Hypercapnia increases brain viscoelasticity

Brain function, the brain’s metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elas...

Full description

Saved in:
Bibliographic Details
Published inJournal of cerebral blood flow and metabolism Vol. 39; no. 12; pp. 2445 - 2455
Main Authors Hetzer, Stefan, Dittmann, Florian, Bormann, Karl, Hirsch, Sebastian, Lipp, Axel, Wang, Danny JJ, Braun, Jürgen, Sack, Ingolf
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain function, the brain’s metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elastography (MRE) paired with CBF measurements in 14 healthy subjects exposed to 5-min carbon dioxide-enriched breathing air to induce cerebral vasodilatation by hypercapnia. Stiffness and viscosity as quantified by the magnitude and phase angle of the complex shear modulus, |G*| and ϕ, as well as CBF of the whole brain and 25 gray matter sub-regions were analyzed prior to, during, and after hypercapnia. In all subjects, whole-brain stiffness and viscosity increased due to hypercapnia by 3.3 ± 1.9% and 2.0 ± 1.1% which was accompanied by a CBF increase of 36 ± 15%. Post-hypercapnia, |G*| and ϕ reduced to normal values while CBF decreased by 13 ± 15% below baseline. Hypercapnia-induced viscosity changes correlated with CBF changes, whereas stiffness changes did not. The MRE-measured viscosity changes correlated with blood viscosity changes predicted by the Fåhræus–Lindqvist model and microvessel diameter changes from the literature. Our results suggest that brain viscoelastic properties are influenced by microvessel blood flow and blood viscosity: vasodilatation and increased blood viscosity due to hypercapnia result in an increase in MRE values related to viscosity.
AbstractList Brain function, the brain’s metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elastography (MRE) paired with CBF measurements in 14 healthy subjects exposed to 5-min carbon dioxide-enriched breathing air to induce cerebral vasodilatation by hypercapnia. Stiffness and viscosity as quantified by the magnitude and phase angle of the complex shear modulus, |G*| and ϕ, as well as CBF of the whole brain and 25 gray matter sub-regions were analyzed prior to, during, and after hypercapnia. In all subjects, whole-brain stiffness and viscosity increased due to hypercapnia by 3.3 ± 1.9% and 2.0 ± 1.1% which was accompanied by a CBF increase of 36 ± 15%. Post-hypercapnia, |G*| and ϕ reduced to normal values while CBF decreased by 13 ± 15% below baseline. Hypercapnia-induced viscosity changes correlated with CBF changes, whereas stiffness changes did not. The MRE-measured viscosity changes correlated with blood viscosity changes predicted by the Fåhræus–Lindqvist model and microvessel diameter changes from the literature. Our results suggest that brain viscoelastic properties are influenced by microvessel blood flow and blood viscosity: vasodilatation and increased blood viscosity due to hypercapnia result in an increase in MRE values related to viscosity.
Brain function, the brain's metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elastography (MRE) paired with CBF measurements in 14 healthy subjects exposed to 5-min carbon dioxide-enriched breathing air to induce cerebral vasodilatation by hypercapnia. Stiffness and viscosity as quantified by the magnitude and phase angle of the complex shear modulus, | *| and , as well as CBF of the whole brain and 25 gray matter sub-regions were analyzed prior to, during, and after hypercapnia. In all subjects, whole-brain stiffness and viscosity increased due to hypercapnia by 3.3 ± 1.9% and 2.0 ± 1.1% which was accompanied by a CBF increase of 36 ± 15%. Post-hypercapnia, | *| and reduced to normal values while CBF decreased by 13 ± 15% below baseline. Hypercapnia-induced viscosity changes correlated with CBF changes, whereas stiffness changes did not. The MRE-measured viscosity changes correlated with blood viscosity changes predicted by the Fåhræus-Lindqvist model and microvessel diameter changes from the literature. Our results suggest that brain viscoelastic properties are influenced by microvessel blood flow and blood viscosity: vasodilatation and increased blood viscosity due to hypercapnia result in an increase in MRE values related to viscosity.
Brain function, the brain's metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elastography (MRE) paired with CBF measurements in 14 healthy subjects exposed to 5-min carbon dioxide-enriched breathing air to induce cerebral vasodilatation by hypercapnia. Stiffness and viscosity as quantified by the magnitude and phase angle of the complex shear modulus, |G*| and ϕ, as well as CBF of the whole brain and 25 gray matter sub-regions were analyzed prior to, during, and after hypercapnia. In all subjects, whole-brain stiffness and viscosity increased due to hypercapnia by 3.3 ± 1.9% and 2.0 ± 1.1% which was accompanied by a CBF increase of 36 ± 15%. Post-hypercapnia, |G*| and ϕ reduced to normal values while CBF decreased by 13 ± 15% below baseline. Hypercapnia-induced viscosity changes correlated with CBF changes, whereas stiffness changes did not. The MRE-measured viscosity changes correlated with blood viscosity changes predicted by the Fåhræus-Lindqvist model and microvessel diameter changes from the literature. Our results suggest that brain viscoelastic properties are influenced by microvessel blood flow and blood viscosity: vasodilatation and increased blood viscosity due to hypercapnia result in an increase in MRE values related to viscosity.Brain function, the brain's metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elastography (MRE) paired with CBF measurements in 14 healthy subjects exposed to 5-min carbon dioxide-enriched breathing air to induce cerebral vasodilatation by hypercapnia. Stiffness and viscosity as quantified by the magnitude and phase angle of the complex shear modulus, |G*| and ϕ, as well as CBF of the whole brain and 25 gray matter sub-regions were analyzed prior to, during, and after hypercapnia. In all subjects, whole-brain stiffness and viscosity increased due to hypercapnia by 3.3 ± 1.9% and 2.0 ± 1.1% which was accompanied by a CBF increase of 36 ± 15%. Post-hypercapnia, |G*| and ϕ reduced to normal values while CBF decreased by 13 ± 15% below baseline. Hypercapnia-induced viscosity changes correlated with CBF changes, whereas stiffness changes did not. The MRE-measured viscosity changes correlated with blood viscosity changes predicted by the Fåhræus-Lindqvist model and microvessel diameter changes from the literature. Our results suggest that brain viscoelastic properties are influenced by microvessel blood flow and blood viscosity: vasodilatation and increased blood viscosity due to hypercapnia result in an increase in MRE values related to viscosity.
Brain function, the brain’s metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elastography (MRE) paired with CBF measurements in 14 healthy subjects exposed to 5-min carbon dioxide-enriched breathing air to induce cerebral vasodilatation by hypercapnia. Stiffness and viscosity as quantified by the magnitude and phase angle of the complex shear modulus, | G *| and ϕ , as well as CBF of the whole brain and 25 gray matter sub-regions were analyzed prior to, during, and after hypercapnia. In all subjects, whole-brain stiffness and viscosity increased due to hypercapnia by 3.3 ± 1.9% and 2.0 ± 1.1% which was accompanied by a CBF increase of 36 ± 15%. Post-hypercapnia, | G *| and ϕ reduced to normal values while CBF decreased by 13 ± 15% below baseline. Hypercapnia-induced viscosity changes correlated with CBF changes, whereas stiffness changes did not. The MRE-measured viscosity changes correlated with blood viscosity changes predicted by the Fåhræus–Lindqvist model and microvessel diameter changes from the literature. Our results suggest that brain viscoelastic properties are influenced by microvessel blood flow and blood viscosity: vasodilatation and increased blood viscosity due to hypercapnia result in an increase in MRE values related to viscosity.
Author Hetzer, Stefan
Dittmann, Florian
Hirsch, Sebastian
Braun, Jürgen
Wang, Danny JJ
Lipp, Axel
Sack, Ingolf
Bormann, Karl
AuthorAffiliation 2 Bernstein Center for Computational Neuroscience, Berlin, Germany
6 Institute of Medical Informatics, Charité – Universitätsmedizin Berlin, Berlin, Germany
5 Laboratory of FMRI Technology, University of Southern California, Los Angeles, CA, USA
1 Berlin Center for Advanced Neuroimaging, Charité – Universitätsmedizin, Berlin, Germany
3 Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
4 Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
AuthorAffiliation_xml – name: 4 Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
– name: 1 Berlin Center for Advanced Neuroimaging, Charité – Universitätsmedizin, Berlin, Germany
– name: 6 Institute of Medical Informatics, Charité – Universitätsmedizin Berlin, Berlin, Germany
– name: 5 Laboratory of FMRI Technology, University of Southern California, Los Angeles, CA, USA
– name: 2 Bernstein Center for Computational Neuroscience, Berlin, Germany
– name: 3 Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
Author_xml – sequence: 1
  givenname: Stefan
  surname: Hetzer
  fullname: Hetzer, Stefan
  email: Stefan.Hetzer@charite.de
– sequence: 2
  givenname: Florian
  surname: Dittmann
  fullname: Dittmann, Florian
– sequence: 3
  givenname: Karl
  surname: Bormann
  fullname: Bormann, Karl
– sequence: 4
  givenname: Sebastian
  surname: Hirsch
  fullname: Hirsch, Sebastian
– sequence: 5
  givenname: Axel
  surname: Lipp
  fullname: Lipp, Axel
– sequence: 6
  givenname: Danny JJ
  surname: Wang
  fullname: Wang, Danny JJ
– sequence: 7
  givenname: Jürgen
  surname: Braun
  fullname: Braun, Jürgen
– sequence: 8
  givenname: Ingolf
  surname: Sack
  fullname: Sack, Ingolf
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30182788$$D View this record in MEDLINE/PubMed
BookMark eNp9UctKAzEUDaJore5dSZeCjOYxM0k2gohaQXCj4C6kyR1NmSZjMiP0702pihZ0dRfnxT1nH2374AGhI4LPCOH8HFNOai6eieBS0pJsoRGpKllwTOptNFrBxQrfQ_spzTHGglXVLtpjmAjKhRih0-myg2h0552eOG8i6ARpMova-cm7SyZAq1PvjOuXB2in0W2Cw887Rk83149X0-L-4fbu6vK-MCUr-6KmuClrLISdNdSKBltjG8Yo5djImaXQiEqKyjJrCQCpS1ExlgEjBcj8CRuji7VvN8wWYA34PupWddEtdFyqoJ36jXj3ql7Cu6qFZFKIbHDyaRDD2wCpV4v8CbSt9hCGpCiWmcZxWWbq8c-s75CvhjKhXhNMDClFaFSuQvcurKJdqwhWqynU5hRZiDeEX97_SIq1JOkXUPMwRJ97_pv_AbaMl-o
CitedBy_id crossref_primary_10_3389_fphys_2020_616984
crossref_primary_10_1016_j_jocn_2021_06_021
crossref_primary_10_1113_JP280225
crossref_primary_10_1016_j_expneurol_2021_113610
crossref_primary_10_1177_0271678X231186571
crossref_primary_10_1111_pan_13967
crossref_primary_10_1016_j_jmbbm_2022_105613
crossref_primary_10_1016_j_cccb_2023_100183
crossref_primary_10_1097_RLI_0000000000000817
crossref_primary_10_1098_rsfs_2020_0032
crossref_primary_10_1038_s41598_024_57250_4
crossref_primary_10_1016_j_pnmrs_2024_05_002
crossref_primary_10_1093_braincomms_fcae424
crossref_primary_10_3389_fbioe_2021_666456
crossref_primary_10_3389_fnins_2021_722366
crossref_primary_10_1007_s11682_019_00200_w
crossref_primary_10_7759_cureus_68087
crossref_primary_10_1038_s41598_018_36191_9
crossref_primary_10_1002_advs_202402338
crossref_primary_10_1016_j_ultrasmedbio_2019_12_019
crossref_primary_10_1109_TBME_2024_3381708
crossref_primary_10_1016_j_actbio_2020_12_027
crossref_primary_10_1016_j_actbio_2021_10_038
crossref_primary_10_1177_0271678X19850936
crossref_primary_10_1016_j_ynirp_2021_100014
crossref_primary_10_1097_JTCCM_D_22_00012
crossref_primary_10_1259_bjr_20200265
crossref_primary_10_1007_s10143_023_02238_3
crossref_primary_10_1007_s10143_022_01879_0
crossref_primary_10_4103_JTCCM_D_22_00012
Cites_doi 10.1007/978-3-319-65924-4
10.1006/nimg.2001.0978
10.1172/JCI101995
10.1016/j.nicl.2013.09.006
10.1016/j.neuroimage.2010.07.003
10.1016/j.neuroimage.2016.02.059
10.1002/jmri.25129
10.1002/mrm.20383
10.1002/nbm.1693
10.1073/pnas.0600644103
10.3174/ajnr.A4361
10.1016/j.media.2018.03.003
10.1088/0031-9155/60/11/4227
10.1227/NEU.0000000000000892
10.1007/s00330-017-5269-y
10.1016/j.neuroimage.2015.02.016
10.1002/mrm.26769
10.1002/mrm.26006
10.1088/0031-9155/59/15/4443
10.1177/0271678X17691530
10.1007/s00062-014-0311-9
10.1016/j.neulet.2014.04.051
10.1152/japplphysiol.00369.2012
10.1002/andp.19063240204
10.1016/j.neuroimage.2013.04.089
10.1371/journal.pone.0029888
10.1088/0031-9155/61/24/R401
10.1152/ajplegacy.1931.96.3.562
10.1002/mrm.25197
10.1111/micc.12343
10.1002/mrm.24499
10.1016/j.neuroimage.2009.02.040
10.1017/S0022112010004428
10.1038/jcbfm.2011.34
10.1002/mrm.21403
10.1371/journal.pone.0081668
10.1371/journal.pone.0071807
10.1002/mrm.26484
10.3171/2012.9.JNS12519
10.1148/radiol.2351031663
10.1002/jmri.25516
10.1016/j.neuroimage.2014.10.029
10.1097/ALN.0b013e3181ca8257
10.1016/j.nicl.2017.12.023
10.1002/mrm.26738
10.1016/j.neuroimage.2013.12.032
10.1002/mrm.24258
10.1002/mrm.25881
10.1118/1.4905048
10.1016/j.neuroimage.2017.03.061
10.1016/j.mri.2007.07.003
ContentType Journal Article
Copyright The Author(s) 2018
The Author(s) 2018 2018 International Society for Cerebral Blood Flow and Metabolism
Copyright_xml – notice: The Author(s) 2018
– notice: The Author(s) 2018 2018 International Society for Cerebral Blood Flow and Metabolism
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1177/0271678X18799241
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1559-7016
EndPage 2455
ExternalDocumentID PMC6893988
30182788
10_1177_0271678X18799241
10.1177_0271678X18799241
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-Q-
-TM
.55
.GJ
0R~
29K
2WC
36B
39C
3O-
4.4
53G
54M
5GY
5RE
5VS
70F
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AABMB
AACKU
AACMV
AADUE
AAEWN
AAGGD
AAGMC
AAJIQ
AAJPV
AAKGS
AANSI
AAPEO
AAQGT
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAUAS
AAVDI
AAXOT
AAYTG
AAZBJ
ABAWP
ABAWZ
ABCCA
ABCJG
ABDWY
ABEIX
ABFWQ
ABHKI
ABJNI
ABJZC
ABKRH
ABLUO
ABNCE
ABPGX
ABPNF
ABQKF
ABQNX
ABQXT
ABRHV
ABUJY
ABUWG
ABVFX
ABXGC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFO
ACGFS
ACGZU
ACJER
ACJTF
ACLFY
ACLHI
ACNXM
ACOFE
ACOXC
ACPRK
ACROE
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADEBD
ADEIA
ADMPF
ADNON
ADRRZ
ADTBJ
ADUKL
ADVBO
ADZZY
AECGH
AENEX
AEPTA
AEQLS
AESZF
AEUHG
AEWDL
AEWHI
AEXFG
AEXNY
AFEET
AFFNX
AFFZS
AFKRA
AFKRG
AFMOU
AFOSN
AFQAA
AFUIA
AFVCE
AGHKR
AGKLV
AGNHF
AGPXR
AGWFA
AHDMH
AHMBA
AIGRN
AJABX
AJEFB
AJMMQ
AJSCY
AJUZI
AJXAJ
AJXGE
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
AOIJS
ARTOV
AUTPY
AYAKG
B8M
BAWUL
BBNVY
BBRGL
BDDNI
BENPR
BHPHI
BKIIM
BKSCU
BPACV
BPHCQ
BSEHC
BVXVI
BWJAD
C45
CAG
CBRKF
CCPQU
CDWPY
CFDXU
COF
CORYS
CQQTX
CS3
CUTAK
D-I
DC-
DC.
DIK
DOPDO
DV7
E3Z
EBS
EE.
EJD
EMOBN
F5P
FHBDP
FYUFA
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
H13
HCIFZ
HMCUK
HYE
HZ~
J8X
JSO
K.F
KQ8
LK8
M1P
M7P
O9-
OK1
OVD
P2P
P6G
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q1R
Q2X
RNS
RNTTT
ROL
RPM
SASJQ
SAUOL
SCNPE
SFC
SHG
SPQ
SPV
TEORI
TR2
UKHRP
W2D
X7M
YFH
YOC
ZGI
ZONMY
ZPPRI
ZRKOI
ZSSAH
ZXP
AAYXX
AJGYC
CITATION
ALTZF
CGR
CUY
CVF
ECM
EIF
M4V
NPM
7X8
AJVBE
5PM
AAPII
AJHME
ID FETCH-LOGICAL-c434t-620f46088dbf2d8f0dcdf332270c9bd2ef85985d3dd1ee16485339bdc98e91873
ISSN 0271-678X
1559-7016
IngestDate Thu Aug 21 18:29:20 EDT 2025
Fri Jul 11 03:34:38 EDT 2025
Thu Apr 03 07:05:54 EDT 2025
Thu Apr 24 22:52:24 EDT 2025
Tue Jul 01 05:24:40 EDT 2025
Tue Jun 17 22:30:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Elasticity
perfusion
Fåhræus–Lindqvist
vasodilation
hypercapnia
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-620f46088dbf2d8f0dcdf332270c9bd2ef85985d3dd1ee16485339bdc98e91873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1177/0271678X18799241
PMID 30182788
PQID 2099887044
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6893988
proquest_miscellaneous_2099887044
pubmed_primary_30182788
crossref_citationtrail_10_1177_0271678X18799241
crossref_primary_10_1177_0271678X18799241
sage_journals_10_1177_0271678X18799241
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: United States
– name: Sage UK: London, England
PublicationTitle Journal of cerebral blood flow and metabolism
PublicationTitleAlternate J Cereb Blood Flow Metab
PublicationYear 2019
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Gerischer, Fehlner, Köbe 2018; 18
Hetzer, Birr, Fehlner 2018; 38
Tao, Zhao, Yang 2014; 573
Jain, Langham, Floyd 2011; 31
Streitberger, Sack, Krefting 2012; 7
Fehlner, Behrens, Streitberger 2016; 44
Fåhræus, Lindqvist 1931; 96
Hirsch, Klatt, Freimann 2013; 70
Le Bihan, Urayama, Aso 2006; 103
Parker 2015; 60
Li, Wang, Auerbach 2015; 106
Schwarb, Johnson, Daugherty 2017; 153
Reiss-Zimmermann, Streitberger, Sack 2015; 25
Tzourio-Mazoyer, Landeau, Papathanassiou 2002; 15
Hughes, Fattahi, Van Gompel 2015; 77
Hua, Qin, Pekar 2011; 24
Lipp, Trbojevic, Paul 2013; 3
Kety, Schmidt 1948; 27
Kiselev, Strecker, Ziyeh 2005; 53
Tully, Ventikos 2011; 667
Hiscox, Johnson, Barnhill 2016; 61
Dittmann, Reiter, Guo 2018; 79
Parker 2014; 59
Hatt, Cheng, Tan 2015; 36
Guo, Hirsch, Fehlner 2013; 8
Dittmann, Hirsch, Tzschätzsch 2016; 76
Arani, Min, Fattahi 2018; 79
Pries, Neuhaus, Gaehtgens 1992; 263
Alsop, Detre, Golay 2015; 73
McGrath, Ravikumar, Wilkinson 2016; 76
Chen, Pike 2010; 53
Murphy, Huston, Glaser 2013; 118
Braun, Guo, Lützkendorf 2014; 90
Shen, Pu, Ahearn 2013; 69
Schwarb, Johnson, McGarry 2016; 132
Arani, Murphy, Glaser 2015; 111
McGarry, Johnson, Sutton 2015; 42
Dittmann, Tzschätzsch, Hirsch 2017; 78
Zhou, Cao, Niu 2010; 112
Barnhill, Davies, Ariyurek 2018; 46
Wang, Zhang, Wolf 2005; 235
Stark, Schuster 2012; 113
Rasmussen, Smith, Sakadžić 2017; 24
Sack, Beierbach, Wuerfel 2009; 46
Johnson, McGarry, Gharibans 2013; 79
Einstein 1906; 324
Wang, Aguirre, Rao 2008; 26
Murphy, Huston, Jack 2013; 8
Wu, Fernández-Seara, Detre 2007; 58
bibr39-0271678X18799241
bibr21-0271678X18799241
bibr48-0271678X18799241
bibr55-0271678X18799241
bibr12-0271678X18799241
bibr9-0271678X18799241
bibr14-0271678X18799241
bibr38-0271678X18799241
Pries AR (bibr40-0271678X18799241) 1992; 263
bibr22-0271678X18799241
bibr30-0271678X18799241
bibr47-0271678X18799241
bibr13-0271678X18799241
bibr2-0271678X18799241
bibr23-0271678X18799241
bibr10-0271678X18799241
bibr31-0271678X18799241
bibr7-0271678X18799241
bibr44-0271678X18799241
bibr33-0271678X18799241
Hirsch S (bibr8-0271678X18799241) 2017
bibr46-0271678X18799241
bibr49-0271678X18799241
bibr20-0271678X18799241
bibr36-0271678X18799241
bibr54-0271678X18799241
bibr15-0271678X18799241
bibr41-0271678X18799241
bibr28-0271678X18799241
bibr26-0271678X18799241
bibr51-0271678X18799241
bibr4-0271678X18799241
bibr34-0271678X18799241
bibr5-0271678X18799241
bibr18-0271678X18799241
bibr27-0271678X18799241
bibr42-0271678X18799241
bibr3-0271678X18799241
bibr25-0271678X18799241
bibr52-0271678X18799241
bibr35-0271678X18799241
bibr17-0271678X18799241
bibr43-0271678X18799241
bibr45-0271678X18799241
bibr32-0271678X18799241
bibr37-0271678X18799241
bibr16-0271678X18799241
bibr53-0271678X18799241
bibr29-0271678X18799241
bibr19-0271678X18799241
bibr1-0271678X18799241
bibr50-0271678X18799241
bibr11-0271678X18799241
bibr6-0271678X18799241
bibr24-0271678X18799241
References_xml – volume: 79
  start-page: 1043
  year: 2018
  end-page: 1051
  article-title: Acute pressure changes in the brain are correlated with MR elastography stiffness measurements: initial feasibility in an in vivo large animal model
  publication-title: Magn Reson Med
– volume: 42
  start-page: 947
  year: 2015
  end-page: 957
  article-title: Suitability of poroelastic and viscoelastic mechanical models for high and low frequency MR elastography
  publication-title: Med Phys
– volume: 38
  start-page: 116
  year: 2018
  end-page: 125
  article-title: Perfusion alters stiffness of deep gray matter
  publication-title: J Cereb Blood Flow Metab
– volume: 132
  start-page: 534
  year: 2016
  end-page: 541
  article-title: Medial temporal lobe viscoelasticity and relational memory performance
  publication-title: NeuroImage
– volume: 27
  start-page: 484
  year: 1948
  end-page: 492
  article-title: The effects of altered arterial tensions of carbon dioxide and oxygen an cerebral blood flow and cerebral oxygen consumption of normal young men
  publication-title: J Clin Invest
– volume: 96
  start-page: 562
  year: 1931
  end-page: 568
  article-title: The viscosity of the blood in narrow capillary tubes
  publication-title: Am J Physiol-Leg Content
– volume: 8
  start-page: e71807
  year: 2013
  article-title: Towards an elastographic atlas of brain anatomy
  publication-title: PLoS One
– volume: 8
  start-page: e81668
  year: 2013
  article-title: Measuring the characteristic topography of brain stiffness with magnetic resonance elastography
  publication-title: PLoS One
– volume: 60
  start-page: 4227
  year: 2015
  end-page: 4242
  article-title: Experimental evaluations of the microchannel flow model
  publication-title: Phys Med Biol
– volume: 18
  start-page: 485
  year: 2018
  end-page: 493
  article-title: Combining viscoelasticity, diffusivity and volume of the hippocampus for the diagnosis of Alzheimer’s disease based on magnetic resonance imaging
  publication-title: NeuroImage Clin
– volume: 26
  start-page: 261
  year: 2008
  end-page: 269
  article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx
  publication-title: Magn Reson Imaging
– volume: 235
  start-page: 218
  year: 2005
  end-page: 228
  article-title: Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study
  publication-title: Radiology
– volume: 76
  start-page: 1116
  year: 2016
  end-page: 1126
  article-title: In vivo wideband multifrequency MR elastography of the human brain and liver
  publication-title: Magn Reson Med
– volume: 59
  start-page: 4443
  year: 2014
  end-page: 4457
  article-title: A microchannel flow model for soft tissue elasticity
  publication-title: Phys Med Biol
– volume: 79
  start-page: 145
  year: 2013
  end-page: 152
  article-title: Local mechanical properties of white matter structures in the human brain
  publication-title: NeuroImage
– volume: 324
  start-page: 289
  year: 1906
  end-page: 306
  article-title: Eine neue Bestimmung der Moleküldimensionen
  publication-title: Ann Phys
– volume: 153
  start-page: 179
  year: 2017
  end-page: 188
  article-title: Aerobic fitness, hippocampal viscoelasticity, and relational memory performance
  publication-title: NeuroImage
– volume: 44
  start-page: 51
  year: 2016
  end-page: 58
  article-title: Higher-resolution MR elastography reveals early mechanical signatures of neuroinflammation in patients with clinically isolated syndrome
  publication-title: J Magn Reson Imaging
– volume: 46
  start-page: 652
  year: 2009
  end-page: 657
  article-title: The impact of aging and gender on brain viscoelasticity
  publication-title: NeuroImage
– volume: 573
  start-page: 1
  year: 2014
  end-page: 6
  article-title: Neuroprotective effects of therapeutic hypercapnia on spatial memory and sensorimotor impairment via anti-apoptotic mechanisms after focal cerebral ischemia/reperfusion
  publication-title: Neurosci Lett
– volume: 113
  start-page: 355
  year: 2012
  end-page: 367
  article-title: Comparison of various approaches to calculating the optimal hematocrit in vertebrates
  publication-title: J Appl Physiol (1985)
– volume: 106
  start-page: 170
  year: 2015
  end-page: 181
  article-title: Theoretical and experimental evaluation of multi-band EPI for high-resolution whole brain pCASL Imaging
  publication-title: NeuroImage
– volume: 103
  start-page: 8263
  year: 2006
  end-page: 8268
  article-title: Direct and fast detection of neuronal activation in the human brain with diffusion MRI
  publication-title: Proc Natl Acad Sci U S A
– volume: 7
  start-page: e29888
  year: 2012
  article-title: Brain viscoelasticity alteration in chronic-progressive multiple sclerosis
  publication-title: PLoS One
– volume: 24
  start-page: 1313
  year: 2011
  end-page: 1325
  article-title: Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent
  publication-title: NMR Biomed
– volume: 90
  start-page: 308
  year: 2014
  end-page: 314
  article-title: High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7T
  publication-title: NeuroImage
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
– volume: 667
  start-page: 188
  year: 2011
  end-page: 215
  article-title: Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus
  publication-title: J Fluid Mech
– volume: 73
  start-page: 102
  year: 2015
  end-page: 116
  article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
– volume: 46
  start-page: 180
  year: 2018
  end-page: 188
  article-title: Heterogeneous Multifrequency Direct Inversion (HMDI) for magnetic resonance elastography with application to a clinical brain exam
  publication-title: Med Image Anal
– volume: 53
  start-page: 553
  year: 2005
  end-page: 563
  article-title: Vessel size imaging in humans
  publication-title: Magn Reson Med
– volume: 263
  start-page: H1770
  year: 1992
  end-page: H1778
  article-title: Blood viscosity in tube flow: dependence on diameter and hematocrit
  publication-title: Am J Physiol
– volume: 24
  start-page: e12343
  year: 2017
  article-title: Model-based inference from microvascular measurements: combining experimental measurements and model predictions using a Bayesian probabilistic approach
  publication-title: Microcirculation
– volume: 3
  start-page: 381
  year: 2013
  end-page: 387
  article-title: Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic Parkinson’s disease
  publication-title: NeuroImage Clin
– volume: 69
  start-page: 1541
  year: 2013
  end-page: 1552
  article-title: Quantification of venous vessel size in human brain in response to hypercapnia and hyperoxia using magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 31
  start-page: 1504
  year: 2011
  end-page: 1512
  article-title: Rapid magnetic resonance measurement of global cerebral metabolic rate of oxygen consumption in humans during rest and hypercapnia
  publication-title: J Cereb Blood Flow Metab
– volume: 77
  start-page: 653
  year: 2015
  end-page: 658
  article-title: Higher-resolution magnetic resonance elastography in meningiomas to determine intratumoral consistency
  publication-title: Neurosurgery
– volume: 36
  start-page: 1971
  year: 2015
  end-page: 1977
  article-title: MR elastography can be used to measure brain stiffness changes as a result of altered cranial venous drainage during jugular compression
  publication-title: AJNR Am J Neuroradiol
– volume: 118
  start-page: 643
  year: 2013
  end-page: 648
  article-title: Preoperative assessment of meningioma stiffness using magnetic resonance elastography
  publication-title: J Neurosurg
– volume: 79
  start-page: 1325
  year: 2018
  end-page: 1333
  article-title: Tomoelastography of the prostate using multifrequency MR elastography and externally placed pressurized-air drivers
  publication-title: Magn Reson Med
– volume: 112
  start-page: 288
  year: 2010
  end-page: 297
  article-title: Effects of permissive hypercapnia on transient global cerebral ischemia-reperfusion injury in rats
  publication-title: Anesthesiology
– volume: 53
  start-page: 383
  year: 2010
  end-page: 391
  article-title: MRI measurement of the BOLD-specific flow-volume relationship during hypercapnia and hypocapnia in humans
  publication-title: NeuroImage
– volume: 111
  start-page: 59
  year: 2015
  end-page: 64
  article-title: Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults
  publication-title: NeuroImage
– volume: 78
  start-page: 976
  year: 2017
  end-page: 983
  article-title: Tomoelastography of the abdomen: Tissue mechanical properties of the liver, spleen, kidney, and pancreas from single MR elastography scans at different hydration states
  publication-title: Magn Reson Med
– volume: 76
  start-page: 645
  year: 2016
  end-page: 662
  article-title: Magnetic resonance elastography of the brain: an in silico study to determine the influence of cranial anatomy
  publication-title: Magn Reson Med
– volume: 25
  start-page: 371
  year: 2015
  end-page: 378
  article-title: High resolution imaging of viscoelastic properties of intracranial tumours by multi-frequency magnetic resonance elastography
  publication-title: Clin Neuroradiol
– volume: 70
  start-page: 671
  year: 2013
  end-page: 683
  article-title: In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves
  publication-title: Magn Reson Med
– volume: 58
  start-page: 1020
  year: 2007
  end-page: 1027
  article-title: A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
– volume: 61
  start-page: R401
  year: 2016
  end-page: R437
  article-title: Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications
  publication-title: Phys Med Biol
– ident: bibr1-0271678X18799241
  doi: 10.1007/978-3-319-65924-4
– volume: 263
  start-page: H1770
  year: 1992
  ident: bibr40-0271678X18799241
  publication-title: Am J Physiol
– ident: bibr39-0271678X18799241
  doi: 10.1006/nimg.2001.0978
– ident: bibr53-0271678X18799241
  doi: 10.1172/JCI101995
– ident: bibr15-0271678X18799241
  doi: 10.1016/j.nicl.2013.09.006
– ident: bibr47-0271678X18799241
– ident: bibr54-0271678X18799241
  doi: 10.1016/j.neuroimage.2010.07.003
– ident: bibr20-0271678X18799241
  doi: 10.1016/j.neuroimage.2016.02.059
– ident: bibr17-0271678X18799241
  doi: 10.1002/jmri.25129
– ident: bibr55-0271678X18799241
  doi: 10.1002/mrm.20383
– ident: bibr45-0271678X18799241
  doi: 10.1002/nbm.1693
– ident: bibr46-0271678X18799241
  doi: 10.1073/pnas.0600644103
– ident: bibr27-0271678X18799241
  doi: 10.3174/ajnr.A4361
– ident: bibr52-0271678X18799241
  doi: 10.1016/j.media.2018.03.003
– ident: bibr4-0271678X18799241
  doi: 10.1088/0031-9155/60/11/4227
– ident: bibr10-0271678X18799241
  doi: 10.1227/NEU.0000000000000892
– ident: bibr16-0271678X18799241
  doi: 10.1007/s00330-017-5269-y
– ident: bibr14-0271678X18799241
  doi: 10.1016/j.neuroimage.2015.02.016
– ident: bibr33-0271678X18799241
  doi: 10.1002/mrm.26769
– ident: bibr31-0271678X18799241
  doi: 10.1002/mrm.26006
– ident: bibr5-0271678X18799241
  doi: 10.1088/0031-9155/59/15/4443
– ident: bibr28-0271678X18799241
  doi: 10.1177/0271678X17691530
– ident: bibr12-0271678X18799241
  doi: 10.1007/s00062-014-0311-9
– volume-title: Magnetic resonance elastography: physical background and medical applications
  year: 2017
  ident: bibr8-0271678X18799241
– ident: bibr49-0271678X18799241
  doi: 10.1016/j.neulet.2014.04.051
– ident: bibr41-0271678X18799241
  doi: 10.1152/japplphysiol.00369.2012
– ident: bibr42-0271678X18799241
  doi: 10.1002/andp.19063240204
– ident: bibr24-0271678X18799241
  doi: 10.1016/j.neuroimage.2013.04.089
– ident: bibr18-0271678X18799241
  doi: 10.1371/journal.pone.0029888
– ident: bibr9-0271678X18799241
  doi: 10.1088/0031-9155/61/24/R401
– ident: bibr29-0271678X18799241
  doi: 10.1152/ajplegacy.1931.96.3.562
– ident: bibr35-0271678X18799241
  doi: 10.1002/mrm.25197
– ident: bibr7-0271678X18799241
  doi: 10.1111/micc.12343
– ident: bibr2-0271678X18799241
  doi: 10.1002/mrm.24499
– ident: bibr19-0271678X18799241
  doi: 10.1016/j.neuroimage.2009.02.040
– ident: bibr6-0271678X18799241
  doi: 10.1017/S0022112010004428
– ident: bibr44-0271678X18799241
  doi: 10.1038/jcbfm.2011.34
– ident: bibr30-0271678X18799241
  doi: 10.1002/mrm.21403
– ident: bibr25-0271678X18799241
  doi: 10.1371/journal.pone.0081668
– ident: bibr23-0271678X18799241
  doi: 10.1371/journal.pone.0071807
– ident: bibr32-0271678X18799241
  doi: 10.1002/mrm.26484
– ident: bibr48-0271678X18799241
– ident: bibr11-0271678X18799241
  doi: 10.3171/2012.9.JNS12519
– ident: bibr37-0271678X18799241
  doi: 10.1148/radiol.2351031663
– ident: bibr38-0271678X18799241
  doi: 10.1002/jmri.25516
– ident: bibr34-0271678X18799241
  doi: 10.1016/j.neuroimage.2014.10.029
– ident: bibr50-0271678X18799241
  doi: 10.1097/ALN.0b013e3181ca8257
– ident: bibr13-0271678X18799241
  doi: 10.1016/j.nicl.2017.12.023
– ident: bibr26-0271678X18799241
  doi: 10.1002/mrm.26738
– ident: bibr22-0271678X18799241
  doi: 10.1016/j.neuroimage.2013.12.032
– ident: bibr43-0271678X18799241
  doi: 10.1002/mrm.24258
– ident: bibr51-0271678X18799241
  doi: 10.1002/mrm.25881
– ident: bibr3-0271678X18799241
  doi: 10.1118/1.4905048
– ident: bibr21-0271678X18799241
  doi: 10.1016/j.neuroimage.2017.03.061
– ident: bibr36-0271678X18799241
  doi: 10.1016/j.mri.2007.07.003
SSID ssj0008355
Score 2.4468598
Snippet Brain function, the brain’s metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated...
Brain function, the brain's metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2445
SubjectTerms Adult
Cerebrovascular Circulation
Elasticity
Elasticity Imaging Techniques
Gray Matter - blood supply
Gray Matter - physiopathology
Humans
Hypercapnia - diagnostic imaging
Hypercapnia - physiopathology
Male
Models, Cardiovascular
Original
Viscosity
Title Hypercapnia increases brain viscoelasticity
URI https://journals.sagepub.com/doi/full/10.1177/0271678X18799241
https://www.ncbi.nlm.nih.gov/pubmed/30182788
https://www.proquest.com/docview/2099887044
https://pubmed.ncbi.nlm.nih.gov/PMC6893988
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JbtQw1IJygAuClmXYFCRUCY1CE8dZfCylwwiVcmBGmlsULxGRZpJq4lZqv55nx1lmpqDCJYpsx7Lee3mL34bQBxCiBOMscMOYZi7JKXNZ5DE3y4jkmGeh4Pq-4_t5NJ2Tb4tw0ffvNNklin3iN7fmlfwPVmEM8KqzZP8Bs92mMADvgF94AobheSccT8GIXPPsQmdWFaXW_2pZj5nu-jC-KmpeSdCNddi02nDeDpRQLtfac7xsAtjH-bJqIoRXUgF1LNv6guayVN3YJl1K5j1NfSmUWtlOyxMdztdPfTYZCaXNOetCOabFum4aUP2ULDMsZnj34NNBHIdllyF1Y8-3xaxvGbM8tilY1NISHnJM0pST3GXlxpkMVrMP8nShm6KDqej3Yqt11Z__SCfzs7N0drqY3UcPMJgLupPF10Uf6gNaZmjq5tqT9e7qo-39N9WTHZtjN3R2EP9nVJLZE_TYotE5bgjjKbony310cFxmqlpdO4eOie41bpN99PCk7ex3gMYDunE6unEM3ThbdPMMzSens5Opa5tmuJwERLkR9nISgewQLMciyT3BRR4A2449TpnAMk9CmoQiEMKXEoxl0NcCmOA0kRSgEDxHe2VVypfIiTjhgvgS5xzM7jChOGceFjHwbUpYTEboqIVVym1Fed3YZJn6bRH5LeiO0Mfui4ummspf1r5vwZ8CfLQfKytldVmnOtsbZKNH4AQvGnR0u4G8SnCcJCMUbyCqW6DLqW_OlMUvU1Y9AtWd6i8PNUpT-5_Xfzzgqzsc8DV61P83b9CeWl_Kt6DFKvbOkOhvhkOZ8A
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypercapnia+increases+brain+viscoelasticity&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=Hetzer%2C+Stefan&rft.au=Dittmann%2C+Florian&rft.au=Bormann%2C+Karl&rft.au=Hirsch%2C+Sebastian&rft.date=2019-12-01&rft.issn=1559-7016&rft.eissn=1559-7016&rft.volume=39&rft.issue=12&rft.spage=2445&rft_id=info:doi/10.1177%2F0271678X18799241&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon