Enhancing Mental Fatigue Detection through Physiological Signals and Machine Learning Using Contextual Insights and Efficient Modelling

This research presents a machine learning modeling process for detecting mental fatigue using three physiological signals: electrodermal activity, electrocardiogram, and respiration. It follows the conventional machine learning modeling pipeline, while emphasizing the significant contribution of the...

Full description

Saved in:
Bibliographic Details
Published inJournal of sensor and actuator networks Vol. 12; no. 6; p. 77
Main Authors Cos, Carole-Anne, Lambert, Alexandre, Soni, Aakash, Jeridi, Haifa, Thieulin, Coralie, Jaouadi, Amine
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This research presents a machine learning modeling process for detecting mental fatigue using three physiological signals: electrodermal activity, electrocardiogram, and respiration. It follows the conventional machine learning modeling pipeline, while emphasizing the significant contribution of the feature selection process, resulting in, not only a high-performance model, but also a relevant one. The employed feature selection process considers both statistical and contextual aspects of feature relevance. Statistical relevance was assessed through variance and correlation analyses between independent features and the dependent variable (fatigue state). A contextual analysis was based on insights derived from the experimental design and feature characteristics. Additionally, feature sequencing and set conversion techniques were employed to incorporate the temporal aspects of physiological signals into the training of machine learning models based on random forest, decision tree, support vector machine, k-nearest neighbors, and gradient boosting. An evaluation was conducted using a dataset acquired from a wearable electronic system (in third-party research) with physiological data from three subjects undergoing a series of tests and fatigue stages. A total of 18 tests were performed by the 3 subjects in 3 mental fatigue states. Fatigue assessment was based on subjective measures and reaction time tests, and fatigue induction was performed through mental arithmetic operations. The results showed the highest performance when using random forest, achieving an average accuracy and F1-score of 96% in classifying three levels of mental fatigue.
AbstractList This research presents a machine learning modeling process for detecting mental fatigue using three physiological signals: electrodermal activity, electrocardiogram, and respiration. It follows the conventional machine learning modeling pipeline, while emphasizing the significant contribution of the feature selection process, resulting in, not only a high-performance model, but also a relevant one. The employed feature selection process considers both statistical and contextual aspects of feature relevance. Statistical relevance was assessed through variance and correlation analyses between independent features and the dependent variable (fatigue state). A contextual analysis was based on insights derived from the experimental design and feature characteristics. Additionally, feature sequencing and set conversion techniques were employed to incorporate the temporal aspects of physiological signals into the training of machine learning models based on random forest, decision tree, support vector machine, k-nearest neighbors, and gradient boosting. An evaluation was conducted using a dataset acquired from a wearable electronic system (in third-party research) with physiological data from three subjects undergoing a series of tests and fatigue stages. A total of 18 tests were performed by the 3 subjects in 3 mental fatigue states. Fatigue assessment was based on subjective measures and reaction time tests, and fatigue induction was performed through mental arithmetic operations. The results showed the highest performance when using random forest, achieving an average accuracy and F1-score of 96% in classifying three levels of mental fatigue.
Audience Academic
Author Jaouadi, Amine
Cos, Carole-Anne
Lambert, Alexandre
Thieulin, Coralie
Jeridi, Haifa
Soni, Aakash
Author_xml – sequence: 1
  givenname: Carole-Anne
  surname: Cos
  fullname: Cos, Carole-Anne
– sequence: 2
  givenname: Alexandre
  orcidid: 0000-0001-5702-6445
  surname: Lambert
  fullname: Lambert, Alexandre
– sequence: 3
  givenname: Aakash
  orcidid: 0000-0002-0882-5280
  surname: Soni
  fullname: Soni, Aakash
– sequence: 4
  givenname: Haifa
  orcidid: 0000-0001-7122-7091
  surname: Jeridi
  fullname: Jeridi, Haifa
– sequence: 5
  givenname: Coralie
  orcidid: 0009-0006-9263-0107
  surname: Thieulin
  fullname: Thieulin, Coralie
– sequence: 6
  givenname: Amine
  orcidid: 0000-0001-8155-8011
  surname: Jaouadi
  fullname: Jaouadi, Amine
BookMark eNptklFrFDEQxxepYK198wMEfPVqNsnuZh_LebUHdyhon8MkO7ubYy-pSRbsJ_Brm-0pVmkGkmH4_f-BmXldnDnvsCjelvSK85Z-OERwJaM1pU3zojhnjIkVa6g8e5K_Ki5jPNB82pJLIc6Lnxs3gjPWDWSPLsFEbiDZYUbyEROaZL0jaQx-HkbyZXyI1k9-sCZzX-3gYIoEXEf2YEbrkOwQglu87uJyr71L-CPNmd66aIcxnfBN31tj83dk7zucpsy-KV722Q0vf78Xxd3N5tv6drX7_Gm7vt6tjOAirapWy1og19h1bY3UVKztua5bSVFWsmYcKRfAODVGg6kM5YxWugFd6s4IyS-K7cm383BQ98EeITwoD1Y9FnwYFIRkzYSKmrrESkqtAQTtOdCuLnULNVAOXdNkr3cnr_vgv88Ykzr4OSxNUayloqk5E_wvNUA2ta73KYA52mjUdSOZqCrORaaunqFydHi0Jk-6t7n-j4CdBCb4GAP2ytgEy7yy0E6qpGpZC_V0LbLo_X-iPx14Fv8FKnu7dw
CitedBy_id crossref_primary_10_3390_technologies12030038
Cites_doi 10.1016/j.aap.2015.09.002
10.1016/j.apm.2015.03.038
10.1109/TBME.1985.325532
10.1088/1361-6579/aad7e6
10.3758/s13428-020-01516-y
10.1049/iet-its.2014.0103
10.1080/13854046.2020.1787522
10.1016/S0001-4575(02)00014-3
10.1021/acssensors.9b02451
10.1016/j.aap.2009.06.001
10.1109/EMBC44109.2020.9175951
10.1177/001872089403600210
10.1109/TBME.2010.2077291
10.1016/j.eswa.2010.12.028
10.1111/j.2044-8260.1993.tb01070.x
10.1109/SocialCom.2013.124
10.1371/journal.pone.0238670
10.1109/ICCSN.2017.8230293
10.1080/00140137308924479
10.1007/978-1-4419-9893-4
10.3390/s22228851
10.1016/j.ijnsa.2022.100076
10.1016/j.jsr.2021.12.001
10.1371/journal.pone.0163360
10.3390/sym13081461
10.2139/ssrn.4404871
10.1088/1742-6596/1000/1/012048
10.1093/oxfordjournals.eurheartj.a014868
10.1080/00140138208925026
10.1007/978-3-319-54526-4
10.5664/jcsm.27766
10.3390/s21113786
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/jsan12060077
DatabaseName CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2224-2708
ExternalDocumentID oai_doaj_org_article_0c61e588bbaa40f3a0d61b9a6a03ad77
A782455334
10_3390_jsan12060077
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID .4S
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
EDO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
ITG
ITH
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
TUS
PMFND
3V.
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
M0N
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c434t-59b864e3bedd96e0c529f3b6980e858623e034a230ccbac5c03205b7ab1bdc483
IEDL.DBID DOA
ISSN 2224-2708
IngestDate Wed Aug 27 01:16:28 EDT 2025
Fri Jul 25 12:07:53 EDT 2025
Tue Jun 17 22:22:19 EDT 2025
Tue Jun 10 21:14:31 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Tue Jul 01 02:56:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-59b864e3bedd96e0c529f3b6980e858623e034a230ccbac5c03205b7ab1bdc483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-9263-0107
0000-0002-0882-5280
0000-0001-5702-6445
0000-0001-8155-8011
0000-0001-7122-7091
OpenAccessLink https://doaj.org/article/0c61e588bbaa40f3a0d61b9a6a03ad77
PQID 2904763243
PQPubID 2032375
ParticipantIDs doaj_primary_oai_doaj_org_article_0c61e588bbaa40f3a0d61b9a6a03ad77
proquest_journals_2904763243
gale_infotracmisc_A782455334
gale_infotracacademiconefile_A782455334
crossref_citationtrail_10_3390_jsan12060077
crossref_primary_10_3390_jsan12060077
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of sensor and actuator networks
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Khushaba (ref_18) 2011; 58
Pan (ref_35) 1985; BME-32
Khodadad (ref_36) 2018; 39
Benzo (ref_8) 2022; 4
SAYKRS (ref_39) 1973; 16
ref_13
Malathi (ref_28) 2018; 1000
ref_34
ref_11
Heaton (ref_15) 2020; 34
Abbas (ref_26) 2022; 71
Hasan (ref_14) 2022; 80
ref_17
Chavan (ref_33) 2008; 2
ref_38
Brown (ref_3) 1994; 36
ref_37
Givi (ref_9) 2015; 39
He (ref_19) 2015; 9
Makowski (ref_31) 2021; 53
Egelund (ref_23) 1982; 25
Zeng (ref_30) 2020; 5
Annaheim (ref_16) 2021; 12
ref_22
ref_21
Malik (ref_40) 1996; 17
Brookhuis (ref_4) 2010; 42
ref_20
Patel (ref_25) 2011; 38
Lee (ref_12) 2010; 6
ref_41
ref_1
Wang (ref_2) 2016; 95
Braithwaite (ref_32) 2013; 49
Dalimi (ref_24) 2015; 73
ref_29
Bentall (ref_10) 1993; 32
ref_27
Thiffault (ref_6) 2003; 35
ref_5
ref_7
References_xml – volume: 95
  start-page: 350
  year: 2016
  ident: ref_2
  article-title: Driver drowsiness detection based on non-intrusive metrics considering individual specifics
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2015.09.002
– ident: ref_5
– volume: 39
  start-page: 5186
  year: 2015
  ident: ref_9
  article-title: Modelling Worker Reliability with Learning and Fatigue
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.03.038
– volume: BME-32
  start-page: 230
  year: 1985
  ident: ref_35
  article-title: A Real-Time QRS Detection Algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– volume: 39
  start-page: 094001
  year: 2018
  ident: ref_36
  article-title: Optimized breath detection algorithm in electrical impedance tomography
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aad7e6
– volume: 53
  start-page: 1689
  year: 2021
  ident: ref_31
  article-title: NeuroKit2: A Python toolbox for neurophysiological signal processing
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-020-01516-y
– volume: 9
  start-page: 547
  year: 2015
  ident: ref_19
  article-title: Driver fatigue evaluation model with integration of multi-indicators based on dynamic Bayesian network
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2014.0103
– volume: 34
  start-page: 1190
  year: 2020
  ident: ref_15
  article-title: Predicting changes in performance due to cognitive fatigue: A multimodal approach based on speech motor coordination and electrodermal activity
  publication-title: Clin. Neuropsychol.
  doi: 10.1080/13854046.2020.1787522
– volume: 35
  start-page: 381
  year: 2003
  ident: ref_6
  article-title: Monotony of Road Environment and Driver Fatigue: A Simulator Study
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/S0001-4575(02)00014-3
– volume: 71
  start-page: 1999
  year: 2022
  ident: ref_26
  article-title: Hypo-Driver: A Multiview Driver Fatigue and Distraction Level Detection System
  publication-title: Comput. Mater. Contin.
– volume: 5
  start-page: 1305
  year: 2020
  ident: ref_30
  article-title: Nonintrusive Monitoring of Mental Fatigue Status Using Epidermal Electronic Systems and Machine-Learning Algorithms
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b02451
– volume: 42
  start-page: 898
  year: 2010
  ident: ref_4
  article-title: Monitoring drivers’ mental workload in driving simulators using physiological measures
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2009.06.001
– volume: 12
  start-page: 2285
  year: 2021
  ident: ref_16
  article-title: Fatigue Monitoring Through Wearables: A State-of-the-Art Review
  publication-title: Front. Physiol.
– ident: ref_1
– volume: 73
  start-page: 5
  year: 2015
  ident: ref_24
  article-title: Detecting Drowsy Driver Using Pulse Sensor
  publication-title: J. Teknol.
– ident: ref_29
  doi: 10.1109/EMBC44109.2020.9175951
– volume: 36
  start-page: 298
  year: 1994
  ident: ref_3
  article-title: Driver Fatigue
  publication-title: Hum. Factors
  doi: 10.1177/001872089403600210
– volume: 58
  start-page: 121
  year: 2011
  ident: ref_18
  article-title: Driver Drowsiness Classification Using Fuzzy Wavelet-Packet-Based Feature-Extraction Algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2077291
– volume: 38
  start-page: 7235
  year: 2011
  ident: ref_25
  article-title: Applying neural network analysis on heart rate variability data to assess driver fatigue
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.028
– volume: 32
  start-page: 375
  year: 1993
  ident: ref_10
  article-title: A Brief Mental Fatigue Questionnaire
  publication-title: Br. J. Clin. Psychol.
  doi: 10.1111/j.2044-8260.1993.tb01070.x
– volume: 49
  start-page: 1017
  year: 2013
  ident: ref_32
  article-title: A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments
  publication-title: Psychophysiology
– ident: ref_17
  doi: 10.1109/SocialCom.2013.124
– ident: ref_22
  doi: 10.1371/journal.pone.0238670
– ident: ref_27
  doi: 10.1109/ICCSN.2017.8230293
– volume: 16
  start-page: 17
  year: 1973
  ident: ref_39
  article-title: Analysis of Heart Rate Variability
  publication-title: Ergonomics
  doi: 10.1080/00140137308924479
– ident: ref_11
  doi: 10.1007/978-1-4419-9893-4
– ident: ref_21
  doi: 10.3390/s22228851
– volume: 4
  start-page: 100076
  year: 2022
  ident: ref_8
  article-title: Examining the Impact of 12-Hour Day and Night Shifts on Nurses’ Fatigue: A Prospective Cohort Study
  publication-title: Int. J. Nurs. Stud. Adv.
  doi: 10.1016/j.ijnsa.2022.100076
– volume: 80
  start-page: 215
  year: 2022
  ident: ref_14
  article-title: Physiological signal-based drowsiness detection using machine learning: Singular and hybrid signal approaches
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2021.12.001
– ident: ref_20
  doi: 10.1371/journal.pone.0163360
– ident: ref_41
– volume: 2
  start-page: 356
  year: 2008
  ident: ref_33
  article-title: Suppression of baseline wander and power line interference in ECG using digital IIR filter
  publication-title: Int. J. Circuits Syst. Signal Process.
– ident: ref_34
  doi: 10.3390/sym13081461
– ident: ref_38
– ident: ref_37
  doi: 10.2139/ssrn.4404871
– volume: 1000
  start-page: 012048
  year: 2018
  ident: ref_28
  article-title: Electrodermal Activity Based Wearable Device for Drowsy Drivers
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1000/1/012048
– volume: 17
  start-page: 354
  year: 1996
  ident: ref_40
  article-title: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use
  publication-title: Eur. Heart J.
  doi: 10.1093/oxfordjournals.eurheartj.a014868
– volume: 25
  start-page: 663
  year: 1982
  ident: ref_23
  article-title: Spectral analysis of heart rate variability as an indicator of driver fatigue
  publication-title: Ergonomics
  doi: 10.1080/00140138208925026
– ident: ref_7
  doi: 10.1007/978-3-319-54526-4
– volume: 6
  start-page: 163
  year: 2010
  ident: ref_12
  article-title: Number of Lapses during the Psychomotor Vigilance Task as an Objective Measure of Fatigue
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.27766
– ident: ref_13
  doi: 10.3390/s21113786
SSID ssj0000913844
Score 2.2710872
Snippet This research presents a machine learning modeling process for detecting mental fatigue using three physiological signals: electrodermal activity,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 77
SubjectTerms Accuracy
Algorithms
Analysis
Cognitive ability
Correlation analysis
Decision trees
Dependent variables
Design of experiments
Electrocardiogram
Electrocardiography
electrodermal activity
Electroencephalography
Electronic systems
Fatigue
fatigue detection
Fatigue tests
Feature selection
Heart rate
Human performance
Machine learning
Modelling
Nervous system
Neural networks
Physiological aspects
Physiology
Respiration
Sequences
Skin
Support vector machines
Variance analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4FDxVMsFOQDiAOK6sSP2CfUwq4KUisEVOrN8jMFIW_b3Ur8A_42Hse7dA_lFiWjPDye8Ywz830Ivfa9Cd63bbY0FRombD7qImmgSVIqyaJi0Dt8fCKOTtnnM35WN9yWtaxy7ROLo_YLB3vk-50irAdscfr-4rIB1ij4u1opNO6ineyCpZygncPZyZevm10WQL2UjI0V7zTn9_s_lya1HQFY9n5rLSqQ_bc55rLazB-g3Rom4oNRrw_RnZAeofs3wAMfoz-zdA5gGWnAIxAPnudRHq4D_hhWpcAq4crCg0ud59rN4W8_BkBNxiZ5fFyKKQOuOKsDLjUEuIBW_YbeEvwpLSGBH8VnBXEiPw4DiVrB836CTuez7x-Omkqr0DhG2arhykrBArVZSUoE4ninIrVCSRIkzxkODYQyk3MT56xx3AHHOre9sa31jkn6FE3SIoVnCHe-FYbHHAc4x7zNKxsXqpWxi5HGnvMperceYO0q5jhQX_zSOfcAdeib6piiNxvpixFr4xa5Q9DVRgYQssuJxdWgq8Fp4kQbuJTWGsNIpIZ40VplhCHUeLjJW9C0BjvOr-RMbUfIHwaIWPogh06MQ6PyFO1tSWb7c9uX13NFV_tf6n-z9fn_L79A94DAfuxu3EOT1dV1eJnDnJV9VefyXwAA_oo
  priority: 102
  providerName: ProQuest
Title Enhancing Mental Fatigue Detection through Physiological Signals and Machine Learning Using Contextual Insights and Efficient Modelling
URI https://www.proquest.com/docview/2904763243
https://doaj.org/article/0c61e588bbaa40f3a0d61b9a6a03ad77
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LbxMxEIAtKBc4oPISgTbyAcQBrWqvH2sf-0goSK0QUKk3y88UhBZEUol_wN9mxrupkkPFhVu0GWm9nhmPR5r5hpBXqfM5Jc7B02xupA7wqy2swSZJY40sVmLv8Nm5Pr2QHy7V5caoL6wJG_DAw8YdsKh5VsaE4L1kRXiWNA_Wa8-ET13tI4eYt5FM1TPYcmGkHCrdBeT1B9-WvuctQxx7txWDKqr_tgO5Rpn5Lnk4Xg_p4bCsR-RO7h-TBxvQwCfkz6y_QkhGv6ADgIfOYXcX15me5FUtrOrpOH2H1vrO9fFGP39dIC2Z-j7Rs1pEmenIV13QWjtAK6zqN_aU0Pf9EhP3QXxWSRPwOorD0yrH-ym5mM--HJ824ziFJkohV42ywWiZRQDlWJ1ZVK0tImhrWDYKMhuRmZAecpIYg48q4mx1FTofeEhRGvGM7PQ_-vyc0DZx7VWB-B-jTAEimtKWm9KWIkqn1IS8XW-wiyNrHEdefHeQc6A63KY6JuT1jfTPgbFxi9wR6upGBsnY9QHYixvtxf3LXibkDWraof_CkqIf2xDgw5CE5Q7hyiQVNihPyN6WJPhd3P57bStu9Pulay2THRLwxYv_sdiX5D6Otx96H_fIzurXdd6HS9AqTMldM383JfeOZucfP02r9f8FMesI4w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMsFPCBigOK6sR21j4gVOguu7TbC63Um_ErAYSypbsV8Av4N_xGZpxk6R7KrbcoHjmJ52ln5htCXoShjSHkOWiajpkoHVwVFcuwSFJpJSotsHZ4dlhOjsWHE3myQf70tTCYVtnbxGSow9zjGflOoZkYIrY4f3P6PcOuUfh3tW-h0YrFfvz1A7Zsi9fTPeDvdlGMR0fvJlnXVSDzgotlJrVTpYjcwTvqMjIvC11xV2rFopIQ4PPIuLAQmnvvrJceW4xLN7Qud8ELxWHea-S64ODJsTJ9_H51poMYm0qINr8extnO14Vt8oIhCPxwzfOlBgGXuYHk28Z3yO0uKKW7rRTdJRuxuUduXYAqvE9-j5rPCM3R1LSF_aFj4Gl9HuleXKZ0roZ2PX9oyirtjSr9-KVGjGZqm0BnKXUz0g7VtaYpY4EmiKyfWMlCp80Cjwta8lHCt4DHUWzZltDDH5DjK1nuh2SzmTfxEaFFyEsrK4g6vBfBgR-Vpc5VVVQVr4ZSDsirfoGN7xDOsdHGNwM7HWSHuciOAdleUZ-2yB6X0L1FXq1oEI873Zif1aZTb8N8mUeplHPWClZxy0KZO21Ly7gNOMlL5LRBqwGv5G1X_AAfhvhbZhcCNSGxLHpAttYoQdv9-nAvK6azNgvzTzce_3_4ObkxOZodmIPp4f4TcrOAgK2tq9wim8uz8_gUAqyle5akmpJPV61GfwG1RDol
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGJyE4ID5FYYAPTBxQVCe2E_uA0EZbrYxVEzBpN-OvFKYpHWsn4C_gf-Kvw89xynoYt92i-MlJ_D7tvPd7CL10lfbO5XnQNOkzVppwVdQkgyJJIQWrJYPa4YNpuXfE3h_z4w30p6uFgbTKziZGQ-3mFs7IB4UkrAJscTqoU1rE4XD89ux7Bh2k4E9r106jFZF9_-tH2L4t3kyGgdfbRTEefX63l6UOA5lllC0zLo0omacmvK8sPbG8kDU1pRTECx6CfeoJZTqE6dYabbmFduPcVNrkxlkmaJj3BtqsYFfUQ5u7o-nhx9UJDyBuCsbabHtKJRmcLHSTFwQg4as1PxjbBVzlFKKnG99Fd1KIindambqHNnxzH92-BFz4AP0eNV8BqKOZ4RYECI8Dh2cXHg_9MiZ3NTh1AMIxx7QzsfjTtxkgNmPdOHwQEzk9ThivMxzzF3AEzPoJdS140izg8KAlH0W0i_A4DA3cIpb4Q3R0LQv-CPWaeeMfI1y4vNS8DjGItcyZ4FV5KXNRF3VN64rzPnrdLbCyCe8c2m6cqrDvAXaoy-zoo-0V9VmL83EF3S7wakUD6Nzxxvx8ppKyK2LL3HMhjNGakZpq4srcSF1qQrWDSV4BpxXYkPBKVqdSiPBhgMaldkLYxjgUSffR1hpl0H27PtzJikq2Z6H-acqT_w-_QDeDCqkPk-n-U3SrCNFbW2S5hXrL8wv_LERbS_M8iTVGX65bk_4CYnA_tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Mental+Fatigue+Detection+through+Physiological+Signals+and+Machine+Learning+Using+Contextual+Insights+and+Efficient+Modelling&rft.jtitle=Journal+of+sensor+and+actuator+networks&rft.au=Carole-Anne+Cos&rft.au=Alexandre+Lambert&rft.au=Aakash+Soni&rft.au=Haifa+Jeridi&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2224-2708&rft.volume=12&rft.issue=6&rft.spage=77&rft_id=info:doi/10.3390%2Fjsan12060077&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0c61e588bbaa40f3a0d61b9a6a03ad77
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2224-2708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2224-2708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2224-2708&client=summon