Optomechanical Ground-State Cooling in a Continuous and Efficient Electro-Optic Transducer

The demonstration of a quantum link between microwave and optical frequencies would be an important step toward the realization of a quantum network of superconducting processors. A major impediment to quantum electro-optic transduction in all platforms explored to date is noise added by thermal occ...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 12; no. 2; p. 021062
Main Authors Brubaker, B. M., Kindem, J. M., Urmey, M. D., Mittal, S., Delaney, R. D., Burns, P. S., Vissers, M. R., Lehnert, K. W., Regal, C. A.
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The demonstration of a quantum link between microwave and optical frequencies would be an important step toward the realization of a quantum network of superconducting processors. A major impediment to quantum electro-optic transduction in all platforms explored to date is noise added by thermal occupation of modes involved in the transduction process, and it has proved difficult to realize low thermal occupancy concurrently with other desirable features like high duty cycle and high efficiency. In this work, we present an efficient and continuously operating electro-optomechanical transducer whose mechanical mode has been optically sideband cooled to its quantum ground state. The transducer achieves a maximum efficiency of 47% and minimum input-referred added noise of 3.2 photons in upconversion. Moreover, the thermal occupancy of the transducer’s microwave mode is minimally affected by continuous laser illumination with power more than 2 orders of magnitude greater than that required for optomechanical ground-state cooling.
AbstractList The demonstration of a quantum link between microwave and optical frequencies would be an important step toward the realization of a quantum network of superconducting processors. A major impediment to quantum electro-optic transduction in all platforms explored to date is noise added by thermal occupation of modes involved in the transduction process, and it has proved difficult to realize low thermal occupancy concurrently with other desirable features like high duty cycle and high efficiency. In this work, we present an efficient and continuously operating electro-optomechanical transducer whose mechanical mode has been optically sideband cooled to its quantum ground state. The transducer achieves a maximum efficiency of 47% and minimum input-referred added noise of 3.2 photons in upconversion. Moreover, the thermal occupancy of the transducer’s microwave mode is minimally affected by continuous laser illumination with power more than 2 orders of magnitude greater than that required for optomechanical ground-state cooling.
The demonstration of a quantum link between microwave and optical frequencies would be an important step toward the realization of a quantum network of superconducting processors. A major impediment to quantum electro-optic transduction in all platforms explored to date is noise added by thermal occupation of modes involved in the transduction process, and it has proved difficult to realize low thermal occupancy concurrently with other desirable features like high duty cycle and high efficiency. In this work, we present an efficient and continuously operating electro-optomechanical transducer whose mechanical mode has been optically sideband cooled to its quantum ground state. The transducer achieves a maximum efficiency of 47% and minimum input-referred added noise of 3.2 photons in upconversion. Moreover, the thermal occupancy of the transducer’s microwave mode is minimally affected by continuous laser illumination with power more than 2 orders of magnitude greater than that required for optomechanical ground-state cooling.
ArticleNumber 021062
Author Lehnert, K. W.
Brubaker, B. M.
Urmey, M. D.
Mittal, S.
Kindem, J. M.
Vissers, M. R.
Delaney, R. D.
Burns, P. S.
Regal, C. A.
Author_xml – sequence: 1
  givenname: B. M.
  orcidid: 0000-0003-1778-1125
  surname: Brubaker
  fullname: Brubaker, B. M.
– sequence: 2
  givenname: J. M.
  orcidid: 0000-0002-7737-9368
  surname: Kindem
  fullname: Kindem, J. M.
– sequence: 3
  givenname: M. D.
  orcidid: 0000-0002-1714-1980
  surname: Urmey
  fullname: Urmey, M. D.
– sequence: 4
  givenname: S.
  orcidid: 0000-0002-1025-5782
  surname: Mittal
  fullname: Mittal, S.
– sequence: 5
  givenname: R. D.
  orcidid: 0000-0003-0907-6872
  surname: Delaney
  fullname: Delaney, R. D.
– sequence: 6
  givenname: P. S.
  surname: Burns
  fullname: Burns, P. S.
– sequence: 7
  givenname: M. R.
  surname: Vissers
  fullname: Vissers, M. R.
– sequence: 8
  givenname: K. W.
  orcidid: 0000-0002-0750-9649
  surname: Lehnert
  fullname: Lehnert, K. W.
– sequence: 9
  givenname: C. A.
  orcidid: 0000-0002-0000-2140
  surname: Regal
  fullname: Regal, C. A.
BookMark eNpNkdtKxDAQhoMoeHwBrwped81k0nb3Upb1AILiAcSbME0TzVKTNWmFfXujq-LczIHhm3_499m2D94wdgx8AsDx9PZ1ne7Mx9MExIQL4LXYYnsCal4i8un2v3qXHaW05DlqDrJp9tjzzWoIb0a_knea-uIihtF35f1AgynmIfTOvxTOF5QbPzg_hjEV5LtiYa3TzvihWPRGDzGUmeR08RDJp27UJh6yHUt9Mkc_-YA9ni8e5pfl9c3F1fzsutQS5VA2jTVT5LwToJEEiaqy2vAaW9FIjU2NCF0rrDTYQp6SJj0TVM0I0HQziQfsasPtAi3VKro3imsVyKnvQYgvimKW1hslq_w4AUmatvIL0U6ttgI1zqBB3WbWyYa1iuF9NGlQyzBGn-Ur0SAAZjFV3hKbLR1DStHYv6vA1Zcl6tcSBUJtLMFPrT2CDw
CitedBy_id crossref_primary_10_1021_acsphotonics_3c00896
crossref_primary_10_1088_1402_4896_aceb1e
crossref_primary_10_1088_1367_2630_ac9a66
crossref_primary_10_1103_PhysRevResearch_5_043140
crossref_primary_10_1364_OE_484369
crossref_primary_10_1364_OPTICA_479162
crossref_primary_10_1364_OE_502359
crossref_primary_10_1364_OPTICA_468590
crossref_primary_10_3389_fphy_2023_1218010
crossref_primary_10_1109_MNANO_2023_3340392
crossref_primary_10_1088_2058_9565_ad5abb
crossref_primary_10_1103_PhysRevResearch_5_023148
crossref_primary_10_1126_science_adg3812
crossref_primary_10_1103_PhysRevLett_130_263603
crossref_primary_10_3389_fphy_2023_1222056
crossref_primary_10_1021_acsphyschemau_3c00077
crossref_primary_10_1103_PhysRevApplied_20_024030
crossref_primary_10_1103_PhysRevApplied_21_054044
crossref_primary_10_1364_AOP_497143
crossref_primary_10_7498_aps_72_20231203
crossref_primary_10_1103_PhysRevA_109_042409
crossref_primary_10_1103_PhysRevApplied_20_034007
crossref_primary_10_1103_PhysRevApplied_20_014005
Cites_doi 10.1103/PhysRevA.103.053504
10.1103/PhysRevLett.124.010511
10.1038/s41586-020-3038-6
10.1038/s41567-018-0210-0
10.1103/PhysRevLett.116.063601
10.1002/qute.201900077
10.1364/OPTICA.390939
10.1103/PhysRevA.92.061801
10.1103/PhysRevA.84.042342
10.1063/1.4863666
10.1088/2058-9565/ab788a
10.1038/s41567-019-0673-7
10.1103/PhysRevApplied.17.044057
10.1088/2058-9565/ab7eed
10.1088/2058-9565/ab8962
10.1103/PhysRevLett.127.040503
10.1126/science.aam9288
10.1038/nphys2911
10.1103/PhysRevLett.124.070501
10.1038/s41467-022-28924-2
10.1038/s41586-020-2603-3
10.1103/PhysRevX.7.021008
10.1103/PhysRevD.26.1817
10.1088/1367-2630/15/3/035007
10.1038/s41586-019-1666-5
10.1103/PRXQuantum.1.020315
10.1063/1.2711770
10.1063/1.4862031
10.1088/1367-2630/14/11/115018
10.1038/s41586-022-04720-2
10.1126/science.1243289
10.1103/PhysRevLett.108.033602
10.1103/PhysRevB.94.014506
10.1038/nature08812
10.1364/OE.22.006810
10.1088/1367-2630/14/11/115021
10.1103/PhysRevLett.120.030501
10.1103/RevModPhys.86.1391
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1103/PhysRevX.12.021062
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database (ProQuest)
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_45060a1a4a8b4a59ab8fcf23c39173cb
10_1103_PhysRevX_12_021062
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PIMPY
PTHSS
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c434t-77fe8300d21c3a2a255fce063b274c376331db2f4e3b163bacac92a59a13ed943
IEDL.DBID 8FG
ISSN 2160-3308
IngestDate Tue Oct 22 15:10:28 EDT 2024
Thu Oct 10 19:21:03 EDT 2024
Fri Aug 23 02:43:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-77fe8300d21c3a2a255fce063b274c376331db2f4e3b163bacac92a59a13ed943
ORCID 0000-0002-0000-2140
0000-0002-1025-5782
0000-0002-1714-1980
0000-0002-7737-9368
0000-0002-0750-9649
0000-0003-0907-6872
0000-0003-1778-1125
OpenAccessLink https://www.proquest.com/docview/2731133315?pq-origsite=%requestingapplication%
PQID 2731133315
PQPubID 5161131
ParticipantIDs doaj_primary_oai_doaj_org_article_45060a1a4a8b4a59ab8fcf23c39173cb
proquest_journals_2731133315
crossref_primary_10_1103_PhysRevX_12_021062
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. X
PublicationYear 2022
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.12.021062Cc14R1
PhysRevX.12.021062Cc37R1
PhysRevX.12.021062Cc13R1
PhysRevX.12.021062Cc16R1
PhysRevX.12.021062Cc35R1
PhysRevX.12.021062Cc36R1
PhysRevX.12.021062Cc10R1
PhysRevX.12.021062Cc34R1
PhysRevX.12.021062Cc12R1
PhysRevX.12.021062Cc31R1
PhysRevX.12.021062Cc11R1
PhysRevX.12.021062Cc32R1
PhysRevX.12.021062Cc18R1
PhysRevX.12.021062Cc17R1
PhysRevX.12.021062Cc39R1
PhysRevX.12.021062Cc19R1
PhysRevX.12.021062Cc40R1
PhysRevX.12.021062Cc41R1
PhysRevX.12.021062Cc8R1
PhysRevX.12.021062Cc25R1
PhysRevX.12.021062Cc9R1
PhysRevX.12.021062Cc24R1
PhysRevX.12.021062Cc27R1
PhysRevX.12.021062Cc26R1
PhysRevX.12.021062Cc4R1
PhysRevX.12.021062Cc21R1
PhysRevX.12.021062Cc5R1
PhysRevX.12.021062Cc20R1
PhysRevX.12.021062Cc6R1
PhysRevX.12.021062Cc23R1
PhysRevX.12.021062Cc42R1
PhysRevX.12.021062Cc7R1
PhysRevX.12.021062Cc22R1
PhysRevX.12.021062Cc29R1
PhysRevX.12.021062Cc28R1
PhysRevX.12.021062Cc1R1
PhysRevX.12.021062Cc30R1
PhysRevX.12.021062Cc2R1
PhysRevX.12.021062Cc3R1
References_xml – ident: PhysRevX.12.021062Cc14R1
  doi: 10.1103/PhysRevA.103.053504
– ident: PhysRevX.12.021062Cc18R1
  doi: 10.1103/PhysRevLett.124.010511
– ident: PhysRevX.12.021062Cc10R1
  doi: 10.1038/s41586-020-3038-6
– ident: PhysRevX.12.021062Cc20R1
  doi: 10.1038/s41567-018-0210-0
– ident: PhysRevX.12.021062Cc25R1
  doi: 10.1103/PhysRevLett.116.063601
– ident: PhysRevX.12.021062Cc8R1
  doi: 10.1002/qute.201900077
– ident: PhysRevX.12.021062Cc35R1
  doi: 10.1364/OPTICA.390939
– ident: PhysRevX.12.021062Cc29R1
  doi: 10.1103/PhysRevA.92.061801
– ident: PhysRevX.12.021062Cc17R1
  doi: 10.1103/PhysRevA.84.042342
– ident: PhysRevX.12.021062Cc36R1
  doi: 10.1063/1.4863666
– ident: PhysRevX.12.021062Cc9R1
  doi: 10.1088/2058-9565/ab788a
– ident: PhysRevX.12.021062Cc13R1
  doi: 10.1038/s41567-019-0673-7
– ident: PhysRevX.12.021062Cc19R1
  doi: 10.1103/PhysRevApplied.17.044057
– ident: PhysRevX.12.021062Cc12R1
  doi: 10.1088/2058-9565/ab7eed
– ident: PhysRevX.12.021062Cc7R1
  doi: 10.1088/2058-9565/ab8962
– ident: PhysRevX.12.021062Cc28R1
  doi: 10.1103/PhysRevLett.127.040503
– ident: PhysRevX.12.021062Cc6R1
  doi: 10.1126/science.aam9288
– ident: PhysRevX.12.021062Cc21R1
  doi: 10.1038/nphys2911
– ident: PhysRevX.12.021062Cc5R1
  doi: 10.1103/PhysRevLett.124.070501
– ident: PhysRevX.12.021062Cc16R1
  doi: 10.1038/s41467-022-28924-2
– ident: PhysRevX.12.021062Cc3R1
  doi: 10.1038/s41586-020-2603-3
– ident: PhysRevX.12.021062Cc39R1
  doi: 10.1103/PhysRevX.7.021008
– ident: PhysRevX.12.021062Cc41R1
  doi: 10.1103/PhysRevD.26.1817
– ident: PhysRevX.12.021062Cc31R1
  doi: 10.1088/1367-2630/15/3/035007
– ident: PhysRevX.12.021062Cc2R1
  doi: 10.1038/s41586-019-1666-5
– ident: PhysRevX.12.021062Cc11R1
  doi: 10.1103/PRXQuantum.1.020315
– ident: PhysRevX.12.021062Cc40R1
  doi: 10.1002/qute.201900077
– ident: PhysRevX.12.021062Cc42R1
  doi: 10.1063/1.2711770
– ident: PhysRevX.12.021062Cc22R1
  doi: 10.1063/1.4862031
– ident: PhysRevX.12.021062Cc30R1
  doi: 10.1088/1367-2630/14/11/115018
– ident: PhysRevX.12.021062Cc32R1
  doi: 10.1038/s41586-022-04720-2
– ident: PhysRevX.12.021062Cc27R1
  doi: 10.1126/science.1243289
– ident: PhysRevX.12.021062Cc26R1
  doi: 10.1103/PhysRevLett.108.033602
– ident: PhysRevX.12.021062Cc34R1
  doi: 10.1103/PhysRevB.94.014506
– ident: PhysRevX.12.021062Cc1R1
  doi: 10.1038/nature08812
– ident: PhysRevX.12.021062Cc23R1
  doi: 10.1364/OE.22.006810
– ident: PhysRevX.12.021062Cc37R1
  doi: 10.1088/1367-2630/14/11/115021
– ident: PhysRevX.12.021062Cc4R1
  doi: 10.1103/PhysRevLett.120.030501
– ident: PhysRevX.12.021062Cc24R1
  doi: 10.1103/RevModPhys.86.1391
SSID ssj0000601477
Score 2.5332034
Snippet The demonstration of a quantum link between microwave and optical frequencies would be an important step toward the realization of a quantum network of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 021062
SubjectTerms Cavity resonators
Cooling
Couples
Ground state
Laser beam heating
Lasers
Microwave circuits
Optics
Photons
Quantum computers
Quantum computing
Quantum entanglement
Superconductivity
Vibration mode
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF7ET5xOycGblDV56ddRx8YQVBAHw0tI0kR2sBtb59_vS9rKxIMXr6Vpy-817_1-4X0QcmNjVGhplkZIjlGgKMMjJRyPRMqYSpRgovSFwo9P6WQqHmbJbGvUl88Ja9oDN8ANhO-Ap5gSKtdCJYXSuTOOgwEUGmB08L4x3xJTjQ9G6p9lXZVMDAOfUPliP2fh8A9XpPxHJAoN-3_54xBkxofkoGWH9K75qiOyY6tjsheyNM36hLw9L-vFh_XFuh5b6g-OqjIKhJEOF37-zjudV1RR33RqXm1Q1lNVlXQUGkVgfKGjZuxNhE-aGxoiVYnWXZ2S6Xj0OpxE7XCEyAgQNbJiZ3OI45IzA4orlAbOWCQcGnWm8W4DWKm5ExY0ci6tjDIF9wAysGUh4IzsVovKnhMqMlznMgeWWaG1yIGxwkGGO7Jkzpgeue2AksumB4YM2iEG2cEqGZcNrD1y77H8vtP3rw4X0Kqytar8y6o90u8sIdtNtZbItBhKamDJxX-845Lsc1_LEI5U-mS3Xm3sFTKMWl-Hn-kLnH7PBw
  priority: 102
  providerName: Directory of Open Access Journals
Title Optomechanical Ground-State Cooling in a Continuous and Efficient Electro-Optic Transducer
URI https://www.proquest.com/docview/2731133315
https://doaj.org/article/45060a1a4a8b4a59ab8fcf23c39173cb
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEF7UIvginliPsg--STB7NEmfRKW1CB6IQvFl2VP6YFJ7-Pud2SaKCL7mIsxmZ75vMvMNIac-BYaW5VkC4BgIirY80TLwRGaM6a6WTDpsFL67z4Yv8nbUHdUJt1ldVtn4xOioXWUxR34OYZYBnxKsezH5SHBqFP5drUdorJIW43mGJX3F4OY7x4JaIzLPm16ZVJxjWeWT_xzFFCCwnYz_ikdRtv-PV46hZrBFNmuMSC-Xi7pNVny5Q9Zjraad7ZLXh8m8evfYsosWppg-Kl0SYSO9rnAKzxsdl1RTlJ4alwsg91SXjvajXAREGdpfDr9J4EljS2O8crDG0z3yMug_Xw-TekRCYqWQc8DGwRciTR1nVmiugSAE6wF2GGCbFp2HYM7wIL0wgLyMttr2uO72NBPe9aTYJ2tlVfoDQmUO94U8CM-8NEYWYO9eEDnsS8eCtW1y1hhKTZZKGCoyiFSoxqyKcbU0a5tcoS2_r0QV63igmr6pelMoieqGmmmpCyPxpUwRbODCCiCRwpo2OW5WQtVba6Z-PoTD_08fkQ2OvQoxZXJM1ubThT8BBDE3nfiZdEjrqn__-NSJPPwLY7fIqQ
link.rule.ids 314,780,784,864,2102,12765,21388,27924,27925,33373,33744,43600,43805
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYoCJULKi2IUFp86K1asbYnu8mpoigh5VWpAiniYvkZ5cBuSAK_nxlnF1Qhcd2XVmN75vvGnm8Y-xFyZGhFWWQIjpGgGCczA1FmUAhhugYEeCoUvrouRrdwPu6Om4TbojlW2frE5Kh97ShHfoxhViCfUqL7a_aQUdco2l1tWmh8YBugMHRTpfjw7CXHQlojUJZtrUyujulY5b_wNE4pQGQ7hfwvHiXZ_jdeOYWa4Se23WBEfrIa1B22FqrPbDOd1XSLL-zu72xZ3wcq2SULc0ofVT5LsJGf1tSFZ8KnFTecpKem1SOSe24qzwdJLgKjDB-smt9k-KWp4yleeRzj-S67HQ5uTkdZ0yIhc6Bgidg4hp7Kcy-FU0YaJAjRBYQdFtmmI-ehhLcyQlAWkZc1zri-NN2-ESr4Pqg9tl7VVdhnHEp8L5ZRBRHAWuihvftRlbguvYjOddjP1lB6tlLC0IlB5Eq3ZtVC6pVZO-w32fLlSVKxThfq-UQ3i0IDqRsaYcD0LNBP2V50USqnkEQqZzvssB0J3SythX6dCAfv3z5iH0c3V5f68s_1xVe2JaluIaVPDtn6cv4YviGaWNrvaco8A9ZXyPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optomechanical+Ground-State+Cooling+in+a+Continuous+and+Efficient+Electro-Optic+Transducer&rft.jtitle=Physical+review.+X&rft.au=Brubaker%2C+B+M&rft.au=Kindem%2C+J+M&rft.au=Urmey%2C+M+D&rft.au=Mittal%2C+S&rft.date=2022-06-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevX.12.021062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon