31
– volume: 53
  start-page: 107
  year: 1975
  ident: 4678_CR22
  publication-title: J Polym Sci Polym Symp
  doi: 10.1002/polc.5070530113
  contributor:
    fullname: G Schwachula
– volume: 33
  start-page: 537
  year: 2017
  ident: 4678_CR15
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b03762
  contributor:
    fullname: A Quell
– volume: 274
  start-page: 592
  issue: 6
  year: 1996
  ident: 4678_CR19
  publication-title: Colloid Polym Sci
  doi: 10.1007/BF00655236
  contributor:
    fullname: NR Cameron
– volume: 32
  start-page: 7118
  year: 2011
  ident: 4678_CR8
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.06.018
  contributor:
    fullname: CC Wang
– volume-title: Polymeric foams
  year: 2007
  ident: 4678_CR2
  contributor:
    fullname: ST Lee
– volume: 42
  start-page: 4473
  year: 2001
  ident: 4678_CR20
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00820-X
  contributor:
    fullname: H Tai
– volume: 7
  start-page: 10010
  year: 2011
  ident: 4678_CR7
  publication-title: Soft Matter
  doi: 10.1039/c1sm05371j
  contributor:
    fullname: JY Lin
– volume: 2
  start-page: 337
  year: 2006
  ident: 4678_CR21
  publication-title: Soft Matter
  doi: 10.1039/b517731f
  contributor:
    fullname: A Menner
– volume: 24
  start-page: 117
  year: 1991
  ident: 4678_CR18
  publication-title: Macromolecules
  doi: 10.1021/ma00001a019
  contributor:
    fullname: P Hainey
– volume-title: Polymer foams handbook: engineering and biomechanics applications and design guide
  year: 2007
  ident: 4678_CR3
  contributor:
    fullname: N Mills
– volume: 67
  start-page: 484
  issue: 3
  year: 2004
  ident: 4678_CR24
  publication-title: EPL
  doi: 10.1209/epl/i2003-10295-7
  contributor:
    fullname: S Hilgenfeldt
– volume: 29
  start-page: 82
  year: 2013
  ident: 4678_CR10
  publication-title: Langmuir
  doi: 10.1021/la303788z
  contributor:
    fullname: C Colosi
– volume: 49
  start-page: 5059
  year: 2016
  ident: 4678_CR13
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b00494
  contributor:
    fullname: A Quell
– volume: 2
  start-page: 2290
  year: 2014
  ident: 4678_CR11
  publication-title: J Mater Chem B
  doi: 10.1039/c3tb21227k
  contributor:
    fullname: M Costantini
– volume: 18
  start-page: 451
  year: 2017
  ident: 4678_CR14
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201600834
  contributor:
    fullname: A Quell
– volume: 17
  start-page: 604
  year: 2015
  ident: 4678_CR12
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.201500040
  contributor:
    fullname: A Quell
– volume: 263
  start-page: 11
  year: 2005
  ident: 4678_CR25
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2005.02.037
  contributor:
    fullname: AM Kraynik
– ident: 4678_CR28
– ident: 4678_CR30
– volume-title: Handbook of plastic foams – types, properties, manufacture and applications
  year: 1995
  ident: 4678_CR1
  contributor:
    fullname: AH Landrock
– volume: 4
  start-page: 656
  year: 1988
  ident: 4678_CR17
  publication-title: Langmuir
  doi: 10.1021/la00081a027
  contributor:
    fullname: JM Williams
SSID ssj0004966
Score 2.353806
Snippet Using microfluidics, we were able to synthesize monodisperse water-in-monomer emulsions with styrene and divinylbenzene (DVB) as monomers. When polymerizing...
Abstract Using microfluidics, we were able to synthesize monodisperse water-in-monomer emulsions with styrene and divinylbenzene (DVB) as monomers. When...
sing microfluidics, we were able to synthesize monodisperse water-in-monomer emulsions with styrene and divinylbenzene (DVB) as monomers. When polymerizing and...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 233
SubjectTerms Azobisisobutyronitrile
Capillary pressure
Characterization and Evaluation of Materials
Chemical Sciences
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Divinylbenzene
Emulsion polymerization
Experiments
Food Science
Invited Article
Material chemistry
Microfluidics
Monomers
Nanotechnology and Microengineering
Physical Chemistry
Polymer Sciences
Polystyrene resins
Porosity
Potassium persulfate
Soft and Granular Matter
Solidification
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsQwFL34WKgL8YnjiyDutNA2aabjbhBlEBUXDsyuNMmNCtoOYxXFn_cm086o6MJtmjbQk8e9yTknAIcouY2FNEGoMAko_qchFZt2YHOdJ1bkKL1I7Opa9vriYpAMpjpuT3ZvTiT9RD3RujkVqePLejYipT7JLMy74MF15X7cnYohO_UBZchdcjSolTK_f-PbajR777iQXwLNH2ejfsk5X4HlOlZk3TG4qzCDxRosnDZXtK3B0hc3wXX4uClHlMezYfn47naj2etDzvDp5dFtiDHnQeV4b8XdCdUYITM4ES6ysViRUT98MI47NC6lv16UFVPI8I3epZYMU-8sL1jpb__RrGqs0Tegf352e9oL6rsVAi24qIK2ajtnryjFUKBGbrXRNkLOMUo7Wqk8THUiRRuF4JILKTWlyk50yy3BRznOJswVZYFbwOJYxdaEKiLcRWp1mlgVdwyanHqplWELjpp_nA3HFhrZxCzZI5IRIplHJEtacEAwTCo69-te9zJzZSH3TkzyNWrBboNSVo-554wSSZqRKOCQLThukJs-_rvJ7f9V34HF2BFbPHV7F-aq0QvuUWRSqX3fEz8BWLbbsg
  priority: 102
  providerName: Springer Nature
Title Porous polymers via emulsion templating: pore deformation during solidification cannot be explained by an osmotic transport
URI https://link.springer.com/article/10.1007/s00396-020-04678-5
https://www.proquest.com/docview/2490402666/abstract/
https://hal.science/hal-03004376
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_t4wF4QDBAFMZkId4gahI7bsoLKlW7io9pQlQqT1Fsn8ekkZSSTUz889y5STuQ4CWRHCeW8jt_nH2_3wG8QC19qrSLYoNZROt_6lKpG0S-tGXmVYk6kMQ-nujZXL1bZIsdmHVcGA6r7MbEMFC72vIeeZ_cBLI3mk50vzS8C2Cb_pvl94jzR_E5a5tMYxf2E9bEY8749HjLkBy2p5axZI9p0dJnAomO6akciBvCHMmnyv6Yona_coDkjdXnXwemYR6a3oO77QJSjNaI34cdrA7g1rjL23YAd25IDD6AX6f1ipx7sawvrnmLWlydlwK_XV7wLplgYSoOhqvOXlONFQqHGzajWDMYBRnnueOAonUpQVHVjTAo8Ce9Sy05Ya5FWYk6pASyoun00h_CfDr5PJ5FbcKFyCqpmmhgBiz3leQYK7QovXXWJyglJvnQGlPGuc20GqBSUkultSX_mZm40hOm5Pg8gr2qrvAxiDQ1qXexScgYVO5tnnmTDh26kkzX67gHL7t_XCzXuhrFRkE5IFIQIkVApMh68Jxg2FRkSezZ6EPBZbEM8kz6KunBYYdS0XbEH8XWbHrwqkNu-_jfTT75_9eewu2Uo1tC_PYh7DWrS3xGy5PGHAXLO4L90fGX9xO6v52cnH6i0rEe03Wejn4Dn2nn0g
link.rule.ids 230,315,786,790,891,12792,21416,27957,27958,33408,33779,41116,41155,41558,42185,42224,42627,43635,43840,51611,52146,52269,74392,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RcigcUCmgLrRgIW4QkcSON8sFVRXLAtuKQyvtzYrtMVRqk2WbVlT8eWa8yW5BgqvzsORv7Hl4vhmAV6hlyJX2SWqxSMj-py2V-2ESKlcVQVWoI0ns6FhPTtXnWTHrAm6XXVplfybGg9o3jmPkb8lNIHkjdaLfz38k3DWKb1e7FhobcFdJUp3MFB9_XPMiR91dZSrZT5p1pJlInWNSKqffxuRG8qSKPxTTxndOi7xlc_51TRq1z3gbHnRmozhY4vwQ7mC9A1uHfbe2Hbh_q7DgI_j1tVmQSy_mzfkNB6bF9Vkl8OLqnGNjgstRcQpc_e0dvbFA4XHFYRRL3qIgkTzznEa0HCUA6qYVFgX-pG9pJi_sjahq0cRGQE60fZX0x3A6_nByOEm6NguJU1K1ydAOuchXVmKq0KEMzruQoZSYlSNnbZWWrtBqiIrXWGntyGtm_q0MhCS5O09gs25q3AWR5zYPPrUZiYAqgyuLYPORR1-RwAadDuB1v8ZmvqymYVZ1kyMihhAxERFTDOAlwbB6kQthTw6mhsdSGYsy6etsAHs9SqbbfpdmLSwDeNMjt3787ymf_v9vL2BrcnI0NdNPx1-ewb2c81tiBvcebLaLK9wnA6W1z6MU_gY5auIM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED6xTYLxgGCAKAywEG8QLYkdJ-UFjbGqwKgqxKS-WbF9hklbUrpsYuLPc3addiDBq-PEUr7P9p393R3AS5Tc5ULaJNVYJGT_05TKbZm42tSFEzXKECT2eSLHx-LjrJhF_dN5lFX2a2JYqG1r_Bn5HrkJxDfaTuSei7KI6fvR2_mPxFeQ8jetsZzGBmyVQhbE8K13h5Ppl3WU5DDeXKbce02zGEITAul8iKoX4wapI_lVxR_b1MZ3L5K8ZoH-dWka9qLRXbgTjUi2v0T9HtzAZgduHfS123bg9rU0g_fh17RdkIPP5u3plT-mZpcnNcOzi1N_UsZ8cioviGu-vaEeC2QWVxGNbBnFyIigJ9aLipatBEfTdkwjw5_0Lo1kmb5idcPaUBbIsK7Pmf4AjkeHXw_GSSy6kBjBRZeUuvQpv7IKU4EGuTPWuAw5x6waGq3rtDKFFCUKwSUXUhryoX00LneEKzk_D2GzaRt8BCzPde5sqjMihKicqQqn86FFWxN9nUwH8Kr_x2q-zK2hVlmUAyKKEFEBEVUM4AXBsOro02KP94-Ub0t5SNEkL7MB7PYoqTgZz9WaOgN43SO3fvzvIR___2vP4SZRUB19mHx6Atu5F7sEOfcubHaLC3xK1kqnn0Ua_gbOPeev
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+polymers+via+emulsion+templating%3A+pore+deformation+during+solidification+cannot+be+explained+by+an+osmotic+transport&rft.jtitle=Colloid+and+polymer+science&rft.au=Koch%2C+Lukas&rft.au=Drenckhan+Wiebke&rft.au=Stubenrauch+Cosima&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0303-402X&rft.eissn=1435-1536&rft.volume=299&rft.issue=2&rft.spage=233&rft.epage=242&rft_id=info:doi/10.1007%2Fs00396-020-04678-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-402X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-402X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-402X&client=summon