Hypercapnia increases brain viscoelasticity
Brain function, the brain’s metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elas...
Saved in:
Published in | Journal of cerebral blood flow and metabolism Vol. 39; no. 12; pp. 2445 - 2455 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain function, the brain’s metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elastography (MRE) paired with CBF measurements in 14 healthy subjects exposed to 5-min carbon dioxide-enriched breathing air to induce cerebral vasodilatation by hypercapnia. Stiffness and viscosity as quantified by the magnitude and phase angle of the complex shear modulus, |G*| and ϕ, as well as CBF of the whole brain and 25 gray matter sub-regions were analyzed prior to, during, and after hypercapnia. In all subjects, whole-brain stiffness and viscosity increased due to hypercapnia by 3.3 ± 1.9% and 2.0 ± 1.1% which was accompanied by a CBF increase of 36 ± 15%. Post-hypercapnia, |G*| and ϕ reduced to normal values while CBF decreased by 13 ± 15% below baseline. Hypercapnia-induced viscosity changes correlated with CBF changes, whereas stiffness changes did not. The MRE-measured viscosity changes correlated with blood viscosity changes predicted by the Fåhræus–Lindqvist model and microvessel diameter changes from the literature. Our results suggest that brain viscoelastic properties are influenced by microvessel blood flow and blood viscosity: vasodilatation and increased blood viscosity due to hypercapnia result in an increase in MRE values related to viscosity. |
---|---|
AbstractList | Brain function, the brain’s metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elastography (MRE) paired with CBF measurements in 14 healthy subjects exposed to 5-min carbon dioxide-enriched breathing air to induce cerebral vasodilatation by hypercapnia. Stiffness and viscosity as quantified by the magnitude and phase angle of the complex shear modulus, |G*| and ϕ, as well as CBF of the whole brain and 25 gray matter sub-regions were analyzed prior to, during, and after hypercapnia. In all subjects, whole-brain stiffness and viscosity increased due to hypercapnia by 3.3 ± 1.9% and 2.0 ± 1.1% which was accompanied by a CBF increase of 36 ± 15%. Post-hypercapnia, |G*| and ϕ reduced to normal values while CBF decreased by 13 ± 15% below baseline. Hypercapnia-induced viscosity changes correlated with CBF changes, whereas stiffness changes did not. The MRE-measured viscosity changes correlated with blood viscosity changes predicted by the Fåhræus–Lindqvist model and microvessel diameter changes from the literature. Our results suggest that brain viscoelastic properties are influenced by microvessel blood flow and blood viscosity: vasodilatation and increased blood viscosity due to hypercapnia result in an increase in MRE values related to viscosity. Brain function, the brain's metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elastography (MRE) paired with CBF measurements in 14 healthy subjects exposed to 5-min carbon dioxide-enriched breathing air to induce cerebral vasodilatation by hypercapnia. Stiffness and viscosity as quantified by the magnitude and phase angle of the complex shear modulus, | *| and , as well as CBF of the whole brain and 25 gray matter sub-regions were analyzed prior to, during, and after hypercapnia. In all subjects, whole-brain stiffness and viscosity increased due to hypercapnia by 3.3 ± 1.9% and 2.0 ± 1.1% which was accompanied by a CBF increase of 36 ± 15%. Post-hypercapnia, | *| and reduced to normal values while CBF decreased by 13 ± 15% below baseline. Hypercapnia-induced viscosity changes correlated with CBF changes, whereas stiffness changes did not. The MRE-measured viscosity changes correlated with blood viscosity changes predicted by the Fåhræus-Lindqvist model and microvessel diameter changes from the literature. Our results suggest that brain viscoelastic properties are influenced by microvessel blood flow and blood viscosity: vasodilatation and increased blood viscosity due to hypercapnia result in an increase in MRE values related to viscosity. Brain function, the brain's metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elastography (MRE) paired with CBF measurements in 14 healthy subjects exposed to 5-min carbon dioxide-enriched breathing air to induce cerebral vasodilatation by hypercapnia. Stiffness and viscosity as quantified by the magnitude and phase angle of the complex shear modulus, |G*| and ϕ, as well as CBF of the whole brain and 25 gray matter sub-regions were analyzed prior to, during, and after hypercapnia. In all subjects, whole-brain stiffness and viscosity increased due to hypercapnia by 3.3 ± 1.9% and 2.0 ± 1.1% which was accompanied by a CBF increase of 36 ± 15%. Post-hypercapnia, |G*| and ϕ reduced to normal values while CBF decreased by 13 ± 15% below baseline. Hypercapnia-induced viscosity changes correlated with CBF changes, whereas stiffness changes did not. The MRE-measured viscosity changes correlated with blood viscosity changes predicted by the Fåhræus-Lindqvist model and microvessel diameter changes from the literature. Our results suggest that brain viscoelastic properties are influenced by microvessel blood flow and blood viscosity: vasodilatation and increased blood viscosity due to hypercapnia result in an increase in MRE values related to viscosity.Brain function, the brain's metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elastography (MRE) paired with CBF measurements in 14 healthy subjects exposed to 5-min carbon dioxide-enriched breathing air to induce cerebral vasodilatation by hypercapnia. Stiffness and viscosity as quantified by the magnitude and phase angle of the complex shear modulus, |G*| and ϕ, as well as CBF of the whole brain and 25 gray matter sub-regions were analyzed prior to, during, and after hypercapnia. In all subjects, whole-brain stiffness and viscosity increased due to hypercapnia by 3.3 ± 1.9% and 2.0 ± 1.1% which was accompanied by a CBF increase of 36 ± 15%. Post-hypercapnia, |G*| and ϕ reduced to normal values while CBF decreased by 13 ± 15% below baseline. Hypercapnia-induced viscosity changes correlated with CBF changes, whereas stiffness changes did not. The MRE-measured viscosity changes correlated with blood viscosity changes predicted by the Fåhræus-Lindqvist model and microvessel diameter changes from the literature. Our results suggest that brain viscoelastic properties are influenced by microvessel blood flow and blood viscosity: vasodilatation and increased blood viscosity due to hypercapnia result in an increase in MRE values related to viscosity. Brain function, the brain’s metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated regime of intracranial physiology in which the role of tissue viscoelasticity remains elusive. We applied multifrequency magnetic resonance elastography (MRE) paired with CBF measurements in 14 healthy subjects exposed to 5-min carbon dioxide-enriched breathing air to induce cerebral vasodilatation by hypercapnia. Stiffness and viscosity as quantified by the magnitude and phase angle of the complex shear modulus, | G *| and ϕ , as well as CBF of the whole brain and 25 gray matter sub-regions were analyzed prior to, during, and after hypercapnia. In all subjects, whole-brain stiffness and viscosity increased due to hypercapnia by 3.3 ± 1.9% and 2.0 ± 1.1% which was accompanied by a CBF increase of 36 ± 15%. Post-hypercapnia, | G *| and ϕ reduced to normal values while CBF decreased by 13 ± 15% below baseline. Hypercapnia-induced viscosity changes correlated with CBF changes, whereas stiffness changes did not. The MRE-measured viscosity changes correlated with blood viscosity changes predicted by the Fåhræus–Lindqvist model and microvessel diameter changes from the literature. Our results suggest that brain viscoelastic properties are influenced by microvessel blood flow and blood viscosity: vasodilatation and increased blood viscosity due to hypercapnia result in an increase in MRE values related to viscosity. |
Author | Hetzer, Stefan Dittmann, Florian Hirsch, Sebastian Braun, Jürgen Wang, Danny JJ Lipp, Axel Sack, Ingolf Bormann, Karl |
AuthorAffiliation | 2 Bernstein Center for Computational Neuroscience, Berlin, Germany 6 Institute of Medical Informatics, Charité – Universitätsmedizin Berlin, Berlin, Germany 5 Laboratory of FMRI Technology, University of Southern California, Los Angeles, CA, USA 1 Berlin Center for Advanced Neuroimaging, Charité – Universitätsmedizin, Berlin, Germany 3 Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany 4 Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany |
AuthorAffiliation_xml | – name: 4 Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany – name: 1 Berlin Center for Advanced Neuroimaging, Charité – Universitätsmedizin, Berlin, Germany – name: 6 Institute of Medical Informatics, Charité – Universitätsmedizin Berlin, Berlin, Germany – name: 5 Laboratory of FMRI Technology, University of Southern California, Los Angeles, CA, USA – name: 2 Bernstein Center for Computational Neuroscience, Berlin, Germany – name: 3 Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany |
Author_xml | – sequence: 1 givenname: Stefan surname: Hetzer fullname: Hetzer, Stefan email: Stefan.Hetzer@charite.de – sequence: 2 givenname: Florian surname: Dittmann fullname: Dittmann, Florian – sequence: 3 givenname: Karl surname: Bormann fullname: Bormann, Karl – sequence: 4 givenname: Sebastian surname: Hirsch fullname: Hirsch, Sebastian – sequence: 5 givenname: Axel surname: Lipp fullname: Lipp, Axel – sequence: 6 givenname: Danny JJ surname: Wang fullname: Wang, Danny JJ – sequence: 7 givenname: Jürgen surname: Braun fullname: Braun, Jürgen – sequence: 8 givenname: Ingolf surname: Sack fullname: Sack, Ingolf |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30182788$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctKAzEUDaJore5dSZeCjOYxM0k2gohaQXCj4C6kyR1NmSZjMiP0702pihZ0dRfnxT1nH2374AGhI4LPCOH8HFNOai6eieBS0pJsoRGpKllwTOptNFrBxQrfQ_spzTHGglXVLtpjmAjKhRih0-myg2h0552eOG8i6ARpMova-cm7SyZAq1PvjOuXB2in0W2Cw887Rk83149X0-L-4fbu6vK-MCUr-6KmuClrLISdNdSKBltjG8Yo5djImaXQiEqKyjJrCQCpS1ExlgEjBcj8CRuji7VvN8wWYA34PupWddEtdFyqoJ36jXj3ql7Cu6qFZFKIbHDyaRDD2wCpV4v8CbSt9hCGpCiWmcZxWWbq8c-s75CvhjKhXhNMDClFaFSuQvcurKJdqwhWqynU5hRZiDeEX97_SIq1JOkXUPMwRJ97_pv_AbaMl-o |
CitedBy_id | crossref_primary_10_3389_fphys_2020_616984 crossref_primary_10_1016_j_jocn_2021_06_021 crossref_primary_10_1113_JP280225 crossref_primary_10_1016_j_expneurol_2021_113610 crossref_primary_10_1177_0271678X231186571 crossref_primary_10_1111_pan_13967 crossref_primary_10_1016_j_jmbbm_2022_105613 crossref_primary_10_1016_j_cccb_2023_100183 crossref_primary_10_1097_RLI_0000000000000817 crossref_primary_10_1098_rsfs_2020_0032 crossref_primary_10_1038_s41598_024_57250_4 crossref_primary_10_1016_j_pnmrs_2024_05_002 crossref_primary_10_1093_braincomms_fcae424 crossref_primary_10_3389_fbioe_2021_666456 crossref_primary_10_3389_fnins_2021_722366 crossref_primary_10_1007_s11682_019_00200_w crossref_primary_10_7759_cureus_68087 crossref_primary_10_1038_s41598_018_36191_9 crossref_primary_10_1002_advs_202402338 crossref_primary_10_1016_j_ultrasmedbio_2019_12_019 crossref_primary_10_1109_TBME_2024_3381708 crossref_primary_10_1016_j_actbio_2020_12_027 crossref_primary_10_1016_j_actbio_2021_10_038 crossref_primary_10_1177_0271678X19850936 crossref_primary_10_1016_j_ynirp_2021_100014 crossref_primary_10_1097_JTCCM_D_22_00012 crossref_primary_10_1259_bjr_20200265 crossref_primary_10_1007_s10143_023_02238_3 crossref_primary_10_1007_s10143_022_01879_0 crossref_primary_10_4103_JTCCM_D_22_00012 |
Cites_doi | 10.1007/978-3-319-65924-4 10.1006/nimg.2001.0978 10.1172/JCI101995 10.1016/j.nicl.2013.09.006 10.1016/j.neuroimage.2010.07.003 10.1016/j.neuroimage.2016.02.059 10.1002/jmri.25129 10.1002/mrm.20383 10.1002/nbm.1693 10.1073/pnas.0600644103 10.3174/ajnr.A4361 10.1016/j.media.2018.03.003 10.1088/0031-9155/60/11/4227 10.1227/NEU.0000000000000892 10.1007/s00330-017-5269-y 10.1016/j.neuroimage.2015.02.016 10.1002/mrm.26769 10.1002/mrm.26006 10.1088/0031-9155/59/15/4443 10.1177/0271678X17691530 10.1007/s00062-014-0311-9 10.1016/j.neulet.2014.04.051 10.1152/japplphysiol.00369.2012 10.1002/andp.19063240204 10.1016/j.neuroimage.2013.04.089 10.1371/journal.pone.0029888 10.1088/0031-9155/61/24/R401 10.1152/ajplegacy.1931.96.3.562 10.1002/mrm.25197 10.1111/micc.12343 10.1002/mrm.24499 10.1016/j.neuroimage.2009.02.040 10.1017/S0022112010004428 10.1038/jcbfm.2011.34 10.1002/mrm.21403 10.1371/journal.pone.0081668 10.1371/journal.pone.0071807 10.1002/mrm.26484 10.3171/2012.9.JNS12519 10.1148/radiol.2351031663 10.1002/jmri.25516 10.1016/j.neuroimage.2014.10.029 10.1097/ALN.0b013e3181ca8257 10.1016/j.nicl.2017.12.023 10.1002/mrm.26738 10.1016/j.neuroimage.2013.12.032 10.1002/mrm.24258 10.1002/mrm.25881 10.1118/1.4905048 10.1016/j.neuroimage.2017.03.061 10.1016/j.mri.2007.07.003 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 The Author(s) 2018 2018 International Society for Cerebral Blood Flow and Metabolism |
Copyright_xml | – notice: The Author(s) 2018 – notice: The Author(s) 2018 2018 International Society for Cerebral Blood Flow and Metabolism |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1177/0271678X18799241 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1559-7016 |
EndPage | 2455 |
ExternalDocumentID | PMC6893988 30182788 10_1177_0271678X18799241 10.1177_0271678X18799241 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -Q- -TM .55 .GJ 0R~ 29K 2WC 36B 39C 3O- 4.4 53G 54M 5GY 5RE 5VS 70F 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AABMB AACKU AACMV AADUE AAEWN AAGGD AAGMC AAJIQ AAJPV AAKGS AANSI AAPEO AAQGT AAQXH AAQXI AARDL AARIX AATAA AATBZ AAUAS AAVDI AAXOT AAYTG AAZBJ ABAWP ABAWZ ABCCA ABCJG ABDWY ABEIX ABFWQ ABHKI ABJNI ABJZC ABKRH ABLUO ABNCE ABPGX ABPNF ABQKF ABQNX ABQXT ABRHV ABUJY ABUWG ABVFX ABXGC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFO ACGFS ACGZU ACJER ACJTF ACLFY ACLHI ACNXM ACOFE ACOXC ACPRK ACROE ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADEBD ADEIA ADMPF ADNON ADRRZ ADTBJ ADUKL ADVBO ADZZY AECGH AENEX AEPTA AEQLS AESZF AEUHG AEWDL AEWHI AEXFG AEXNY AFEET AFFNX AFFZS AFKRA AFKRG AFMOU AFOSN AFQAA AFUIA AFVCE AGHKR AGKLV AGNHF AGPXR AGWFA AHDMH AHMBA AIGRN AJABX AJEFB AJMMQ AJSCY AJUZI AJXAJ AJXGE ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS AMCVQ ANDLU AOIJS ARTOV AUTPY AYAKG B8M BAWUL BBNVY BBRGL BDDNI BENPR BHPHI BKIIM BKSCU BPACV BPHCQ BSEHC BVXVI BWJAD C45 CAG CBRKF CCPQU CDWPY CFDXU COF CORYS CQQTX CS3 CUTAK D-I DC- DC. DIK DOPDO DV7 E3Z EBS EE. EJD EMOBN F5P FHBDP FYUFA GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 H13 HCIFZ HMCUK HYE HZ~ J8X JSO K.F KQ8 LK8 M1P M7P O9- OK1 OVD P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO Q1R Q2X RNS RNTTT ROL RPM SASJQ SAUOL SCNPE SFC SHG SPQ SPV TEORI TR2 UKHRP W2D X7M YFH YOC ZGI ZONMY ZPPRI ZRKOI ZSSAH ZXP AAYXX AJGYC CITATION ALTZF CGR CUY CVF ECM EIF M4V NPM 7X8 AJVBE 5PM AAPII AJHME |
ID | FETCH-LOGICAL-c434t-620f46088dbf2d8f0dcdf332270c9bd2ef85985d3dd1ee16485339bdc98e91873 |
ISSN | 0271-678X 1559-7016 |
IngestDate | Thu Aug 21 18:29:20 EDT 2025 Fri Jul 11 03:34:38 EDT 2025 Thu Apr 03 07:05:54 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 Tue Jul 01 05:24:40 EDT 2025 Tue Jun 17 22:30:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Elasticity perfusion Fåhræus–Lindqvist vasodilation hypercapnia |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-620f46088dbf2d8f0dcdf332270c9bd2ef85985d3dd1ee16485339bdc98e91873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://journals.sagepub.com/doi/pdf/10.1177/0271678X18799241 |
PMID | 30182788 |
PQID | 2099887044 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6893988 proquest_miscellaneous_2099887044 pubmed_primary_30182788 crossref_citationtrail_10_1177_0271678X18799241 crossref_primary_10_1177_0271678X18799241 sage_journals_10_1177_0271678X18799241 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: United States – name: Sage UK: London, England |
PublicationTitle | Journal of cerebral blood flow and metabolism |
PublicationTitleAlternate | J Cereb Blood Flow Metab |
PublicationYear | 2019 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Gerischer, Fehlner, Köbe 2018; 18 Hetzer, Birr, Fehlner 2018; 38 Tao, Zhao, Yang 2014; 573 Jain, Langham, Floyd 2011; 31 Streitberger, Sack, Krefting 2012; 7 Fehlner, Behrens, Streitberger 2016; 44 Fåhræus, Lindqvist 1931; 96 Hirsch, Klatt, Freimann 2013; 70 Le Bihan, Urayama, Aso 2006; 103 Parker 2015; 60 Li, Wang, Auerbach 2015; 106 Schwarb, Johnson, Daugherty 2017; 153 Reiss-Zimmermann, Streitberger, Sack 2015; 25 Tzourio-Mazoyer, Landeau, Papathanassiou 2002; 15 Hughes, Fattahi, Van Gompel 2015; 77 Hua, Qin, Pekar 2011; 24 Lipp, Trbojevic, Paul 2013; 3 Kety, Schmidt 1948; 27 Kiselev, Strecker, Ziyeh 2005; 53 Tully, Ventikos 2011; 667 Hiscox, Johnson, Barnhill 2016; 61 Dittmann, Reiter, Guo 2018; 79 Parker 2014; 59 Hatt, Cheng, Tan 2015; 36 Guo, Hirsch, Fehlner 2013; 8 Dittmann, Hirsch, Tzschätzsch 2016; 76 Arani, Min, Fattahi 2018; 79 Pries, Neuhaus, Gaehtgens 1992; 263 Alsop, Detre, Golay 2015; 73 McGrath, Ravikumar, Wilkinson 2016; 76 Chen, Pike 2010; 53 Murphy, Huston, Glaser 2013; 118 Braun, Guo, Lützkendorf 2014; 90 Shen, Pu, Ahearn 2013; 69 Schwarb, Johnson, McGarry 2016; 132 Arani, Murphy, Glaser 2015; 111 McGarry, Johnson, Sutton 2015; 42 Dittmann, Tzschätzsch, Hirsch 2017; 78 Zhou, Cao, Niu 2010; 112 Barnhill, Davies, Ariyurek 2018; 46 Wang, Zhang, Wolf 2005; 235 Stark, Schuster 2012; 113 Rasmussen, Smith, Sakadžić 2017; 24 Sack, Beierbach, Wuerfel 2009; 46 Johnson, McGarry, Gharibans 2013; 79 Einstein 1906; 324 Wang, Aguirre, Rao 2008; 26 Murphy, Huston, Jack 2013; 8 Wu, Fernández-Seara, Detre 2007; 58 bibr39-0271678X18799241 bibr21-0271678X18799241 bibr48-0271678X18799241 bibr55-0271678X18799241 bibr12-0271678X18799241 bibr9-0271678X18799241 bibr14-0271678X18799241 bibr38-0271678X18799241 Pries AR (bibr40-0271678X18799241) 1992; 263 bibr22-0271678X18799241 bibr30-0271678X18799241 bibr47-0271678X18799241 bibr13-0271678X18799241 bibr2-0271678X18799241 bibr23-0271678X18799241 bibr10-0271678X18799241 bibr31-0271678X18799241 bibr7-0271678X18799241 bibr44-0271678X18799241 bibr33-0271678X18799241 Hirsch S (bibr8-0271678X18799241) 2017 bibr46-0271678X18799241 bibr49-0271678X18799241 bibr20-0271678X18799241 bibr36-0271678X18799241 bibr54-0271678X18799241 bibr15-0271678X18799241 bibr41-0271678X18799241 bibr28-0271678X18799241 bibr26-0271678X18799241 bibr51-0271678X18799241 bibr4-0271678X18799241 bibr34-0271678X18799241 bibr5-0271678X18799241 bibr18-0271678X18799241 bibr27-0271678X18799241 bibr42-0271678X18799241 bibr3-0271678X18799241 bibr25-0271678X18799241 bibr52-0271678X18799241 bibr35-0271678X18799241 bibr17-0271678X18799241 bibr43-0271678X18799241 bibr45-0271678X18799241 bibr32-0271678X18799241 bibr37-0271678X18799241 bibr16-0271678X18799241 bibr53-0271678X18799241 bibr29-0271678X18799241 bibr19-0271678X18799241 bibr1-0271678X18799241 bibr50-0271678X18799241 bibr11-0271678X18799241 bibr6-0271678X18799241 bibr24-0271678X18799241 |
References_xml | – volume: 79 start-page: 1043 year: 2018 end-page: 1051 article-title: Acute pressure changes in the brain are correlated with MR elastography stiffness measurements: initial feasibility in an in vivo large animal model publication-title: Magn Reson Med – volume: 42 start-page: 947 year: 2015 end-page: 957 article-title: Suitability of poroelastic and viscoelastic mechanical models for high and low frequency MR elastography publication-title: Med Phys – volume: 38 start-page: 116 year: 2018 end-page: 125 article-title: Perfusion alters stiffness of deep gray matter publication-title: J Cereb Blood Flow Metab – volume: 132 start-page: 534 year: 2016 end-page: 541 article-title: Medial temporal lobe viscoelasticity and relational memory performance publication-title: NeuroImage – volume: 27 start-page: 484 year: 1948 end-page: 492 article-title: The effects of altered arterial tensions of carbon dioxide and oxygen an cerebral blood flow and cerebral oxygen consumption of normal young men publication-title: J Clin Invest – volume: 96 start-page: 562 year: 1931 end-page: 568 article-title: The viscosity of the blood in narrow capillary tubes publication-title: Am J Physiol-Leg Content – volume: 8 start-page: e71807 year: 2013 article-title: Towards an elastographic atlas of brain anatomy publication-title: PLoS One – volume: 8 start-page: e81668 year: 2013 article-title: Measuring the characteristic topography of brain stiffness with magnetic resonance elastography publication-title: PLoS One – volume: 60 start-page: 4227 year: 2015 end-page: 4242 article-title: Experimental evaluations of the microchannel flow model publication-title: Phys Med Biol – volume: 18 start-page: 485 year: 2018 end-page: 493 article-title: Combining viscoelasticity, diffusivity and volume of the hippocampus for the diagnosis of Alzheimer’s disease based on magnetic resonance imaging publication-title: NeuroImage Clin – volume: 26 start-page: 261 year: 2008 end-page: 269 article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx publication-title: Magn Reson Imaging – volume: 235 start-page: 218 year: 2005 end-page: 228 article-title: Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study publication-title: Radiology – volume: 76 start-page: 1116 year: 2016 end-page: 1126 article-title: In vivo wideband multifrequency MR elastography of the human brain and liver publication-title: Magn Reson Med – volume: 59 start-page: 4443 year: 2014 end-page: 4457 article-title: A microchannel flow model for soft tissue elasticity publication-title: Phys Med Biol – volume: 79 start-page: 145 year: 2013 end-page: 152 article-title: Local mechanical properties of white matter structures in the human brain publication-title: NeuroImage – volume: 324 start-page: 289 year: 1906 end-page: 306 article-title: Eine neue Bestimmung der Moleküldimensionen publication-title: Ann Phys – volume: 153 start-page: 179 year: 2017 end-page: 188 article-title: Aerobic fitness, hippocampal viscoelasticity, and relational memory performance publication-title: NeuroImage – volume: 44 start-page: 51 year: 2016 end-page: 58 article-title: Higher-resolution MR elastography reveals early mechanical signatures of neuroinflammation in patients with clinically isolated syndrome publication-title: J Magn Reson Imaging – volume: 46 start-page: 652 year: 2009 end-page: 657 article-title: The impact of aging and gender on brain viscoelasticity publication-title: NeuroImage – volume: 573 start-page: 1 year: 2014 end-page: 6 article-title: Neuroprotective effects of therapeutic hypercapnia on spatial memory and sensorimotor impairment via anti-apoptotic mechanisms after focal cerebral ischemia/reperfusion publication-title: Neurosci Lett – volume: 113 start-page: 355 year: 2012 end-page: 367 article-title: Comparison of various approaches to calculating the optimal hematocrit in vertebrates publication-title: J Appl Physiol (1985) – volume: 106 start-page: 170 year: 2015 end-page: 181 article-title: Theoretical and experimental evaluation of multi-band EPI for high-resolution whole brain pCASL Imaging publication-title: NeuroImage – volume: 103 start-page: 8263 year: 2006 end-page: 8268 article-title: Direct and fast detection of neuronal activation in the human brain with diffusion MRI publication-title: Proc Natl Acad Sci U S A – volume: 7 start-page: e29888 year: 2012 article-title: Brain viscoelasticity alteration in chronic-progressive multiple sclerosis publication-title: PLoS One – volume: 24 start-page: 1313 year: 2011 end-page: 1325 article-title: Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent publication-title: NMR Biomed – volume: 90 start-page: 308 year: 2014 end-page: 314 article-title: High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7T publication-title: NeuroImage – volume: 15 start-page: 273 year: 2002 end-page: 289 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage – volume: 667 start-page: 188 year: 2011 end-page: 215 article-title: Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus publication-title: J Fluid Mech – volume: 73 start-page: 102 year: 2015 end-page: 116 article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med – volume: 46 start-page: 180 year: 2018 end-page: 188 article-title: Heterogeneous Multifrequency Direct Inversion (HMDI) for magnetic resonance elastography with application to a clinical brain exam publication-title: Med Image Anal – volume: 53 start-page: 553 year: 2005 end-page: 563 article-title: Vessel size imaging in humans publication-title: Magn Reson Med – volume: 263 start-page: H1770 year: 1992 end-page: H1778 article-title: Blood viscosity in tube flow: dependence on diameter and hematocrit publication-title: Am J Physiol – volume: 24 start-page: e12343 year: 2017 article-title: Model-based inference from microvascular measurements: combining experimental measurements and model predictions using a Bayesian probabilistic approach publication-title: Microcirculation – volume: 3 start-page: 381 year: 2013 end-page: 387 article-title: Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic Parkinson’s disease publication-title: NeuroImage Clin – volume: 69 start-page: 1541 year: 2013 end-page: 1552 article-title: Quantification of venous vessel size in human brain in response to hypercapnia and hyperoxia using magnetic resonance imaging publication-title: Magn Reson Med – volume: 31 start-page: 1504 year: 2011 end-page: 1512 article-title: Rapid magnetic resonance measurement of global cerebral metabolic rate of oxygen consumption in humans during rest and hypercapnia publication-title: J Cereb Blood Flow Metab – volume: 77 start-page: 653 year: 2015 end-page: 658 article-title: Higher-resolution magnetic resonance elastography in meningiomas to determine intratumoral consistency publication-title: Neurosurgery – volume: 36 start-page: 1971 year: 2015 end-page: 1977 article-title: MR elastography can be used to measure brain stiffness changes as a result of altered cranial venous drainage during jugular compression publication-title: AJNR Am J Neuroradiol – volume: 118 start-page: 643 year: 2013 end-page: 648 article-title: Preoperative assessment of meningioma stiffness using magnetic resonance elastography publication-title: J Neurosurg – volume: 79 start-page: 1325 year: 2018 end-page: 1333 article-title: Tomoelastography of the prostate using multifrequency MR elastography and externally placed pressurized-air drivers publication-title: Magn Reson Med – volume: 112 start-page: 288 year: 2010 end-page: 297 article-title: Effects of permissive hypercapnia on transient global cerebral ischemia-reperfusion injury in rats publication-title: Anesthesiology – volume: 53 start-page: 383 year: 2010 end-page: 391 article-title: MRI measurement of the BOLD-specific flow-volume relationship during hypercapnia and hypocapnia in humans publication-title: NeuroImage – volume: 111 start-page: 59 year: 2015 end-page: 64 article-title: Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults publication-title: NeuroImage – volume: 78 start-page: 976 year: 2017 end-page: 983 article-title: Tomoelastography of the abdomen: Tissue mechanical properties of the liver, spleen, kidney, and pancreas from single MR elastography scans at different hydration states publication-title: Magn Reson Med – volume: 76 start-page: 645 year: 2016 end-page: 662 article-title: Magnetic resonance elastography of the brain: an in silico study to determine the influence of cranial anatomy publication-title: Magn Reson Med – volume: 25 start-page: 371 year: 2015 end-page: 378 article-title: High resolution imaging of viscoelastic properties of intracranial tumours by multi-frequency magnetic resonance elastography publication-title: Clin Neuroradiol – volume: 70 start-page: 671 year: 2013 end-page: 683 article-title: In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves publication-title: Magn Reson Med – volume: 58 start-page: 1020 year: 2007 end-page: 1027 article-title: A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling publication-title: Magn Reson Med – volume: 61 start-page: R401 year: 2016 end-page: R437 article-title: Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications publication-title: Phys Med Biol – ident: bibr1-0271678X18799241 doi: 10.1007/978-3-319-65924-4 – volume: 263 start-page: H1770 year: 1992 ident: bibr40-0271678X18799241 publication-title: Am J Physiol – ident: bibr39-0271678X18799241 doi: 10.1006/nimg.2001.0978 – ident: bibr53-0271678X18799241 doi: 10.1172/JCI101995 – ident: bibr15-0271678X18799241 doi: 10.1016/j.nicl.2013.09.006 – ident: bibr47-0271678X18799241 – ident: bibr54-0271678X18799241 doi: 10.1016/j.neuroimage.2010.07.003 – ident: bibr20-0271678X18799241 doi: 10.1016/j.neuroimage.2016.02.059 – ident: bibr17-0271678X18799241 doi: 10.1002/jmri.25129 – ident: bibr55-0271678X18799241 doi: 10.1002/mrm.20383 – ident: bibr45-0271678X18799241 doi: 10.1002/nbm.1693 – ident: bibr46-0271678X18799241 doi: 10.1073/pnas.0600644103 – ident: bibr27-0271678X18799241 doi: 10.3174/ajnr.A4361 – ident: bibr52-0271678X18799241 doi: 10.1016/j.media.2018.03.003 – ident: bibr4-0271678X18799241 doi: 10.1088/0031-9155/60/11/4227 – ident: bibr10-0271678X18799241 doi: 10.1227/NEU.0000000000000892 – ident: bibr16-0271678X18799241 doi: 10.1007/s00330-017-5269-y – ident: bibr14-0271678X18799241 doi: 10.1016/j.neuroimage.2015.02.016 – ident: bibr33-0271678X18799241 doi: 10.1002/mrm.26769 – ident: bibr31-0271678X18799241 doi: 10.1002/mrm.26006 – ident: bibr5-0271678X18799241 doi: 10.1088/0031-9155/59/15/4443 – ident: bibr28-0271678X18799241 doi: 10.1177/0271678X17691530 – ident: bibr12-0271678X18799241 doi: 10.1007/s00062-014-0311-9 – volume-title: Magnetic resonance elastography: physical background and medical applications year: 2017 ident: bibr8-0271678X18799241 – ident: bibr49-0271678X18799241 doi: 10.1016/j.neulet.2014.04.051 – ident: bibr41-0271678X18799241 doi: 10.1152/japplphysiol.00369.2012 – ident: bibr42-0271678X18799241 doi: 10.1002/andp.19063240204 – ident: bibr24-0271678X18799241 doi: 10.1016/j.neuroimage.2013.04.089 – ident: bibr18-0271678X18799241 doi: 10.1371/journal.pone.0029888 – ident: bibr9-0271678X18799241 doi: 10.1088/0031-9155/61/24/R401 – ident: bibr29-0271678X18799241 doi: 10.1152/ajplegacy.1931.96.3.562 – ident: bibr35-0271678X18799241 doi: 10.1002/mrm.25197 – ident: bibr7-0271678X18799241 doi: 10.1111/micc.12343 – ident: bibr2-0271678X18799241 doi: 10.1002/mrm.24499 – ident: bibr19-0271678X18799241 doi: 10.1016/j.neuroimage.2009.02.040 – ident: bibr6-0271678X18799241 doi: 10.1017/S0022112010004428 – ident: bibr44-0271678X18799241 doi: 10.1038/jcbfm.2011.34 – ident: bibr30-0271678X18799241 doi: 10.1002/mrm.21403 – ident: bibr25-0271678X18799241 doi: 10.1371/journal.pone.0081668 – ident: bibr23-0271678X18799241 doi: 10.1371/journal.pone.0071807 – ident: bibr32-0271678X18799241 doi: 10.1002/mrm.26484 – ident: bibr48-0271678X18799241 – ident: bibr11-0271678X18799241 doi: 10.3171/2012.9.JNS12519 – ident: bibr37-0271678X18799241 doi: 10.1148/radiol.2351031663 – ident: bibr38-0271678X18799241 doi: 10.1002/jmri.25516 – ident: bibr34-0271678X18799241 doi: 10.1016/j.neuroimage.2014.10.029 – ident: bibr50-0271678X18799241 doi: 10.1097/ALN.0b013e3181ca8257 – ident: bibr13-0271678X18799241 doi: 10.1016/j.nicl.2017.12.023 – ident: bibr26-0271678X18799241 doi: 10.1002/mrm.26738 – ident: bibr22-0271678X18799241 doi: 10.1016/j.neuroimage.2013.12.032 – ident: bibr43-0271678X18799241 doi: 10.1002/mrm.24258 – ident: bibr51-0271678X18799241 doi: 10.1002/mrm.25881 – ident: bibr3-0271678X18799241 doi: 10.1118/1.4905048 – ident: bibr21-0271678X18799241 doi: 10.1016/j.neuroimage.2017.03.061 – ident: bibr36-0271678X18799241 doi: 10.1016/j.mri.2007.07.003 |
SSID | ssj0008355 |
Score | 2.4468598 |
Snippet | Brain function, the brain’s metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated... Brain function, the brain's metabolic activity, cerebral blood flow (CBF), and intracranial pressure are intimately linked within the tightly autoregulated... |
SourceID | pubmedcentral proquest pubmed crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2445 |
SubjectTerms | Adult Cerebrovascular Circulation Elasticity Elasticity Imaging Techniques Gray Matter - blood supply Gray Matter - physiopathology Humans Hypercapnia - diagnostic imaging Hypercapnia - physiopathology Male Models, Cardiovascular Original Viscosity |
Title | Hypercapnia increases brain viscoelasticity |
URI | https://journals.sagepub.com/doi/full/10.1177/0271678X18799241 https://www.ncbi.nlm.nih.gov/pubmed/30182788 https://www.proquest.com/docview/2099887044 https://pubmed.ncbi.nlm.nih.gov/PMC6893988 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JbtQw1IJygAuClmXYFCRUCY1CE8dZfCylwwiVcmBGmlsULxGRZpJq4lZqv55nx1lmpqDCJYpsx7Lee3mL34bQBxCiBOMscMOYZi7JKXNZ5DE3y4jkmGeh4Pq-4_t5NJ2Tb4tw0ffvNNklin3iN7fmlfwPVmEM8KqzZP8Bs92mMADvgF94AobheSccT8GIXPPsQmdWFaXW_2pZj5nu-jC-KmpeSdCNddi02nDeDpRQLtfac7xsAtjH-bJqIoRXUgF1LNv6guayVN3YJl1K5j1NfSmUWtlOyxMdztdPfTYZCaXNOetCOabFum4aUP2ULDMsZnj34NNBHIdllyF1Y8-3xaxvGbM8tilY1NISHnJM0pST3GXlxpkMVrMP8nShm6KDqej3Yqt11Z__SCfzs7N0drqY3UcPMJgLupPF10Uf6gNaZmjq5tqT9e7qo-39N9WTHZtjN3R2EP9nVJLZE_TYotE5bgjjKbony310cFxmqlpdO4eOie41bpN99PCk7ex3gMYDunE6unEM3ThbdPMMzSens5Opa5tmuJwERLkR9nISgewQLMciyT3BRR4A2449TpnAMk9CmoQiEMKXEoxl0NcCmOA0kRSgEDxHe2VVypfIiTjhgvgS5xzM7jChOGceFjHwbUpYTEboqIVVym1Fed3YZJn6bRH5LeiO0Mfui4ummspf1r5vwZ8CfLQfKytldVmnOtsbZKNH4AQvGnR0u4G8SnCcJCMUbyCqW6DLqW_OlMUvU1Y9AtWd6i8PNUpT-5_Xfzzgqzsc8DV61P83b9CeWl_Kt6DFKvbOkOhvhkOZ8A |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypercapnia+increases+brain+viscoelasticity&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=Hetzer%2C+Stefan&rft.au=Dittmann%2C+Florian&rft.au=Bormann%2C+Karl&rft.au=Hirsch%2C+Sebastian&rft.date=2019-12-01&rft.issn=1559-7016&rft.eissn=1559-7016&rft.volume=39&rft.issue=12&rft.spage=2445&rft_id=info:doi/10.1177%2F0271678X18799241&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon |