A data-driven approach based on long short-term memory and hidden Markov model for crack propagation prediction

•This paper forecasts the crack propagation based on long short-term memory and hidden Markov model.•The present approach reduces significantly a large amount of computational cost when predicting crack propagation without any analysis tools.•A novel data-driven model has the ability to learn with l...

Full description

Saved in:
Bibliographic Details
Published inEngineering fracture mechanics Vol. 235; p. 107085
Main Authors Nguyen-Le, Duyen H., Tao, Q.B., Nguyen, Vu-Hieu, Abdel-Wahab, Magd, Nguyen-Xuan, H.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.08.2020
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •This paper forecasts the crack propagation based on long short-term memory and hidden Markov model.•The present approach reduces significantly a large amount of computational cost when predicting crack propagation without any analysis tools.•A novel data-driven model has the ability to learn with less information.•Numerical results show high efficiency of the present approach. We present in this paper a combined technique of long short-term memory and hidden Markov model to prediction problems of crack propagation in engineering. The primary advantage of the hidden Markov model is that the ability to learn with less information, in other words, its future states do not depend on past ones, based only on the present state. We use long short-term memory to train data, and output consequences improved by adding predicted different changes that are computed by hidden Markov model. Applying this combined method to numerical examples of forecasting crack propagation of singled-edge-notched beam forced by 4-point shear, crack-height growth in Marcellus shale under the hydraulic fracturing and deformations of dam structures made from fiber reinforced concrete material is addressed. The tests were carried out with many different sizes of experimental data. It was found that a combined long short-term memory - hidden Markov model results in more accurate solution than only using long short-term memory, especially in the case of the dataset that is lack of information.
AbstractList •This paper forecasts the crack propagation based on long short-term memory and hidden Markov model.•The present approach reduces significantly a large amount of computational cost when predicting crack propagation without any analysis tools.•A novel data-driven model has the ability to learn with less information.•Numerical results show high efficiency of the present approach. We present in this paper a combined technique of long short-term memory and hidden Markov model to prediction problems of crack propagation in engineering. The primary advantage of the hidden Markov model is that the ability to learn with less information, in other words, its future states do not depend on past ones, based only on the present state. We use long short-term memory to train data, and output consequences improved by adding predicted different changes that are computed by hidden Markov model. Applying this combined method to numerical examples of forecasting crack propagation of singled-edge-notched beam forced by 4-point shear, crack-height growth in Marcellus shale under the hydraulic fracturing and deformations of dam structures made from fiber reinforced concrete material is addressed. The tests were carried out with many different sizes of experimental data. It was found that a combined long short-term memory - hidden Markov model results in more accurate solution than only using long short-term memory, especially in the case of the dataset that is lack of information.
We present in this paper a combined technique of long short-term memory and hidden Markov model to prediction problems of crack propagation in engineering. The primary advantage of the hidden Markov model is that the ability to learn with less information, in other words, its future states do not depend on past ones, based only on the present state. We use long short-term memory to train data, and output consequences improved by adding predicted different changes that are computed by hidden Markov model. Applying this combined method to numerical examples of forecasting crack propagation of singled-edge-notched beam forced by 4-point shear, crack-height growth in Marcellus shale under the hydraulic fracturing and deformations of dam structures made from fiber reinforced concrete material is addressed. The tests were carried out with many different sizes of experimental data. It was found that a combined long short-term memory - hidden Markov model results in more accurate solution than only using long short-term memory, especially in the case of the dataset that is lack of information.
ArticleNumber 107085
Author Tao, Q.B.
Nguyen, Vu-Hieu
Nguyen-Xuan, H.
Abdel-Wahab, Magd
Nguyen-Le, Duyen H.
Author_xml – sequence: 1
  givenname: Duyen H.
  surname: Nguyen-Le
  fullname: Nguyen-Le, Duyen H.
  organization: CIRTech Institute, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam
– sequence: 2
  givenname: Q.B.
  surname: Tao
  fullname: Tao, Q.B.
  organization: Department of Mechanical Engineering, University of Science and Technology, The University of Danang, Viet Nam
– sequence: 3
  givenname: Vu-Hieu
  surname: Nguyen
  fullname: Nguyen, Vu-Hieu
  organization: Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
– sequence: 4
  givenname: Magd
  surname: Abdel-Wahab
  fullname: Abdel-Wahab, Magd
  organization: Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
– sequence: 5
  givenname: H.
  surname: Nguyen-Xuan
  fullname: Nguyen-Xuan, H.
  email: ngx.hung@hutech.edu.vn
  organization: CIRTech Institute, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam
BackLink https://hal.science/hal-02911707$$DView record in HAL
BookMark eNqNkc1u2zAQhIkiBWqnfQcWPfUgh38SxaNhtE0BB7mkZ2JNUhYdi1RJxYDfPhRUFDnmxMVi5sMsZ41uQgwOoa-UbCihzd1p48KxS2AGZ_oNI2zeS9LWH9CKtpJXktP6Bq0IoWVWQnxC65xPhBDZtGSF4hZbmKCyyV9cwDCOKYLp8QGyszgGfI7hiHMf01RNLg14cENMVwzB4t5bWzwPkJ7jBQ_RujPuYsKmxHnGBTTCESZfIGNy1pt5_Iw-dnDO7su_9xb9-fnjaXdf7R9__d5t95URXEwVN7RVRClGWdO2VAjomKp5J5SlgjTcqPrARG3bjomG142qgVtCFYA4GNlSfou-L9weznpMfoB01RG8vt_u9bwjTFEqibzM2m-LtkT---LypE_xJYUSTzMhGskko01RqUVlUsw5ue4_lhI9d6FP-k0Xeu5CL10U727xunLyxbuks_EumPIryZlJ2-jfQXkFAU2YUQ
CitedBy_id crossref_primary_10_1016_j_engappai_2021_104423
crossref_primary_10_1016_j_measurement_2023_113336
crossref_primary_10_1016_j_engappai_2023_106444
crossref_primary_10_1016_j_engappai_2022_105475
crossref_primary_10_1007_s00366_022_01756_w
crossref_primary_10_1016_j_measurement_2021_109310
crossref_primary_10_1016_j_solmat_2024_112927
crossref_primary_10_1007_s11595_024_2913_7
crossref_primary_10_1016_j_engappai_2022_104667
crossref_primary_10_1016_j_engappai_2022_105118
crossref_primary_10_1007_s11831_022_09786_9
crossref_primary_10_1016_j_measurement_2022_110826
crossref_primary_10_1007_s10921_023_01005_0
crossref_primary_10_1016_j_oceaneng_2024_118663
crossref_primary_10_3390_app14104223
crossref_primary_10_1007_s11709_022_0909_y
crossref_primary_10_1111_exsy_13291
crossref_primary_10_1002_2050_7038_13189
crossref_primary_10_1177_1748006X241238582
crossref_primary_10_1007_s00339_023_06629_7
crossref_primary_10_1007_s12540_024_01628_6
crossref_primary_10_1061__ASCE_CF_1943_5509_0001666
crossref_primary_10_1016_j_engappai_2023_105844
crossref_primary_10_1016_j_engappai_2022_104850
crossref_primary_10_1016_j_engfracmech_2023_109107
crossref_primary_10_3389_fnbot_2024_1284175
crossref_primary_10_1016_j_engappai_2023_105961
crossref_primary_10_1016_j_engappai_2022_105066
crossref_primary_10_1016_j_ijmecsci_2023_108270
crossref_primary_10_3390_app13010231
crossref_primary_10_1016_j_engfailanal_2023_107350
crossref_primary_10_1016_j_compstruc_2023_107031
crossref_primary_10_1177_16878132241248286
crossref_primary_10_1016_j_measurement_2022_111228
crossref_primary_10_1016_j_undsp_2023_05_006
crossref_primary_10_1007_s12205_022_1241_8
crossref_primary_10_1016_j_compstruct_2023_117601
crossref_primary_10_1016_j_matpr_2022_05_251
crossref_primary_10_1016_j_measurement_2020_108668
crossref_primary_10_1007_s10999_022_09612_x
crossref_primary_10_1016_j_eswa_2023_122219
crossref_primary_10_3389_fmech_2022_1003170
crossref_primary_10_1103_PhysRevB_106_104305
crossref_primary_10_1631_jzus_A2000317
crossref_primary_10_1016_j_compscitech_2022_109425
crossref_primary_10_1016_j_engappai_2023_107150
crossref_primary_10_1016_j_isatra_2021_05_002
crossref_primary_10_1186_s10033_023_00876_8
crossref_primary_10_1177_10775463221122117
crossref_primary_10_1016_j_asoc_2020_106998
crossref_primary_10_1016_j_engappai_2022_105132
crossref_primary_10_1016_j_engappai_2022_105014
crossref_primary_10_1016_j_engappai_2022_105652
crossref_primary_10_1016_j_ecolind_2023_110092
crossref_primary_10_1016_j_engappai_2023_106907
crossref_primary_10_1016_j_mtcomm_2022_104437
crossref_primary_10_1016_j_engappai_2022_105418
crossref_primary_10_1016_j_engfracmech_2024_110149
crossref_primary_10_1016_j_measurement_2021_110637
crossref_primary_10_1016_j_apm_2022_02_036
crossref_primary_10_1016_j_ymssp_2021_108673
crossref_primary_10_1016_j_engstruct_2023_115730
crossref_primary_10_1007_s00521_022_07111_w
crossref_primary_10_1109_ACCESS_2023_3343874
crossref_primary_10_1016_j_engappai_2022_105580
crossref_primary_10_1016_j_engappai_2021_104491
crossref_primary_10_1109_JSTARS_2021_3104936
crossref_primary_10_3390_jmse12010071
crossref_primary_10_1016_j_measurement_2021_110471
crossref_primary_10_1007_s11709_022_0901_6
crossref_primary_10_1016_j_cemconcomp_2023_105270
crossref_primary_10_1016_j_engappai_2024_108490
crossref_primary_10_1016_j_sigpro_2022_108714
crossref_primary_10_1002_srin_202100267
crossref_primary_10_1007_s00158_022_03185_1
crossref_primary_10_1016_j_engappai_2022_105685
crossref_primary_10_1016_j_engfracmech_2021_107980
crossref_primary_10_1016_j_ijfatigue_2022_106998
crossref_primary_10_1016_j_engappai_2022_104799
crossref_primary_10_1098_rsta_2022_0391
crossref_primary_10_1016_j_measurement_2022_111805
crossref_primary_10_1016_j_istruc_2023_105587
crossref_primary_10_1088_2632_2153_ad52e8
crossref_primary_10_1016_j_energy_2021_121308
Cites_doi 10.1007/BF00301139
10.3390/risks5040062
10.1049/cp:19991218
10.1109/TASL.2011.2134090
10.2118/145949-MS
10.1016/j.ins.2020.02.013
10.1002/nme.3121
10.1016/j.engstruct.2019.109558
10.1214/aos/1176344136
10.1016/S0004-3702(98)00023-X
10.1006/jmps.1999.1276
10.1109/ICCV.2001.937532
10.1109/TIT.1967.1054010
10.1109/34.62605
10.1214/aoms/1177697196
10.1162/neco.1997.9.8.1735
10.32604/cmc.2019.08001
10.1207/s15516709cog1402_1
10.1109/LSP.2002.806705
10.1214/aoms/1177699147
10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
10.1002/nme.4284
10.1109/TAC.1974.1100705
10.1016/0031-3203(95)00013-P
10.1093/bioinformatics/btg1080
10.1016/0045-7949(93)90316-6
10.1073/pnas.79.8.2554
10.1016/j.cma.2012.07.017
10.1109/72.125866
10.1007/BF02326425
10.1016/S0166-4115(97)80111-2
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Aug 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
1XC
DOI 10.1016/j.engfracmech.2020.107085
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-7315
ExternalDocumentID oai_HAL_hal_02911707v1
10_1016_j_engfracmech_2020_107085
S0013794420304367
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
1XC
ID FETCH-LOGICAL-c434t-3c189099212688144af2953f49d14063c95b245d8f24635695a3d019aa4bc7813
IEDL.DBID AIKHN
ISSN 0013-7944
IngestDate Tue Oct 15 15:30:56 EDT 2024
Thu Oct 10 18:04:31 EDT 2024
Thu Sep 26 20:48:18 EDT 2024
Fri Feb 23 02:47:40 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Fracture mechanics
Recurrent neural network
Machine learning
Long short-term memory
Hidden Markov model
Hydraulic fracturing
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-3c189099212688144af2953f49d14063c95b245d8f24635695a3d019aa4bc7813
ORCID 0000-0002-1746-8297
0000-0003-1959-9087
OpenAccessLink https://biblio.ugent.be/publication/8665326/file/8665328
PQID 2446727216
PQPubID 2045482
ParticipantIDs hal_primary_oai_HAL_hal_02911707v1
proquest_journals_2446727216
crossref_primary_10_1016_j_engfracmech_2020_107085
elsevier_sciencedirect_doi_10_1016_j_engfracmech_2020_107085
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
2020-08
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Engineering fracture mechanics
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Duc-Le, Nguyen, Nguyen-Xuan (b0185) 2020; 520
Kaelbling, Littman, Cassandra (b0115) 1998; 1
Schwarz (b0145) 1978; 6
Bengio Y, De Mori R, Flammia G, Kompe R. Global optimization of a neural network-hidden Markov model hybrid. In: IJCNN-91-Seattle international joint conference on neural networks, vol. 2; 1991. p. 789–94.
Gers FA, Schmidhuber J, Cummins F. Learning to forget: continual prediction with lstm. In: 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), vol. 2; 1999. p. 50–5.
Shun-Zheng, Kobayashi (b0125) 2003; 10
Niles, Silverman (b0085) 1990
Elman (b0060) 1990; 14
Nguyen-Xuan, Liu, Bordas, Natarajan, Rabczuk (b0100) 2013; 253
Viterbi (b0130) 1967; 13
Stanke, Waack (b0045) 2003; 19
Howard (b0110) 1960
Jain A, Mehta P, Darbha RT. Stock forecasting using hidden Markov models. Tech. Rep., Boston University; 2018.
De Luycker, Benson, Belytschko, Bazilevs, Hsu (b0020) 2011; 87
Seymore K, McCallum A, Rosenfeld R. Learning hidden Markov model structure for information extraction. In: Proceedings of AAAI’99 workshop on machine learning for information extraction; 1999.
Jordan (b0065) 1997; 121
Ooi, Song, Tin-Loi, Yang (b0025) 2012; 91
Hopfield (b0055) 1982; 79
Carpinteri, Valente, Ferrara, Melchiorrl (b0170) 1993; 48
Nguyen, Do, Lee, Rabczuk, Nguyen-Xuan (b0075) 2019; 61
Dang, Nguyen Ngoc, Hoang, Nguyen-Xuan, Abdel (b0180) 2019; 198
Fisher K, Warpinski N. Hydraulic fracture-height growth: Real Data. In: Society of Petroleum Engineers; 2012,.
Nelson (b0005) 1977; 17
Bourlard, Wellekens (b0080) 1990; 12
Swenson, Ingraffea (b0010) 1988; 3
Gagniuc (b0105) 2017
Baum LE, Petrie T, Soules G, Weiss N. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. In: The annals of mathematical statistics, vol. 41; 1970. p. 164–71.
Zucchini (b0150) 2000; 44
Stenger B, Ramesh V, Paragios N, Coetzee F, Buhmann JM. Topology free hidden Markov models: application to background modeling. In: Proceedings eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 1; 2001. p. 294–301.
Akaike (b0140) 1974; 19
Hochreiter, Schmidhuber (b0070) 1997; 9
Dahl, Yu, Deng, Acero (b0095) 2012; 20
Hassan, Nath (b0040) 2005
Baum, Petrie (b0120) 1966; 37
Nguyen (b0160) 2017; 5
Belytschko, Tabbara (b0015) 1996; 39
Bunke, Roth, Schukat-Talamazzini (b0030) 1995; 28
Nelson (10.1016/j.engfracmech.2020.107085_b0005) 1977; 17
Viterbi (10.1016/j.engfracmech.2020.107085_b0130) 1967; 13
Elman (10.1016/j.engfracmech.2020.107085_b0060) 1990; 14
Stanke (10.1016/j.engfracmech.2020.107085_b0045) 2003; 19
Hochreiter (10.1016/j.engfracmech.2020.107085_b0070) 1997; 9
Swenson (10.1016/j.engfracmech.2020.107085_b0010) 1988; 3
10.1016/j.engfracmech.2020.107085_b0090
Niles (10.1016/j.engfracmech.2020.107085_b0085) 1990
De Luycker (10.1016/j.engfracmech.2020.107085_b0020) 2011; 87
10.1016/j.engfracmech.2020.107085_b0165
Ooi (10.1016/j.engfracmech.2020.107085_b0025) 2012; 91
Hopfield (10.1016/j.engfracmech.2020.107085_b0055) 1982; 79
Bunke (10.1016/j.engfracmech.2020.107085_b0030) 1995; 28
Carpinteri (10.1016/j.engfracmech.2020.107085_b0170) 1993; 48
Zucchini (10.1016/j.engfracmech.2020.107085_b0150) 2000; 44
Baum (10.1016/j.engfracmech.2020.107085_b0120) 1966; 37
Nguyen (10.1016/j.engfracmech.2020.107085_b0075) 2019; 61
Gagniuc (10.1016/j.engfracmech.2020.107085_b0105) 2017
Nguyen-Xuan (10.1016/j.engfracmech.2020.107085_b0100) 2013; 253
Hassan (10.1016/j.engfracmech.2020.107085_b0040) 2005
Nguyen (10.1016/j.engfracmech.2020.107085_b0160) 2017; 5
Schwarz (10.1016/j.engfracmech.2020.107085_b0145) 1978; 6
Dang (10.1016/j.engfracmech.2020.107085_b0180) 2019; 198
Howard (10.1016/j.engfracmech.2020.107085_b0110) 1960
Jordan (10.1016/j.engfracmech.2020.107085_b0065) 1997; 121
Dahl (10.1016/j.engfracmech.2020.107085_b0095) 2012; 20
Kaelbling (10.1016/j.engfracmech.2020.107085_b0115) 1998; 1
Bourlard (10.1016/j.engfracmech.2020.107085_b0080) 1990; 12
Akaike (10.1016/j.engfracmech.2020.107085_b0140) 1974; 19
Duc-Le (10.1016/j.engfracmech.2020.107085_b0185) 2020; 520
10.1016/j.engfracmech.2020.107085_b0050
10.1016/j.engfracmech.2020.107085_b0035
10.1016/j.engfracmech.2020.107085_b0155
Belytschko (10.1016/j.engfracmech.2020.107085_b0015) 1996; 39
10.1016/j.engfracmech.2020.107085_b0175
10.1016/j.engfracmech.2020.107085_b0135
Shun-Zheng (10.1016/j.engfracmech.2020.107085_b0125) 2003; 10
References_xml – volume: 19
  start-page: ii215
  year: 2003
  end-page: ii225
  ident: b0045
  article-title: Gene prediction with a hidden Markov model and a new intron submodel
  publication-title: Bioinformatics
  contributor:
    fullname: Waack
– volume: 10
  start-page: 11
  year: 2003
  end-page: 14
  ident: b0125
  article-title: An efficient forward-backward algorithm for an explicit-duration hidden Markov model
  publication-title: IEEE Signal Process Lett
  contributor:
    fullname: Kobayashi
– volume: 121
  start-page: 471
  year: 1997
  end-page: 495
  ident: b0065
  article-title: Serial order: A parallel distributed processing approach
  publication-title: Adv Psychol
  contributor:
    fullname: Jordan
– year: 1960
  ident: b0110
  article-title: Dynamic programming and Markov processes
  contributor:
    fullname: Howard
– volume: 37
  start-page: 1554
  year: 1966
  end-page: 1563
  ident: b0120
  article-title: Statistical inference for probabilistic functions of finite state Markov chains
  publication-title: Ann Math Statist
  contributor:
    fullname: Petrie
– volume: 39
  start-page: 923
  year: 1996
  end-page: 938
  ident: b0015
  article-title: Dynamic fracture using element-free Galerkin methods
  publication-title: Int J Numer Meth Eng
  contributor:
    fullname: Tabbara
– volume: 20
  start-page: 30
  year: 2012
  end-page: 42
  ident: b0095
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Trans Audio Speech Lang Process
  contributor:
    fullname: Acero
– start-page: 192
  year: 2005
  end-page: 196
  ident: b0040
  article-title: Stockmarket forecasting using hidden Markov model: A new approach
  publication-title: Proceedings – the IEEE fifth international conference on intelligent systems design and applications
  contributor:
    fullname: Nath
– volume: 44
  start-page: 41
  year: 2000
  end-page: 61
  ident: b0150
  article-title: An introduction to model selection
  publication-title: J Math Psychol
  contributor:
    fullname: Zucchini
– volume: 87
  start-page: 541
  year: 2011
  end-page: 565
  ident: b0020
  article-title: X-FEM in isogeometric analysis for linear fracture mechanics
  publication-title: Int J Numer Meth Eng
  contributor:
    fullname: Hsu
– year: 2017
  ident: b0105
  article-title: Markov chains: from theory to implementation and experimentation
  contributor:
    fullname: Gagniuc
– volume: 253
  start-page: 252
  year: 2013
  end-page: 273
  ident: b0100
  article-title: An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order
  publication-title: Comput Meth Appl Mech Eng
  contributor:
    fullname: Rabczuk
– volume: 28
  start-page: 1399
  year: 1995
  end-page: 1413
  ident: b0030
  article-title: Off-line cursive handwriting recognition using hidden Markov models
  publication-title: Pattern Recogn
  contributor:
    fullname: Schukat-Talamazzini
– volume: 91
  start-page: 319
  year: 2012
  end-page: 342
  ident: b0025
  article-title: Polygon scaled boundary finite element for crack propagation modelling
  publication-title: Int J Numer Meth Eng
  contributor:
    fullname: Yang
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0070
  article-title: Long short-term memory
  publication-title: Neural Comput
  contributor:
    fullname: Schmidhuber
– volume: 198
  start-page: 109558
  year: 2019
  ident: b0180
  article-title: Numerical investigation of novel prefabricated hollow concrete blocks for stepped-type seawall structures
  publication-title: Eng Struct
  contributor:
    fullname: Abdel
– volume: 17
  start-page: 41
  year: 1977
  end-page: 49
  ident: b0005
  article-title: Review of fatigue-crack-growth prediction methods
  publication-title: Exp Mech
  contributor:
    fullname: Nelson
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: b0140
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans Autom Control
  contributor:
    fullname: Akaike
– volume: 520
  start-page: 250
  year: 2020
  end-page: 270
  ident: b0185
  article-title: Balancing composite motion optimization
  publication-title: Inf Sci
  contributor:
    fullname: Nguyen-Xuan
– volume: 13
  start-page: 260
  year: 1967
  end-page: 269
  ident: b0130
  article-title: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
  publication-title: IEEE Trans Inf Theory
  contributor:
    fullname: Viterbi
– volume: 61
  start-page: 951
  year: 2019
  end-page: 977
  ident: b0075
  article-title: Forecasting damage mechanics by deep learning
  publication-title: Comput Mater Continua
  contributor:
    fullname: Nguyen-Xuan
– volume: 3
  start-page: 381
  year: 1988
  end-page: 397
  ident: b0010
  article-title: Modeling mixed-mode dynamic crack propagation nsing finite elements: theory and applications
  publication-title: Comput Mech
  contributor:
    fullname: Ingraffea
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: b0055
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Hopfield
– volume: 12
  start-page: 1167
  year: 1990
  end-page: 1178
  ident: b0080
  article-title: Links between Markov models and multilayer perceptrons
  publication-title: IEEE Trans Pattern Anal Mach Intell
  contributor:
    fullname: Wellekens
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: b0145
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
  contributor:
    fullname: Schwarz
– volume: 5
  start-page: 62
  year: 2017
  ident: b0160
  article-title: An analysis and implementation of the hidden Markov model to technology stock prediction
  publication-title: Risks
  contributor:
    fullname: Nguyen
– volume: 48
  start-page: 397
  year: 1993
  end-page: 413
  ident: b0170
  article-title: Is mode II fracture energy a real material property?
  publication-title: Comput Struct
  contributor:
    fullname: Melchiorrl
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: b0060
  article-title: Finding structure in time
  publication-title: Cognit Sci
  contributor:
    fullname: Elman
– year: 1990
  ident: b0085
  article-title: Combining hidden Markov model and neural network classifiers
  publication-title: International conference on acoustics, speech, and signal processing
  contributor:
    fullname: Silverman
– volume: 1
  start-page: 99
  year: 1998
  end-page: 134
  ident: b0115
  article-title: Planning and acting in partially observable stochastic domains
  publication-title: Artif Intell
  contributor:
    fullname: Cassandra
– year: 2017
  ident: 10.1016/j.engfracmech.2020.107085_b0105
  contributor:
    fullname: Gagniuc
– volume: 3
  start-page: 381
  issue: 6
  year: 1988
  ident: 10.1016/j.engfracmech.2020.107085_b0010
  article-title: Modeling mixed-mode dynamic crack propagation nsing finite elements: theory and applications
  publication-title: Comput Mech
  doi: 10.1007/BF00301139
  contributor:
    fullname: Swenson
– year: 1960
  ident: 10.1016/j.engfracmech.2020.107085_b0110
  contributor:
    fullname: Howard
– volume: 5
  start-page: 62
  issue: 4
  year: 2017
  ident: 10.1016/j.engfracmech.2020.107085_b0160
  article-title: An analysis and implementation of the hidden Markov model to technology stock prediction
  publication-title: Risks
  doi: 10.3390/risks5040062
  contributor:
    fullname: Nguyen
– ident: 10.1016/j.engfracmech.2020.107085_b0155
  doi: 10.1049/cp:19991218
– volume: 20
  start-page: 30
  issue: 1
  year: 2012
  ident: 10.1016/j.engfracmech.2020.107085_b0095
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Trans Audio Speech Lang Process
  doi: 10.1109/TASL.2011.2134090
  contributor:
    fullname: Dahl
– ident: 10.1016/j.engfracmech.2020.107085_b0175
  doi: 10.2118/145949-MS
– volume: 520
  start-page: 250
  year: 2020
  ident: 10.1016/j.engfracmech.2020.107085_b0185
  article-title: Balancing composite motion optimization
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.02.013
  contributor:
    fullname: Duc-Le
– year: 1990
  ident: 10.1016/j.engfracmech.2020.107085_b0085
  article-title: Combining hidden Markov model and neural network classifiers
  contributor:
    fullname: Niles
– volume: 87
  start-page: 541
  issue: 6
  year: 2011
  ident: 10.1016/j.engfracmech.2020.107085_b0020
  article-title: X-FEM in isogeometric analysis for linear fracture mechanics
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.3121
  contributor:
    fullname: De Luycker
– start-page: 192
  year: 2005
  ident: 10.1016/j.engfracmech.2020.107085_b0040
  article-title: Stockmarket forecasting using hidden Markov model: A new approach
  contributor:
    fullname: Hassan
– volume: 198
  start-page: 109558
  year: 2019
  ident: 10.1016/j.engfracmech.2020.107085_b0180
  article-title: Numerical investigation of novel prefabricated hollow concrete blocks for stepped-type seawall structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109558
  contributor:
    fullname: Dang
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.engfracmech.2020.107085_b0145
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
  contributor:
    fullname: Schwarz
– volume: 1
  start-page: 99
  issue: 101
  year: 1998
  ident: 10.1016/j.engfracmech.2020.107085_b0115
  article-title: Planning and acting in partially observable stochastic domains
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(98)00023-X
  contributor:
    fullname: Kaelbling
– volume: 44
  start-page: 41
  issue: 1
  year: 2000
  ident: 10.1016/j.engfracmech.2020.107085_b0150
  article-title: An introduction to model selection
  publication-title: J Math Psychol
  doi: 10.1006/jmps.1999.1276
  contributor:
    fullname: Zucchini
– ident: 10.1016/j.engfracmech.2020.107085_b0050
  doi: 10.1109/ICCV.2001.937532
– volume: 13
  start-page: 260
  issue: 2
  year: 1967
  ident: 10.1016/j.engfracmech.2020.107085_b0130
  article-title: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1967.1054010
  contributor:
    fullname: Viterbi
– volume: 12
  start-page: 1167
  issue: 12
  year: 1990
  ident: 10.1016/j.engfracmech.2020.107085_b0080
  article-title: Links between Markov models and multilayer perceptrons
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.62605
  contributor:
    fullname: Bourlard
– ident: 10.1016/j.engfracmech.2020.107085_b0135
  doi: 10.1214/aoms/1177697196
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.engfracmech.2020.107085_b0070
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
  contributor:
    fullname: Hochreiter
– volume: 61
  start-page: 951
  issue: 3
  year: 2019
  ident: 10.1016/j.engfracmech.2020.107085_b0075
  article-title: Forecasting damage mechanics by deep learning
  publication-title: Comput Mater Continua
  doi: 10.32604/cmc.2019.08001
  contributor:
    fullname: Nguyen
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  ident: 10.1016/j.engfracmech.2020.107085_b0060
  article-title: Finding structure in time
  publication-title: Cognit Sci
  doi: 10.1207/s15516709cog1402_1
  contributor:
    fullname: Elman
– volume: 10
  start-page: 11
  issue: 1
  year: 2003
  ident: 10.1016/j.engfracmech.2020.107085_b0125
  article-title: An efficient forward-backward algorithm for an explicit-duration hidden Markov model
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2002.806705
  contributor:
    fullname: Shun-Zheng
– volume: 37
  start-page: 1554
  issue: 6
  year: 1966
  ident: 10.1016/j.engfracmech.2020.107085_b0120
  article-title: Statistical inference for probabilistic functions of finite state Markov chains
  publication-title: Ann Math Statist
  doi: 10.1214/aoms/1177699147
  contributor:
    fullname: Baum
– volume: 39
  start-page: 923
  issue: 6
  year: 1996
  ident: 10.1016/j.engfracmech.2020.107085_b0015
  article-title: Dynamic fracture using element-free Galerkin methods
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
  contributor:
    fullname: Belytschko
– ident: 10.1016/j.engfracmech.2020.107085_b0035
– volume: 91
  start-page: 319
  year: 2012
  ident: 10.1016/j.engfracmech.2020.107085_b0025
  article-title: Polygon scaled boundary finite element for crack propagation modelling
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.4284
  contributor:
    fullname: Ooi
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  ident: 10.1016/j.engfracmech.2020.107085_b0140
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.1974.1100705
  contributor:
    fullname: Akaike
– volume: 28
  start-page: 1399
  issue: 9
  year: 1995
  ident: 10.1016/j.engfracmech.2020.107085_b0030
  article-title: Off-line cursive handwriting recognition using hidden Markov models
  publication-title: Pattern Recogn
  doi: 10.1016/0031-3203(95)00013-P
  contributor:
    fullname: Bunke
– volume: 19
  start-page: ii215
  issue: 2
  year: 2003
  ident: 10.1016/j.engfracmech.2020.107085_b0045
  article-title: Gene prediction with a hidden Markov model and a new intron submodel
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1080
  contributor:
    fullname: Stanke
– volume: 48
  start-page: 397
  issue: 3
  year: 1993
  ident: 10.1016/j.engfracmech.2020.107085_b0170
  article-title: Is mode II fracture energy a real material property?
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(93)90316-6
  contributor:
    fullname: Carpinteri
– volume: 79
  start-page: 2554
  issue: 8
  year: 1982
  ident: 10.1016/j.engfracmech.2020.107085_b0055
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.79.8.2554
  contributor:
    fullname: Hopfield
– volume: 253
  start-page: 252
  year: 2013
  ident: 10.1016/j.engfracmech.2020.107085_b0100
  article-title: An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/j.cma.2012.07.017
  contributor:
    fullname: Nguyen-Xuan
– ident: 10.1016/j.engfracmech.2020.107085_b0165
– ident: 10.1016/j.engfracmech.2020.107085_b0090
  doi: 10.1109/72.125866
– volume: 17
  start-page: 41
  issue: 2
  year: 1977
  ident: 10.1016/j.engfracmech.2020.107085_b0005
  article-title: Review of fatigue-crack-growth prediction methods
  publication-title: Exp Mech
  doi: 10.1007/BF02326425
  contributor:
    fullname: Nelson
– volume: 121
  start-page: 471
  year: 1997
  ident: 10.1016/j.engfracmech.2020.107085_b0065
  article-title: Serial order: A parallel distributed processing approach
  publication-title: Adv Psychol
  doi: 10.1016/S0166-4115(97)80111-2
  contributor:
    fullname: Jordan
SSID ssj0007680
Score 2.6078331
Snippet •This paper forecasts the crack propagation based on long short-term memory and hidden Markov model.•The present approach reduces significantly a large amount...
We present in this paper a combined technique of long short-term memory and hidden Markov model to prediction problems of crack propagation in engineering. The...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 107085
SubjectTerms Crack propagation
Deep learning
Engineering Sciences
Fiber reinforced concretes
Fracture mechanics
Hidden Markov model
Hydraulic fracturing
Long short-term memory
Machine learning
Markov chains
Physics
Propagation
Recurrent neural network
Shale gas
Short term
Title A data-driven approach based on long short-term memory and hidden Markov model for crack propagation prediction
URI https://dx.doi.org/10.1016/j.engfracmech.2020.107085
https://www.proquest.com/docview/2446727216
https://hal.science/hal-02911707
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH44I4gexBV3oniNtknaJuBlEGVc8KTgLaSb4zKtjKPgxd_ue13c8CB4ahpIm-al3_tCXr4HsOvwLwjjTPBQKo-TIBePc99wHZqE9M1j6Sq1z4uwf6VOr4PrCThsz8JQWGWD_TWmV2jd1Ow3o7n_eHtLZ3x9ibNJCdrdk2HUgUl0R0J3YbJ3cta_-ABkZNRem8iAGkzB9meYV1bc5COXDLNqa0JQfeRRZuXf3VRnQPGSP2C78kXHczDbkEjWq_s5DxNZsQAzX6QFF6HsMQr-5OmI4Iy10uGMvFbKyoI9lMUNexog--aEzmxIIbevzBUpG5CsSMHoGE_5wqpcOQy5LUvwC-4ZPghBqDIolmmfh4pLcHV8dHnY501yBZ4oqcZcJr42SA_RdYVa47LK5cIEMlcmxTVXKBMTxEIFqc6FIg07EziZIh90TsVJpH25DN2iLLIVYJlUqcqcZ7Q2eHU60J6RvsyjIHGIpasg2rG0j7WGhm2Dy-7sFwNYMoCtDbAKB-2o228TwiLW_6X5Dlrq43Ukot3vnVuq84ShdDvRC3ZsozWkbX7dJ4t8p9qd9sO1_3VhHabpro4W3IDuePScbSKDGcdb0Nl787eaefoOupzt3w
link.rule.ids 230,315,783,787,888,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64gMtBXHFco3gNtk3aJuBlEKXqOCcFbyHdHLdWxnHAf-97XdzwIHhqSGmb5iVfvvBevgdwYHEWBHHm8UBIh5MgF49zV3MV6IT0zWNhK7XPfhBdy_Mb_2YCjtuzMBRW2WB_jekVWjc1h01vHj7f3dEZX1fgaJIeefdEEE7CNLIBjbNzunt2EfU_ABkZtdMmMqAHZmDvM8wrK27zoU2esso14VF96FBm5d-XqckBxUv-gO1qLTpdhIWGRLJu3c4lmMiKZZj_Ii24AmWXUfAnT4cEZ6yVDme0aqWsLNhjWdyylwGyb07ozJ4o5PaN2SJlA5IVKRgd4ynHrMqVw5DbsgT_4IHhixCEKoNimfw8VFyF69OTq-OIN8kVeCKFHHGRuEojPcSlK1AKt1U297QvcqlT3HMFItF-7Ek_VbknScNO-1akyAetlXESKleswVRRFtk6sEzIVGbW0UppvFrlK0cLV-Shn1jE0g54bV-a51pDw7TBZffmiwEMGcDUBujAUdvr5tuAMIj1f3l8Hy318TkS0Y66PUN1jqcp3U44xoZttYY0zdR9Mch3Ku-0G2z8rwm7MBtdXfZM76x_sQlzdKeOHNyCqdHwNdtGNjOKd5rR-g58--_T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+approach+based+on+long+short-term+memory+and+hidden+Markov+model+for+crack+propagation+prediction&rft.jtitle=Engineering+fracture+mechanics&rft.au=Nguyen-Le%2C+Duyen+H&rft.au=Tao%2C+QB&rft.au=Nguyen%2C+Vu-Hieu&rft.au=Abdel-Wahab%2C+Magd&rft.date=2020-08-01&rft.pub=Elsevier+BV&rft.issn=0013-7944&rft.eissn=1873-7315&rft.volume=235&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engfracmech.2020.107085&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon