Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration
Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein persulfidation mediated by H2S evolved as a signaling mechanism. Protein persulfidation (S-sulfhydration) is a post-translational modification of reactive cysteine residues, which modulate protein structu...
Saved in:
Published in | Cell metabolism Vol. 30; no. 6; pp. 1152 - 1170.e13 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.12.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein persulfidation mediated by H2S evolved as a signaling mechanism. Protein persulfidation (S-sulfhydration) is a post-translational modification of reactive cysteine residues, which modulate protein structure and/or function. Persulfides are difficult to label and study due to their reactivity and similarity with cysteine. Here, we report a facile strategy for chemoselective persulfide bioconjugation using dimedone-based probes, to achieve highly selective, rapid, and robust persulfide labeling in biological samples with broad utility. Using this method, we show persulfidation is an evolutionarily conserved modification and waves of persulfidation are employed by cells to resolve sulfenylation and prevent irreversible cysteine overoxidation preserving protein function. We report an age-associated decline in persulfidation that is conserved across evolutionary boundaries. Accordingly, dietary or pharmacological interventions to increase persulfidation associate with increased longevity and improved capacity to cope with stress stimuli.
[Display omitted]
•Dimedone Switch method is a versatile, chemoselective persulfide labeling approach•Protein persulfidation is an evolutionarily conserved modification of cysteine thiols•Persulfidation waves rescue cysteines from overoxidation caused by ROS•Persulfidation decreases with aging, increases with caloric restriction, and extends lifespan
Zivanovic et al. develop a robust method for chemoselective persulfide labeling using dimedone-based probes to show that persulfidation is an evolutionarily conserved post-translational modification used by the cells to protect proteins from overoxidation caused by different stressors. Higher persulfidation levels, caused by pharmacological or dietary interventions, lead to better resistance to oxidative stress and longer life. |
---|---|
AbstractList | Life on Earth emerged in a hydrogen sulfide (H
S)-rich environment eons ago and with it protein persulfidation mediated by H
S evolved as a signaling mechanism. Protein persulfidation (S-sulfhydration) is a post-translational modification of reactive cysteine residues, which modulate protein structure and/or function. Persulfides are difficult to label and study due to their reactivity and similarity with cysteine. Here, we report a facile strategy for chemoselective persulfide bioconjugation using dimedone-based probes, to achieve highly selective, rapid, and robust persulfide labeling in biological samples with broad utility. Using this method, we show persulfidation is an evolutionarily conserved modification and waves of persulfidation are employed by cells to resolve sulfenylation and prevent irreversible cysteine overoxidation preserving protein function. We report an age-associated decline in persulfidation that is conserved across evolutionary boundaries. Accordingly, dietary or pharmacological interventions to increase persulfidation associate with increased longevity and improved capacity to cope with stress stimuli. Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein persulfidation mediated by H2S evolved as a signaling mechanism. Protein persulfidation (S-sulfhydration) is a post-translational modification of reactive cysteine residues, which modulate protein structure and/or function. Persulfides are difficult to label and study due to their reactivity and similarity with cysteine. Here, we report a facile strategy for chemoselective persulfide bioconjugation using dimedone-based probes, to achieve highly selective, rapid, and robust persulfide labeling in biological samples with broad utility. Using this method, we show persulfidation is an evolutionarily conserved modification and waves of persulfidation are employed by cells to resolve sulfenylation and prevent irreversible cysteine overoxidation preserving protein function. We report an age-associated decline in persulfidation that is conserved across evolutionary boundaries. Accordingly, dietary or pharmacological interventions to increase persulfidation associate with increased longevity and improved capacity to cope with stress stimuli.Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein persulfidation mediated by H2S evolved as a signaling mechanism. Protein persulfidation (S-sulfhydration) is a post-translational modification of reactive cysteine residues, which modulate protein structure and/or function. Persulfides are difficult to label and study due to their reactivity and similarity with cysteine. Here, we report a facile strategy for chemoselective persulfide bioconjugation using dimedone-based probes, to achieve highly selective, rapid, and robust persulfide labeling in biological samples with broad utility. Using this method, we show persulfidation is an evolutionarily conserved modification and waves of persulfidation are employed by cells to resolve sulfenylation and prevent irreversible cysteine overoxidation preserving protein function. We report an age-associated decline in persulfidation that is conserved across evolutionary boundaries. Accordingly, dietary or pharmacological interventions to increase persulfidation associate with increased longevity and improved capacity to cope with stress stimuli. Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein persulfidation mediated by H2S evolved as a signaling mechanism. Protein persulfidation (S-sulfhydration) is a post-translational modification of reactive cysteine residues, which modulate protein structure and/or function. Persulfides are difficult to label and study due to their reactivity and similarity with cysteine. Here, we report a facile strategy for chemoselective persulfide bioconjugation using dimedone-based probes, to achieve highly selective, rapid, and robust persulfide labeling in biological samples with broad utility. Using this method, we show persulfidation is an evolutionarily conserved modification and waves of persulfidation are employed by cells to resolve sulfenylation and prevent irreversible cysteine overoxidation preserving protein function. We report an age-associated decline in persulfidation that is conserved across evolutionary boundaries. Accordingly, dietary or pharmacological interventions to increase persulfidation associate with increased longevity and improved capacity to cope with stress stimuli. [Display omitted] •Dimedone Switch method is a versatile, chemoselective persulfide labeling approach•Protein persulfidation is an evolutionarily conserved modification of cysteine thiols•Persulfidation waves rescue cysteines from overoxidation caused by ROS•Persulfidation decreases with aging, increases with caloric restriction, and extends lifespan Zivanovic et al. develop a robust method for chemoselective persulfide labeling using dimedone-based probes to show that persulfidation is an evolutionarily conserved post-translational modification used by the cells to protect proteins from overoxidation caused by different stressors. Higher persulfidation levels, caused by pharmacological or dietary interventions, lead to better resistance to oxidative stress and longer life. |
Author | Kohl, Joshua B. Zivanovic, Jasmina Mitchell, James R. Adhikari, Bikash Benhar, Moran Carroll, Kate S. Petrovic, Dunja Filipovic, Milos R. Jung, Youngeun Schott-Roux, Sonia Gomes, Jose Eduardo Paul, Bindu D. Miler, Marko Miljkovic, Jan Lj Torregrossa, Roberta Snyder, Solomon H. Kouroussis, Emilia Whiteman, Matthew Milosevic, Verica Gonzalez-Zorn, Bruno Bursac, Biljana Thomas-Lopez, Daniel Schwarz, Guenter Mitchell, Sarah Ivanovic-Burmazovic, Ivana |
Author_xml | – sequence: 1 givenname: Jasmina surname: Zivanovic fullname: Zivanovic, Jasmina organization: CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France – sequence: 2 givenname: Emilia surname: Kouroussis fullname: Kouroussis, Emilia organization: CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France – sequence: 3 givenname: Joshua B. surname: Kohl fullname: Kohl, Joshua B. organization: Department of Biochemistry, Center for Molecular Medicine, Institute of Biochemistry, University of Cologne, Cologne, Germany – sequence: 4 givenname: Bikash surname: Adhikari fullname: Adhikari, Bikash organization: CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France – sequence: 5 givenname: Biljana surname: Bursac fullname: Bursac, Biljana organization: CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France – sequence: 6 givenname: Sonia surname: Schott-Roux fullname: Schott-Roux, Sonia organization: CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France – sequence: 7 givenname: Dunja surname: Petrovic fullname: Petrovic, Dunja organization: CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France – sequence: 8 givenname: Jan Lj surname: Miljkovic fullname: Miljkovic, Jan Lj organization: CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France – sequence: 9 givenname: Daniel surname: Thomas-Lopez fullname: Thomas-Lopez, Daniel organization: Departamento de Sanidad Animal, Facultad de Veterinaria and VISAVET, Universidad Complutense de Madrid, Madrid, Spain – sequence: 10 givenname: Youngeun surname: Jung fullname: Jung, Youngeun organization: Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA – sequence: 11 givenname: Marko surname: Miler fullname: Miler, Marko organization: Department of Cytology, Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia – sequence: 12 givenname: Sarah surname: Mitchell fullname: Mitchell, Sarah organization: Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA – sequence: 13 givenname: Verica surname: Milosevic fullname: Milosevic, Verica organization: Department of Cytology, Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia – sequence: 14 givenname: Jose Eduardo surname: Gomes fullname: Gomes, Jose Eduardo organization: CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France – sequence: 15 givenname: Moran surname: Benhar fullname: Benhar, Moran organization: Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 31096, Israel – sequence: 16 givenname: Bruno surname: Gonzalez-Zorn fullname: Gonzalez-Zorn, Bruno organization: Departamento de Sanidad Animal, Facultad de Veterinaria and VISAVET, Universidad Complutense de Madrid, Madrid, Spain – sequence: 17 givenname: Ivana surname: Ivanovic-Burmazovic fullname: Ivanovic-Burmazovic, Ivana organization: Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany – sequence: 18 givenname: Roberta surname: Torregrossa fullname: Torregrossa, Roberta organization: University of Exeter Medical School, St. Luke's Campus, Exeter, UK – sequence: 19 givenname: James R. surname: Mitchell fullname: Mitchell, James R. organization: Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA – sequence: 20 givenname: Matthew surname: Whiteman fullname: Whiteman, Matthew organization: University of Exeter Medical School, St. Luke's Campus, Exeter, UK – sequence: 21 givenname: Guenter surname: Schwarz fullname: Schwarz, Guenter organization: Department of Biochemistry, Center for Molecular Medicine, Institute of Biochemistry, University of Cologne, Cologne, Germany – sequence: 22 givenname: Solomon H. surname: Snyder fullname: Snyder, Solomon H. organization: The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 23 givenname: Bindu D. surname: Paul fullname: Paul, Bindu D. organization: The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 24 givenname: Kate S. surname: Carroll fullname: Carroll, Kate S. organization: Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA – sequence: 25 givenname: Milos R. surname: Filipovic fullname: Filipovic, Milos R. email: milos.filipovic@ibgc.cnrs.fr organization: CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31735592$$D View this record in MEDLINE/PubMed https://hal.science/hal-03489073$$DView record in HAL |
BookMark | eNp9kUtv1DAUhS1URB_wB1igLGGR4fqRcSyxGU2HFmkkEANrK7GvW48ycbGTSPPvcZiWRRdd-erofEfyOZfkrA89EvKewoICXX7eL8wBhwUDqrKwAJCvyAVVnJVSMDjLd1VBKSin5-QypT0AX3LF35BzTiWvKsUuiN1hh2bwExY_MKaxc95icY3DLIa--IkTNl0qNlPoxllpou-OxTr0CeOEtlj1g2_ufH9XbJzLUCqCK3blLifdH21sZuYtee1yCL57fK_I76-bX-vbcvv95tt6tS2N4GIoKwecQusM4-2S2ZoqWRslWsNrQQ01irJWMeUowNIygciYBQQnZc2kkcCvyKdT7n3T6YfoD0086tB4fbva6lkDLmoFkk80ez-evA8x_BkxDfrgk8Gua3oMY9KM5_aYUFJk64dH69ge0P5PfmoxG-qTwcSQUkSnjR_-_XyIje80BT0Ppvd6HkzPg81aHiyj7Bn6lP4i9OUEYS5z8hh1Mh57g9bHPIG2wb-E_wWwGq4a |
CitedBy_id | crossref_primary_10_1101_cshperspect_a041546 crossref_primary_10_1016_j_ijbiomac_2023_129117 crossref_primary_10_1080_13813455_2021_1976209 crossref_primary_10_1152_ajpcell_00187_2020 crossref_primary_10_1016_j_cbpa_2024_102440 crossref_primary_10_1161_CIRCULATIONAHA_120_051877 crossref_primary_10_15407_frg2022_01_003 crossref_primary_10_1080_15548627_2021_1936357 crossref_primary_10_1093_function_zqaf003 crossref_primary_10_1089_ars_2020_8242 crossref_primary_10_1016_j_microc_2025_112720 crossref_primary_10_1089_ars_2023_0261 crossref_primary_10_1089_ars_2023_0267 crossref_primary_10_1002_jimd_12345 crossref_primary_10_1016_j_bcp_2020_113833 crossref_primary_10_1016_j_cbpa_2023_102390 crossref_primary_10_3389_fcvm_2022_876639 crossref_primary_10_1016_j_cmet_2019_11_015 crossref_primary_10_1073_pnas_2024358118 crossref_primary_10_1039_D1SC03828A crossref_primary_10_3390_antiox12040789 crossref_primary_10_1016_j_cmet_2025_01_021 crossref_primary_10_1096_fj_202002675R crossref_primary_10_1016_j_rbc_2024_100039 crossref_primary_10_1016_j_freeradbiomed_2021_02_031 crossref_primary_10_1089_ars_2020_8255 crossref_primary_10_3390_biom14010129 crossref_primary_10_3390_biomedicines11020612 crossref_primary_10_1016_j_cbpa_2023_102389 crossref_primary_10_1021_acs_jctc_3c00366 crossref_primary_10_1038_s42003_022_04212_z crossref_primary_10_1093_jxb_erad165 crossref_primary_10_1073_pnas_2100050118 crossref_primary_10_1002_ejic_202100402 crossref_primary_10_18632_aging_204835 crossref_primary_10_3390_antiox12081545 crossref_primary_10_1074_jbc_REV120_011304 crossref_primary_10_1016_j_ijbiomac_2025_140240 crossref_primary_10_3389_fcell_2021_722412 crossref_primary_10_31857_S0132342324040065 crossref_primary_10_1016_j_cbpa_2024_102435 crossref_primary_10_3390_antiox11112235 crossref_primary_10_1007_s11357_022_00600_9 crossref_primary_10_15407_ubj96_05_079 crossref_primary_10_1021_jacs_4c17661 crossref_primary_10_1016_j_foodchem_2023_136518 crossref_primary_10_1007_s11357_021_00330_4 crossref_primary_10_1016_j_bbamcr_2020_118883 crossref_primary_10_3390_biom15020172 crossref_primary_10_1016_j_bcp_2024_116556 crossref_primary_10_1038_s41467_024_51875_9 crossref_primary_10_1073_pnas_2205044120 crossref_primary_10_3390_antiox12051095 crossref_primary_10_1038_s41419_024_07167_7 crossref_primary_10_3390_biom10091245 crossref_primary_10_1089_ars_2023_0352 crossref_primary_10_3390_ijms232315107 crossref_primary_10_1038_s41589_022_01244_8 crossref_primary_10_3389_fmolb_2022_975988 crossref_primary_10_3389_fnagi_2021_659402 crossref_primary_10_3390_antiox12030652 crossref_primary_10_1093_pnasnexus_pgad048 crossref_primary_10_3390_nano14242007 crossref_primary_10_1111_jcmm_15279 crossref_primary_10_1089_ars_2021_0162 crossref_primary_10_1172_JCI143691 crossref_primary_10_3389_fcvm_2022_965965 crossref_primary_10_3390_antiox13060719 crossref_primary_10_1089_ars_2021_0039 crossref_primary_10_1007_s10522_021_09911_4 crossref_primary_10_3389_fmolb_2021_706039 crossref_primary_10_3390_antiox10111799 crossref_primary_10_1080_15592324_2020_1741987 crossref_primary_10_1089_ars_2020_8206 crossref_primary_10_1111_1348_0421_13205 crossref_primary_10_1210_endocr_bqad107 crossref_primary_10_3390_antiox10091468 crossref_primary_10_1016_j_plaphy_2025_109644 crossref_primary_10_1021_acs_accounts_9b00562 crossref_primary_10_1016_j_jconrel_2023_11_014 crossref_primary_10_1038_s41598_023_43692_9 crossref_primary_10_3390_antiox13070877 crossref_primary_10_21769_BioProtoc_4000 crossref_primary_10_1093_jxb_erad291 crossref_primary_10_3390_biom11030469 crossref_primary_10_3390_antiox12051105 crossref_primary_10_1089_ars_2021_0149 crossref_primary_10_1038_s41419_022_05358_8 crossref_primary_10_1016_j_abb_2023_109659 crossref_primary_10_1016_j_chembiol_2020_06_016 crossref_primary_10_1080_10715762_2020_1862827 crossref_primary_10_1016_j_trsl_2022_02_003 crossref_primary_10_3390_antiox9040309 crossref_primary_10_3389_fphar_2023_1090654 crossref_primary_10_1042_EBC20190049 crossref_primary_10_1111_bph_15246 crossref_primary_10_1042_EBC20190050 crossref_primary_10_15252_embj_2020106771 crossref_primary_10_1089_ars_2021_0014 crossref_primary_10_1515_hsz_2024_0038 crossref_primary_10_1002_1873_3468_14433 crossref_primary_10_1080_10409238_2021_1893641 crossref_primary_10_1074_jbc_RA120_014728 crossref_primary_10_1002_anie_202201668 crossref_primary_10_1016_j_ebiom_2022_103954 crossref_primary_10_1016_j_cmet_2023_11_012 crossref_primary_10_1038_s41467_023_35899_1 crossref_primary_10_3390_biomedicines8120615 crossref_primary_10_1172_JCI176942 crossref_primary_10_1016_j_bcp_2024_116595 crossref_primary_10_1016_j_molcel_2024_08_035 crossref_primary_10_1111_pce_15155 crossref_primary_10_1021_jacs_2c06804 crossref_primary_10_3390_antiox9070621 crossref_primary_10_3390_molecules27041416 crossref_primary_10_1007_s10557_024_07586_w crossref_primary_10_1002_ange_202201668 crossref_primary_10_1042_BSR20221006 crossref_primary_10_3389_fcell_2021_724905 crossref_primary_10_1002_anie_202401003 crossref_primary_10_1016_j_cmet_2024_12_008 crossref_primary_10_1016_j_freeradbiomed_2022_05_005 crossref_primary_10_1016_j_niox_2024_06_004 crossref_primary_10_3390_antiox12040935 crossref_primary_10_1093_jxb_erab008 crossref_primary_10_1042_BSR20240320 crossref_primary_10_1016_j_cbpa_2023_102329 crossref_primary_10_1152_physrev_00028_2021 crossref_primary_10_3390_antiox14010101 crossref_primary_10_1111_nph_18838 crossref_primary_10_1089_ars_2023_0404 crossref_primary_10_3390_antiox10030383 crossref_primary_10_1016_j_freeradbiomed_2023_07_018 crossref_primary_10_1371_journal_pbio_3001247 crossref_primary_10_3389_fpls_2022_1014295 crossref_primary_10_3390_ijms24129810 crossref_primary_10_1016_j_tjnut_2023_08_024 crossref_primary_10_1016_j_micres_2023_127366 crossref_primary_10_1016_j_jare_2020_04_002 crossref_primary_10_3390_biom11060896 crossref_primary_10_1093_jxb_erab239 crossref_primary_10_1271_kagakutoseibutsu_61_188 crossref_primary_10_1111_pce_14160 crossref_primary_10_1016_j_bbabio_2020_148338 crossref_primary_10_1016_j_ejvs_2021_09_032 crossref_primary_10_1152_ajpcell_00131_2021 crossref_primary_10_1016_j_phrs_2024_107180 crossref_primary_10_3164_jcbn_21_84 crossref_primary_10_3390_biology13060394 crossref_primary_10_1089_ars_2020_8060 crossref_primary_10_1039_D3CB00106G crossref_primary_10_3390_biom10020317 crossref_primary_10_1161_CIRCULATIONAHA_123_065389 crossref_primary_10_1016_S1875_5364_20_30037_6 crossref_primary_10_3390_antiox12020423 crossref_primary_10_1016_j_neuroscience_2024_07_038 crossref_primary_10_1039_D0CS01096K crossref_primary_10_3390_biom14070746 crossref_primary_10_3390_molecules27206896 crossref_primary_10_1089_ars_2021_0170 crossref_primary_10_1042_BCJ20210517 crossref_primary_10_1016_j_freeradbiomed_2020_12_440 crossref_primary_10_1093_jxb_erad436 crossref_primary_10_3390_ijms24129955 crossref_primary_10_15252_embj_2022111318 crossref_primary_10_3390_antiox13010051 crossref_primary_10_1016_j_arres_2022_100030 crossref_primary_10_1089_ars_2020_8077 crossref_primary_10_1134_S1068162024040149 crossref_primary_10_1002_jcb_30377 crossref_primary_10_1016_j_bcp_2023_115444 crossref_primary_10_1111_bph_16246 crossref_primary_10_3389_fchbi_2024_1503390 crossref_primary_10_1002_anie_202411133 crossref_primary_10_1007_s10725_021_00693_w crossref_primary_10_1016_j_cellsig_2023_110826 crossref_primary_10_1073_pnas_2216141120 crossref_primary_10_3390_cells9102314 crossref_primary_10_1016_j_niox_2020_07_002 crossref_primary_10_3390_antiox11081470 crossref_primary_10_1016_j_jphs_2024_04_005 crossref_primary_10_3390_ijms22126452 crossref_primary_10_2174_1568026621666210622130002 crossref_primary_10_3390_molecules26237160 crossref_primary_10_1016_j_arr_2024_102456 crossref_primary_10_1016_j_jbc_2024_107708 crossref_primary_10_3390_cells13050371 crossref_primary_10_1016_j_jare_2020_09_005 crossref_primary_10_1093_plphys_kiaa088 crossref_primary_10_1128_MCB_00346_19 crossref_primary_10_1039_D4CC00929K crossref_primary_10_1002_mco2_661 crossref_primary_10_3390_antiox10050633 crossref_primary_10_1042_EBC20230095 crossref_primary_10_1111_aji_13518 crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_1016_j_cbpa_2023_102358 crossref_primary_10_3390_biom13010027 crossref_primary_10_1016_j_cbpa_2023_102353 crossref_primary_10_1093_plphys_kiaa074 crossref_primary_10_1002_ange_202401003 crossref_primary_10_1155_2021_8841575 crossref_primary_10_1161_CIRCRESAHA_123_323084 crossref_primary_10_3389_fnagi_2020_00052 crossref_primary_10_32604_phyton_2024_057922 crossref_primary_10_1039_D2TB00971D crossref_primary_10_1073_pnas_2023604118 crossref_primary_10_1002_biof_2038 crossref_primary_10_3389_fnagi_2021_674135 crossref_primary_10_1021_acs_inorgchem_4c02527 crossref_primary_10_1016_j_neo_2021_03_009 crossref_primary_10_1021_jacs_2c04695 crossref_primary_10_1016_j_tcb_2022_02_009 crossref_primary_10_3390_antiox11061095 crossref_primary_10_1073_pnas_2017225118 crossref_primary_10_3390_cells10020220 crossref_primary_10_1016_j_job_2023_11_004 crossref_primary_10_1038_s41467_022_28599_9 crossref_primary_10_1002_pmic_202200194 crossref_primary_10_1002_ange_202411133 crossref_primary_10_1039_D1CC07162A crossref_primary_10_1016_j_arr_2021_101262 crossref_primary_10_1016_j_phrs_2020_105125 crossref_primary_10_1016_j_chembiol_2021_05_016 crossref_primary_10_1038_s41467_023_40182_4 crossref_primary_10_1016_j_ab_2024_115458 crossref_primary_10_1016_j_mib_2024_102489 crossref_primary_10_1016_j_cbpa_2024_102511 crossref_primary_10_1111_bph_16170 crossref_primary_10_3390_ijms22157816 crossref_primary_10_1089_ars_2022_0064 crossref_primary_10_3389_fendo_2024_1427069 crossref_primary_10_1016_j_arr_2022_101579 crossref_primary_10_3390_cells9030671 crossref_primary_10_1093_gerona_glaa204 crossref_primary_10_3389_fmolb_2022_928287 crossref_primary_10_1002_chem_202402685 crossref_primary_10_1126_sciadv_adf3026 |
Cites_doi | 10.1016/j.cmet.2018.02.019 10.1039/C5SC04818D 10.1038/nrm3801 10.1038/s41588-017-0006-7 10.1016/j.molmed.2009.06.007 10.1073/pnas.0608839103 10.1038/nrm2256 10.1038/nchem.2202 10.1371/journal.pone.0034562 10.1021/bi011047f 10.1074/jbc.M113.466177 10.1021/ic7012039 10.1073/pnas.1717877115 10.1089/ars.2012.4645 10.1073/pnas.1504376112 10.1073/pnas.0903015106 10.1039/C5MD00170F 10.1126/science.270.5234.296 10.1039/C3MD00323J 10.1146/annurev.pharmtox.44.101802.121735 10.1039/C5SC02569A 10.1073/pnas.76.3.1333 10.1172/JCI110908 10.1016/j.cell.2014.11.048 10.1002/cbic.201402312 10.1038/35041687 10.1016/j.cmet.2016.05.027 10.1038/nrd2222 10.1083/jcb.201102095 10.1371/journal.pone.0180341 10.1016/j.cell.2015.03.032 10.1126/science.1162667 10.1038/nrm3391 10.1152/physrev.00017.2011 10.1152/physiol.00024.2015 10.1002/anie.201305876 10.1016/j.ab.2012.05.026 10.1111/febs.12535 10.1016/j.jmb.2010.09.027 10.1073/pnas.1608264113 10.1016/j.freeradbiomed.2014.03.013 10.1021/cb4001052 10.1038/s41467-017-01311-y 10.1126/sciadv.1500968 10.1002/pmic.201100275 10.1126/science.1108581 10.1016/j.freeradbiomed.2014.09.007 10.1126/scisignal.2000464 10.1016/j.tibs.2015.08.007 10.2119/molmed.2015.00221 10.1093/genetics/77.1.71 10.1093/gerona/54.11.B492 10.1042/BJ20111389 10.1074/mcp.M700065-MCP200 10.1016/j.cell.2005.02.001 10.1021/acs.chemrev.7b00205 10.1016/j.freeradbiomed.2013.02.011 10.1182/blood-2005-11-007799 10.1016/j.cels.2016.06.011 10.1038/ncomms2371 10.1038/ncomms5776 10.1016/j.niox.2014.06.003 10.1016/S0076-6879(10)73003-2 10.1002/mas.21384 10.1021/cr300163e 10.1021/bi972191x 10.1074/jbc.M115.699850 10.1074/jbc.M115.672816 10.1038/ncomms2623 10.1038/s41589-018-0116-2 10.1074/mcp.M111.010587 10.1073/pnas.1302193110 10.1073/pnas.84.5.1394 10.1111/j.1432-1033.1990.tb19461.x 10.1038/nrd2425 10.1002/prca.201500132 10.1038/nature13136 10.1126/science.1080405 10.1089/ars.2011.4310 10.1038/srep27517 10.1038/nchembio.736 |
ContentType | Journal Article |
Copyright | 2019 Crown Copyright © 2019. Published by Elsevier Inc. All rights reserved. Attribution - NonCommercial |
Copyright_xml | – notice: 2019 – notice: Crown Copyright © 2019. Published by Elsevier Inc. All rights reserved. – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES |
DOI | 10.1016/j.cmet.2019.10.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 1170.e13 |
ExternalDocumentID | oai_HAL_hal_03489073v1 31735592 10_1016_j_cmet_2019_10_007 S1550413119305625 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_PC_16044 – fundername: NIGMS NIH HHS grantid: R01 GM087638 – fundername: Medical Research Council grantid: MR/S002626/1 – fundername: Medical Research Council grantid: MR/M022706/1 – fundername: NCI NIH HHS grantid: R01 CA227849 – fundername: NIGMS NIH HHS grantid: R01 GM102187 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT CGR CUY CVF ECM EFKBS EIF NPM 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c434t-5f0310bfc23b62d81978c94bc3841c1c912b929f1006d24ee22d0e0f77827c703 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Sat Aug 23 06:30:43 EDT 2025 Thu Jul 10 22:42:53 EDT 2025 Mon Jul 21 05:43:20 EDT 2025 Tue Jul 01 03:58:18 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Fri Feb 23 02:48:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | redox signaling protein persulfidation calorie restriction hydrogen sulfide sulfonylation hydrogen peroxide sulfinylation sulfenylation aging |
Language | English |
License | Crown Copyright © 2019. Published by Elsevier Inc. All rights reserved. Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-5f0310bfc23b62d81978c94bc3841c1c912b929f1006d24ee22d0e0f77827c703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC7185476 |
OpenAccessLink | https://hal.science/hal-03489073 |
PMID | 31735592 |
PQID | 2315524974 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_03489073v1 proquest_miscellaneous_2315524974 pubmed_primary_31735592 crossref_citationtrail_10_1016_j_cmet_2019_10_007 crossref_primary_10_1016_j_cmet_2019_10_007 elsevier_sciencedirect_doi_10_1016_j_cmet_2019_10_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-03 |
PublicationDateYYYYMMDD | 2019-12-03 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Vitvitsky, Kabil, Banerjee (bib73) 2012; 17 Bernal-Perez, Prokai, Ryu (bib7) 2012; 428 Yang, Wu, Jiang, Yang, Qi, Cao, Meng, Mustafa, Mu, Zhang (bib80) 2008; 322 Blackstone, Morrison, Roth (bib8) 2005; 308 Valentine, Toohey, Paglia, Nakatani, Brockway (bib71) 1987; 84 Yadav, Yamada, Chiku, Koutmos, Banerjee (bib79) 2013; 288 Zhang, Xin, Shan, Chen, Xie, Yuen, Zhang, Zhang, Lajoie, Ma (bib86) 2012; 11 Redman, Smith, Burton, Martin, Il’yasova, Ravussin (bib58) 2018; 27 Yang, Gupta, Carroll, Liebler (bib83) 2014; 5 Filipovic, Zivanovic, Alvarez, Banerjee (bib21) 2018; 118 Turturro, Witt, Lewis, Hass, Lipman, Hart (bib70) 1999; 54 Gupta, Carroll (bib28) 2016; 7 Klomsiri, Nelson, Bechtold, Soito, Johnson, Lowther, Ryu, King, Furdui, Poole (bib32) 2010; 473 Pan, Carroll (bib48) 2013; 8 Artaud, Galardon (bib5) 2014; 15 Olson, Straub (bib45) 2016; 31 Marino, Gladyshev (bib39) 2010; 404 Delobel, Prudent, Crettaz, ElHajj, Riederer, Tissot, Lion (bib15) 2016; 10 Narayan, Ly, Pourkarimi, Murillo, Gartner, Lamond, Kenyon (bib44) 2016; 3 Emmons, Klass, Hirsh (bib18) 1979; 76 Vandiver, Paul, Xu, Karuppagounder, Rao, Snowman, Ko, Lee, Dawson, Dawson (bib72) 2013; 4 Dóka, Pader, Bíró, Johansson, Cheng, Ballagó, Prigge, Pastor-Flores, Dick, Schmidt (bib16) 2016; 2 Yang, Kwon, Choi, Park, Yang, Park, Ren, Chung, Kim, Park (bib82) 2012; 12 Fernandez-Caggiano, Schröder, Cho, Burgoyne, Barallobre-Barreiro, Mayr, Eaton (bib19) 2016; 291 Crouzet, Claverol, Lomenech, Le Sénéchal, Costaglioli, Barthe, Garbay, Bonneu, Vilain (bib11) 2017; 12 Patel, Percivalle, Ritson, Duffy, Sutherland (bib50) 2015; 7 Hearn, Stroupe, Cabelli, Lepock, Tainer, Nick, Silverman (bib29) 2001; 40 Fontana, Klein, Holloszy (bib25) 2010 Furdui, Poole (bib27) 2014; 33 Paul, Snyder (bib53) 2015; 40 Zhang, Macinkovic, Devarie-Baez, Pan, Park, Carroll, Filipovic, Xian (bib85) 2014; 53 Paulsen, Truong, Garcia, Homann, Gupta, Leonard, Carroll (bib55) 2011; 8 Balaban, Nemoto, Finkel (bib6) 2005; 120 Brenner (bib9) 1974; 77 Sulston, Hodgkin (bib66) 1988 Markó, Szijártó, Filipovic, Kaßmann, Balogh, Park, Przybyl, N’diaye, Krämer, Anders (bib40) 2016; 6 Poole, Karplus, Claiborne (bib57) 2004; 44 Filipovic, Miljkovic, Allgäuer, Chaurio, Shubina, Herrmann, Ivanovic-Burmazovic (bib20) 2012; 441 Wedmann, Onderka, Wei, Szijártó, Miljkovic, Mitrovic, Lange, Savitsky, Yadav, Torregrossa (bib77) 2016; 7 Holmström, Finkel (bib31) 2014; 15 Finkel, Holbrook (bib24) 2000; 408 Stiernagle (bib65) 2006 Sundaresan, Yu, Ferrans, Irani, Finkel (bib67) 1995; 270 D’Autréaux, Toledano (bib14) 2007; 8 Mitchell, Madrigal-Matute, Scheibye-Knudsen, Fang, Aon, González-Reyes, Cortassa, Kaushik, Gonzalez-Freire, Patel (bib42) 2016; 23 Pasini, Kirkegaard, Mortensen, Lutz, Thomas, Mann (bib49) 2006; 108 Paulsen, Carroll (bib54) 2013; 113 Akter, Fu, Jung, Lo Conte, Lawson, Lowther, Sun, Liu, Yang, Carroll (bib3) 2018; 14 Liang, Hartman, Kopp, Kirschvink, Yung (bib34) 2006; 103 Reisz, Bechtold, King, Poole, Furdui (bib59) 2013; 280 Snijder, Baratashvili, Grzeschik, Leuvenink, Kuijpers, Huitema, Schaap, Giepmans, Kuipers, Miljkovic (bib64) 2016; 21 Paul, Sbodio, Xu, Vandiver, Cha, Snowman, Snyder (bib51) 2014; 509 Wedmann, Bertlein, Macinkovic, Böltz, Miljkovic, Muñoz, Herrmann, Filipovic (bib76) 2014; 41 Yang, Zhao, Ju, Mani, Cao, Puukila, Khaper, Wu, Wang (bib81) 2013; 18 Fink, Kolterman, Griffin, Olefsky (bib22) 1983; 71 Seo, Carroll (bib62) 2009; 106 Alexander, Coles, Fox, Khan, Maliszewski, Perry, Pitak, Whiteman, Wood, Nakashima (bib4) 2015; 6 Paul, Snyder (bib52) 2012; 13 Sbodio, Snyder, Paul (bib61) 2018; 115 Sbodio, Snyder, Paul (bib60) 2016; 113 Shibuya, Koike, Tanaka, Ishigami-Yuasa, Kimura, Ogasawara, Fukui, Nagahara, Kimura (bib63) 2013; 4 Palde, Carroll (bib47) 2015; 112 Finkel (bib23) 2011; 194 Charles, Schröder, May, Free, Gaffney, Wait, Begum, Heads, Eaton (bib10) 2007; 6 Cuevasanta, Denicola, Alvarez, Möller (bib12) 2012; 7 Liu, Chen, Chiang, Shia, Ju (bib38) 2015; 6 Pol, Renkema, Tangerman, Winkel, Engelke, de Brouwer, Lloyd, Araiza, van den Heuvel, Omran (bib56) 2018; 50 Szabó (bib68) 2007; 6 Matsuda, Higashiyama, Kijima, Suzuki, Kawano, Akiyama, Kawata, Tarui, Deutsch, Taniguchi (bib41) 1990; 194 Le Trionnaire, Perry, Szczesny, Szabo, Winyard, Whatmore, Wood, Whiteman (bib33) 2014; 5 Lin, Lippert, Chang (bib35) 2013; 110 Liochev (bib36) 2013; 60 Wang (bib75) 2012; 92 Zaccarin, Falda, Roveri, Bosello-Travain, Bordin, Maiorino, Ursini, Toppo (bib84) 2014; 71 Mustafa, Gadalla, Sen, Kim, Mu, Gazi, Barrow, Yang, Wang, Snyder (bib43) 2009; 2 Cuevasanta, Lange, Bonanata, Coitiño, Ferrer-Sueta, Filipovic, Alvarez (bib13) 2015; 290 Akaike, Ida, Wei, Nishida, Kumagai, Alam, Ihara, Sawa, Matsunaga, Kasamatsu (bib2) 2017; 8 Szabó, Ischiropoulos, Radi (bib69) 2007; 6 Hine, Harputlugil, Zhang, Ruckenstuhl, Lee, Brace, Longchamp, Treviño-Villarreal, Mejia, Ozaki (bib30) 2015; 160 Ellis, Poole (bib17) 1997; 36 Wood, Poole, Karplus (bib78) 2003; 300 Aging, Walther, Kasturi, Mann, Hartl, Walther, Kasturi, Zheng, Pinkert, Vecchi (bib1) 2015; 161 Liu, Filipović, Heinemann, Ivanović-Burmazović (bib37) 2007; 46 Ono, Akaike, Sawa, Kumagai, Wink, Tantillo, Hobbs, Nagy, Xian, Lin (bib46) 2014; 77 Foster, Hess, Stamler (bib26) 2009; 15 Pol (10.1016/j.cmet.2019.10.007_bib56) 2018; 50 Mustafa (10.1016/j.cmet.2019.10.007_bib43) 2009; 2 Sulston (10.1016/j.cmet.2019.10.007_bib66) 1988 Vitvitsky (10.1016/j.cmet.2019.10.007_bib73) 2012; 17 Cuevasanta (10.1016/j.cmet.2019.10.007_bib12) 2012; 7 Charles (10.1016/j.cmet.2019.10.007_bib10) 2007; 6 Liu (10.1016/j.cmet.2019.10.007_bib38) 2015; 6 Turturro (10.1016/j.cmet.2019.10.007_bib70) 1999; 54 Filipovic (10.1016/j.cmet.2019.10.007_bib21) 2018; 118 Liang (10.1016/j.cmet.2019.10.007_bib34) 2006; 103 Blackstone (10.1016/j.cmet.2019.10.007_bib8) 2005; 308 Markó (10.1016/j.cmet.2019.10.007_bib40) 2016; 6 Yadav (10.1016/j.cmet.2019.10.007_bib79) 2013; 288 Aging (10.1016/j.cmet.2019.10.007_bib1) 2015; 161 Brenner (10.1016/j.cmet.2019.10.007_bib9) 1974; 77 Pasini (10.1016/j.cmet.2019.10.007_bib49) 2006; 108 Paulsen (10.1016/j.cmet.2019.10.007_bib54) 2013; 113 Fink (10.1016/j.cmet.2019.10.007_bib22) 1983; 71 Yang (10.1016/j.cmet.2019.10.007_bib80) 2008; 322 Marino (10.1016/j.cmet.2019.10.007_bib39) 2010; 404 Palde (10.1016/j.cmet.2019.10.007_bib47) 2015; 112 Paul (10.1016/j.cmet.2019.10.007_bib52) 2012; 13 Ono (10.1016/j.cmet.2019.10.007_bib46) 2014; 77 Mitchell (10.1016/j.cmet.2019.10.007_bib42) 2016; 23 Le Trionnaire (10.1016/j.cmet.2019.10.007_bib33) 2014; 5 Shibuya (10.1016/j.cmet.2019.10.007_bib63) 2013; 4 Filipovic (10.1016/j.cmet.2019.10.007_bib20) 2012; 441 Dóka (10.1016/j.cmet.2019.10.007_bib16) 2016; 2 Fernandez-Caggiano (10.1016/j.cmet.2019.10.007_bib19) 2016; 291 Hine (10.1016/j.cmet.2019.10.007_bib30) 2015; 160 Wang (10.1016/j.cmet.2019.10.007_bib75) 2012; 92 Pan (10.1016/j.cmet.2019.10.007_bib48) 2013; 8 Furdui (10.1016/j.cmet.2019.10.007_bib27) 2014; 33 Zaccarin (10.1016/j.cmet.2019.10.007_bib84) 2014; 71 Akaike (10.1016/j.cmet.2019.10.007_bib2) 2017; 8 Stiernagle (10.1016/j.cmet.2019.10.007_bib65) 2006 Gupta (10.1016/j.cmet.2019.10.007_bib28) 2016; 7 Reisz (10.1016/j.cmet.2019.10.007_bib59) 2013; 280 Redman (10.1016/j.cmet.2019.10.007_bib58) 2018; 27 Sundaresan (10.1016/j.cmet.2019.10.007_bib67) 1995; 270 Yang (10.1016/j.cmet.2019.10.007_bib82) 2012; 12 Matsuda (10.1016/j.cmet.2019.10.007_bib41) 1990; 194 Sbodio (10.1016/j.cmet.2019.10.007_bib60) 2016; 113 Snijder (10.1016/j.cmet.2019.10.007_bib64) 2016; 21 Balaban (10.1016/j.cmet.2019.10.007_bib6) 2005; 120 Cuevasanta (10.1016/j.cmet.2019.10.007_bib13) 2015; 290 Seo (10.1016/j.cmet.2019.10.007_bib62) 2009; 106 Ellis (10.1016/j.cmet.2019.10.007_bib17) 1997; 36 Vandiver (10.1016/j.cmet.2019.10.007_bib72) 2013; 4 Foster (10.1016/j.cmet.2019.10.007_bib26) 2009; 15 Yang (10.1016/j.cmet.2019.10.007_bib83) 2014; 5 Bernal-Perez (10.1016/j.cmet.2019.10.007_bib7) 2012; 428 Holmström (10.1016/j.cmet.2019.10.007_bib31) 2014; 15 Szabó (10.1016/j.cmet.2019.10.007_bib68) 2007; 6 Yang (10.1016/j.cmet.2019.10.007_bib81) 2013; 18 Paul (10.1016/j.cmet.2019.10.007_bib51) 2014; 509 Olson (10.1016/j.cmet.2019.10.007_bib45) 2016; 31 Paulsen (10.1016/j.cmet.2019.10.007_bib55) 2011; 8 Wood (10.1016/j.cmet.2019.10.007_bib78) 2003; 300 Klomsiri (10.1016/j.cmet.2019.10.007_bib32) 2010; 473 Alexander (10.1016/j.cmet.2019.10.007_bib4) 2015; 6 Poole (10.1016/j.cmet.2019.10.007_bib57) 2004; 44 Finkel (10.1016/j.cmet.2019.10.007_bib24) 2000; 408 Lin (10.1016/j.cmet.2019.10.007_bib35) 2013; 110 Liochev (10.1016/j.cmet.2019.10.007_bib36) 2013; 60 Wedmann (10.1016/j.cmet.2019.10.007_bib76) 2014; 41 Finkel (10.1016/j.cmet.2019.10.007_bib23) 2011; 194 Sbodio (10.1016/j.cmet.2019.10.007_bib61) 2018; 115 Narayan (10.1016/j.cmet.2019.10.007_bib44) 2016; 3 Szabó (10.1016/j.cmet.2019.10.007_bib69) 2007; 6 Akter (10.1016/j.cmet.2019.10.007_bib3) 2018; 14 Liu (10.1016/j.cmet.2019.10.007_bib37) 2007; 46 Emmons (10.1016/j.cmet.2019.10.007_bib18) 1979; 76 Crouzet (10.1016/j.cmet.2019.10.007_bib11) 2017; 12 D’Autréaux (10.1016/j.cmet.2019.10.007_bib14) 2007; 8 Hearn (10.1016/j.cmet.2019.10.007_bib29) 2001; 40 Patel (10.1016/j.cmet.2019.10.007_bib50) 2015; 7 Paul (10.1016/j.cmet.2019.10.007_bib53) 2015; 40 Valentine (10.1016/j.cmet.2019.10.007_bib71) 1987; 84 Artaud (10.1016/j.cmet.2019.10.007_bib5) 2014; 15 Zhang (10.1016/j.cmet.2019.10.007_bib85) 2014; 53 Zhang (10.1016/j.cmet.2019.10.007_bib86) 2012; 11 Fontana (10.1016/j.cmet.2019.10.007_bib25) 2010 Delobel (10.1016/j.cmet.2019.10.007_bib15) 2016; 10 Wedmann (10.1016/j.cmet.2019.10.007_bib77) 2016; 7 31951564 - Cell Metab. 2020 Jan 7;31(1):10-12. doi: 10.1016/j.cmet.2019.11.015. 31914376 - Cell Metab. 2020 Jan 7;31(1):207. doi: 10.1016/j.cmet.2019.12.001. |
References_xml | – volume: 7 start-page: e34562 year: 2012 ident: bib12 article-title: Solubility and permeation of hydrogen sulfide in lipid membranes publication-title: PLoS One – volume: 46 start-page: 8825 year: 2007 end-page: 8835 ident: bib37 article-title: Seven-coordinate iron and manganese complexes with acyclic and rigid pentadentate chelates and their superoxide dismutase activity publication-title: Inorg. Chem. – volume: 441 start-page: 609 year: 2012 end-page: 621 ident: bib20 article-title: Biochemical insight into physiological effects of H2S: reaction with peroxynitrite and formation of a new nitric oxide donor, sulfinyl nitrite publication-title: Biochem. J. – volume: 404 start-page: 902 year: 2010 end-page: 916 ident: bib39 article-title: Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces publication-title: J. Mol. Biol. – volume: 6 start-page: 662 year: 2007 end-page: 680 ident: bib69 article-title: Peroxynitrite: biochemistry, pathophysiology and development of therapeutics publication-title: Nat. Rev. Drug Discov. – volume: 76 start-page: 1333 year: 1979 end-page: 1337 ident: bib18 article-title: Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 1177 year: 2017 ident: bib2 article-title: Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics publication-title: Nat. Commun. – volume: 6 start-page: 491 year: 2015 end-page: 496 ident: bib38 article-title: Extending Liu’s ordering theory for cognitive diagnosis and remedial instruction publication-title: ICIC Express Lett. B – volume: 71 start-page: 1523 year: 1983 end-page: 1535 ident: bib22 article-title: Mechanisms of insulin resistance in aging publication-title: J. Clin. Invest. – volume: 15 start-page: 411 year: 2014 end-page: 421 ident: bib31 article-title: Cellular mechanisms and physiological consequences of redox-dependent signalling publication-title: Nat. Rev. Mol. Cell Biol. – year: 2010 ident: bib25 article-title: Effects of long-term calorie restriction and endurance exercise on glucose tolerance, insulin action, and adipokine production (Age (Omaha)) – volume: 40 start-page: 687 year: 2015 end-page: 700 ident: bib53 article-title: H2S: a novel gasotransmitter that signals by sulfhydration publication-title: Trends Biochem. Sci. – volume: 50 start-page: 120 year: 2018 end-page: 129 ident: bib56 article-title: Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis publication-title: Nat. Genet. – volume: 41 start-page: 85 year: 2014 end-page: 96 ident: bib76 article-title: Working with “H2S”: facts and apparent artifacts publication-title: Nitric Oxide – volume: 5 start-page: 4776 year: 2014 ident: bib83 article-title: Site-specific mapping and quantification of protein S-sulphenylation in cells publication-title: Nat. Commun. – volume: 17 start-page: 22 year: 2012 end-page: 31 ident: bib73 article-title: High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations publication-title: Antioxid. Redox Signal. – volume: 115 start-page: 780 year: 2018 end-page: 785 ident: bib61 article-title: Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington’s disease publication-title: Proc. Natl. Acad. Sci. USA – volume: 280 start-page: 6150 year: 2013 end-page: 6161 ident: bib59 article-title: Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids publication-title: FEBS J. – volume: 11 year: 2012 ident: bib86 article-title: PEAKS DB: publication-title: Mol. Cell. Proteomics – volume: 12 start-page: 101 year: 2012 end-page: 112 ident: bib82 article-title: In-depth analysis of cysteine oxidation by the RBC proteome: advantage of peroxiredoxin II knockout mice publication-title: Proteomics – volume: 6 start-page: 27517 year: 2016 ident: bib40 article-title: Role of cystathionine gamma-lyase in immediate renal impairment and inflammatory response in acute ischemic kidney injury publication-title: Sci. Rep. – volume: 194 start-page: 713 year: 1990 end-page: 720 ident: bib41 article-title: Human liver manganese superoxide dismutase: purification and crystallization, subunit association and sulfhydryl reactivity publication-title: Eur. J. Biochem. – volume: 118 start-page: 1253 year: 2018 end-page: 1337 ident: bib21 article-title: Chemical biology of H2S signaling through persulfidation publication-title: Chem. Rev. – volume: 4 start-page: 1626 year: 2013 ident: bib72 article-title: Sulfhydration mediates neuroprotective actions of Parkin publication-title: Nat. Commun. – volume: 3 start-page: 144 year: 2016 end-page: 159 ident: bib44 article-title: Deep proteome analysis identifies age-related processes in C. elegans publication-title: Cell Syst. – start-page: 587 year: 1988 end-page: 606 ident: bib66 article-title: Methods, the nematode Caenorhabditis elegans publication-title: Cold Spring Harbor monograph archive – volume: 31 start-page: 60 year: 2016 end-page: 72 ident: bib45 article-title: The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling publication-title: Physiology – volume: 160 start-page: 132 year: 2015 end-page: 144 ident: bib30 article-title: Endogenous hydrogen sulfide production is essential for dietary restriction benefits publication-title: Cell – volume: 106 start-page: 16163 year: 2009 end-page: 16168 ident: bib62 article-title: Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 400 year: 2016 end-page: 415 ident: bib28 article-title: Profiling the reactivity of cyclic C-nucleophiles towards electrophilic sulfur in cysteine sulfenic acid publication-title: Chem. Sci. – volume: 5 start-page: 728 year: 2014 end-page: 736 ident: bib33 article-title: The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39) publication-title: Chem. Commun. – volume: 27 start-page: 805 year: 2018 end-page: 815.e4 ident: bib58 article-title: Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging publication-title: Cell Metab. – volume: 15 start-page: 2361 year: 2014 end-page: 2364 ident: bib5 article-title: A persulfide analogue of the nitrosothiol SNAP: formation, characterization and reactivity publication-title: ChemBioChem – volume: 77 start-page: 71 year: 1974 end-page: 94 ident: bib9 article-title: The genetics of Caenorhabditis elegans publication-title: Genetics – volume: 6 start-page: 1473 year: 2007 end-page: 1484 ident: bib10 article-title: Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue publication-title: Mol. Cell. Proteomics – volume: 10 start-page: 883 year: 2016 end-page: 893 ident: bib15 article-title: Cysteine redox proteomics of the hemoglobin-depleted cytosolic fraction of stored red blood cells publication-title: Proteomics Clin. Appl. – start-page: 1 year: 2006 end-page: 11 ident: bib65 article-title: Maintenance of C. elegans publication-title: WormBook – volume: 113 start-page: 4633 year: 2013 end-page: 4679 ident: bib54 article-title: Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery publication-title: Chem. Rev. – volume: 300 start-page: 650 year: 2003 end-page: 653 ident: bib78 article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling publication-title: Science – volume: 84 start-page: 1394 year: 1987 end-page: 1398 ident: bib71 article-title: Modification of erythrocyte enzyme activities by persulfides and methanethiol: possible regulatory role publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 57 year: 2011 end-page: 64 ident: bib55 article-title: Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity publication-title: Nat. Chem. Biol. – volume: 113 start-page: 8843 year: 2016 end-page: 8848 ident: bib60 article-title: Transcriptional control of amino acid homeostasis is disrupted in Huntington’s disease publication-title: Proc. Natl. Acad. Sci. USA – volume: 44 start-page: 325 year: 2004 end-page: 347 ident: bib57 article-title: Protein sulfenic acids in redox signaling publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 92 start-page: 791 year: 2012 end-page: 896 ident: bib75 article-title: Physiological implications of hydrogen sulfide: a whiff exploration that blossomed publication-title: Physiol. Rev. – volume: 14 start-page: 995 year: 2018 end-page: 1004 ident: bib3 article-title: Chemical proteomics reveals new targets of cysteine sulfinic acid reductase publication-title: Nat. Chem. Biol. – volume: 18 start-page: 1906 year: 2013 end-page: 1919 ident: bib81 article-title: Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2 publication-title: Antioxid. Redox Signal. – volume: 270 start-page: 296 year: 1995 end-page: 299 ident: bib67 article-title: Requirement for Generation of H2O2 for platelet-derived growth factor signal transduction publication-title: Science – volume: 120 start-page: 483 year: 2005 end-page: 495 ident: bib6 article-title: Mitochondria, oxidants, and aging publication-title: Cell – volume: 291 start-page: 10399 year: 2016 end-page: 10410 ident: bib19 article-title: Oxidant-induced interprotein disulfide formation in cardiac protein DJ-1 occurs via an interaction with peroxiredoxin 2 publication-title: J. Biol. Chem. – volume: 288 start-page: 20002 year: 2013 end-page: 20013 ident: bib79 article-title: Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase publication-title: J. Biol. Chem. – volume: 13 start-page: 499 year: 2012 end-page: 507 ident: bib52 article-title: H₂S signalling through protein sulfhydration and beyond publication-title: Nat. Rev. Mol. Cell Biol. – volume: 36 start-page: 15013 year: 1997 end-page: 15018 ident: bib17 article-title: Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase publication-title: Biochemistry – volume: 53 start-page: 575 year: 2014 end-page: 581 ident: bib85 article-title: Detection of protein S-sulfhydration by a tag-switch technique publication-title: Angew. Chem. Int. Ed. – volume: 194 start-page: 7 year: 2011 end-page: 15 ident: bib23 article-title: Signal transduction by reactive oxygen species publication-title: J. Cell Biol. – volume: 108 start-page: 791 year: 2006 end-page: 801 ident: bib49 article-title: In-depth analysis of the membrane and cytosolic proteome of red blood cells publication-title: Blood – volume: 15 start-page: 391 year: 2009 end-page: 404 ident: bib26 article-title: Protein S-nitrosylation in health and disease: a current perspective publication-title: Trends Mol. Med. – volume: 112 start-page: 7960 year: 2015 end-page: 7965 ident: bib47 article-title: A universal entropy-driven mechanism for thioredoxin–target recognition publication-title: Proc. Natl. Acad. Sci. USA – volume: 308 start-page: 518 year: 2005 ident: bib8 article-title: H2S Induces a suspended animation-like state in mice publication-title: Science – volume: 322 start-page: 587 year: 2008 end-page: 590 ident: bib80 article-title: Hypertension in mice with deletion of cystathionine -Lyase publication-title: Science – volume: 12 start-page: e0180341 year: 2017 ident: bib11 article-title: Pseudomonas aeruginosa cells attached to a surface display a typical proteome early as 20 minutes of incubation publication-title: PLoS One – volume: 7 start-page: 3414 year: 2016 end-page: 3426 ident: bib77 article-title: Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation publication-title: Chem. Sci. – volume: 408 start-page: 239 year: 2000 end-page: 247 ident: bib24 article-title: Oxidants, oxidative stress and the biology of ageing publication-title: Nature – volume: 6 start-page: 917 year: 2007 end-page: 935 ident: bib68 article-title: Hydrogen sulphide and its therapeutic potential publication-title: Nat. Rev. Drug Discov. – volume: 40 start-page: 12051 year: 2001 end-page: 12058 ident: bib29 article-title: Kinetic analysis of product inhibition in human manganese superoxide dismutase publication-title: Biochemistry – volume: 23 start-page: 1093 year: 2016 end-page: 1112 ident: bib42 article-title: Effects of sex, strain, and energy intake on hallmarks of aging in mice publication-title: Cell Metab. – volume: 77 start-page: 82 year: 2014 end-page: 94 ident: bib46 article-title: Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility publication-title: Free Radic. Biol. Med. – volume: 54 start-page: B492 year: 1999 end-page: B501 ident: bib70 article-title: Growth curves and survival characteristics of the animals used in the biomarkers of aging program publication-title: J. Gerontol. A Biol. Sci. Med. Sci. – volume: 8 start-page: 813 year: 2007 end-page: 824 ident: bib14 article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 103 start-page: 18896 year: 2006 end-page: 18899 ident: bib34 article-title: Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis publication-title: Proc. Natl. Acad. Sci. USA – volume: 509 start-page: 96 year: 2014 end-page: 100 ident: bib51 article-title: Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease publication-title: Nature – volume: 8 start-page: 1110 year: 2013 end-page: 1116 ident: bib48 article-title: Persulfide reactivity in the detection of protein S-sulfhydration publication-title: ACS Chem. Biol. – volume: 7 start-page: 301 year: 2015 end-page: 307 ident: bib50 article-title: Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism publication-title: Nat. Chem. – volume: 21 start-page: 758 year: 2016 end-page: 768 ident: bib64 article-title: Overexpression of cystathionine γ-lyase suppresses detrimental effects of spinocerebellar ataxia type 3 publication-title: Mol. Med. – volume: 33 start-page: 126 year: 2014 end-page: 146 ident: bib27 article-title: Chemical approaches to detect and analyze protein sulfenic acids publication-title: Mass Spectrom. Rev. – volume: 4 start-page: 1366 year: 2013 ident: bib63 article-title: A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells publication-title: Nat. Commun. – volume: 71 start-page: 90 year: 2014 end-page: 98 ident: bib84 article-title: Quantitative label-free redox proteomics of reversible cysteine oxidation in red blood cell membranes publication-title: Free Radic. Biol. Med. – volume: 428 start-page: 13 year: 2012 end-page: 15 ident: bib7 article-title: Selective N-terminal fluorescent labeling of proteins using 4-chloro-7-nitrobenzofurazan: a method to distinguish protein N-terminal acetylation publication-title: Anal. Biochem. – volume: 290 start-page: 26866 year: 2015 end-page: 26880 ident: bib13 article-title: Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide publication-title: J. Biol. Chem. – volume: 2 start-page: ra72 year: 2009 ident: bib43 article-title: H2S signals through protein S-sulfhydration publication-title: Sci. Signal. – volume: 161 start-page: 919 year: 2015 end-page: 932 ident: bib1 article-title: Article widespread proteome remodeling and aggregation in aging C. elegans publication-title: Cell – volume: 2 start-page: e1500968 year: 2016 ident: bib16 article-title: A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems publication-title: Sci. Adv. – volume: 473 start-page: 77 year: 2010 end-page: 94 ident: bib32 article-title: Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins publication-title: Methods Enzymol. – volume: 6 start-page: 1649 year: 2015 end-page: 1655 ident: bib4 article-title: Investigating the generation of hydrogen sulfide from the phosphonamidodithioate slow-release donor GYY4137 publication-title: Med. Chem. Commun. – volume: 60 start-page: 1 year: 2013 end-page: 4 ident: bib36 article-title: Reactive oxygen species and the free radical theory of aging publication-title: Free Radic. Biol. Med. – volume: 110 start-page: 7131 year: 2013 end-page: 7135 ident: bib35 article-title: Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 805 year: 2018 ident: 10.1016/j.cmet.2019.10.007_bib58 article-title: Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.02.019 – volume: 7 start-page: 3414 year: 2016 ident: 10.1016/j.cmet.2019.10.007_bib77 article-title: Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation publication-title: Chem. Sci. doi: 10.1039/C5SC04818D – volume: 15 start-page: 411 year: 2014 ident: 10.1016/j.cmet.2019.10.007_bib31 article-title: Cellular mechanisms and physiological consequences of redox-dependent signalling publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3801 – volume: 50 start-page: 120 year: 2018 ident: 10.1016/j.cmet.2019.10.007_bib56 article-title: Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis publication-title: Nat. Genet. doi: 10.1038/s41588-017-0006-7 – volume: 15 start-page: 391 year: 2009 ident: 10.1016/j.cmet.2019.10.007_bib26 article-title: Protein S-nitrosylation in health and disease: a current perspective publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2009.06.007 – volume: 103 start-page: 18896 year: 2006 ident: 10.1016/j.cmet.2019.10.007_bib34 article-title: Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0608839103 – volume: 8 start-page: 813 year: 2007 ident: 10.1016/j.cmet.2019.10.007_bib14 article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2256 – volume: 7 start-page: 301 year: 2015 ident: 10.1016/j.cmet.2019.10.007_bib50 article-title: Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism publication-title: Nat. Chem. doi: 10.1038/nchem.2202 – volume: 7 start-page: e34562 year: 2012 ident: 10.1016/j.cmet.2019.10.007_bib12 article-title: Solubility and permeation of hydrogen sulfide in lipid membranes publication-title: PLoS One doi: 10.1371/journal.pone.0034562 – volume: 40 start-page: 12051 year: 2001 ident: 10.1016/j.cmet.2019.10.007_bib29 article-title: Kinetic analysis of product inhibition in human manganese superoxide dismutase publication-title: Biochemistry doi: 10.1021/bi011047f – volume: 288 start-page: 20002 year: 2013 ident: 10.1016/j.cmet.2019.10.007_bib79 article-title: Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.466177 – start-page: 587 year: 1988 ident: 10.1016/j.cmet.2019.10.007_bib66 article-title: Methods, the nematode Caenorhabditis elegans – volume: 46 start-page: 8825 year: 2007 ident: 10.1016/j.cmet.2019.10.007_bib37 article-title: Seven-coordinate iron and manganese complexes with acyclic and rigid pentadentate chelates and their superoxide dismutase activity publication-title: Inorg. Chem. doi: 10.1021/ic7012039 – volume: 115 start-page: 780 year: 2018 ident: 10.1016/j.cmet.2019.10.007_bib61 article-title: Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington’s disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1717877115 – volume: 18 start-page: 1906 year: 2013 ident: 10.1016/j.cmet.2019.10.007_bib81 article-title: Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2 publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4645 – volume: 112 start-page: 7960 year: 2015 ident: 10.1016/j.cmet.2019.10.007_bib47 article-title: A universal entropy-driven mechanism for thioredoxin–target recognition publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1504376112 – volume: 106 start-page: 16163 year: 2009 ident: 10.1016/j.cmet.2019.10.007_bib62 article-title: Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0903015106 – volume: 6 start-page: 1649 year: 2015 ident: 10.1016/j.cmet.2019.10.007_bib4 article-title: Investigating the generation of hydrogen sulfide from the phosphonamidodithioate slow-release donor GYY4137 publication-title: Med. Chem. Commun. doi: 10.1039/C5MD00170F – volume: 270 start-page: 296 year: 1995 ident: 10.1016/j.cmet.2019.10.007_bib67 article-title: Requirement for Generation of H2O2 for platelet-derived growth factor signal transduction publication-title: Science doi: 10.1126/science.270.5234.296 – year: 2010 ident: 10.1016/j.cmet.2019.10.007_bib25 – volume: 5 start-page: 728 year: 2014 ident: 10.1016/j.cmet.2019.10.007_bib33 article-title: The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39) publication-title: Chem. Commun. doi: 10.1039/C3MD00323J – volume: 44 start-page: 325 year: 2004 ident: 10.1016/j.cmet.2019.10.007_bib57 article-title: Protein sulfenic acids in redox signaling publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.44.101802.121735 – volume: 7 start-page: 400 year: 2016 ident: 10.1016/j.cmet.2019.10.007_bib28 article-title: Profiling the reactivity of cyclic C-nucleophiles towards electrophilic sulfur in cysteine sulfenic acid publication-title: Chem. Sci. doi: 10.1039/C5SC02569A – volume: 76 start-page: 1333 year: 1979 ident: 10.1016/j.cmet.2019.10.007_bib18 article-title: Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.76.3.1333 – volume: 71 start-page: 1523 year: 1983 ident: 10.1016/j.cmet.2019.10.007_bib22 article-title: Mechanisms of insulin resistance in aging publication-title: J. Clin. Invest. doi: 10.1172/JCI110908 – volume: 160 start-page: 132 year: 2015 ident: 10.1016/j.cmet.2019.10.007_bib30 article-title: Endogenous hydrogen sulfide production is essential for dietary restriction benefits publication-title: Cell doi: 10.1016/j.cell.2014.11.048 – volume: 15 start-page: 2361 year: 2014 ident: 10.1016/j.cmet.2019.10.007_bib5 article-title: A persulfide analogue of the nitrosothiol SNAP: formation, characterization and reactivity publication-title: ChemBioChem doi: 10.1002/cbic.201402312 – volume: 408 start-page: 239 year: 2000 ident: 10.1016/j.cmet.2019.10.007_bib24 article-title: Oxidants, oxidative stress and the biology of ageing publication-title: Nature doi: 10.1038/35041687 – volume: 6 start-page: 491 year: 2015 ident: 10.1016/j.cmet.2019.10.007_bib38 article-title: Extending Liu’s ordering theory for cognitive diagnosis and remedial instruction publication-title: ICIC Express Lett. B – volume: 23 start-page: 1093 year: 2016 ident: 10.1016/j.cmet.2019.10.007_bib42 article-title: Effects of sex, strain, and energy intake on hallmarks of aging in mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.05.027 – volume: 6 start-page: 662 year: 2007 ident: 10.1016/j.cmet.2019.10.007_bib69 article-title: Peroxynitrite: biochemistry, pathophysiology and development of therapeutics publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2222 – volume: 194 start-page: 7 year: 2011 ident: 10.1016/j.cmet.2019.10.007_bib23 article-title: Signal transduction by reactive oxygen species publication-title: J. Cell Biol. doi: 10.1083/jcb.201102095 – volume: 12 start-page: e0180341 year: 2017 ident: 10.1016/j.cmet.2019.10.007_bib11 article-title: Pseudomonas aeruginosa cells attached to a surface display a typical proteome early as 20 minutes of incubation publication-title: PLoS One doi: 10.1371/journal.pone.0180341 – volume: 161 start-page: 919 year: 2015 ident: 10.1016/j.cmet.2019.10.007_bib1 article-title: Article widespread proteome remodeling and aggregation in aging C. elegans publication-title: Cell doi: 10.1016/j.cell.2015.03.032 – volume: 322 start-page: 587 year: 2008 ident: 10.1016/j.cmet.2019.10.007_bib80 article-title: Hypertension in mice with deletion of cystathionine -Lyase publication-title: Science doi: 10.1126/science.1162667 – volume: 13 start-page: 499 year: 2012 ident: 10.1016/j.cmet.2019.10.007_bib52 article-title: H₂S signalling through protein sulfhydration and beyond publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3391 – volume: 92 start-page: 791 year: 2012 ident: 10.1016/j.cmet.2019.10.007_bib75 article-title: Physiological implications of hydrogen sulfide: a whiff exploration that blossomed publication-title: Physiol. Rev. doi: 10.1152/physrev.00017.2011 – volume: 31 start-page: 60 year: 2016 ident: 10.1016/j.cmet.2019.10.007_bib45 article-title: The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling publication-title: Physiology doi: 10.1152/physiol.00024.2015 – volume: 53 start-page: 575 year: 2014 ident: 10.1016/j.cmet.2019.10.007_bib85 article-title: Detection of protein S-sulfhydration by a tag-switch technique publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201305876 – volume: 428 start-page: 13 year: 2012 ident: 10.1016/j.cmet.2019.10.007_bib7 article-title: Selective N-terminal fluorescent labeling of proteins using 4-chloro-7-nitrobenzofurazan: a method to distinguish protein N-terminal acetylation publication-title: Anal. Biochem. doi: 10.1016/j.ab.2012.05.026 – volume: 280 start-page: 6150 year: 2013 ident: 10.1016/j.cmet.2019.10.007_bib59 article-title: Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids publication-title: FEBS J. doi: 10.1111/febs.12535 – volume: 404 start-page: 902 year: 2010 ident: 10.1016/j.cmet.2019.10.007_bib39 article-title: Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.09.027 – volume: 113 start-page: 8843 year: 2016 ident: 10.1016/j.cmet.2019.10.007_bib60 article-title: Transcriptional control of amino acid homeostasis is disrupted in Huntington’s disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1608264113 – volume: 71 start-page: 90 year: 2014 ident: 10.1016/j.cmet.2019.10.007_bib84 article-title: Quantitative label-free redox proteomics of reversible cysteine oxidation in red blood cell membranes publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.03.013 – volume: 8 start-page: 1110 year: 2013 ident: 10.1016/j.cmet.2019.10.007_bib48 article-title: Persulfide reactivity in the detection of protein S-sulfhydration publication-title: ACS Chem. Biol. doi: 10.1021/cb4001052 – volume: 8 start-page: 1177 year: 2017 ident: 10.1016/j.cmet.2019.10.007_bib2 article-title: Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics publication-title: Nat. Commun. doi: 10.1038/s41467-017-01311-y – volume: 2 start-page: e1500968 year: 2016 ident: 10.1016/j.cmet.2019.10.007_bib16 article-title: A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems publication-title: Sci. Adv. doi: 10.1126/sciadv.1500968 – volume: 12 start-page: 101 year: 2012 ident: 10.1016/j.cmet.2019.10.007_bib82 article-title: In-depth analysis of cysteine oxidation by the RBC proteome: advantage of peroxiredoxin II knockout mice publication-title: Proteomics doi: 10.1002/pmic.201100275 – volume: 308 start-page: 518 year: 2005 ident: 10.1016/j.cmet.2019.10.007_bib8 article-title: H2S Induces a suspended animation-like state in mice publication-title: Science doi: 10.1126/science.1108581 – volume: 77 start-page: 82 year: 2014 ident: 10.1016/j.cmet.2019.10.007_bib46 article-title: Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.09.007 – volume: 2 start-page: ra72 year: 2009 ident: 10.1016/j.cmet.2019.10.007_bib43 article-title: H2S signals through protein S-sulfhydration publication-title: Sci. Signal. doi: 10.1126/scisignal.2000464 – volume: 40 start-page: 687 year: 2015 ident: 10.1016/j.cmet.2019.10.007_bib53 article-title: H2S: a novel gasotransmitter that signals by sulfhydration publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.08.007 – volume: 21 start-page: 758 year: 2016 ident: 10.1016/j.cmet.2019.10.007_bib64 article-title: Overexpression of cystathionine γ-lyase suppresses detrimental effects of spinocerebellar ataxia type 3 publication-title: Mol. Med. doi: 10.2119/molmed.2015.00221 – volume: 77 start-page: 71 year: 1974 ident: 10.1016/j.cmet.2019.10.007_bib9 article-title: The genetics of Caenorhabditis elegans publication-title: Genetics doi: 10.1093/genetics/77.1.71 – volume: 54 start-page: B492 year: 1999 ident: 10.1016/j.cmet.2019.10.007_bib70 article-title: Growth curves and survival characteristics of the animals used in the biomarkers of aging program publication-title: J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/54.11.B492 – volume: 441 start-page: 609 year: 2012 ident: 10.1016/j.cmet.2019.10.007_bib20 article-title: Biochemical insight into physiological effects of H2S: reaction with peroxynitrite and formation of a new nitric oxide donor, sulfinyl nitrite publication-title: Biochem. J. doi: 10.1042/BJ20111389 – volume: 6 start-page: 1473 year: 2007 ident: 10.1016/j.cmet.2019.10.007_bib10 article-title: Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M700065-MCP200 – volume: 120 start-page: 483 year: 2005 ident: 10.1016/j.cmet.2019.10.007_bib6 article-title: Mitochondria, oxidants, and aging publication-title: Cell doi: 10.1016/j.cell.2005.02.001 – volume: 118 start-page: 1253 year: 2018 ident: 10.1016/j.cmet.2019.10.007_bib21 article-title: Chemical biology of H2S signaling through persulfidation publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00205 – volume: 60 start-page: 1 year: 2013 ident: 10.1016/j.cmet.2019.10.007_bib36 article-title: Reactive oxygen species and the free radical theory of aging publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.02.011 – volume: 108 start-page: 791 year: 2006 ident: 10.1016/j.cmet.2019.10.007_bib49 article-title: In-depth analysis of the membrane and cytosolic proteome of red blood cells publication-title: Blood doi: 10.1182/blood-2005-11-007799 – volume: 3 start-page: 144 year: 2016 ident: 10.1016/j.cmet.2019.10.007_bib44 article-title: Deep proteome analysis identifies age-related processes in C. elegans publication-title: Cell Syst. doi: 10.1016/j.cels.2016.06.011 – volume: 4 start-page: 1366 year: 2013 ident: 10.1016/j.cmet.2019.10.007_bib63 article-title: A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells publication-title: Nat. Commun. doi: 10.1038/ncomms2371 – volume: 5 start-page: 4776 year: 2014 ident: 10.1016/j.cmet.2019.10.007_bib83 article-title: Site-specific mapping and quantification of protein S-sulphenylation in cells publication-title: Nat. Commun. doi: 10.1038/ncomms5776 – volume: 41 start-page: 85 year: 2014 ident: 10.1016/j.cmet.2019.10.007_bib76 article-title: Working with “H2S”: facts and apparent artifacts publication-title: Nitric Oxide doi: 10.1016/j.niox.2014.06.003 – volume: 473 start-page: 77 year: 2010 ident: 10.1016/j.cmet.2019.10.007_bib32 article-title: Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(10)73003-2 – volume: 33 start-page: 126 year: 2014 ident: 10.1016/j.cmet.2019.10.007_bib27 article-title: Chemical approaches to detect and analyze protein sulfenic acids publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.21384 – volume: 113 start-page: 4633 year: 2013 ident: 10.1016/j.cmet.2019.10.007_bib54 article-title: Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery publication-title: Chem. Rev. doi: 10.1021/cr300163e – volume: 36 start-page: 15013 year: 1997 ident: 10.1016/j.cmet.2019.10.007_bib17 article-title: Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase publication-title: Biochemistry doi: 10.1021/bi972191x – volume: 291 start-page: 10399 year: 2016 ident: 10.1016/j.cmet.2019.10.007_bib19 article-title: Oxidant-induced interprotein disulfide formation in cardiac protein DJ-1 occurs via an interaction with peroxiredoxin 2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.699850 – volume: 290 start-page: 26866 year: 2015 ident: 10.1016/j.cmet.2019.10.007_bib13 article-title: Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.672816 – volume: 4 start-page: 1626 year: 2013 ident: 10.1016/j.cmet.2019.10.007_bib72 article-title: Sulfhydration mediates neuroprotective actions of Parkin publication-title: Nat. Commun. doi: 10.1038/ncomms2623 – volume: 14 start-page: 995 year: 2018 ident: 10.1016/j.cmet.2019.10.007_bib3 article-title: Chemical proteomics reveals new targets of cysteine sulfinic acid reductase publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0116-2 – volume: 11 year: 2012 ident: 10.1016/j.cmet.2019.10.007_bib86 article-title: PEAKS DB: de Novo sequencing assisted database search for sensitive and accurate peptide identification publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M111.010587 – volume: 110 start-page: 7131 year: 2013 ident: 10.1016/j.cmet.2019.10.007_bib35 article-title: Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1302193110 – volume: 84 start-page: 1394 year: 1987 ident: 10.1016/j.cmet.2019.10.007_bib71 article-title: Modification of erythrocyte enzyme activities by persulfides and methanethiol: possible regulatory role publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.84.5.1394 – volume: 194 start-page: 713 year: 1990 ident: 10.1016/j.cmet.2019.10.007_bib41 article-title: Human liver manganese superoxide dismutase: purification and crystallization, subunit association and sulfhydryl reactivity publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1990.tb19461.x – volume: 6 start-page: 917 year: 2007 ident: 10.1016/j.cmet.2019.10.007_bib68 article-title: Hydrogen sulphide and its therapeutic potential publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2425 – volume: 10 start-page: 883 year: 2016 ident: 10.1016/j.cmet.2019.10.007_bib15 article-title: Cysteine redox proteomics of the hemoglobin-depleted cytosolic fraction of stored red blood cells publication-title: Proteomics Clin. Appl. doi: 10.1002/prca.201500132 – volume: 509 start-page: 96 year: 2014 ident: 10.1016/j.cmet.2019.10.007_bib51 article-title: Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease publication-title: Nature doi: 10.1038/nature13136 – volume: 300 start-page: 650 year: 2003 ident: 10.1016/j.cmet.2019.10.007_bib78 article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling publication-title: Science doi: 10.1126/science.1080405 – volume: 17 start-page: 22 year: 2012 ident: 10.1016/j.cmet.2019.10.007_bib73 article-title: High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2011.4310 – volume: 6 start-page: 27517 year: 2016 ident: 10.1016/j.cmet.2019.10.007_bib40 article-title: Role of cystathionine gamma-lyase in immediate renal impairment and inflammatory response in acute ischemic kidney injury publication-title: Sci. Rep. doi: 10.1038/srep27517 – volume: 8 start-page: 57 year: 2011 ident: 10.1016/j.cmet.2019.10.007_bib55 article-title: Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.736 – start-page: 1 year: 2006 ident: 10.1016/j.cmet.2019.10.007_bib65 article-title: Maintenance of C. elegans publication-title: WormBook – reference: 31951564 - Cell Metab. 2020 Jan 7;31(1):10-12. doi: 10.1016/j.cmet.2019.11.015. – reference: 31914376 - Cell Metab. 2020 Jan 7;31(1):207. doi: 10.1016/j.cmet.2019.12.001. |
SSID | ssj0036393 |
Score | 2.6655807 |
Snippet | Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein persulfidation mediated by H2S evolved as a signaling... Life on Earth emerged in a hydrogen sulfide (H S)-rich environment eons ago and with it protein persulfidation mediated by H S evolved as a signaling... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1152 |
SubjectTerms | aging Aging - metabolism Animals Caenorhabditis elegans calorie restriction Cell Line Cyclohexanones - chemistry Cysteine - chemistry Cysteine - metabolism Drosophila melanogaster Escherichia coli Fibroblasts Humans hydrogen peroxide hydrogen sulfide Hydrogen Sulfide - metabolism Life Sciences Male Mice Mice, Inbred C57BL Oxidative Stress - physiology protein persulfidation Protein Processing, Post-Translational - physiology Rats Rats, Wistar redox signaling Saccharomyces cerevisiae Staining and Labeling sulfenylation Sulfides - metabolism sulfinylation sulfonylation |
Title | Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration |
URI | https://dx.doi.org/10.1016/j.cmet.2019.10.007 https://www.ncbi.nlm.nih.gov/pubmed/31735592 https://www.proquest.com/docview/2315524974 https://hal.science/hal-03489073 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa6AAN2Gdpt3dIXtKG3wostybF1TF8IhnaHZgVyE2KJQlKkTtA8gPz7krIdoIfmsKMFSTZIivwEfyQZOxfCWTWCnGjlo0glcREVUmQReO-0chCDp2zk-7_d_qP6M0yHe-yqyYUhWmXt-yufHrx1PdKppdmZTyadAYFrRdViNMFgQYnmUuUhiW942XhjiRE4kOxxckSz68SZiuNln4H4lIn-HRhe2XvB6cOYWJLvQdAQim732ecaQ_Je9ZkHbA_KL-xj1VVy85W5Qehtg26ME799NfUTB_waloF1VfIHWCM6XPCbdW12eF2ebji17iT6o-O9Eo89NS_iVW3jBZ95PogGuNN44yqT-cYeb2_-XfWjuplCZJVUyyj1VAS08FbIoiscAoEst1oVVuYqsYnViSgQKvkEj6ETCgC1GEPsM4QQmUW_cMha5ayEH4znsdSAVw3pUAE-HyHkETpNHaCvckUu2ixppGhsXWmcGl5MTUMpezIkeUOSpzGUfJtdbNfMqzobO2enjXLMG2sxGAh2rvuFmty-gEpr93t3hsZitB2N_m6dtNnPRtEGzxr9QBmVMFstDGLhNMX7aqba7HtlAdu9EIchdNPi6D8_7Zh9oqfAlJEnrLV8WcEp4p1lcRYM-hWQU_um |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BVdVeUN9N6cOt2lO1za7Xy64PPaQFlJTAoQEpN5O1xyIobFDzQPld_MHO7CNSD3CoxNXJOs7M-JvP2s8zAJ-ldFaNMGNZ-ShQUZgHeSzTAL13WjkM0fNt5KPj3e6p-jVMhhtw09yFYVlljf0VppdoXY-0a2u2r8bj9oDJteJqMZppsGyUlYe4uqZz2-x7b4-c_EXKg_2Tn92gbi0QWBWreZB4LomZeyvjfFc6SotpZrXKbZypyEZWRzIn4uAjCkonFSL9pxBDn1JCTS3tEpp3Ex4Q-0gZDXrDHw38x5TyS1U_rS7g5dU3dSpRmb1EFnBG-lspKUtvy4ab5yzLvI3zlrnv4Als16RVdCq7PIUNLJ7Bw6qN5eo5uEHZTIdwU7CgfjHxY4diD-elzKsQv3FJdHQm9pd1nNP5fLIS3CuU9ZZOdArCGe6WJKpiyjMx9WIQDGim85WrYvQFnN6LiV_CVjEt8DWILIw10tkmduRxn42IY0mdJA4JHF2eyRZEjRWNrUubc4eNiWk0bBeGLW_Y8jxGlm_B1_UzV1Vhjzu_nTTOMf-Ep6HMc-dzn8iT6x_gWt7dTt_wWBirTBPALqMWfGwcbWhz8xubUYHTxcwQ-U4SOiCnqgWvqghYz0XEj7iilm_-c2kf4FH35Khv-r3jwx14zJ-UMp34LWzN_yzwHZGtef6-DG4BZ_e9m_4CHJs3Ew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Persulfide+Detection+Reveals+Evolutionarily+Conserved+Antiaging+Effects+of+S-Sulfhydration&rft.jtitle=Cell+metabolism&rft.au=Zivanovic%2C+Jasmina&rft.au=Kouroussis%2C+Emilia&rft.au=Kohl%2C+Joshua+B.&rft.au=Adhikari%2C+Bikash&rft.date=2019-12-03&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=30&rft.issue=6&rft.spage=1152&rft.epage=1170.e13&rft_id=info:doi/10.1016%2Fj.cmet.2019.10.007&rft.externalDocID=S1550413119305625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |