3D-Printed Flat-Bone-Mimetic Bioceramic Scaffolds for Cranial Restoration

The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study...

Full description

Saved in:
Bibliographic Details
Published inResearch (Washington) Vol. 6; p. 0255
Main Authors Zhang, Yihang, He, Fupo, Zhang, Qiang, Lu, Haotian, Yan, Shengtao, Shi, Xuetao
Format Journal Article
LanguageEnglish
Published AAAS 2023
American Association for the Advancement of Science (AAAS)
Online AccessGet full text

Cover

Loading…
Abstract The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study, we originally developed 2 types of flat-bone-mimetic β-tricalcium phosphate bioceramic scaffolds (Gyr-Comp and Gyr-Tub) by high-precision vat-photopolymerization-based 3-dimensional printing. Both scaffolds had 2 outer layers and an inner layer with gyroid pores mimicking the diploe structure. The outer layers of Gyr-Comp scaffolds simulated the low porosity of outer tables, while those of Gyr-Tub scaffolds mimicked the tubular pore structure in the tables of flat bones. The Gyr-Comp and Gyr-Tub scaffolds possessed higher compressive strength and noticeably promoted in vitro cell proliferation, osteogenic differentiation, and angiogenic activities compared with conventional scaffolds with cross-hatch structures. After implantation into rabbit cranial defects for 12 weeks, Gyr-Tub achieved the best repairing effects by accelerating the generation of bone tissues and blood vessels. This work provides an advanced strategy to prepare biomimetic biomaterials that fit the structural and functional needs of efficacious bone regeneration.
AbstractList The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study, we originally developed 2 types of flat-bone-mimetic β-tricalcium phosphate bioceramic scaffolds (Gyr-Comp and Gyr-Tub) by high-precision vat-photopolymerization-based 3-dimensional printing. Both scaffolds had 2 outer layers and an inner layer with gyroid pores mimicking the diploe structure. The outer layers of Gyr-Comp scaffolds simulated the low porosity of outer tables, while those of Gyr-Tub scaffolds mimicked the tubular pore structure in the tables of flat bones. The Gyr-Comp and Gyr-Tub scaffolds possessed higher compressive strength and noticeably promoted in vitro cell proliferation, osteogenic differentiation, and angiogenic activities compared with conventional scaffolds with cross-hatch structures. After implantation into rabbit cranial defects for 12 weeks, Gyr-Tub achieved the best repairing effects by accelerating the generation of bone tissues and blood vessels. This work provides an advanced strategy to prepare biomimetic biomaterials that fit the structural and functional needs of efficacious bone regeneration.
The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study, we originally developed 2 types of flat-bone-mimetic β-tricalcium phosphate bioceramic scaffolds (Gyr-Comp and Gyr-Tub) by high-precision vat-photopolymerization-based 3-dimensional printing. Both scaffolds had 2 outer layers and an inner layer with gyroid pores mimicking the diploe structure. The outer layers of Gyr-Comp scaffolds simulated the low porosity of outer tables, while those of Gyr-Tub scaffolds mimicked the tubular pore structure in the tables of flat bones. The Gyr-Comp and Gyr-Tub scaffolds possessed higher compressive strength and noticeably promoted in vitro cell proliferation, osteogenic differentiation, and angiogenic activities compared with conventional scaffolds with cross-hatch structures. After implantation into rabbit cranial defects for 12 weeks, Gyr-Tub achieved the best repairing effects by accelerating the generation of bone tissues and blood vessels. This work provides an advanced strategy to prepare biomimetic biomaterials that fit the structural and functional needs of efficacious bone regeneration.The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study, we originally developed 2 types of flat-bone-mimetic β-tricalcium phosphate bioceramic scaffolds (Gyr-Comp and Gyr-Tub) by high-precision vat-photopolymerization-based 3-dimensional printing. Both scaffolds had 2 outer layers and an inner layer with gyroid pores mimicking the diploe structure. The outer layers of Gyr-Comp scaffolds simulated the low porosity of outer tables, while those of Gyr-Tub scaffolds mimicked the tubular pore structure in the tables of flat bones. The Gyr-Comp and Gyr-Tub scaffolds possessed higher compressive strength and noticeably promoted in vitro cell proliferation, osteogenic differentiation, and angiogenic activities compared with conventional scaffolds with cross-hatch structures. After implantation into rabbit cranial defects for 12 weeks, Gyr-Tub achieved the best repairing effects by accelerating the generation of bone tissues and blood vessels. This work provides an advanced strategy to prepare biomimetic biomaterials that fit the structural and functional needs of efficacious bone regeneration.
Author Shi, Xuetao
Yan, Shengtao
He, Fupo
Lu, Haotian
Zhang, Qiang
Zhang, Yihang
AuthorAffiliation 3 Peking Union Medical College Graduate School , Beijing 100730, P. R. China
1 School of Electromechanical Engineering , Guangdong University of Technology , Guangzhou 510006, P. R. China
2 School of Materials Science and Engineering , South China University of Technology , Guangzhou 510641, P. R. China
4 Department of Emergency , China-Japan Friendship Hospital , Beijing 100029, P. R. China
AuthorAffiliation_xml – name: 1 School of Electromechanical Engineering , Guangdong University of Technology , Guangzhou 510006, P. R. China
– name: 3 Peking Union Medical College Graduate School , Beijing 100730, P. R. China
– name: 2 School of Materials Science and Engineering , South China University of Technology , Guangzhou 510641, P. R. China
– name: 4 Department of Emergency , China-Japan Friendship Hospital , Beijing 100029, P. R. China
Author_xml – sequence: 1
  givenname: Yihang
  surname: Zhang
  fullname: Zhang, Yihang
  organization: School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
– sequence: 2
  givenname: Fupo
  surname: He
  fullname: He, Fupo
  organization: School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
– sequence: 3
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
– sequence: 4
  givenname: Haotian
  surname: Lu
  fullname: Lu, Haotian
  organization: Peking Union Medical College Graduate School, Beijing 100730, P. R. China
– sequence: 5
  givenname: Shengtao
  surname: Yan
  fullname: Yan, Shengtao
  organization: Peking Union Medical College Graduate School, Beijing 100730, P. R. China., Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, P. R. China
– sequence: 6
  givenname: Xuetao
  orcidid: 0000-0003-3896-5097
  surname: Shi
  fullname: Shi, Xuetao
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
BookMark eNp1kUtvFDEQhC0UJELIlfMcuczSHj_nhMhCyEpBIB5nq9ePxJFnHOxZJP49zm6CCBInt2zXV6Wu5-RozrMn5CWFFeOUsdfFV4_FXq9gEOIJOR4kG3sxKH701_yMnNZ6AwADVTCO4phs2Lv-c4nz4l13nnDpzxq3_xgnv0TbncVsfcGpjV8thpCTq13IpVsXnCOm7ouvSy64xDy_IE8DpupP788T8v38_bf1RX_56cNm_fayt5zxpWdyq8HiCNoLVFQpcEhBO-5Cy-WsZ1qMiNQG5RwL1EkOo5USlIBBKsdOyObAdRlvzG2JE5ZfJmM0-4tcrgyWFj55Ix264EB5TQVnUmq1leAcVWKkcthCY705sG5328k383kpmB5BH7_M8dpc5Z-GggTGxqERXt0TSv6xa9swU6zWp4Szz7tqBq051YyyO7PV4astudbiwx8fCmZfonko0dyV2AT8H4GNy37XLUtM_5P9Bp2PpNU
CitedBy_id crossref_primary_10_1002_adhm_202404346
crossref_primary_10_1016_j_compositesb_2024_111812
crossref_primary_10_1016_j_ceramint_2024_08_021
crossref_primary_10_1016_j_ceramint_2024_08_197
crossref_primary_10_1002_smll_202405642
crossref_primary_10_1186_s12951_024_03087_y
crossref_primary_10_1016_j_cej_2024_157930
crossref_primary_10_1002_adfm_202418438
crossref_primary_10_1016_j_jot_2024_04_002
crossref_primary_10_3390_polym17070858
crossref_primary_10_1088_1748_605X_adbaa2
crossref_primary_10_1021_acsbiomaterials_4c01661
crossref_primary_10_34133_research_0555
crossref_primary_10_37349_emed_2024_00203
Cites_doi 10.34133/2022/9834140
10.34133/research.0089
10.1016/j.actbio.2020.06.022
10.1097/PRS.0b013e3181b5a308
10.1016/S8756-3282(01)00672-X
10.1021/acsbiomaterials.3c00399
10.1016/j.biomaterials.2019.119739
10.1016/j.apmt.2021.101166
10.1038/boneres.2017.59
10.1073/pnas.2206684119
10.1016/j.biomaterials.2005.02.002
10.4103/2231-0746.161044
10.1016/j.jeurceramsoc.2022.02.039
10.1016/j.tafmec.2022.103349
10.1177/1759720X16670154
10.1016/j.jbiomech.2012.01.019
10.1002/adfm.202204182
10.34133/research.0131
10.1016/j.apmt.2021.101230
10.1038/s41578-020-0204-2
10.1016/j.ijbiomac.2023.123788
10.1182/blood-2018-01-769018
10.1002/adhm.201700232
10.1016/j.biomaterials.2009.11.005
10.4103/ajns.AJNS_139_17
10.1002/jcb.10276
10.34133/research.0021
10.3233/THC-2007-15102
10.1016/j.jormas.2021.04.009
10.1016/j.mser.2014.04.001
10.34133/2019/9854593
10.1007/s11517-017-1649-3
10.1097/SCS.0000000000004991
10.1016/j.actbio.2018.09.003
10.1126/sciadv.aaz6725
10.1016/j.actbio.2018.09.031
10.1002/jbmr.1901
10.1097/PRS.0b013e31829f4b59
10.1371/journal.pone.0229244
10.1016/j.biomaterials.2017.05.005
10.1016/j.jeurceramsoc.2022.07.033
10.1186/s40729-020-00274-y
10.1007/s12012-018-9491-x
10.1089/ten.teb.2018.0353
10.1093/rb/rbab077
10.1016/j.bioactmat.2020.11.004
10.1002/jcb.27948
10.1038/s41467-018-06504-7
10.3390/biomimetics7030112
10.1309/AJCPRHM8CZH5EMFD
10.1021/acsami.7b13167
10.1039/C4BM00291A
10.3390/bioengineering9110627
10.1016/j.apmt.2021.101168
10.1016/j.bioactmat.2023.02.025
10.1021/acsbiomaterials.3c00051
ContentType Journal Article
Copyright Copyright © 2023 Yihang Zhang et al.
Copyright © 2023 Yihang Zhang et al. 2023 Yihang Zhang et al.
Copyright_xml – notice: Copyright © 2023 Yihang Zhang et al.
– notice: Copyright © 2023 Yihang Zhang et al. 2023 Yihang Zhang et al.
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.34133/research.0255
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2639-5274
ExternalDocumentID oai_doaj_org_article_6dadfd07e815436687b60dd1759162b0
PMC10603392
10_34133_research_0255
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
HYE
M~E
OK1
PGMZT
RPM
7X8
5PM
GROUPED_DOAJ
ID FETCH-LOGICAL-c434t-36b80ca908e5a71770da108d4df000dce3859aa1cf7dd3f1d6409c660750267d3
IEDL.DBID DOA
ISSN 2639-5274
IngestDate Wed Aug 27 01:27:20 EDT 2025
Thu Aug 21 18:36:16 EDT 2025
Fri Jul 11 05:09:06 EDT 2025
Tue Jul 01 03:44:27 EDT 2025
Thu Apr 24 22:56:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Exclusive licensee Science and Technology Review Publishing House. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-36b80ca908e5a71770da108d4df000dce3859aa1cf7dd3f1d6409c660750267d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-3896-5097
OpenAccessLink https://doaj.org/article/6dadfd07e815436687b60dd1759162b0
PQID 2884183130
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_6dadfd07e815436687b60dd1759162b0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10603392
proquest_miscellaneous_2884183130
crossref_primary_10_34133_research_0255
crossref_citationtrail_10_34133_research_0255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationTitle Research (Washington)
PublicationYear 2023
Publisher AAAS
American Association for the Advancement of Science (AAAS)
Publisher_xml – name: AAAS
– name: American Association for the Advancement of Science (AAAS)
References Chen Z (e_1_3_4_46_2) 2023; 234
Teven CM (e_1_3_4_8_2) 2015; 5
Abaza A (e_1_3_4_42_2) 2022; 119
Taneja G (e_1_3_4_51_2) 2019; 19
Zhang X (e_1_3_4_31_2) 2022; 2022
Wu F (e_1_3_4_23_2) 2021; 9
Feng B (e_1_3_4_30_2) 2022; 22
Randi AM (e_1_3_4_53_2) 2018; 132
Bai J (e_1_3_4_26_2) 2022; 2022
Karageorgiou V (e_1_3_4_40_2) 2005; 26
Zapata U (e_1_3_4_32_2) 2020; 15
e_1_3_4_29_2
Xin T (e_1_3_4_49_2) 2017; 9
Wei J (e_1_3_4_39_2) 2010; 31
Gao C (e_1_3_4_44_2) 2017; 5
Yao A (e_1_3_4_6_2) 2019; 30
Bohner M (e_1_3_4_15_2) 2020; 113
Hayashi K (e_1_3_4_59_2) 2022; 9
e_1_3_4_11_2
e_1_3_4_55_2
Chatelet M (e_1_3_4_61_2) 2022; 123
Tay JRH (e_1_3_4_60_2) 2020; 6
Hart NH (e_1_3_4_33_2) 2017; 17
Narisawa S (e_1_3_4_45_2) 2013; 28
e_1_3_4_19_2
Mirkhalaf M (e_1_3_4_20_2) 2021; 25
e_1_3_4_17_2
Callens SJP (e_1_3_4_24_2) 2020; 232
Wang D (e_1_3_4_4_2) 2020; 26
Jinnai H (e_1_3_4_35_2) 2002; 30
e_1_3_4_2_2
Yang Y (e_1_3_4_36_2) 2022; 119
Carvalho MS (e_1_3_4_47_2) 2019; 120
Wubneh A (e_1_3_4_41_2) 2018; 80
Mishriki S (e_1_3_4_21_2) 2019; 2019
Pupilli F (e_1_3_4_13_2) 2022; 7
Zhu H (e_1_3_4_37_2) 2021; 25
O’Brien FJ (e_1_3_4_57_2) 2007; 15
e_1_3_4_22_2
Lee JC (e_1_3_4_7_2) 2013; 132
Zhang Y (e_1_3_4_38_2) 2022; 42
Vanchinathan V (e_1_3_4_50_2) 2015; 143
Mirkhalaf M (e_1_3_4_28_2) 2021; 25
Wu S (e_1_3_4_43_2) 2022; 56
Barba A (e_1_3_4_25_2) 2018; 79
Velho V (e_1_3_4_5_2) 2019; 14
Gu L (e_1_3_4_9_2) 2023; 9
Langdahl B (e_1_3_4_34_2) 2016; 8
Komori T (e_1_3_4_48_2) 2002; 87
Qu H (e_1_3_4_18_2) 2021; 2021
e_1_3_4_52_2
Bogu VP (e_1_3_4_3_2) 2017; 55
e_1_3_4_12_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_16_2
e_1_3_4_14_2
e_1_3_4_56_2
Liu M (e_1_3_4_27_2) 2023; 9
Dias MR (e_1_3_4_58_2) 2012; 45
Harry LE (e_1_3_4_62_2) 2009; 124
References_xml – volume: 2022
  start-page: 9834140
  year: 2022
  ident: e_1_3_4_31_2
  article-title: Construction of photoresponsive 3D structures based on triphenylethylene photochromic building blocks
  publication-title: Research
  doi: 10.34133/2022/9834140
– volume: 2021
  start-page: 9892689
  year: 2021
  ident: e_1_3_4_18_2
  article-title: Fractal design boosts extrusion-based 3D printing of bone-mimicking radial-gradient scaffolds
  publication-title: Research
– ident: e_1_3_4_11_2
  doi: 10.34133/research.0089
– volume: 113
  start-page: 23
  year: 2020
  ident: e_1_3_4_15_2
  article-title: β-Tricalcium phosphate for bone substitution: Synthesis and properties
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2020.06.022
– volume: 124
  start-page: 1211
  issue: 4
  year: 2009
  ident: e_1_3_4_62_2
  article-title: Comparison of the vascularity of fasciocutaneous tissue and muscle for coverage of open tibial fractures
  publication-title: Plast Reconstr Surg
  doi: 10.1097/PRS.0b013e3181b5a308
– volume: 30
  start-page: 191
  issue: 1
  year: 2002
  ident: e_1_3_4_35_2
  article-title: Surface curvatures of trabecular bone microarchitecture
  publication-title: Bone
  doi: 10.1016/S8756-3282(01)00672-X
– volume: 9
  start-page: 4462
  issue: 8
  year: 2023
  ident: e_1_3_4_9_2
  article-title: Advances and prospects in materials for craniofacial bone reconstruction
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.3c00399
– volume: 232
  year: 2020
  ident: e_1_3_4_24_2
  article-title: Substrate curvature as a cue to guide spatiotemporal cell and tissue organization
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119739
– volume: 25
  year: 2021
  ident: e_1_3_4_37_2
  article-title: 3D printed tricalcium phosphate-bioglass scaffold with gyroid structure enhance bone ingrowth in challenging bone defect treatment
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2021.101166
– volume: 5
  start-page: 17059
  year: 2017
  ident: e_1_3_4_44_2
  article-title: Bone biomaterials and interactions with stem cells
  publication-title: Bone Res
  doi: 10.1038/boneres.2017.59
– volume: 119
  issue: 41
  year: 2022
  ident: e_1_3_4_36_2
  article-title: Gaussian curvature-driven direction of cell fate toward osteogenesis with triply periodic minimal surface scaffolds
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2206684119
– volume: 26
  start-page: 5474
  issue: 27
  year: 2005
  ident: e_1_3_4_40_2
  article-title: Porosity of 3D biomaterial scaffolds and osteogenesis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.02.002
– volume: 2022
  start-page: 9823784
  year: 2022
  ident: e_1_3_4_26_2
  article-title: Engineering stem cell recruitment and osteoinduction via bioadhesive molecular mimics to improve osteoporotic bone-implant integration
  publication-title: Research
– volume: 17
  start-page: 114
  issue: 3
  year: 2017
  ident: e_1_3_4_33_2
  article-title: Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action
  publication-title: J Musculoskelet Neuronal Interact
– volume: 5
  start-page: 4
  issue: 1
  year: 2015
  ident: e_1_3_4_8_2
  article-title: Biomimetic approaches to complex craniofacial defects
  publication-title: Ann Maxillofac Surg
  doi: 10.4103/2231-0746.161044
– ident: e_1_3_4_19_2
  doi: 10.1016/j.jeurceramsoc.2022.02.039
– volume: 119
  year: 2022
  ident: e_1_3_4_42_2
  article-title: Prediction of crack nucleation and propagation in porous ceramics using the phase-field approach
  publication-title: Theor Appl Fract Mec
  doi: 10.1016/j.tafmec.2022.103349
– volume: 8
  start-page: 225
  issue: 6
  year: 2016
  ident: e_1_3_4_34_2
  article-title: Bone modeling and remodeling: Potential as therapeutic targets for the treatment of osteoporosis
  publication-title: Ther Adv Musculoskelet Dis
  doi: 10.1177/1759720X16670154
– volume: 45
  start-page: 938
  issue: 6
  year: 2012
  ident: e_1_3_4_58_2
  article-title: Permeability analysis of scaffolds for bone tissue engineering
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2012.01.019
– ident: e_1_3_4_29_2
  doi: 10.1002/adfm.202204182
– ident: e_1_3_4_52_2
  doi: 10.34133/research.0131
– volume: 25
  year: 2021
  ident: e_1_3_4_28_2
  article-title: Highly substituted calcium silicates 3D printed with complex architectures to produce stiff, strong and bioactive scaffolds for bone regeneration
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2021.101230
– ident: e_1_3_4_10_2
  doi: 10.1038/s41578-020-0204-2
– volume: 234
  year: 2023
  ident: e_1_3_4_46_2
  article-title: Dual-crosslinked network of polyacrylamide-carboxymethylcellulose hydrogel promotes osteogenic differentiation in vitro
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2023.123788
– volume: 132
  start-page: 132
  issue: 2
  year: 2018
  ident: e_1_3_4_53_2
  article-title: von Willebrand factor regulation of blood vessel formation
  publication-title: Blood
  doi: 10.1182/blood-2018-01-769018
– ident: e_1_3_4_2_2
  doi: 10.1002/adhm.201700232
– volume: 31
  start-page: 1260
  issue: 6
  year: 2010
  ident: e_1_3_4_39_2
  article-title: Hierarchically microporous/macroporous scaffold of magnesium–calcium phosphate for bone tissue regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.005
– volume: 14
  start-page: 718
  issue: 3
  year: 2019
  ident: e_1_3_4_5_2
  article-title: Management strategies of cranial encephaloceles: A neurosurgical challenge
  publication-title: Asian J Neurosurg
  doi: 10.4103/ajns.AJNS_139_17
– volume: 87
  start-page: 1
  issue: 1
  year: 2002
  ident: e_1_3_4_48_2
  article-title: Runx2, a multifunctional transcription factor in skeletal development
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.10276
– ident: e_1_3_4_12_2
  doi: 10.34133/research.0021
– volume: 15
  start-page: 3
  issue: 1
  year: 2007
  ident: e_1_3_4_57_2
  article-title: The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering
  publication-title: Technol Health Care
  doi: 10.3233/THC-2007-15102
– volume: 123
  start-page: 222
  issue: 2
  year: 2022
  ident: e_1_3_4_61_2
  article-title: Review of bone graft and implant survival rate: A comparison between autogenous bone block versus guided bone regeneration
  publication-title: J Stomatol Oral Maxillofac Surg
  doi: 10.1016/j.jormas.2021.04.009
– ident: e_1_3_4_17_2
  doi: 10.1016/j.mser.2014.04.001
– volume: 2019
  start-page: 9854593
  year: 2019
  ident: e_1_3_4_21_2
  article-title: Rapid magnetic 3D printing of cellular structures with MCF-7 cell inks
  publication-title: Research
  doi: 10.34133/2019/9854593
– volume: 55
  start-page: 2053
  issue: 11
  year: 2017
  ident: e_1_3_4_3_2
  article-title: Homogenous scaffold-based cranial/skull implant modelling and structural analysis-unit cell algorithm-meshless approach
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-017-1649-3
– volume: 30
  start-page: E65
  issue: 1
  year: 2019
  ident: e_1_3_4_6_2
  article-title: Systemic changes affecting the morphology of calvarial bone
  publication-title: J Craniofac Surg
  doi: 10.1097/SCS.0000000000004991
– volume: 79
  start-page: 135
  year: 2018
  ident: e_1_3_4_25_2
  article-title: Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2018.09.003
– ident: e_1_3_4_16_2
  doi: 10.1126/sciadv.aaz6725
– volume: 56
  year: 2022
  ident: e_1_3_4_43_2
  article-title: Si/SiC ceramic lattices with a triply periodic minimal surface structure prepared by laser powder bed fusion
  publication-title: Addit Manuf
– volume: 80
  start-page: 1
  year: 2018
  ident: e_1_3_4_41_2
  article-title: Current state of fabrication technologies and materials for bone tissue engineering
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2018.09.031
– volume: 28
  start-page: 1587
  issue: 7
  year: 2013
  ident: e_1_3_4_45_2
  article-title: In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.1901
– volume: 132
  start-page: 967
  issue: 4
  year: 2013
  ident: e_1_3_4_7_2
  article-title: Autologous immediate cranioplasty with vascularized bone in high-risk composite cranial defects
  publication-title: Plast Reconstr Surg
  doi: 10.1097/PRS.0b013e31829f4b59
– volume: 15
  issue: 3
  year: 2020
  ident: e_1_3_4_32_2
  article-title: Material properties of the skull layers of the primate parietal bone: A single-subject study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0229244
– ident: e_1_3_4_55_2
  doi: 10.1016/j.biomaterials.2017.05.005
– volume: 42
  start-page: 6713
  year: 2022
  ident: e_1_3_4_38_2
  article-title: Fabrication of cancellous-bone-mimicking β-tricalcium phosphate bioceramic scaffolds with tunable architecture and mechanical strength by stereolithography 3D printing
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2022.07.033
– volume: 6
  start-page: 76
  issue: 1
  year: 2020
  ident: e_1_3_4_60_2
  article-title: Clinical and histological sequelae of surgical complications in horizontal guided bone regeneration: A systematic review and proposal for management
  publication-title: Int J Implant Dent
  doi: 10.1186/s40729-020-00274-y
– volume: 19
  start-page: 1
  issue: 1
  year: 2019
  ident: e_1_3_4_51_2
  article-title: Nano-medicine and vascular endothelial dysfunction: Options and delivery strategies
  publication-title: Cardiovasc Toxicol
  doi: 10.1007/s12012-018-9491-x
– volume: 26
  start-page: 46
  issue: 1
  year: 2020
  ident: e_1_3_4_4_2
  article-title: Calvarial versus long bone: Implications for tailoring skeletal tissue engineering
  publication-title: Tissue Eng Part B Rev
  doi: 10.1089/ten.teb.2018.0353
– volume: 9
  start-page: rbab077
  year: 2021
  ident: e_1_3_4_23_2
  article-title: Integrating pore architectures to evaluate vascularization efficacy in silicate-based bioceramic scaffolds
  publication-title: Regen Biomater
  doi: 10.1093/rb/rbab077
– ident: e_1_3_4_14_2
  doi: 10.1016/j.bioactmat.2020.11.004
– volume: 120
  start-page: 6555
  issue: 4
  year: 2019
  ident: e_1_3_4_47_2
  article-title: Synergistic effect of extracellularly supplemented osteopontin and osteocalcin on stem cell proliferation, osteogenic differentiation, and angiogenic properties
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.27948
– ident: e_1_3_4_54_2
  doi: 10.1038/s41467-018-06504-7
– volume: 7
  start-page: 112
  issue: 3
  year: 2022
  ident: e_1_3_4_13_2
  article-title: Design strategies and biomimetic approaches for calcium phosphate scaffolds in bone tissue regeneration
  publication-title: Biomimetics
  doi: 10.3390/biomimetics7030112
– volume: 143
  start-page: 177
  issue: 6
  year: 2015
  ident: e_1_3_4_50_2
  article-title: The vascular marker CD31 also highlights histiocytes and histiocyte-like cells within cutaneous tumors
  publication-title: Am J Clin Pathol
  doi: 10.1309/AJCPRHM8CZH5EMFD
– volume: 9
  start-page: 41168
  issue: 47
  year: 2017
  ident: e_1_3_4_49_2
  article-title: Inorganic strengthened hydrogel membrane as regenerative periosteum
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b13167
– ident: e_1_3_4_56_2
  doi: 10.1039/C4BM00291A
– volume: 22
  start-page: 127
  year: 2022
  ident: e_1_3_4_30_2
  article-title: 3D printing of conch-like scaffolds for guiding cell migration and directional bone growth
  publication-title: Bioact Mater
– volume: 9
  start-page: 627
  issue: 11
  year: 2022
  ident: e_1_3_4_59_2
  article-title: Channel aperture characteristics of carbonate apatite honeycomb scaffolds affect ingrowths of bone and fibrous tissues in vertical bone augmentation
  publication-title: Bioengineering
  doi: 10.3390/bioengineering9110627
– volume: 25
  year: 2021
  ident: e_1_3_4_20_2
  article-title: Redefining architectural effects in 3D printed scaffolds through rational design for optimal bone tissue regeneration
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2021.101168
– ident: e_1_3_4_22_2
  doi: 10.1016/j.bioactmat.2023.02.025
– volume: 9
  start-page: 3032
  issue: 6
  year: 2023
  ident: e_1_3_4_27_2
  article-title: Comprehensive review on fabricating bioactive ceramic bone scaffold using vat photopolymerization
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.3c00051
SSID ssj0002170995
Score 2.3384047
Snippet The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 0255
Title 3D-Printed Flat-Bone-Mimetic Bioceramic Scaffolds for Cranial Restoration
URI https://www.proquest.com/docview/2884183130
https://pubmed.ncbi.nlm.nih.gov/PMC10603392
https://doaj.org/article/6dadfd07e815436687b60dd1759162b0
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPVFBEE9RLudNk2Pru6iwoqoC95KmklwYe3KPq7-didtV7YH8eKlhza06cwk3zdp-g1jp4lyISoHwkIeiygMaR4EkCJFA6hdHCfo1zv6j_JuED28xW9Lpb78nrBKHrgy3JVEjQ6DxCoCe5BSJbkMEAn1iNiEeZmtE-YtJVN-DiaiTdQnrlQa_UQNV7V4zvulZ9ENFCrF-hsMs7k_cglwehtsvWaK_Lrq4SZbscUW26zH4pSf14LRF9vsHm7F08QLPyDvjfRMdMaFFf3hh_9BkXeGBFETX3aevxjt3HiEU05Uld8QTFH08eeyuEzpoR026HVfb-5EXSJBmAiimQCZq8DoNFA21pSZJQHqdqAwQkdWoBcAFadat41LEMG1UVI-Z6T0RCGUCcIuWy2oT3uME3ORKjZhLi1EENiUbts22toUiLM512JiYbLM1PrhvozFKKM8ojRxtjBx5k3cYmc_7T8r5YxfW3a8B35aecXr8gTFQVbHQfZXHLTYycJ_GY0Q_9lDF3Y8n2ahUhFNXATWLaYajm08sXmlGL6XWtuUMQdAHHL_P_p4wNZ8tfpqBeeQrc4mc3tEnGaWH5fhS8f-V_cbj4v3dw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Printed+Flat-Bone-Mimetic+Bioceramic+Scaffolds+for+Cranial+Restoration&rft.jtitle=Research+%28Washington%29&rft.au=Zhang%2C+Yihang&rft.au=He%2C+Fupo&rft.au=Zhang%2C+Qiang&rft.au=Lu%2C+Haotian&rft.date=2023&rft.issn=2639-5274&rft.eissn=2639-5274&rft.volume=6&rft_id=info:doi/10.34133%2Fresearch.0255&rft.externalDBID=n%2Fa&rft.externalDocID=10_34133_research_0255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-5274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-5274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-5274&client=summon