Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle

1 Exercise Metabolism Group, School of Medical Science, RMIT, Melbourne, Australia; 2 Human Performance Laboratory, Ball State University, Indiana; 3 Sport and Exercise Science Division, Institute of Food, Nutrition and Human Health, Massey University, New Zealand; 4 Department of Sport and Exercise...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Regulatory, integrative and comparative physiology Vol. 297; no. 5; pp. R1441 - R1451
Main Authors Coffey, Vernon G, Jemiolo, Bozena, Edge, Johann, Garnham, Andrew P, Trappe, Scott W, Hawley, John A
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.11.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1 Exercise Metabolism Group, School of Medical Science, RMIT, Melbourne, Australia; 2 Human Performance Laboratory, Ball State University, Indiana; 3 Sport and Exercise Science Division, Institute of Food, Nutrition and Human Health, Massey University, New Zealand; 4 Department of Sport and Exercise, University of Auckland, New Zealand; and 5 School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia Submitted June 19, 2009 ; accepted in final form August 18, 2009 We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 ± 6.3 yr; body mass, 81.6 ± 7.3 kg; peak oxygen uptake, 47 ± 9.9 ml·kg –1 ·min –1 ; one repetition maximum (1-RM) leg extension 92.2 ± 12.5 kg; means ± SD] were randomly assigned to trials consisting of either resistance exercise (8 x 5 leg extension, 80% 1-RM) followed by repeated sprints (10 x 6 s, 0.75 N·m torque·kg –1 ) or vice-versa. Muscle biopsies from vastus lateralis were obtained at rest, 15 min after each exercise bout, and following 3-h recovery to determine early signaling and mRNA responses. There was divergent exercise order-dependent phosphorylation of p70 S6K (S6K). Specifically, initial resistance exercise increased S6K phosphorylation ( 75% P < 0.05), but there was no effect when resistance exercise was undertaken after sprints. Exercise decreased IGF-I mRNA following 3-h recovery ( 50%, P = 0.06) independent of order, while muscle RING finger mRNA was elevated with a moderate exercise order effect ( P < 0.01). When resistance exercise was followed by repeated sprints PGC-1 mRNA was increased (REX1-SPR2; P = 0.02) with a modest distinction between exercise orders. Repeated sprints may promote acute interference on resistance exercise responses by attenuating translation initiation signaling and exacerbating ubiquitin ligase expression. Indeed, repeated sprints appear to generate the overriding acute exercise-induced response when undertaking concurrent repeated sprint and resistance exercise. Accordingly, we suggest that sprint-activities are isolated from resistance training and that adequate recovery time is considered within periodized training plans that incorporate these divergent exercise modes. repeated sprint ability; resistance training; adaptation Address for reprint requests and other correspondence: V. Coffey, Exercise Metabolism Group, School of Medical Science, RMIT Univ., PO Box 71, Bundoora, Victoria 3083, Australia (e-mail: vernon.coffey{at}rmit.edu.au ).
AbstractList We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 ± 6.3 yr; body mass, 81.6 ± 7.3 kg; peak oxygen uptake, 47 ± 9.9 ml·kg −1 ·min −1 ; one repetition maximum (1-RM) leg extension 92.2 ± 12.5 kg; means ± SD] were randomly assigned to trials consisting of either resistance exercise (8 × 5 leg extension, 80% 1-RM) followed by repeated sprints (10 × 6 s, 0.75 N·m torque·kg −1 ) or vice-versa. Muscle biopsies from vastus lateralis were obtained at rest, 15 min after each exercise bout, and following 3-h recovery to determine early signaling and mRNA responses. There was divergent exercise order-dependent phosphorylation of p70 S6K (S6K). Specifically, initial resistance exercise increased S6K phosphorylation (∼75% P < 0.05), but there was no effect when resistance exercise was undertaken after sprints. Exercise decreased IGF-I mRNA following 3-h recovery (∼50%, P = 0.06) independent of order, while muscle RING finger mRNA was elevated with a moderate exercise order effect ( P < 0.01). When resistance exercise was followed by repeated sprints PGC-1α mRNA was increased (REX1-SPR2; P = 0.02) with a modest distinction between exercise orders. Repeated sprints may promote acute interference on resistance exercise responses by attenuating translation initiation signaling and exacerbating ubiquitin ligase expression. Indeed, repeated sprints appear to generate the overriding acute exercise-induced response when undertaking concurrent repeated sprint and resistance exercise. Accordingly, we suggest that sprint-activities are isolated from resistance training and that adequate recovery time is considered within periodized training plans that incorporate these divergent exercise modes.
We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 ± 6.3 yr; body mass, 81.6 ± 7.3 kg; peak oxygen uptake, 47 ± 9.9 ml-kg...-min...; one repetition maximum (1-RM) leg extension 92.2 ± 12.5 kg; means ± SD] were randomly assigned to trials consisting of either resistance exercise (8 x 5 leg extension, 80% 1-RM) followed by repeated sprints (10 x 6 s, 0.75 N...m torque...kg...) or vice-versa. Muscle biopsies from vastus lateralis were obtained at rest, 15 min after each exercise bout, and following 3-h recovery to determine early signaling and mRNA responses. There was divergent exercise order-dependent phosphorylation of p70 S6K (S6K). Specifically, initial resistance exercise increased S6K phosphorylation ( 75% P < 0.05), but there was no effect when resistance exercise was undertaken after sprints. Exercise decreased IGF-I mRNA following 3-h recovery ( 50%, P = 0.06) independent of order, while muscle RING finger mRNA was elevated with a moderate exercise order effect (P < 0.01). When resistance exercise was followed by repeated sprints PGC-1 mRNA was increased (REX1-SPR2; P = 0.02) with a modest distinction between exercise orders. Repeated sprints may promote acute interference on resistance exercise responses by attenuating translation initiation signaling and exacerbating ubiquitin ligase expression. Indeed, repeated sprints appear to generate the overriding acute exercise-induced response when undertaking concurrent repeated sprint and resistance exercise. Accordingly, we suggest that sprint-activities are isolated from resistance training and that adequate recovery time is considered within periodized training plans that incorporate these divergent exercise modes. (ProQuest: ... denotes formulae/symbols omitted.)
We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 +/- 6.3 yr; body mass, 81.6 +/- 7.3 kg; peak oxygen uptake, 47 +/- 9.9 mlxkg(-1)xmin(-1); one repetition maximum (1-RM) leg extension 92.2 +/- 12.5 kg; means +/- SD] were randomly assigned to trials consisting of either resistance exercise (8 x 5 leg extension, 80% 1-RM) followed by repeated sprints (10 x 6 s, 0.75 Nxm torquexkg(-1)) or vice-versa. Muscle biopsies from vastus lateralis were obtained at rest, 15 min after each exercise bout, and following 3-h recovery to determine early signaling and mRNA responses. There was divergent exercise order-dependent phosphorylation of p70 S6K (S6K). Specifically, initial resistance exercise increased S6K phosphorylation ( approximately 75% P < 0.05), but there was no effect when resistance exercise was undertaken after sprints. Exercise decreased IGF-I mRNA following 3-h recovery ( approximately 50%, P = 0.06) independent of order, while muscle RING finger mRNA was elevated with a moderate exercise order effect (P < 0.01). When resistance exercise was followed by repeated sprints PGC-1alpha mRNA was increased (REX1-SPR2; P = 0.02) with a modest distinction between exercise orders. Repeated sprints may promote acute interference on resistance exercise responses by attenuating translation initiation signaling and exacerbating ubiquitin ligase expression. Indeed, repeated sprints appear to generate the overriding acute exercise-induced response when undertaking concurrent repeated sprint and resistance exercise. Accordingly, we suggest that sprint-activities are isolated from resistance training and that adequate recovery time is considered within periodized training plans that incorporate these divergent exercise modes.
1 Exercise Metabolism Group, School of Medical Science, RMIT, Melbourne, Australia; 2 Human Performance Laboratory, Ball State University, Indiana; 3 Sport and Exercise Science Division, Institute of Food, Nutrition and Human Health, Massey University, New Zealand; 4 Department of Sport and Exercise, University of Auckland, New Zealand; and 5 School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia Submitted June 19, 2009 ; accepted in final form August 18, 2009 We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 ± 6.3 yr; body mass, 81.6 ± 7.3 kg; peak oxygen uptake, 47 ± 9.9 ml·kg –1 ·min –1 ; one repetition maximum (1-RM) leg extension 92.2 ± 12.5 kg; means ± SD] were randomly assigned to trials consisting of either resistance exercise (8 x 5 leg extension, 80% 1-RM) followed by repeated sprints (10 x 6 s, 0.75 N·m torque·kg –1 ) or vice-versa. Muscle biopsies from vastus lateralis were obtained at rest, 15 min after each exercise bout, and following 3-h recovery to determine early signaling and mRNA responses. There was divergent exercise order-dependent phosphorylation of p70 S6K (S6K). Specifically, initial resistance exercise increased S6K phosphorylation ( 75% P < 0.05), but there was no effect when resistance exercise was undertaken after sprints. Exercise decreased IGF-I mRNA following 3-h recovery ( 50%, P = 0.06) independent of order, while muscle RING finger mRNA was elevated with a moderate exercise order effect ( P < 0.01). When resistance exercise was followed by repeated sprints PGC-1 mRNA was increased (REX1-SPR2; P = 0.02) with a modest distinction between exercise orders. Repeated sprints may promote acute interference on resistance exercise responses by attenuating translation initiation signaling and exacerbating ubiquitin ligase expression. Indeed, repeated sprints appear to generate the overriding acute exercise-induced response when undertaking concurrent repeated sprint and resistance exercise. Accordingly, we suggest that sprint-activities are isolated from resistance training and that adequate recovery time is considered within periodized training plans that incorporate these divergent exercise modes. repeated sprint ability; resistance training; adaptation Address for reprint requests and other correspondence: V. Coffey, Exercise Metabolism Group, School of Medical Science, RMIT Univ., PO Box 71, Bundoora, Victoria 3083, Australia (e-mail: vernon.coffey{at}rmit.edu.au ).
Author Garnham, Andrew P
Trappe, Scott W
Coffey, Vernon G
Hawley, John A
Edge, Johann
Jemiolo, Bozena
Author_xml – sequence: 1
  fullname: Coffey, Vernon G
– sequence: 2
  fullname: Jemiolo, Bozena
– sequence: 3
  fullname: Edge, Johann
– sequence: 4
  fullname: Garnham, Andrew P
– sequence: 5
  fullname: Trappe, Scott W
– sequence: 6
  fullname: Hawley, John A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19692661$$D View this record in MEDLINE/PubMed
BookMark eNpdkU9v1DAQxS1URLeFL8ABWVw4ZfGfxFkfUVVapEpICM6W157sZkns4HFK99vj7UYgMRdL4997epp3RS5CDEDIW87WnDfioz1MCXbzmjHZ8LVgTL8gq_IhKl5rdkFWTCpZKc71JblCPDDGalnLV-SSa6WFUnxFnm67DlymsaMuBgQ35_4RaIIJbAZPcUp9yNQGX3bYY7bBAYUnSK5HoNs4Z6QxUFuEQK2306LH6WSHtA90P482UPwJA2Q70HFGN8Br8rKzA8Kb5b0mPz7ffr-5rx6-3n25-fRQuZI1V0pvpHSuafnWl2m82Ejmt8p72WnNGVM1aztZ137jlJC2sc6z1rNnBQcur8mHs--U4q8ZMJuxRwfDYAPEGU0r63JM2chCvv-PPMQ5hRLOCKFbyVu1KZA4Qy5FxASdKQcabToazsypFbO0Yp5bMadWiujd4jxvR_D_JEsNBVifgX2_2__uE5hpf8Q-DnF3_GtYMpjGfON1zeUfluKeCg
CODEN AJPRDO
CitedBy_id crossref_primary_10_1007_s40279_014_0252_0
crossref_primary_10_1007_s00421_010_1768_0
crossref_primary_10_1016_j_semcdb_2014_08_013
crossref_primary_10_1371_journal_pone_0108547
crossref_primary_10_1016_j_jsams_2016_03_007
crossref_primary_10_1152_ajpendo_00091_2013
crossref_primary_10_3390_sports6040127
crossref_primary_10_1038_s41598_021_90274_8
crossref_primary_10_1152_japplphysiol_00244_2017
crossref_primary_10_1152_ajpregu_00479_2015
crossref_primary_10_1152_ajpregu_00356_2016
crossref_primary_10_1113_EP087401
crossref_primary_10_3233_BPL_220137
crossref_primary_10_1002_jcp_25625
crossref_primary_10_3390_ijms24065181
crossref_primary_10_1016_j_jsams_2014_10_006
crossref_primary_10_3389_fphys_2019_00554
crossref_primary_10_1123_ijspp_2019_0491
crossref_primary_10_1152_ajpendo_00647_2013
crossref_primary_10_1080_02640414_2024_2371580
crossref_primary_10_17921_2447_8938_2019v21n4p382_5
crossref_primary_10_1007_s40279_017_0784_1
crossref_primary_10_1249_MSS_0000000000000390
crossref_primary_10_2478_hukin_2020_0048
crossref_primary_10_1249_MSS_0b013e3181d964e4
crossref_primary_10_1007_s00421_017_3721_y
crossref_primary_10_1139_apnm_2016_0463
crossref_primary_10_1371_journal_pone_0088384
crossref_primary_10_1519_JSC_0000000000002753
crossref_primary_10_1519_JSC_0000000000002874
crossref_primary_10_1242_jeb_114975
crossref_primary_10_1007_s00421_017_3614_0
crossref_primary_10_1007_s00421_015_3116_x
crossref_primary_10_1186_s12986_015_0055_9
crossref_primary_10_1152_japplphysiol_00959_2011
crossref_primary_10_3389_fphys_2018_00155
crossref_primary_10_2165_11590560_000000000_00000
crossref_primary_10_1007_s12662_020_00691_6
crossref_primary_10_1007_s00421_016_3530_8
crossref_primary_10_1016_j_scispo_2019_08_001
crossref_primary_10_1519_JSC_0000000000004550
crossref_primary_10_1096_fj_202302024R
crossref_primary_10_7600_jpfsm_4_217
crossref_primary_10_1519_JSC_0000000000004304
crossref_primary_10_1152_japplphysiol_01013_2012
crossref_primary_10_3389_fphys_2016_00087
crossref_primary_10_1249_MSS_0b013e318240067e
crossref_primary_10_1007_s40200_022_01091_3
crossref_primary_10_1371_journal_pone_0109189
crossref_primary_10_3945_ajcn_111_013722
crossref_primary_10_1113_JP272270
crossref_primary_10_1371_journal_pone_0149082
crossref_primary_10_1080_24733938_2016_1263394
crossref_primary_10_1152_ajpregu_00035_2012
crossref_primary_10_1007_s40279_016_0496_y
crossref_primary_10_1113_JP279780
crossref_primary_10_1096_fj_201700442R
crossref_primary_10_3389_fphys_2018_00028
crossref_primary_10_1152_ajpendo_00486_2014
crossref_primary_10_1111_sms_12605
crossref_primary_10_1249_MSS_0000000000002632
crossref_primary_10_14814_phy2_12364
crossref_primary_10_1152_japplphysiol_01107_2012
crossref_primary_10_1007_s40279_014_0162_1
crossref_primary_10_1371_journal_pone_0053080
crossref_primary_10_1016_j_jsams_2020_01_017
crossref_primary_10_1080_17461391_2014_950345
crossref_primary_10_1123_ijspp_2013_0238
crossref_primary_10_1152_japplphysiol_00210_2023
crossref_primary_10_2165_11539690_000000000_00000
crossref_primary_10_3390_ijms22052635
crossref_primary_10_1249_MSS_0b013e318256fbe8
crossref_primary_10_1038_s41598_017_18887_6
Cites_doi 10.1016/j.bbrc.2004.05.223
10.1111/j.1748-1716.2007.01712.x
10.1038/nrm1837
10.1152/japplphysiol.01162.2003
10.1152/japplphysiol.01121.2007
10.1073/pnas.251541198
10.1016/j.tibs.2006.04.003
10.1113/jphysiol.2002.032136
10.1113/jphysiol.2006.113175
10.2165/00007256-199928060-00004
10.1152/ajpendo.00462.2003
10.1113/jphysiol.2007.141507
10.1096/fj.05-4809fje
10.3109/00365517409082477
10.1152/japplphysiol.01185.2004
10.1006/meth.2001.1262
10.1113/jphysiol.2008.160176
10.1073/pnas.0600678103
10.1016/j.metabol.2005.03.008
10.1038/nrc1974
10.1152/ajpendo.00387.2003
10.1038/23060
10.1113/jphysiol.2008.153916
10.2165/00007256-200737090-00001
10.1152/japplphysiol.00575.2007
10.1074/jbc.M700906200
10.1152/jappl.1998.84.5.1716
10.1007/s00421-006-0182-0
10.1152/japplphysiol.91221.2008
10.1152/japplphysiol.90880.2008
10.1152/ajpendo.00190.2006
10.1007/BF00636620
10.1093/gerona/62.12.1407
10.1002/mus.20442
10.1152/japplphysiol.01616.2005
10.1096/fj.06-6604com
10.1126/science.1065874
10.1152/ajpendo.2000.279.5.E1202
10.1152/ajpendo.00299.2005
10.1152/ajpendo.00073.2004
10.1007/s00421-005-0056-x
10.1249/MSS.0b013e31818cb278
10.1152/jappl.1996.81.6.2509
10.1152/japplphysiol.00903.2002
10.1016/j.febslet.2007.08.045
10.1007/BF01466278
10.1152/japplphysiol.00438.2006
10.1016/j.devcel.2007.03.020
10.1038/ncb1101-1014
10.1152/japplphysiol.00847.2007
10.1053/ajkd.2001.29215
10.1007/BF00421333
10.1152/ajpregu.90906.2008
10.2165/00007256-200939040-00001
10.1152/ajpregu.00097.2008
10.1016/j.tibtech.2008.10.002
10.1152/ajpendo.90428.2008
10.1152/ajpendo.00141.2006
10.1152/japplphysiol.00679.2007
10.1113/jphysiol.2007.143685
10.1152/ajpregu.00251.2006
ContentType Journal Article
Copyright Copyright American Physiological Society Nov 2009
Copyright_xml – notice: Copyright American Physiological Society Nov 2009
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/ajpregu.00351.2009
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Technology Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1490
EndPage R1451
ExternalDocumentID 1899260951
10_1152_ajpregu_00351_2009
19692661
ajpregu_297_5_R1441
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 02
23M
2WC
39C
4.4
5GY
5VS
ACIWK
ACPRK
ADBBV
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
C1A
DIK
DL
EBS
EJD
F5P
KQ8
O0-
OK1
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
UKR
WH7
WOQ
53G
6J9
8M5
AAFWJ
BKKCC
BTFSW
CGR
CUY
CVF
ECM
EIF
EMOBN
ITBOX
NPM
RPRKH
TAE
TR2
W8F
XSW
YSK
YYP
~02
AAYXX
CITATION
H13
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c434t-69833cc571bdddd5d2830db6dd3f991006407f344d8c623a5acd07d0c571b1e13
ISSN 0363-6119
IngestDate Sat Aug 17 00:47:29 EDT 2024
Fri Sep 13 08:52:01 EDT 2024
Fri Aug 23 04:01:39 EDT 2024
Fri Feb 23 03:05:37 EST 2024
Tue Jan 05 17:54:33 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-69833cc571bdddd5d2830db6dd3f991006407f344d8c623a5acd07d0c571b1e13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-News-1
ObjectType-Feature-3
content type line 23
PMID 19692661
PQID 229731768
PQPubID 48263
ParticipantIDs proquest_miscellaneous_734115353
highwire_physiology_ajpregu_297_5_R1441
proquest_journals_229731768
crossref_primary_10_1152_ajpregu_00351_2009
pubmed_primary_19692661
PublicationCentury 2000
PublicationDate 20091101
2009-Nov
2009-11-00
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 20091101
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle American journal of physiology. Regulatory, integrative and comparative physiology
PublicationTitleAlternate Am J Physiol Regul Integr Comp Physiol
PublicationYear 2009
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B64
B21
B65
B22
B66
B23
B67
B24
B68
B25
B26
B27
B28
B29
B30
B33
B34
B35
B36
B37
B38
B1
B2
B3
B4
B5
B6
B7
B8
B9
Cohen J (B18) 1988
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
Cunningham J (B19) 2007; 450
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B17
Leveritt MD (B39) 2003; 17
B60
B61
B62
B63
References_xml – ident: B36
  doi: 10.1016/j.bbrc.2004.05.223
– ident: B44
  doi: 10.1111/j.1748-1716.2007.01712.x
– ident: B64
  doi: 10.1038/nrm1837
– ident: B1
  doi: 10.1152/japplphysiol.01162.2003
– ident: B52
  doi: 10.1152/japplphysiol.01121.2007
– ident: B25
  doi: 10.1073/pnas.251541198
– ident: B59
  doi: 10.1016/j.tibs.2006.04.003
– volume: 17
  start-page: 503
  year: 2003
  ident: B39
  publication-title: J Strength Cond Res
  contributor:
    fullname: Leveritt MD
– ident: B26
  doi: 10.1113/jphysiol.2002.032136
– ident: B20
  doi: 10.1113/jphysiol.2006.113175
– ident: B40
  doi: 10.2165/00007256-199928060-00004
– ident: B13
  doi: 10.1152/ajpendo.00462.2003
– ident: B63
  doi: 10.1113/jphysiol.2007.141507
– ident: B17
  doi: 10.1096/fj.05-4809fje
– ident: B28
  doi: 10.3109/00365517409082477
– ident: B67
  doi: 10.1152/japplphysiol.01185.2004
– ident: B42
  doi: 10.1006/meth.2001.1262
– ident: B48
  doi: 10.1113/jphysiol.2008.160176
– ident: B34
  doi: 10.1073/pnas.0600678103
– ident: B45
  doi: 10.1111/j.1748-1716.2007.01712.x
– ident: B54
  doi: 10.1016/j.metabol.2005.03.008
– ident: B60
  doi: 10.1038/nrc1974
– ident: B11
  doi: 10.1152/ajpendo.00387.2003
– ident: B51
  doi: 10.1038/23060
– ident: B65
  doi: 10.1113/jphysiol.2008.153916
– ident: B14
  doi: 10.2165/00007256-200737090-00001
– volume-title: Statistical Power Analysis for the Behavioral Sciences
  year: 1988
  ident: B18
  contributor:
    fullname: Cohen J
– volume: 450
  start-page: 736
  year: 2007
  ident: B19
  publication-title: Nat Cell Biol
  contributor:
    fullname: Cunningham J
– ident: B50
  doi: 10.1152/japplphysiol.00575.2007
– ident: B58
  doi: 10.1074/jbc.M700906200
– ident: B3
  doi: 10.1152/jappl.1998.84.5.1716
– ident: B8
  doi: 10.1007/s00421-006-0182-0
– ident: B15
  doi: 10.1152/japplphysiol.91221.2008
– ident: B23
  doi: 10.1152/japplphysiol.90880.2008
– ident: B53
  doi: 10.1152/ajpendo.00190.2006
– ident: B66
  doi: 10.1152/japplphysiol.01185.2004
– ident: B4
  doi: 10.1007/BF00636620
– ident: B57
  doi: 10.1093/gerona/62.12.1407
– ident: B37
  doi: 10.1002/mus.20442
– ident: B56
  doi: 10.1152/japplphysiol.01616.2005
– ident: B61
  doi: 10.1096/fj.06-6604com
– ident: B9
  doi: 10.1126/science.1065874
– ident: B12
  doi: 10.1152/ajpendo.2000.279.5.E1202
– ident: B16
  doi: 10.1152/ajpendo.00299.2005
– ident: B62
  doi: 10.1152/ajpendo.00073.2004
– ident: B21
  doi: 10.1007/s00421-005-0056-x
– ident: B33
  doi: 10.1249/MSS.0b013e31818cb278
– ident: B2
  doi: 10.1152/jappl.1996.81.6.2509
– ident: B55
  doi: 10.1152/japplphysiol.00903.2002
– ident: B35
  doi: 10.1016/j.febslet.2007.08.045
– ident: B29
  doi: 10.1007/BF01466278
– ident: B68
  doi: 10.1152/japplphysiol.00438.2006
– ident: B6
  doi: 10.1016/j.devcel.2007.03.020
– ident: B10
  doi: 10.1038/ncb1101-1014
– ident: B46
  doi: 10.1152/japplphysiol.00847.2007
– ident: B38
  doi: 10.1053/ajkd.2001.29215
– ident: B30
  doi: 10.1007/BF00421333
– ident: B27
  doi: 10.1152/ajpregu.90906.2008
– ident: B7
  doi: 10.2165/00007256-200939040-00001
– ident: B24
  doi: 10.1152/ajpregu.00097.2008
– ident: B41
  doi: 10.1016/j.tibtech.2008.10.002
– ident: B5
  doi: 10.1152/ajpendo.90428.2008
– ident: B22
  doi: 10.1152/ajpendo.00141.2006
– ident: B43
  doi: 10.1152/japplphysiol.00679.2007
– ident: B47
  doi: 10.1113/jphysiol.2007.143685
– ident: B49
  doi: 10.1152/ajpregu.00251.2006
SSID ssj0004343
Score 2.2937531
Snippet 1 Exercise Metabolism Group, School of Medical Science, RMIT, Melbourne, Australia; 2 Human Performance Laboratory, Ball State University, Indiana; 3 Sport and...
We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 +/- 6.3 yr; body mass, 81.6 +/-...
We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 ± 6.3 yr; body mass, 81.6 ± 7.3...
SourceID proquest
crossref
pubmed
highwire
SourceType Aggregation Database
Index Database
Publisher
StartPage R1441
SubjectTerms Adaptation, Physiological - physiology
Adolescent
Adult
Bicycling - physiology
Biopsy
Citrate (si)-Synthase - metabolism
Cross-Over Studies
DNA-Binding Proteins - metabolism
Exercise
Exercise - physiology
Heat-Shock Proteins - metabolism
Hexokinase - metabolism
Humans
Hydrogen-Ion Concentration
Insulin-Like Growth Factor I - metabolism
Lactates - metabolism
Male
Mitochondrial Proteins - metabolism
Muscle, Skeletal - pathology
Muscle, Skeletal - physiology
Musculoskeletal system
MyoD Protein - metabolism
Oxygen
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Resistance Training
Ribonucleic acid
RNA
Transcription Factors - metabolism
Young Adult
Title Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle
URI http://ajpregu.physiology.org/cgi/content/abstract/297/5/R1441
https://www.ncbi.nlm.nih.gov/pubmed/19692661
https://www.proquest.com/docview/229731768/abstract/
https://search.proquest.com/docview/734115353
Volume 297
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCgOURFpAPCA6rlKaO8ziu0MJqkRCgXbQ3y7Ed8VCTqGkl2H_OjfHYTgIUaaGHqErrZJL5PJ7xvAh5KmWVskyncV2ZNE55ruKi5ixmMpOl0lKlrtrn2-zkPD294Bez2Y9J1NJ2U83V5c68kv_hKpwDvtos2X_g7HBROAHfgb9wBA7D8Uo89qWHMTK86Y3aYhzQ2nQgYEGRRJ-rjyA3vVUU7SwOTZYObUgyOgukssECUsvOj8ewWYzU8j38-q-wOtm0ydW2DzSE0rXB5TOpQYHbJbhfPwf-YbP71rnrQ3UKex-fUTcUHx9HDY6RFh4Qx30068bW_xgCflxXW0Rne2maYXE59r3iT9tPshmA_1quG58Q7iI4fVpb2O4ofd7fKBWt4zlLvJw1XmqDRQ2m3mIq1pcu7tfjl0-E9AdrRO5ePrgtRyu_dGt4N3P0smJ-6PTPAIFuhYCylYWsfjMupSF84LcVdoh79FcWQJvgAum4Rq4v85LbfYM37yeF7pkL-AxPG_K9-PLFn-Rh5VtHy6_qVSh5_XfzCdWos1vkprd_6JED820yM80dsn_UAEJW3-kz-m4AwT755vBN25pO8E0DvqnDNwUc0RHfNOCbIr5p21DENw34pgO-6eeGIr5pwDd1-L5Lzl8dn708iX2nkFjBi9rEWVkwphTPk0rDh2tb1k5XmdasBgPIuatrlqa6UKDvSy6VXuR6gSMSk7B7ZA9QbB4QqitVgwldl7nJU14mUuVMloVJMq7zxCwichhesOhcQRiBhjRfisBe5Ixt8FpG5HnggRhnkdiBg4gcBBYJP2F7scTOcnlWRIQOv4L8t0492Zh224sc1FDQWjiLyH3H2JEsj4mHVybigNwY59wjsrdZb81jULo31ROE508G_uC0
link.rule.ids 315,786,790,27957,27958
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+consecutive+repeated+sprint+and+resistance+exercise+bouts+on+acute+adaptive+responses+in+human+skeletal+muscle&rft.jtitle=American+journal+of+physiology.+Regulatory%2C+integrative+and+comparative+physiology&rft.au=Coffey%2C+Vernon+G&rft.au=Jemiolo%2C+Bozena&rft.au=Edge%2C+Johann&rft.au=Garnham%2C+Andrew+P&rft.date=2009-11-01&rft.issn=0363-6119&rft.eissn=1522-1490&rft.volume=297&rft.issue=5&rft.spage=R1441&rft_id=info:doi/10.1152%2Fajpregu.00351.2009&rft_id=info%3Apmid%2F19692661&rft.externalDBID=n%2Fa&rft.externalDocID=ajpregu_297_5_R1441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6119&client=summon