A data-driven approach based on long short-term memory and hidden Markov model for crack propagation prediction
•This paper forecasts the crack propagation based on long short-term memory and hidden Markov model.•The present approach reduces significantly a large amount of computational cost when predicting crack propagation without any analysis tools.•A novel data-driven model has the ability to learn with l...
Saved in:
Published in | Engineering fracture mechanics Vol. 235; p. 107085 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.08.2020
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •This paper forecasts the crack propagation based on long short-term memory and hidden Markov model.•The present approach reduces significantly a large amount of computational cost when predicting crack propagation without any analysis tools.•A novel data-driven model has the ability to learn with less information.•Numerical results show high efficiency of the present approach.
We present in this paper a combined technique of long short-term memory and hidden Markov model to prediction problems of crack propagation in engineering. The primary advantage of the hidden Markov model is that the ability to learn with less information, in other words, its future states do not depend on past ones, based only on the present state. We use long short-term memory to train data, and output consequences improved by adding predicted different changes that are computed by hidden Markov model. Applying this combined method to numerical examples of forecasting crack propagation of singled-edge-notched beam forced by 4-point shear, crack-height growth in Marcellus shale under the hydraulic fracturing and deformations of dam structures made from fiber reinforced concrete material is addressed. The tests were carried out with many different sizes of experimental data. It was found that a combined long short-term memory - hidden Markov model results in more accurate solution than only using long short-term memory, especially in the case of the dataset that is lack of information. |
---|---|
AbstractList | •This paper forecasts the crack propagation based on long short-term memory and hidden Markov model.•The present approach reduces significantly a large amount of computational cost when predicting crack propagation without any analysis tools.•A novel data-driven model has the ability to learn with less information.•Numerical results show high efficiency of the present approach.
We present in this paper a combined technique of long short-term memory and hidden Markov model to prediction problems of crack propagation in engineering. The primary advantage of the hidden Markov model is that the ability to learn with less information, in other words, its future states do not depend on past ones, based only on the present state. We use long short-term memory to train data, and output consequences improved by adding predicted different changes that are computed by hidden Markov model. Applying this combined method to numerical examples of forecasting crack propagation of singled-edge-notched beam forced by 4-point shear, crack-height growth in Marcellus shale under the hydraulic fracturing and deformations of dam structures made from fiber reinforced concrete material is addressed. The tests were carried out with many different sizes of experimental data. It was found that a combined long short-term memory - hidden Markov model results in more accurate solution than only using long short-term memory, especially in the case of the dataset that is lack of information. We present in this paper a combined technique of long short-term memory and hidden Markov model to prediction problems of crack propagation in engineering. The primary advantage of the hidden Markov model is that the ability to learn with less information, in other words, its future states do not depend on past ones, based only on the present state. We use long short-term memory to train data, and output consequences improved by adding predicted different changes that are computed by hidden Markov model. Applying this combined method to numerical examples of forecasting crack propagation of singled-edge-notched beam forced by 4-point shear, crack-height growth in Marcellus shale under the hydraulic fracturing and deformations of dam structures made from fiber reinforced concrete material is addressed. The tests were carried out with many different sizes of experimental data. It was found that a combined long short-term memory - hidden Markov model results in more accurate solution than only using long short-term memory, especially in the case of the dataset that is lack of information. |
ArticleNumber | 107085 |
Author | Tao, Q.B. Nguyen, Vu-Hieu Nguyen-Xuan, H. Abdel-Wahab, Magd Nguyen-Le, Duyen H. |
Author_xml | – sequence: 1 givenname: Duyen H. surname: Nguyen-Le fullname: Nguyen-Le, Duyen H. organization: CIRTech Institute, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam – sequence: 2 givenname: Q.B. surname: Tao fullname: Tao, Q.B. organization: Department of Mechanical Engineering, University of Science and Technology, The University of Danang, Viet Nam – sequence: 3 givenname: Vu-Hieu surname: Nguyen fullname: Nguyen, Vu-Hieu organization: Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France – sequence: 4 givenname: Magd surname: Abdel-Wahab fullname: Abdel-Wahab, Magd organization: Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam – sequence: 5 givenname: H. surname: Nguyen-Xuan fullname: Nguyen-Xuan, H. email: ngx.hung@hutech.edu.vn organization: CIRTech Institute, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam |
BackLink | https://hal.science/hal-02911707$$DView record in HAL |
BookMark | eNqNkc1u2zAQhIkiBWqnfQcWPfUgh38SxaNhtE0BB7mkZ2JNUhYdi1RJxYDfPhRUFDnmxMVi5sMsZ41uQgwOoa-UbCihzd1p48KxS2AGZ_oNI2zeS9LWH9CKtpJXktP6Bq0IoWVWQnxC65xPhBDZtGSF4hZbmKCyyV9cwDCOKYLp8QGyszgGfI7hiHMf01RNLg14cENMVwzB4t5bWzwPkJ7jBQ_RujPuYsKmxHnGBTTCESZfIGNy1pt5_Iw-dnDO7su_9xb9-fnjaXdf7R9__d5t95URXEwVN7RVRClGWdO2VAjomKp5J5SlgjTcqPrARG3bjomG142qgVtCFYA4GNlSfou-L9weznpMfoB01RG8vt_u9bwjTFEqibzM2m-LtkT---LypE_xJYUSTzMhGskko01RqUVlUsw5ue4_lhI9d6FP-k0Xeu5CL10U727xunLyxbuks_EumPIryZlJ2-jfQXkFAU2YUQ |
CitedBy_id | crossref_primary_10_1016_j_engappai_2021_104423 crossref_primary_10_1016_j_measurement_2023_113336 crossref_primary_10_1016_j_engappai_2023_106444 crossref_primary_10_1016_j_engappai_2022_105475 crossref_primary_10_1007_s00366_022_01756_w crossref_primary_10_1016_j_measurement_2021_109310 crossref_primary_10_1016_j_solmat_2024_112927 crossref_primary_10_1007_s11595_024_2913_7 crossref_primary_10_1016_j_engappai_2022_104667 crossref_primary_10_1016_j_engappai_2022_105118 crossref_primary_10_1007_s11831_022_09786_9 crossref_primary_10_1016_j_measurement_2022_110826 crossref_primary_10_1007_s10921_023_01005_0 crossref_primary_10_1016_j_oceaneng_2024_118663 crossref_primary_10_3390_app14104223 crossref_primary_10_1007_s11709_022_0909_y crossref_primary_10_1111_exsy_13291 crossref_primary_10_1002_2050_7038_13189 crossref_primary_10_1177_1748006X241238582 crossref_primary_10_1007_s00339_023_06629_7 crossref_primary_10_1007_s12540_024_01628_6 crossref_primary_10_1061__ASCE_CF_1943_5509_0001666 crossref_primary_10_1016_j_engappai_2023_105844 crossref_primary_10_1016_j_engappai_2022_104850 crossref_primary_10_1016_j_engfracmech_2023_109107 crossref_primary_10_3389_fnbot_2024_1284175 crossref_primary_10_1016_j_engappai_2023_105961 crossref_primary_10_1016_j_engappai_2022_105066 crossref_primary_10_1016_j_ijmecsci_2023_108270 crossref_primary_10_3390_app13010231 crossref_primary_10_1016_j_engfailanal_2023_107350 crossref_primary_10_1016_j_compstruc_2023_107031 crossref_primary_10_1177_16878132241248286 crossref_primary_10_1016_j_measurement_2022_111228 crossref_primary_10_1016_j_undsp_2023_05_006 crossref_primary_10_1007_s12205_022_1241_8 crossref_primary_10_1016_j_compstruct_2023_117601 crossref_primary_10_1016_j_matpr_2022_05_251 crossref_primary_10_1016_j_measurement_2020_108668 crossref_primary_10_1007_s10999_022_09612_x crossref_primary_10_1016_j_eswa_2023_122219 crossref_primary_10_3389_fmech_2022_1003170 crossref_primary_10_1103_PhysRevB_106_104305 crossref_primary_10_1631_jzus_A2000317 crossref_primary_10_1016_j_compscitech_2022_109425 crossref_primary_10_1016_j_engappai_2023_107150 crossref_primary_10_1016_j_isatra_2021_05_002 crossref_primary_10_1186_s10033_023_00876_8 crossref_primary_10_1177_10775463221122117 crossref_primary_10_1016_j_asoc_2020_106998 crossref_primary_10_1016_j_engappai_2022_105132 crossref_primary_10_1016_j_engappai_2022_105014 crossref_primary_10_1016_j_engappai_2022_105652 crossref_primary_10_1016_j_ecolind_2023_110092 crossref_primary_10_1016_j_engappai_2023_106907 crossref_primary_10_1016_j_mtcomm_2022_104437 crossref_primary_10_1016_j_engappai_2022_105418 crossref_primary_10_1016_j_engfracmech_2024_110149 crossref_primary_10_1016_j_measurement_2021_110637 crossref_primary_10_1016_j_apm_2022_02_036 crossref_primary_10_1016_j_ymssp_2021_108673 crossref_primary_10_1016_j_engstruct_2023_115730 crossref_primary_10_1007_s00521_022_07111_w crossref_primary_10_1109_ACCESS_2023_3343874 crossref_primary_10_1016_j_engappai_2022_105580 crossref_primary_10_1016_j_engappai_2021_104491 crossref_primary_10_1109_JSTARS_2021_3104936 crossref_primary_10_3390_jmse12010071 crossref_primary_10_1016_j_measurement_2021_110471 crossref_primary_10_1007_s11709_022_0901_6 crossref_primary_10_1016_j_cemconcomp_2023_105270 crossref_primary_10_1016_j_engappai_2024_108490 crossref_primary_10_1016_j_sigpro_2022_108714 crossref_primary_10_1002_srin_202100267 crossref_primary_10_1007_s00158_022_03185_1 crossref_primary_10_1016_j_engappai_2022_105685 crossref_primary_10_1016_j_engfracmech_2021_107980 crossref_primary_10_1016_j_ijfatigue_2022_106998 crossref_primary_10_1016_j_engappai_2022_104799 crossref_primary_10_1098_rsta_2022_0391 crossref_primary_10_1016_j_measurement_2022_111805 crossref_primary_10_1016_j_istruc_2023_105587 crossref_primary_10_1088_2632_2153_ad52e8 crossref_primary_10_1016_j_energy_2021_121308 |
Cites_doi | 10.1007/BF00301139 10.3390/risks5040062 10.1049/cp:19991218 10.1109/TASL.2011.2134090 10.2118/145949-MS 10.1016/j.ins.2020.02.013 10.1002/nme.3121 10.1016/j.engstruct.2019.109558 10.1214/aos/1176344136 10.1016/S0004-3702(98)00023-X 10.1006/jmps.1999.1276 10.1109/ICCV.2001.937532 10.1109/TIT.1967.1054010 10.1109/34.62605 10.1214/aoms/1177697196 10.1162/neco.1997.9.8.1735 10.32604/cmc.2019.08001 10.1207/s15516709cog1402_1 10.1109/LSP.2002.806705 10.1214/aoms/1177699147 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W 10.1002/nme.4284 10.1109/TAC.1974.1100705 10.1016/0031-3203(95)00013-P 10.1093/bioinformatics/btg1080 10.1016/0045-7949(93)90316-6 10.1073/pnas.79.8.2554 10.1016/j.cma.2012.07.017 10.1109/72.125866 10.1007/BF02326425 10.1016/S0166-4115(97)80111-2 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Aug 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 1XC |
DOI | 10.1016/j.engfracmech.2020.107085 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-7315 |
ExternalDocumentID | oai_HAL_hal_02911707v1 10_1016_j_engfracmech_2020_107085 S0013794420304367 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 1XC |
ID | FETCH-LOGICAL-c434t-3c189099212688144af2953f49d14063c95b245d8f24635695a3d019aa4bc7813 |
IEDL.DBID | AIKHN |
ISSN | 0013-7944 |
IngestDate | Tue Oct 15 15:30:56 EDT 2024 Thu Oct 10 18:04:31 EDT 2024 Thu Sep 26 20:48:18 EDT 2024 Fri Feb 23 02:47:40 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Fracture mechanics Recurrent neural network Machine learning Long short-term memory Hidden Markov model Hydraulic fracturing |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-3c189099212688144af2953f49d14063c95b245d8f24635695a3d019aa4bc7813 |
ORCID | 0000-0002-1746-8297 0000-0003-1959-9087 |
OpenAccessLink | https://biblio.ugent.be/publication/8665326/file/8665328 |
PQID | 2446727216 |
PQPubID | 2045482 |
ParticipantIDs | hal_primary_oai_HAL_hal_02911707v1 proquest_journals_2446727216 crossref_primary_10_1016_j_engfracmech_2020_107085 elsevier_sciencedirect_doi_10_1016_j_engfracmech_2020_107085 |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 20200801 2020-08 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Engineering fracture mechanics |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Duc-Le, Nguyen, Nguyen-Xuan (b0185) 2020; 520 Kaelbling, Littman, Cassandra (b0115) 1998; 1 Schwarz (b0145) 1978; 6 Bengio Y, De Mori R, Flammia G, Kompe R. Global optimization of a neural network-hidden Markov model hybrid. In: IJCNN-91-Seattle international joint conference on neural networks, vol. 2; 1991. p. 789–94. Gers FA, Schmidhuber J, Cummins F. Learning to forget: continual prediction with lstm. In: 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), vol. 2; 1999. p. 50–5. Shun-Zheng, Kobayashi (b0125) 2003; 10 Niles, Silverman (b0085) 1990 Elman (b0060) 1990; 14 Nguyen-Xuan, Liu, Bordas, Natarajan, Rabczuk (b0100) 2013; 253 Viterbi (b0130) 1967; 13 Stanke, Waack (b0045) 2003; 19 Howard (b0110) 1960 Jain A, Mehta P, Darbha RT. Stock forecasting using hidden Markov models. Tech. Rep., Boston University; 2018. De Luycker, Benson, Belytschko, Bazilevs, Hsu (b0020) 2011; 87 Seymore K, McCallum A, Rosenfeld R. Learning hidden Markov model structure for information extraction. In: Proceedings of AAAI’99 workshop on machine learning for information extraction; 1999. Jordan (b0065) 1997; 121 Ooi, Song, Tin-Loi, Yang (b0025) 2012; 91 Hopfield (b0055) 1982; 79 Carpinteri, Valente, Ferrara, Melchiorrl (b0170) 1993; 48 Nguyen, Do, Lee, Rabczuk, Nguyen-Xuan (b0075) 2019; 61 Dang, Nguyen Ngoc, Hoang, Nguyen-Xuan, Abdel (b0180) 2019; 198 Fisher K, Warpinski N. Hydraulic fracture-height growth: Real Data. In: Society of Petroleum Engineers; 2012,. Nelson (b0005) 1977; 17 Bourlard, Wellekens (b0080) 1990; 12 Swenson, Ingraffea (b0010) 1988; 3 Gagniuc (b0105) 2017 Baum LE, Petrie T, Soules G, Weiss N. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. In: The annals of mathematical statistics, vol. 41; 1970. p. 164–71. Zucchini (b0150) 2000; 44 Stenger B, Ramesh V, Paragios N, Coetzee F, Buhmann JM. Topology free hidden Markov models: application to background modeling. In: Proceedings eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 1; 2001. p. 294–301. Akaike (b0140) 1974; 19 Hochreiter, Schmidhuber (b0070) 1997; 9 Dahl, Yu, Deng, Acero (b0095) 2012; 20 Hassan, Nath (b0040) 2005 Baum, Petrie (b0120) 1966; 37 Nguyen (b0160) 2017; 5 Belytschko, Tabbara (b0015) 1996; 39 Bunke, Roth, Schukat-Talamazzini (b0030) 1995; 28 Nelson (10.1016/j.engfracmech.2020.107085_b0005) 1977; 17 Viterbi (10.1016/j.engfracmech.2020.107085_b0130) 1967; 13 Elman (10.1016/j.engfracmech.2020.107085_b0060) 1990; 14 Stanke (10.1016/j.engfracmech.2020.107085_b0045) 2003; 19 Hochreiter (10.1016/j.engfracmech.2020.107085_b0070) 1997; 9 Swenson (10.1016/j.engfracmech.2020.107085_b0010) 1988; 3 10.1016/j.engfracmech.2020.107085_b0090 Niles (10.1016/j.engfracmech.2020.107085_b0085) 1990 De Luycker (10.1016/j.engfracmech.2020.107085_b0020) 2011; 87 10.1016/j.engfracmech.2020.107085_b0165 Ooi (10.1016/j.engfracmech.2020.107085_b0025) 2012; 91 Hopfield (10.1016/j.engfracmech.2020.107085_b0055) 1982; 79 Bunke (10.1016/j.engfracmech.2020.107085_b0030) 1995; 28 Carpinteri (10.1016/j.engfracmech.2020.107085_b0170) 1993; 48 Zucchini (10.1016/j.engfracmech.2020.107085_b0150) 2000; 44 Baum (10.1016/j.engfracmech.2020.107085_b0120) 1966; 37 Nguyen (10.1016/j.engfracmech.2020.107085_b0075) 2019; 61 Gagniuc (10.1016/j.engfracmech.2020.107085_b0105) 2017 Nguyen-Xuan (10.1016/j.engfracmech.2020.107085_b0100) 2013; 253 Hassan (10.1016/j.engfracmech.2020.107085_b0040) 2005 Nguyen (10.1016/j.engfracmech.2020.107085_b0160) 2017; 5 Schwarz (10.1016/j.engfracmech.2020.107085_b0145) 1978; 6 Dang (10.1016/j.engfracmech.2020.107085_b0180) 2019; 198 Howard (10.1016/j.engfracmech.2020.107085_b0110) 1960 Jordan (10.1016/j.engfracmech.2020.107085_b0065) 1997; 121 Dahl (10.1016/j.engfracmech.2020.107085_b0095) 2012; 20 Kaelbling (10.1016/j.engfracmech.2020.107085_b0115) 1998; 1 Bourlard (10.1016/j.engfracmech.2020.107085_b0080) 1990; 12 Akaike (10.1016/j.engfracmech.2020.107085_b0140) 1974; 19 Duc-Le (10.1016/j.engfracmech.2020.107085_b0185) 2020; 520 10.1016/j.engfracmech.2020.107085_b0050 10.1016/j.engfracmech.2020.107085_b0035 10.1016/j.engfracmech.2020.107085_b0155 Belytschko (10.1016/j.engfracmech.2020.107085_b0015) 1996; 39 10.1016/j.engfracmech.2020.107085_b0175 10.1016/j.engfracmech.2020.107085_b0135 Shun-Zheng (10.1016/j.engfracmech.2020.107085_b0125) 2003; 10 |
References_xml | – volume: 19 start-page: ii215 year: 2003 end-page: ii225 ident: b0045 article-title: Gene prediction with a hidden Markov model and a new intron submodel publication-title: Bioinformatics contributor: fullname: Waack – volume: 10 start-page: 11 year: 2003 end-page: 14 ident: b0125 article-title: An efficient forward-backward algorithm for an explicit-duration hidden Markov model publication-title: IEEE Signal Process Lett contributor: fullname: Kobayashi – volume: 121 start-page: 471 year: 1997 end-page: 495 ident: b0065 article-title: Serial order: A parallel distributed processing approach publication-title: Adv Psychol contributor: fullname: Jordan – year: 1960 ident: b0110 article-title: Dynamic programming and Markov processes contributor: fullname: Howard – volume: 37 start-page: 1554 year: 1966 end-page: 1563 ident: b0120 article-title: Statistical inference for probabilistic functions of finite state Markov chains publication-title: Ann Math Statist contributor: fullname: Petrie – volume: 39 start-page: 923 year: 1996 end-page: 938 ident: b0015 article-title: Dynamic fracture using element-free Galerkin methods publication-title: Int J Numer Meth Eng contributor: fullname: Tabbara – volume: 20 start-page: 30 year: 2012 end-page: 42 ident: b0095 article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Trans Audio Speech Lang Process contributor: fullname: Acero – start-page: 192 year: 2005 end-page: 196 ident: b0040 article-title: Stockmarket forecasting using hidden Markov model: A new approach publication-title: Proceedings – the IEEE fifth international conference on intelligent systems design and applications contributor: fullname: Nath – volume: 44 start-page: 41 year: 2000 end-page: 61 ident: b0150 article-title: An introduction to model selection publication-title: J Math Psychol contributor: fullname: Zucchini – volume: 87 start-page: 541 year: 2011 end-page: 565 ident: b0020 article-title: X-FEM in isogeometric analysis for linear fracture mechanics publication-title: Int J Numer Meth Eng contributor: fullname: Hsu – year: 2017 ident: b0105 article-title: Markov chains: from theory to implementation and experimentation contributor: fullname: Gagniuc – volume: 253 start-page: 252 year: 2013 end-page: 273 ident: b0100 article-title: An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order publication-title: Comput Meth Appl Mech Eng contributor: fullname: Rabczuk – volume: 28 start-page: 1399 year: 1995 end-page: 1413 ident: b0030 article-title: Off-line cursive handwriting recognition using hidden Markov models publication-title: Pattern Recogn contributor: fullname: Schukat-Talamazzini – volume: 91 start-page: 319 year: 2012 end-page: 342 ident: b0025 article-title: Polygon scaled boundary finite element for crack propagation modelling publication-title: Int J Numer Meth Eng contributor: fullname: Yang – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0070 article-title: Long short-term memory publication-title: Neural Comput contributor: fullname: Schmidhuber – volume: 198 start-page: 109558 year: 2019 ident: b0180 article-title: Numerical investigation of novel prefabricated hollow concrete blocks for stepped-type seawall structures publication-title: Eng Struct contributor: fullname: Abdel – volume: 17 start-page: 41 year: 1977 end-page: 49 ident: b0005 article-title: Review of fatigue-crack-growth prediction methods publication-title: Exp Mech contributor: fullname: Nelson – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: b0140 article-title: A new look at the statistical model identification publication-title: IEEE Trans Autom Control contributor: fullname: Akaike – volume: 520 start-page: 250 year: 2020 end-page: 270 ident: b0185 article-title: Balancing composite motion optimization publication-title: Inf Sci contributor: fullname: Nguyen-Xuan – volume: 13 start-page: 260 year: 1967 end-page: 269 ident: b0130 article-title: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm publication-title: IEEE Trans Inf Theory contributor: fullname: Viterbi – volume: 61 start-page: 951 year: 2019 end-page: 977 ident: b0075 article-title: Forecasting damage mechanics by deep learning publication-title: Comput Mater Continua contributor: fullname: Nguyen-Xuan – volume: 3 start-page: 381 year: 1988 end-page: 397 ident: b0010 article-title: Modeling mixed-mode dynamic crack propagation nsing finite elements: theory and applications publication-title: Comput Mech contributor: fullname: Ingraffea – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: b0055 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc Natl Acad Sci USA contributor: fullname: Hopfield – volume: 12 start-page: 1167 year: 1990 end-page: 1178 ident: b0080 article-title: Links between Markov models and multilayer perceptrons publication-title: IEEE Trans Pattern Anal Mach Intell contributor: fullname: Wellekens – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: b0145 article-title: Estimating the dimension of a model publication-title: Ann Stat contributor: fullname: Schwarz – volume: 5 start-page: 62 year: 2017 ident: b0160 article-title: An analysis and implementation of the hidden Markov model to technology stock prediction publication-title: Risks contributor: fullname: Nguyen – volume: 48 start-page: 397 year: 1993 end-page: 413 ident: b0170 article-title: Is mode II fracture energy a real material property? publication-title: Comput Struct contributor: fullname: Melchiorrl – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: b0060 article-title: Finding structure in time publication-title: Cognit Sci contributor: fullname: Elman – year: 1990 ident: b0085 article-title: Combining hidden Markov model and neural network classifiers publication-title: International conference on acoustics, speech, and signal processing contributor: fullname: Silverman – volume: 1 start-page: 99 year: 1998 end-page: 134 ident: b0115 article-title: Planning and acting in partially observable stochastic domains publication-title: Artif Intell contributor: fullname: Cassandra – year: 2017 ident: 10.1016/j.engfracmech.2020.107085_b0105 contributor: fullname: Gagniuc – volume: 3 start-page: 381 issue: 6 year: 1988 ident: 10.1016/j.engfracmech.2020.107085_b0010 article-title: Modeling mixed-mode dynamic crack propagation nsing finite elements: theory and applications publication-title: Comput Mech doi: 10.1007/BF00301139 contributor: fullname: Swenson – year: 1960 ident: 10.1016/j.engfracmech.2020.107085_b0110 contributor: fullname: Howard – volume: 5 start-page: 62 issue: 4 year: 2017 ident: 10.1016/j.engfracmech.2020.107085_b0160 article-title: An analysis and implementation of the hidden Markov model to technology stock prediction publication-title: Risks doi: 10.3390/risks5040062 contributor: fullname: Nguyen – ident: 10.1016/j.engfracmech.2020.107085_b0155 doi: 10.1049/cp:19991218 – volume: 20 start-page: 30 issue: 1 year: 2012 ident: 10.1016/j.engfracmech.2020.107085_b0095 article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Trans Audio Speech Lang Process doi: 10.1109/TASL.2011.2134090 contributor: fullname: Dahl – ident: 10.1016/j.engfracmech.2020.107085_b0175 doi: 10.2118/145949-MS – volume: 520 start-page: 250 year: 2020 ident: 10.1016/j.engfracmech.2020.107085_b0185 article-title: Balancing composite motion optimization publication-title: Inf Sci doi: 10.1016/j.ins.2020.02.013 contributor: fullname: Duc-Le – year: 1990 ident: 10.1016/j.engfracmech.2020.107085_b0085 article-title: Combining hidden Markov model and neural network classifiers contributor: fullname: Niles – volume: 87 start-page: 541 issue: 6 year: 2011 ident: 10.1016/j.engfracmech.2020.107085_b0020 article-title: X-FEM in isogeometric analysis for linear fracture mechanics publication-title: Int J Numer Meth Eng doi: 10.1002/nme.3121 contributor: fullname: De Luycker – start-page: 192 year: 2005 ident: 10.1016/j.engfracmech.2020.107085_b0040 article-title: Stockmarket forecasting using hidden Markov model: A new approach contributor: fullname: Hassan – volume: 198 start-page: 109558 year: 2019 ident: 10.1016/j.engfracmech.2020.107085_b0180 article-title: Numerical investigation of novel prefabricated hollow concrete blocks for stepped-type seawall structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.109558 contributor: fullname: Dang – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 10.1016/j.engfracmech.2020.107085_b0145 article-title: Estimating the dimension of a model publication-title: Ann Stat doi: 10.1214/aos/1176344136 contributor: fullname: Schwarz – volume: 1 start-page: 99 issue: 101 year: 1998 ident: 10.1016/j.engfracmech.2020.107085_b0115 article-title: Planning and acting in partially observable stochastic domains publication-title: Artif Intell doi: 10.1016/S0004-3702(98)00023-X contributor: fullname: Kaelbling – volume: 44 start-page: 41 issue: 1 year: 2000 ident: 10.1016/j.engfracmech.2020.107085_b0150 article-title: An introduction to model selection publication-title: J Math Psychol doi: 10.1006/jmps.1999.1276 contributor: fullname: Zucchini – ident: 10.1016/j.engfracmech.2020.107085_b0050 doi: 10.1109/ICCV.2001.937532 – volume: 13 start-page: 260 issue: 2 year: 1967 ident: 10.1016/j.engfracmech.2020.107085_b0130 article-title: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1967.1054010 contributor: fullname: Viterbi – volume: 12 start-page: 1167 issue: 12 year: 1990 ident: 10.1016/j.engfracmech.2020.107085_b0080 article-title: Links between Markov models and multilayer perceptrons publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.62605 contributor: fullname: Bourlard – ident: 10.1016/j.engfracmech.2020.107085_b0135 doi: 10.1214/aoms/1177697196 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.engfracmech.2020.107085_b0070 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 contributor: fullname: Hochreiter – volume: 61 start-page: 951 issue: 3 year: 2019 ident: 10.1016/j.engfracmech.2020.107085_b0075 article-title: Forecasting damage mechanics by deep learning publication-title: Comput Mater Continua doi: 10.32604/cmc.2019.08001 contributor: fullname: Nguyen – volume: 14 start-page: 179 issue: 2 year: 1990 ident: 10.1016/j.engfracmech.2020.107085_b0060 article-title: Finding structure in time publication-title: Cognit Sci doi: 10.1207/s15516709cog1402_1 contributor: fullname: Elman – volume: 10 start-page: 11 issue: 1 year: 2003 ident: 10.1016/j.engfracmech.2020.107085_b0125 article-title: An efficient forward-backward algorithm for an explicit-duration hidden Markov model publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2002.806705 contributor: fullname: Shun-Zheng – volume: 37 start-page: 1554 issue: 6 year: 1966 ident: 10.1016/j.engfracmech.2020.107085_b0120 article-title: Statistical inference for probabilistic functions of finite state Markov chains publication-title: Ann Math Statist doi: 10.1214/aoms/1177699147 contributor: fullname: Baum – volume: 39 start-page: 923 issue: 6 year: 1996 ident: 10.1016/j.engfracmech.2020.107085_b0015 article-title: Dynamic fracture using element-free Galerkin methods publication-title: Int J Numer Meth Eng doi: 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W contributor: fullname: Belytschko – ident: 10.1016/j.engfracmech.2020.107085_b0035 – volume: 91 start-page: 319 year: 2012 ident: 10.1016/j.engfracmech.2020.107085_b0025 article-title: Polygon scaled boundary finite element for crack propagation modelling publication-title: Int J Numer Meth Eng doi: 10.1002/nme.4284 contributor: fullname: Ooi – volume: 19 start-page: 716 issue: 6 year: 1974 ident: 10.1016/j.engfracmech.2020.107085_b0140 article-title: A new look at the statistical model identification publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.1974.1100705 contributor: fullname: Akaike – volume: 28 start-page: 1399 issue: 9 year: 1995 ident: 10.1016/j.engfracmech.2020.107085_b0030 article-title: Off-line cursive handwriting recognition using hidden Markov models publication-title: Pattern Recogn doi: 10.1016/0031-3203(95)00013-P contributor: fullname: Bunke – volume: 19 start-page: ii215 issue: 2 year: 2003 ident: 10.1016/j.engfracmech.2020.107085_b0045 article-title: Gene prediction with a hidden Markov model and a new intron submodel publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1080 contributor: fullname: Stanke – volume: 48 start-page: 397 issue: 3 year: 1993 ident: 10.1016/j.engfracmech.2020.107085_b0170 article-title: Is mode II fracture energy a real material property? publication-title: Comput Struct doi: 10.1016/0045-7949(93)90316-6 contributor: fullname: Carpinteri – volume: 79 start-page: 2554 issue: 8 year: 1982 ident: 10.1016/j.engfracmech.2020.107085_b0055 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.79.8.2554 contributor: fullname: Hopfield – volume: 253 start-page: 252 year: 2013 ident: 10.1016/j.engfracmech.2020.107085_b0100 article-title: An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order publication-title: Comput Meth Appl Mech Eng doi: 10.1016/j.cma.2012.07.017 contributor: fullname: Nguyen-Xuan – ident: 10.1016/j.engfracmech.2020.107085_b0165 – ident: 10.1016/j.engfracmech.2020.107085_b0090 doi: 10.1109/72.125866 – volume: 17 start-page: 41 issue: 2 year: 1977 ident: 10.1016/j.engfracmech.2020.107085_b0005 article-title: Review of fatigue-crack-growth prediction methods publication-title: Exp Mech doi: 10.1007/BF02326425 contributor: fullname: Nelson – volume: 121 start-page: 471 year: 1997 ident: 10.1016/j.engfracmech.2020.107085_b0065 article-title: Serial order: A parallel distributed processing approach publication-title: Adv Psychol doi: 10.1016/S0166-4115(97)80111-2 contributor: fullname: Jordan |
SSID | ssj0007680 |
Score | 2.6078331 |
Snippet | •This paper forecasts the crack propagation based on long short-term memory and hidden Markov model.•The present approach reduces significantly a large amount... We present in this paper a combined technique of long short-term memory and hidden Markov model to prediction problems of crack propagation in engineering. The... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 107085 |
SubjectTerms | Crack propagation Deep learning Engineering Sciences Fiber reinforced concretes Fracture mechanics Hidden Markov model Hydraulic fracturing Long short-term memory Machine learning Markov chains Physics Propagation Recurrent neural network Shale gas Short term |
Title | A data-driven approach based on long short-term memory and hidden Markov model for crack propagation prediction |
URI | https://dx.doi.org/10.1016/j.engfracmech.2020.107085 https://www.proquest.com/docview/2446727216 https://hal.science/hal-02911707 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH44I4gexBV3oniNtknaJuBlEGVc8KTgLaSb4zKtjKPgxd_ue13c8CB4ahpIm-al3_tCXr4HsOvwLwjjTPBQKo-TIBePc99wHZqE9M1j6Sq1z4uwf6VOr4PrCThsz8JQWGWD_TWmV2jd1Ow3o7n_eHtLZ3x9ibNJCdrdk2HUgUl0R0J3YbJ3cta_-ABkZNRem8iAGkzB9meYV1bc5COXDLNqa0JQfeRRZuXf3VRnQPGSP2C78kXHczDbkEjWq_s5DxNZsQAzX6QFF6HsMQr-5OmI4Iy10uGMvFbKyoI9lMUNexog--aEzmxIIbevzBUpG5CsSMHoGE_5wqpcOQy5LUvwC-4ZPghBqDIolmmfh4pLcHV8dHnY501yBZ4oqcZcJr42SA_RdYVa47LK5cIEMlcmxTVXKBMTxEIFqc6FIg07EziZIh90TsVJpH25DN2iLLIVYJlUqcqcZ7Q2eHU60J6RvsyjIHGIpasg2rG0j7WGhm2Dy-7sFwNYMoCtDbAKB-2o228TwiLW_6X5Dlrq43Ukot3vnVuq84ShdDvRC3ZsozWkbX7dJ4t8p9qd9sO1_3VhHabpro4W3IDuePScbSKDGcdb0Nl787eaefoOupzt3w |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64gMtBXHFco3gNtk3aJuBlEKXqOCcFbyHdHLdWxnHAf-97XdzwIHhqSGmb5iVfvvBevgdwYHEWBHHm8UBIh5MgF49zV3MV6IT0zWNhK7XPfhBdy_Mb_2YCjtuzMBRW2WB_jekVWjc1h01vHj7f3dEZX1fgaJIeefdEEE7CNLIBjbNzunt2EfU_ABkZtdMmMqAHZmDvM8wrK27zoU2esso14VF96FBm5d-XqckBxUv-gO1qLTpdhIWGRLJu3c4lmMiKZZj_Ii24AmWXUfAnT4cEZ6yVDme0aqWsLNhjWdyylwGyb07ozJ4o5PaN2SJlA5IVKRgd4ynHrMqVw5DbsgT_4IHhixCEKoNimfw8VFyF69OTq-OIN8kVeCKFHHGRuEojPcSlK1AKt1U297QvcqlT3HMFItF-7Ek_VbknScNO-1akyAetlXESKleswVRRFtk6sEzIVGbW0UppvFrlK0cLV-Shn1jE0g54bV-a51pDw7TBZffmiwEMGcDUBujAUdvr5tuAMIj1f3l8Hy318TkS0Y66PUN1jqcp3U44xoZttYY0zdR9Mch3Ku-0G2z8rwm7MBtdXfZM76x_sQlzdKeOHNyCqdHwNdtGNjOKd5rR-g58--_T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+approach+based+on+long+short-term+memory+and+hidden+Markov+model+for+crack+propagation+prediction&rft.jtitle=Engineering+fracture+mechanics&rft.au=Nguyen-Le%2C+Duyen+H&rft.au=Tao%2C+QB&rft.au=Nguyen%2C+Vu-Hieu&rft.au=Abdel-Wahab%2C+Magd&rft.date=2020-08-01&rft.pub=Elsevier+BV&rft.issn=0013-7944&rft.eissn=1873-7315&rft.volume=235&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engfracmech.2020.107085&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon |