Enhancing Mental Fatigue Detection through Physiological Signals and Machine Learning Using Contextual Insights and Efficient Modelling
This research presents a machine learning modeling process for detecting mental fatigue using three physiological signals: electrodermal activity, electrocardiogram, and respiration. It follows the conventional machine learning modeling pipeline, while emphasizing the significant contribution of the...
Saved in:
Published in | Journal of sensor and actuator networks Vol. 12; no. 6; p. 77 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This research presents a machine learning modeling process for detecting mental fatigue using three physiological signals: electrodermal activity, electrocardiogram, and respiration. It follows the conventional machine learning modeling pipeline, while emphasizing the significant contribution of the feature selection process, resulting in, not only a high-performance model, but also a relevant one. The employed feature selection process considers both statistical and contextual aspects of feature relevance. Statistical relevance was assessed through variance and correlation analyses between independent features and the dependent variable (fatigue state). A contextual analysis was based on insights derived from the experimental design and feature characteristics. Additionally, feature sequencing and set conversion techniques were employed to incorporate the temporal aspects of physiological signals into the training of machine learning models based on random forest, decision tree, support vector machine, k-nearest neighbors, and gradient boosting. An evaluation was conducted using a dataset acquired from a wearable electronic system (in third-party research) with physiological data from three subjects undergoing a series of tests and fatigue stages. A total of 18 tests were performed by the 3 subjects in 3 mental fatigue states. Fatigue assessment was based on subjective measures and reaction time tests, and fatigue induction was performed through mental arithmetic operations. The results showed the highest performance when using random forest, achieving an average accuracy and F1-score of 96% in classifying three levels of mental fatigue. |
---|---|
AbstractList | This research presents a machine learning modeling process for detecting mental fatigue using three physiological signals: electrodermal activity, electrocardiogram, and respiration. It follows the conventional machine learning modeling pipeline, while emphasizing the significant contribution of the feature selection process, resulting in, not only a high-performance model, but also a relevant one. The employed feature selection process considers both statistical and contextual aspects of feature relevance. Statistical relevance was assessed through variance and correlation analyses between independent features and the dependent variable (fatigue state). A contextual analysis was based on insights derived from the experimental design and feature characteristics. Additionally, feature sequencing and set conversion techniques were employed to incorporate the temporal aspects of physiological signals into the training of machine learning models based on random forest, decision tree, support vector machine, k-nearest neighbors, and gradient boosting. An evaluation was conducted using a dataset acquired from a wearable electronic system (in third-party research) with physiological data from three subjects undergoing a series of tests and fatigue stages. A total of 18 tests were performed by the 3 subjects in 3 mental fatigue states. Fatigue assessment was based on subjective measures and reaction time tests, and fatigue induction was performed through mental arithmetic operations. The results showed the highest performance when using random forest, achieving an average accuracy and F1-score of 96% in classifying three levels of mental fatigue. |
Audience | Academic |
Author | Jaouadi, Amine Cos, Carole-Anne Lambert, Alexandre Thieulin, Coralie Jeridi, Haifa Soni, Aakash |
Author_xml | – sequence: 1 givenname: Carole-Anne surname: Cos fullname: Cos, Carole-Anne – sequence: 2 givenname: Alexandre orcidid: 0000-0001-5702-6445 surname: Lambert fullname: Lambert, Alexandre – sequence: 3 givenname: Aakash orcidid: 0000-0002-0882-5280 surname: Soni fullname: Soni, Aakash – sequence: 4 givenname: Haifa orcidid: 0000-0001-7122-7091 surname: Jeridi fullname: Jeridi, Haifa – sequence: 5 givenname: Coralie orcidid: 0009-0006-9263-0107 surname: Thieulin fullname: Thieulin, Coralie – sequence: 6 givenname: Amine orcidid: 0000-0001-8155-8011 surname: Jaouadi fullname: Jaouadi, Amine |
BookMark | eNptklFrFDEQxxepYK198wMEfPVqNsnuZh_LebUHdyhon8MkO7ubYy-pSRbsJ_Brm-0pVmkGkmH4_f-BmXldnDnvsCjelvSK85Z-OERwJaM1pU3zojhnjIkVa6g8e5K_Ki5jPNB82pJLIc6Lnxs3gjPWDWSPLsFEbiDZYUbyEROaZL0jaQx-HkbyZXyI1k9-sCZzX-3gYIoEXEf2YEbrkOwQglu87uJyr71L-CPNmd66aIcxnfBN31tj83dk7zucpsy-KV722Q0vf78Xxd3N5tv6drX7_Gm7vt6tjOAirapWy1og19h1bY3UVKztua5bSVFWsmYcKRfAODVGg6kM5YxWugFd6s4IyS-K7cm383BQ98EeITwoD1Y9FnwYFIRkzYSKmrrESkqtAQTtOdCuLnULNVAOXdNkr3cnr_vgv88Ykzr4OSxNUayloqk5E_wvNUA2ta73KYA52mjUdSOZqCrORaaunqFydHi0Jk-6t7n-j4CdBCb4GAP2ytgEy7yy0E6qpGpZC_V0LbLo_X-iPx14Fv8FKnu7dw |
CitedBy_id | crossref_primary_10_3390_technologies12030038 |
Cites_doi | 10.1016/j.aap.2015.09.002 10.1016/j.apm.2015.03.038 10.1109/TBME.1985.325532 10.1088/1361-6579/aad7e6 10.3758/s13428-020-01516-y 10.1049/iet-its.2014.0103 10.1080/13854046.2020.1787522 10.1016/S0001-4575(02)00014-3 10.1021/acssensors.9b02451 10.1016/j.aap.2009.06.001 10.1109/EMBC44109.2020.9175951 10.1177/001872089403600210 10.1109/TBME.2010.2077291 10.1016/j.eswa.2010.12.028 10.1111/j.2044-8260.1993.tb01070.x 10.1109/SocialCom.2013.124 10.1371/journal.pone.0238670 10.1109/ICCSN.2017.8230293 10.1080/00140137308924479 10.1007/978-1-4419-9893-4 10.3390/s22228851 10.1016/j.ijnsa.2022.100076 10.1016/j.jsr.2021.12.001 10.1371/journal.pone.0163360 10.3390/sym13081461 10.2139/ssrn.4404871 10.1088/1742-6596/1000/1/012048 10.1093/oxfordjournals.eurheartj.a014868 10.1080/00140138208925026 10.1007/978-3-319-54526-4 10.5664/jcsm.27766 10.3390/s21113786 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.3390/jsan12060077 |
DatabaseName | CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2224-2708 |
ExternalDocumentID | oai_doaj_org_article_0c61e588bbaa40f3a0d61b9a6a03ad77 A782455334 10_3390_jsan12060077 |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO EDO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC ITG ITH K6V K7- KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS TUS PMFND 3V. 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M M0N PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c434t-59b864e3bedd96e0c529f3b6980e858623e034a230ccbac5c03205b7ab1bdc483 |
IEDL.DBID | DOA |
ISSN | 2224-2708 |
IngestDate | Wed Aug 27 01:16:28 EDT 2025 Fri Jul 25 12:07:53 EDT 2025 Tue Jun 17 22:22:19 EDT 2025 Tue Jun 10 21:14:31 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Tue Jul 01 02:56:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-59b864e3bedd96e0c529f3b6980e858623e034a230ccbac5c03205b7ab1bdc483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0006-9263-0107 0000-0002-0882-5280 0000-0001-5702-6445 0000-0001-8155-8011 0000-0001-7122-7091 |
OpenAccessLink | https://doaj.org/article/0c61e588bbaa40f3a0d61b9a6a03ad77 |
PQID | 2904763243 |
PQPubID | 2032375 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0c61e588bbaa40f3a0d61b9a6a03ad77 proquest_journals_2904763243 gale_infotracmisc_A782455334 gale_infotracacademiconefile_A782455334 crossref_citationtrail_10_3390_jsan12060077 crossref_primary_10_3390_jsan12060077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Journal of sensor and actuator networks |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Khushaba (ref_18) 2011; 58 Pan (ref_35) 1985; BME-32 Khodadad (ref_36) 2018; 39 Benzo (ref_8) 2022; 4 SAYKRS (ref_39) 1973; 16 ref_13 Malathi (ref_28) 2018; 1000 ref_34 ref_11 Heaton (ref_15) 2020; 34 Abbas (ref_26) 2022; 71 Hasan (ref_14) 2022; 80 ref_17 Chavan (ref_33) 2008; 2 ref_38 Brown (ref_3) 1994; 36 ref_37 Givi (ref_9) 2015; 39 He (ref_19) 2015; 9 Makowski (ref_31) 2021; 53 Egelund (ref_23) 1982; 25 Zeng (ref_30) 2020; 5 Annaheim (ref_16) 2021; 12 ref_22 ref_21 Malik (ref_40) 1996; 17 Brookhuis (ref_4) 2010; 42 ref_20 Patel (ref_25) 2011; 38 Lee (ref_12) 2010; 6 ref_41 ref_1 Wang (ref_2) 2016; 95 Braithwaite (ref_32) 2013; 49 Dalimi (ref_24) 2015; 73 ref_29 Bentall (ref_10) 1993; 32 ref_27 Thiffault (ref_6) 2003; 35 ref_5 ref_7 |
References_xml | – volume: 95 start-page: 350 year: 2016 ident: ref_2 article-title: Driver drowsiness detection based on non-intrusive metrics considering individual specifics publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2015.09.002 – ident: ref_5 – volume: 39 start-page: 5186 year: 2015 ident: ref_9 article-title: Modelling Worker Reliability with Learning and Fatigue publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.03.038 – volume: BME-32 start-page: 230 year: 1985 ident: ref_35 article-title: A Real-Time QRS Detection Algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1985.325532 – volume: 39 start-page: 094001 year: 2018 ident: ref_36 article-title: Optimized breath detection algorithm in electrical impedance tomography publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aad7e6 – volume: 53 start-page: 1689 year: 2021 ident: ref_31 article-title: NeuroKit2: A Python toolbox for neurophysiological signal processing publication-title: Behav. Res. Methods doi: 10.3758/s13428-020-01516-y – volume: 9 start-page: 547 year: 2015 ident: ref_19 article-title: Driver fatigue evaluation model with integration of multi-indicators based on dynamic Bayesian network publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2014.0103 – volume: 34 start-page: 1190 year: 2020 ident: ref_15 article-title: Predicting changes in performance due to cognitive fatigue: A multimodal approach based on speech motor coordination and electrodermal activity publication-title: Clin. Neuropsychol. doi: 10.1080/13854046.2020.1787522 – volume: 35 start-page: 381 year: 2003 ident: ref_6 article-title: Monotony of Road Environment and Driver Fatigue: A Simulator Study publication-title: Accid. Anal. Prev. doi: 10.1016/S0001-4575(02)00014-3 – volume: 71 start-page: 1999 year: 2022 ident: ref_26 article-title: Hypo-Driver: A Multiview Driver Fatigue and Distraction Level Detection System publication-title: Comput. Mater. Contin. – volume: 5 start-page: 1305 year: 2020 ident: ref_30 article-title: Nonintrusive Monitoring of Mental Fatigue Status Using Epidermal Electronic Systems and Machine-Learning Algorithms publication-title: ACS Sens. doi: 10.1021/acssensors.9b02451 – volume: 42 start-page: 898 year: 2010 ident: ref_4 article-title: Monitoring drivers’ mental workload in driving simulators using physiological measures publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2009.06.001 – volume: 12 start-page: 2285 year: 2021 ident: ref_16 article-title: Fatigue Monitoring Through Wearables: A State-of-the-Art Review publication-title: Front. Physiol. – ident: ref_1 – volume: 73 start-page: 5 year: 2015 ident: ref_24 article-title: Detecting Drowsy Driver Using Pulse Sensor publication-title: J. Teknol. – ident: ref_29 doi: 10.1109/EMBC44109.2020.9175951 – volume: 36 start-page: 298 year: 1994 ident: ref_3 article-title: Driver Fatigue publication-title: Hum. Factors doi: 10.1177/001872089403600210 – volume: 58 start-page: 121 year: 2011 ident: ref_18 article-title: Driver Drowsiness Classification Using Fuzzy Wavelet-Packet-Based Feature-Extraction Algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2077291 – volume: 38 start-page: 7235 year: 2011 ident: ref_25 article-title: Applying neural network analysis on heart rate variability data to assess driver fatigue publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.12.028 – volume: 32 start-page: 375 year: 1993 ident: ref_10 article-title: A Brief Mental Fatigue Questionnaire publication-title: Br. J. Clin. Psychol. doi: 10.1111/j.2044-8260.1993.tb01070.x – volume: 49 start-page: 1017 year: 2013 ident: ref_32 article-title: A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments publication-title: Psychophysiology – ident: ref_17 doi: 10.1109/SocialCom.2013.124 – ident: ref_22 doi: 10.1371/journal.pone.0238670 – ident: ref_27 doi: 10.1109/ICCSN.2017.8230293 – volume: 16 start-page: 17 year: 1973 ident: ref_39 article-title: Analysis of Heart Rate Variability publication-title: Ergonomics doi: 10.1080/00140137308924479 – ident: ref_11 doi: 10.1007/978-1-4419-9893-4 – ident: ref_21 doi: 10.3390/s22228851 – volume: 4 start-page: 100076 year: 2022 ident: ref_8 article-title: Examining the Impact of 12-Hour Day and Night Shifts on Nurses’ Fatigue: A Prospective Cohort Study publication-title: Int. J. Nurs. Stud. Adv. doi: 10.1016/j.ijnsa.2022.100076 – volume: 80 start-page: 215 year: 2022 ident: ref_14 article-title: Physiological signal-based drowsiness detection using machine learning: Singular and hybrid signal approaches publication-title: J. Saf. Res. doi: 10.1016/j.jsr.2021.12.001 – ident: ref_20 doi: 10.1371/journal.pone.0163360 – ident: ref_41 – volume: 2 start-page: 356 year: 2008 ident: ref_33 article-title: Suppression of baseline wander and power line interference in ECG using digital IIR filter publication-title: Int. J. Circuits Syst. Signal Process. – ident: ref_34 doi: 10.3390/sym13081461 – ident: ref_38 – ident: ref_37 doi: 10.2139/ssrn.4404871 – volume: 1000 start-page: 012048 year: 2018 ident: ref_28 article-title: Electrodermal Activity Based Wearable Device for Drowsy Drivers publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1000/1/012048 – volume: 17 start-page: 354 year: 1996 ident: ref_40 article-title: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use publication-title: Eur. Heart J. doi: 10.1093/oxfordjournals.eurheartj.a014868 – volume: 25 start-page: 663 year: 1982 ident: ref_23 article-title: Spectral analysis of heart rate variability as an indicator of driver fatigue publication-title: Ergonomics doi: 10.1080/00140138208925026 – ident: ref_7 doi: 10.1007/978-3-319-54526-4 – volume: 6 start-page: 163 year: 2010 ident: ref_12 article-title: Number of Lapses during the Psychomotor Vigilance Task as an Objective Measure of Fatigue publication-title: J. Clin. Sleep Med. doi: 10.5664/jcsm.27766 – ident: ref_13 doi: 10.3390/s21113786 |
SSID | ssj0000913844 |
Score | 2.2710872 |
Snippet | This research presents a machine learning modeling process for detecting mental fatigue using three physiological signals: electrodermal activity,... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 77 |
SubjectTerms | Accuracy Algorithms Analysis Cognitive ability Correlation analysis Decision trees Dependent variables Design of experiments Electrocardiogram Electrocardiography electrodermal activity Electroencephalography Electronic systems Fatigue fatigue detection Fatigue tests Feature selection Heart rate Human performance Machine learning Modelling Nervous system Neural networks Physiological aspects Physiology Respiration Sequences Skin Support vector machines Variance analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4FDxVMsFOQDiAOK6sSP2CfUwq4KUisEVOrN8jMFIW_b3Ur8A_42Hse7dA_lFiWjPDye8Ywz830Ivfa9Cd63bbY0FRombD7qImmgSVIqyaJi0Dt8fCKOTtnnM35WN9yWtaxy7ROLo_YLB3vk-50irAdscfr-4rIB1ij4u1opNO6ineyCpZygncPZyZevm10WQL2UjI0V7zTn9_s_lya1HQFY9n5rLSqQ_bc55rLazB-g3Rom4oNRrw_RnZAeofs3wAMfoz-zdA5gGWnAIxAPnudRHq4D_hhWpcAq4crCg0ud59rN4W8_BkBNxiZ5fFyKKQOuOKsDLjUEuIBW_YbeEvwpLSGBH8VnBXEiPw4DiVrB836CTuez7x-Omkqr0DhG2arhykrBArVZSUoE4ninIrVCSRIkzxkODYQyk3MT56xx3AHHOre9sa31jkn6FE3SIoVnCHe-FYbHHAc4x7zNKxsXqpWxi5HGnvMperceYO0q5jhQX_zSOfcAdeib6piiNxvpixFr4xa5Q9DVRgYQssuJxdWgq8Fp4kQbuJTWGsNIpIZ40VplhCHUeLjJW9C0BjvOr-RMbUfIHwaIWPogh06MQ6PyFO1tSWb7c9uX13NFV_tf6n-z9fn_L79A94DAfuxu3EOT1dV1eJnDnJV9VefyXwAA_oo priority: 102 providerName: ProQuest |
Title | Enhancing Mental Fatigue Detection through Physiological Signals and Machine Learning Using Contextual Insights and Efficient Modelling |
URI | https://www.proquest.com/docview/2904763243 https://doaj.org/article/0c61e588bbaa40f3a0d61b9a6a03ad77 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LbxMxEIAtKBc4oPISgTbyAcQBrWqvH2sf-0goSK0QUKk3y88UhBZEUol_wN9mxrupkkPFhVu0GWm9nhmPR5r5hpBXqfM5Jc7B02xupA7wqy2swSZJY40sVmLv8Nm5Pr2QHy7V5caoL6wJG_DAw8YdsKh5VsaE4L1kRXiWNA_Wa8-ET13tI4eYt5FM1TPYcmGkHCrdBeT1B9-WvuctQxx7txWDKqr_tgO5Rpn5Lnk4Xg_p4bCsR-RO7h-TBxvQwCfkz6y_QkhGv6ADgIfOYXcX15me5FUtrOrpOH2H1vrO9fFGP39dIC2Z-j7Rs1pEmenIV13QWjtAK6zqN_aU0Pf9EhP3QXxWSRPwOorD0yrH-ym5mM--HJ824ziFJkohV42ywWiZRQDlWJ1ZVK0tImhrWDYKMhuRmZAecpIYg48q4mx1FTofeEhRGvGM7PQ_-vyc0DZx7VWB-B-jTAEimtKWm9KWIkqn1IS8XW-wiyNrHEdefHeQc6A63KY6JuT1jfTPgbFxi9wR6upGBsnY9QHYixvtxf3LXibkDWraof_CkqIf2xDgw5CE5Q7hyiQVNihPyN6WJPhd3P57bStu9Pulay2THRLwxYv_sdiX5D6Otx96H_fIzurXdd6HS9AqTMldM383JfeOZucfP02r9f8FMesI4w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMsFPCBigOK6sR21j4gVOguu7TbC63Um_ErAYSypbsV8Av4N_xGZpxk6R7KrbcoHjmJ52ln5htCXoShjSHkOWiajpkoHVwVFcuwSFJpJSotsHZ4dlhOjsWHE3myQf70tTCYVtnbxGSow9zjGflOoZkYIrY4f3P6PcOuUfh3tW-h0YrFfvz1A7Zsi9fTPeDvdlGMR0fvJlnXVSDzgotlJrVTpYjcwTvqMjIvC11xV2rFopIQ4PPIuLAQmnvvrJceW4xLN7Qud8ELxWHea-S64ODJsTJ9_H51poMYm0qINr8extnO14Vt8oIhCPxwzfOlBgGXuYHk28Z3yO0uKKW7rRTdJRuxuUduXYAqvE9-j5rPCM3R1LSF_aFj4Gl9HuleXKZ0roZ2PX9oyirtjSr9-KVGjGZqm0BnKXUz0g7VtaYpY4EmiKyfWMlCp80Cjwta8lHCt4DHUWzZltDDH5DjK1nuh2SzmTfxEaFFyEsrK4g6vBfBgR-Vpc5VVVQVr4ZSDsirfoGN7xDOsdHGNwM7HWSHuciOAdleUZ-2yB6X0L1FXq1oEI873Zif1aZTb8N8mUeplHPWClZxy0KZO21Ly7gNOMlL5LRBqwGv5G1X_AAfhvhbZhcCNSGxLHpAttYoQdv9-nAvK6azNgvzTzce_3_4ObkxOZodmIPp4f4TcrOAgK2tq9wim8uz8_gUAqyle5akmpJPV61GfwG1RDol |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGJyE4ID5FYYAPTBxQVCe2E_uA0EZbrYxVEzBpN-OvFKYpHWsn4C_gf-Kvw89xynoYt92i-MlJ_D7tvPd7CL10lfbO5XnQNOkzVppwVdQkgyJJIQWrJYPa4YNpuXfE3h_z4w30p6uFgbTKziZGQ-3mFs7IB4UkrAJscTqoU1rE4XD89ux7Bh2k4E9r106jFZF9_-tH2L4t3kyGgdfbRTEefX63l6UOA5lllC0zLo0omacmvK8sPbG8kDU1pRTECx6CfeoJZTqE6dYabbmFduPcVNrkxlkmaJj3BtqsYFfUQ5u7o-nhx9UJDyBuCsbabHtKJRmcLHSTFwQg4as1PxjbBVzlFKKnG99Fd1KIindambqHNnxzH92-BFz4AP0eNV8BqKOZ4RYECI8Dh2cXHg_9MiZ3NTh1AMIxx7QzsfjTtxkgNmPdOHwQEzk9ThivMxzzF3AEzPoJdS140izg8KAlH0W0i_A4DA3cIpb4Q3R0LQv-CPWaeeMfI1y4vNS8DjGItcyZ4FV5KXNRF3VN64rzPnrdLbCyCe8c2m6cqrDvAXaoy-zoo-0V9VmL83EF3S7wakUD6Nzxxvx8ppKyK2LL3HMhjNGakZpq4srcSF1qQrWDSV4BpxXYkPBKVqdSiPBhgMaldkLYxjgUSffR1hpl0H27PtzJikq2Z6H-acqT_w-_QDeDCqkPk-n-U3SrCNFbW2S5hXrL8wv_LERbS_M8iTVGX65bk_4CYnA_tw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Mental+Fatigue+Detection+through+Physiological+Signals+and+Machine+Learning+Using+Contextual+Insights+and+Efficient+Modelling&rft.jtitle=Journal+of+sensor+and+actuator+networks&rft.au=Carole-Anne+Cos&rft.au=Alexandre+Lambert&rft.au=Aakash+Soni&rft.au=Haifa+Jeridi&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2224-2708&rft.volume=12&rft.issue=6&rft.spage=77&rft_id=info:doi/10.3390%2Fjsan12060077&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0c61e588bbaa40f3a0d61b9a6a03ad77 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2224-2708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2224-2708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2224-2708&client=summon |