Optomechanical Ground-State Cooling in a Continuous and Efficient Electro-Optic Transducer
The demonstration of a quantum link between microwave and optical frequencies would be an important step toward the realization of a quantum network of superconducting processors. A major impediment to quantum electro-optic transduction in all platforms explored to date is noise added by thermal occ...
Saved in:
Published in | Physical review. X Vol. 12; no. 2; p. 021062 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The demonstration of a quantum link between microwave and optical frequencies would be an important step toward the realization of a quantum network of superconducting processors. A major impediment to quantum electro-optic transduction in all platforms explored to date is noise added by thermal occupation of modes involved in the transduction process, and it has proved difficult to realize low thermal occupancy concurrently with other desirable features like high duty cycle and high efficiency. In this work, we present an efficient and continuously operating electro-optomechanical transducer whose mechanical mode has been optically sideband cooled to its quantum ground state. The transducer achieves a maximum efficiency of 47% and minimum input-referred added noise of 3.2 photons in upconversion. Moreover, the thermal occupancy of the transducer’s microwave mode is minimally affected by continuous laser illumination with power more than 2 orders of magnitude greater than that required for optomechanical ground-state cooling. |
---|---|
AbstractList | The demonstration of a quantum link between microwave and optical frequencies would be an important step toward the realization of a quantum network of superconducting processors. A major impediment to quantum electro-optic transduction in all platforms explored to date is noise added by thermal occupation of modes involved in the transduction process, and it has proved difficult to realize low thermal occupancy concurrently with other desirable features like high duty cycle and high efficiency. In this work, we present an efficient and continuously operating electro-optomechanical transducer whose mechanical mode has been optically sideband cooled to its quantum ground state. The transducer achieves a maximum efficiency of 47% and minimum input-referred added noise of 3.2 photons in upconversion. Moreover, the thermal occupancy of the transducer’s microwave mode is minimally affected by continuous laser illumination with power more than 2 orders of magnitude greater than that required for optomechanical ground-state cooling. The demonstration of a quantum link between microwave and optical frequencies would be an important step toward the realization of a quantum network of superconducting processors. A major impediment to quantum electro-optic transduction in all platforms explored to date is noise added by thermal occupation of modes involved in the transduction process, and it has proved difficult to realize low thermal occupancy concurrently with other desirable features like high duty cycle and high efficiency. In this work, we present an efficient and continuously operating electro-optomechanical transducer whose mechanical mode has been optically sideband cooled to its quantum ground state. The transducer achieves a maximum efficiency of 47% and minimum input-referred added noise of 3.2 photons in upconversion. Moreover, the thermal occupancy of the transducer’s microwave mode is minimally affected by continuous laser illumination with power more than 2 orders of magnitude greater than that required for optomechanical ground-state cooling. |
ArticleNumber | 021062 |
Author | Lehnert, K. W. Brubaker, B. M. Urmey, M. D. Mittal, S. Kindem, J. M. Vissers, M. R. Delaney, R. D. Burns, P. S. Regal, C. A. |
Author_xml | – sequence: 1 givenname: B. M. orcidid: 0000-0003-1778-1125 surname: Brubaker fullname: Brubaker, B. M. – sequence: 2 givenname: J. M. orcidid: 0000-0002-7737-9368 surname: Kindem fullname: Kindem, J. M. – sequence: 3 givenname: M. D. orcidid: 0000-0002-1714-1980 surname: Urmey fullname: Urmey, M. D. – sequence: 4 givenname: S. orcidid: 0000-0002-1025-5782 surname: Mittal fullname: Mittal, S. – sequence: 5 givenname: R. D. orcidid: 0000-0003-0907-6872 surname: Delaney fullname: Delaney, R. D. – sequence: 6 givenname: P. S. surname: Burns fullname: Burns, P. S. – sequence: 7 givenname: M. R. surname: Vissers fullname: Vissers, M. R. – sequence: 8 givenname: K. W. orcidid: 0000-0002-0750-9649 surname: Lehnert fullname: Lehnert, K. W. – sequence: 9 givenname: C. A. orcidid: 0000-0002-0000-2140 surname: Regal fullname: Regal, C. A. |
BookMark | eNpNkdtKxDAQhoMoeHwBrwped81k0nb3Upb1AILiAcSbME0TzVKTNWmFfXujq-LczIHhm3_499m2D94wdgx8AsDx9PZ1ne7Mx9MExIQL4LXYYnsCal4i8un2v3qXHaW05DlqDrJp9tjzzWoIb0a_knea-uIihtF35f1AgynmIfTOvxTOF5QbPzg_hjEV5LtiYa3TzvihWPRGDzGUmeR08RDJp27UJh6yHUt9Mkc_-YA9ni8e5pfl9c3F1fzsutQS5VA2jTVT5LwToJEEiaqy2vAaW9FIjU2NCF0rrDTYQp6SJj0TVM0I0HQziQfsasPtAi3VKro3imsVyKnvQYgvimKW1hslq_w4AUmatvIL0U6ttgI1zqBB3WbWyYa1iuF9NGlQyzBGn-Ur0SAAZjFV3hKbLR1DStHYv6vA1Zcl6tcSBUJtLMFPrT2CDw |
CitedBy_id | crossref_primary_10_1021_acsphotonics_3c00896 crossref_primary_10_1088_1402_4896_aceb1e crossref_primary_10_1088_1367_2630_ac9a66 crossref_primary_10_1103_PhysRevResearch_5_043140 crossref_primary_10_1364_OE_484369 crossref_primary_10_1364_OPTICA_479162 crossref_primary_10_1364_OE_502359 crossref_primary_10_1364_OPTICA_468590 crossref_primary_10_3389_fphy_2023_1218010 crossref_primary_10_1109_MNANO_2023_3340392 crossref_primary_10_1088_2058_9565_ad5abb crossref_primary_10_1103_PhysRevResearch_5_023148 crossref_primary_10_1126_science_adg3812 crossref_primary_10_1103_PhysRevLett_130_263603 crossref_primary_10_3389_fphy_2023_1222056 crossref_primary_10_1021_acsphyschemau_3c00077 crossref_primary_10_1103_PhysRevApplied_20_024030 crossref_primary_10_1103_PhysRevApplied_21_054044 crossref_primary_10_1364_AOP_497143 crossref_primary_10_7498_aps_72_20231203 crossref_primary_10_1103_PhysRevA_109_042409 crossref_primary_10_1103_PhysRevApplied_20_034007 crossref_primary_10_1103_PhysRevApplied_20_014005 |
Cites_doi | 10.1103/PhysRevA.103.053504 10.1103/PhysRevLett.124.010511 10.1038/s41586-020-3038-6 10.1038/s41567-018-0210-0 10.1103/PhysRevLett.116.063601 10.1002/qute.201900077 10.1364/OPTICA.390939 10.1103/PhysRevA.92.061801 10.1103/PhysRevA.84.042342 10.1063/1.4863666 10.1088/2058-9565/ab788a 10.1038/s41567-019-0673-7 10.1103/PhysRevApplied.17.044057 10.1088/2058-9565/ab7eed 10.1088/2058-9565/ab8962 10.1103/PhysRevLett.127.040503 10.1126/science.aam9288 10.1038/nphys2911 10.1103/PhysRevLett.124.070501 10.1038/s41467-022-28924-2 10.1038/s41586-020-2603-3 10.1103/PhysRevX.7.021008 10.1103/PhysRevD.26.1817 10.1088/1367-2630/15/3/035007 10.1038/s41586-019-1666-5 10.1103/PRXQuantum.1.020315 10.1063/1.2711770 10.1063/1.4862031 10.1088/1367-2630/14/11/115018 10.1038/s41586-022-04720-2 10.1126/science.1243289 10.1103/PhysRevLett.108.033602 10.1103/PhysRevB.94.014506 10.1038/nature08812 10.1364/OE.22.006810 10.1088/1367-2630/14/11/115021 10.1103/PhysRevLett.120.030501 10.1103/RevModPhys.86.1391 |
ContentType | Journal Article |
Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1103/PhysRevX.12.021062 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database (ProQuest) Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student Technology Collection ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_45060a1a4a8b4a59ab8fcf23c39173cb 10_1103_PhysRevX_12_021062 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PIMPY PTHSS ROL S7W 3V. 7XB 8FE 8FG 8FK L6V PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c434t-77fe8300d21c3a2a255fce063b274c376331db2f4e3b163bacac92a59a13ed943 |
IEDL.DBID | 8FG |
ISSN | 2160-3308 |
IngestDate | Tue Oct 22 15:10:28 EDT 2024 Thu Oct 10 19:21:03 EDT 2024 Fri Aug 23 02:43:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-77fe8300d21c3a2a255fce063b274c376331db2f4e3b163bacac92a59a13ed943 |
ORCID | 0000-0002-0000-2140 0000-0002-1025-5782 0000-0002-1714-1980 0000-0002-7737-9368 0000-0002-0750-9649 0000-0003-0907-6872 0000-0003-1778-1125 |
OpenAccessLink | https://www.proquest.com/docview/2731133315?pq-origsite=%requestingapplication% |
PQID | 2731133315 |
PQPubID | 5161131 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_45060a1a4a8b4a59ab8fcf23c39173cb proquest_journals_2731133315 crossref_primary_10_1103_PhysRevX_12_021062 |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. X |
PublicationYear | 2022 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevX.12.021062Cc14R1 PhysRevX.12.021062Cc37R1 PhysRevX.12.021062Cc13R1 PhysRevX.12.021062Cc16R1 PhysRevX.12.021062Cc35R1 PhysRevX.12.021062Cc36R1 PhysRevX.12.021062Cc10R1 PhysRevX.12.021062Cc34R1 PhysRevX.12.021062Cc12R1 PhysRevX.12.021062Cc31R1 PhysRevX.12.021062Cc11R1 PhysRevX.12.021062Cc32R1 PhysRevX.12.021062Cc18R1 PhysRevX.12.021062Cc17R1 PhysRevX.12.021062Cc39R1 PhysRevX.12.021062Cc19R1 PhysRevX.12.021062Cc40R1 PhysRevX.12.021062Cc41R1 PhysRevX.12.021062Cc8R1 PhysRevX.12.021062Cc25R1 PhysRevX.12.021062Cc9R1 PhysRevX.12.021062Cc24R1 PhysRevX.12.021062Cc27R1 PhysRevX.12.021062Cc26R1 PhysRevX.12.021062Cc4R1 PhysRevX.12.021062Cc21R1 PhysRevX.12.021062Cc5R1 PhysRevX.12.021062Cc20R1 PhysRevX.12.021062Cc6R1 PhysRevX.12.021062Cc23R1 PhysRevX.12.021062Cc42R1 PhysRevX.12.021062Cc7R1 PhysRevX.12.021062Cc22R1 PhysRevX.12.021062Cc29R1 PhysRevX.12.021062Cc28R1 PhysRevX.12.021062Cc1R1 PhysRevX.12.021062Cc30R1 PhysRevX.12.021062Cc2R1 PhysRevX.12.021062Cc3R1 |
References_xml | – ident: PhysRevX.12.021062Cc14R1 doi: 10.1103/PhysRevA.103.053504 – ident: PhysRevX.12.021062Cc18R1 doi: 10.1103/PhysRevLett.124.010511 – ident: PhysRevX.12.021062Cc10R1 doi: 10.1038/s41586-020-3038-6 – ident: PhysRevX.12.021062Cc20R1 doi: 10.1038/s41567-018-0210-0 – ident: PhysRevX.12.021062Cc25R1 doi: 10.1103/PhysRevLett.116.063601 – ident: PhysRevX.12.021062Cc8R1 doi: 10.1002/qute.201900077 – ident: PhysRevX.12.021062Cc35R1 doi: 10.1364/OPTICA.390939 – ident: PhysRevX.12.021062Cc29R1 doi: 10.1103/PhysRevA.92.061801 – ident: PhysRevX.12.021062Cc17R1 doi: 10.1103/PhysRevA.84.042342 – ident: PhysRevX.12.021062Cc36R1 doi: 10.1063/1.4863666 – ident: PhysRevX.12.021062Cc9R1 doi: 10.1088/2058-9565/ab788a – ident: PhysRevX.12.021062Cc13R1 doi: 10.1038/s41567-019-0673-7 – ident: PhysRevX.12.021062Cc19R1 doi: 10.1103/PhysRevApplied.17.044057 – ident: PhysRevX.12.021062Cc12R1 doi: 10.1088/2058-9565/ab7eed – ident: PhysRevX.12.021062Cc7R1 doi: 10.1088/2058-9565/ab8962 – ident: PhysRevX.12.021062Cc28R1 doi: 10.1103/PhysRevLett.127.040503 – ident: PhysRevX.12.021062Cc6R1 doi: 10.1126/science.aam9288 – ident: PhysRevX.12.021062Cc21R1 doi: 10.1038/nphys2911 – ident: PhysRevX.12.021062Cc5R1 doi: 10.1103/PhysRevLett.124.070501 – ident: PhysRevX.12.021062Cc16R1 doi: 10.1038/s41467-022-28924-2 – ident: PhysRevX.12.021062Cc3R1 doi: 10.1038/s41586-020-2603-3 – ident: PhysRevX.12.021062Cc39R1 doi: 10.1103/PhysRevX.7.021008 – ident: PhysRevX.12.021062Cc41R1 doi: 10.1103/PhysRevD.26.1817 – ident: PhysRevX.12.021062Cc31R1 doi: 10.1088/1367-2630/15/3/035007 – ident: PhysRevX.12.021062Cc2R1 doi: 10.1038/s41586-019-1666-5 – ident: PhysRevX.12.021062Cc11R1 doi: 10.1103/PRXQuantum.1.020315 – ident: PhysRevX.12.021062Cc40R1 doi: 10.1002/qute.201900077 – ident: PhysRevX.12.021062Cc42R1 doi: 10.1063/1.2711770 – ident: PhysRevX.12.021062Cc22R1 doi: 10.1063/1.4862031 – ident: PhysRevX.12.021062Cc30R1 doi: 10.1088/1367-2630/14/11/115018 – ident: PhysRevX.12.021062Cc32R1 doi: 10.1038/s41586-022-04720-2 – ident: PhysRevX.12.021062Cc27R1 doi: 10.1126/science.1243289 – ident: PhysRevX.12.021062Cc26R1 doi: 10.1103/PhysRevLett.108.033602 – ident: PhysRevX.12.021062Cc34R1 doi: 10.1103/PhysRevB.94.014506 – ident: PhysRevX.12.021062Cc1R1 doi: 10.1038/nature08812 – ident: PhysRevX.12.021062Cc23R1 doi: 10.1364/OE.22.006810 – ident: PhysRevX.12.021062Cc37R1 doi: 10.1088/1367-2630/14/11/115021 – ident: PhysRevX.12.021062Cc4R1 doi: 10.1103/PhysRevLett.120.030501 – ident: PhysRevX.12.021062Cc24R1 doi: 10.1103/RevModPhys.86.1391 |
SSID | ssj0000601477 |
Score | 2.5332034 |
Snippet | The demonstration of a quantum link between microwave and optical frequencies would be an important step toward the realization of a quantum network of... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 021062 |
SubjectTerms | Cavity resonators Cooling Couples Ground state Laser beam heating Lasers Microwave circuits Optics Photons Quantum computers Quantum computing Quantum entanglement Superconductivity Vibration mode |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF7ET5xOycGblDV56ddRx8YQVBAHw0tI0kR2sBtb59_vS9rKxIMXr6Vpy-817_1-4X0QcmNjVGhplkZIjlGgKMMjJRyPRMqYSpRgovSFwo9P6WQqHmbJbGvUl88Ja9oDN8ANhO-Ap5gSKtdCJYXSuTOOgwEUGmB08L4x3xJTjQ9G6p9lXZVMDAOfUPliP2fh8A9XpPxHJAoN-3_54xBkxofkoGWH9K75qiOyY6tjsheyNM36hLw9L-vFh_XFuh5b6g-OqjIKhJEOF37-zjudV1RR33RqXm1Q1lNVlXQUGkVgfKGjZuxNhE-aGxoiVYnWXZ2S6Xj0OpxE7XCEyAgQNbJiZ3OI45IzA4orlAbOWCQcGnWm8W4DWKm5ExY0ci6tjDIF9wAysGUh4IzsVovKnhMqMlznMgeWWaG1yIGxwkGGO7Jkzpgeue2AksumB4YM2iEG2cEqGZcNrD1y77H8vtP3rw4X0Kqytar8y6o90u8sIdtNtZbItBhKamDJxX-845Lsc1_LEI5U-mS3Xm3sFTKMWl-Hn-kLnH7PBw priority: 102 providerName: Directory of Open Access Journals |
Title | Optomechanical Ground-State Cooling in a Continuous and Efficient Electro-Optic Transducer |
URI | https://www.proquest.com/docview/2731133315 https://doaj.org/article/45060a1a4a8b4a59ab8fcf23c39173cb |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEF7UIvginliPsg--STB7NEmfRKW1CB6IQvFl2VP6YFJ7-Pud2SaKCL7mIsxmZ75vMvMNIac-BYaW5VkC4BgIirY80TLwRGaM6a6WTDpsFL67z4Yv8nbUHdUJt1ldVtn4xOioXWUxR34OYZYBnxKsezH5SHBqFP5drUdorJIW43mGJX3F4OY7x4JaIzLPm16ZVJxjWeWT_xzFFCCwnYz_ikdRtv-PV46hZrBFNmuMSC-Xi7pNVny5Q9Zjraad7ZLXh8m8evfYsosWppg-Kl0SYSO9rnAKzxsdl1RTlJ4alwsg91SXjvajXAREGdpfDr9J4EljS2O8crDG0z3yMug_Xw-TekRCYqWQc8DGwRciTR1nVmiugSAE6wF2GGCbFp2HYM7wIL0wgLyMttr2uO72NBPe9aTYJ2tlVfoDQmUO94U8CM-8NEYWYO9eEDnsS8eCtW1y1hhKTZZKGCoyiFSoxqyKcbU0a5tcoS2_r0QV63igmr6pelMoieqGmmmpCyPxpUwRbODCCiCRwpo2OW5WQtVba6Z-PoTD_08fkQ2OvQoxZXJM1ubThT8BBDE3nfiZdEjrqn__-NSJPPwLY7fIqQ |
link.rule.ids | 314,780,784,864,2102,12765,21388,27924,27925,33373,33744,43600,43805 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYoCJULKi2IUFp86K1asbYnu8mpoigh5VWpAiniYvkZ5cBuSAK_nxlnF1Qhcd2XVmN75vvGnm8Y-xFyZGhFWWQIjpGgGCczA1FmUAhhugYEeCoUvrouRrdwPu6Om4TbojlW2frE5Kh97ShHfoxhViCfUqL7a_aQUdco2l1tWmh8YBugMHRTpfjw7CXHQlojUJZtrUyujulY5b_wNE4pQGQ7hfwvHiXZ_jdeOYWa4Se23WBEfrIa1B22FqrPbDOd1XSLL-zu72xZ3wcq2SULc0ofVT5LsJGf1tSFZ8KnFTecpKem1SOSe24qzwdJLgKjDB-smt9k-KWp4yleeRzj-S67HQ5uTkdZ0yIhc6Bgidg4hp7Kcy-FU0YaJAjRBYQdFtmmI-ehhLcyQlAWkZc1zri-NN2-ESr4Pqg9tl7VVdhnHEp8L5ZRBRHAWuihvftRlbguvYjOddjP1lB6tlLC0IlB5Eq3ZtVC6pVZO-w32fLlSVKxThfq-UQ3i0IDqRsaYcD0LNBP2V50USqnkEQqZzvssB0J3SythX6dCAfv3z5iH0c3V5f68s_1xVe2JaluIaVPDtn6cv4YviGaWNrvaco8A9ZXyPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optomechanical+Ground-State+Cooling+in+a+Continuous+and+Efficient+Electro-Optic+Transducer&rft.jtitle=Physical+review.+X&rft.au=Brubaker%2C+B+M&rft.au=Kindem%2C+J+M&rft.au=Urmey%2C+M+D&rft.au=Mittal%2C+S&rft.date=2022-06-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevX.12.021062 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |