3D-Printed Flat-Bone-Mimetic Bioceramic Scaffolds for Cranial Restoration
The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study...
Saved in:
Published in | Research (Washington) Vol. 6; p. 0255 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
AAAS
2023
American Association for the Advancement of Science (AAAS) |
Online Access | Get full text |
Cover
Loading…
Abstract | The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study, we originally developed 2 types of flat-bone-mimetic β-tricalcium phosphate bioceramic scaffolds (Gyr-Comp and Gyr-Tub) by high-precision vat-photopolymerization-based 3-dimensional printing. Both scaffolds had 2 outer layers and an inner layer with gyroid pores mimicking the diploe structure. The outer layers of Gyr-Comp scaffolds simulated the low porosity of outer tables, while those of Gyr-Tub scaffolds mimicked the tubular pore structure in the tables of flat bones. The Gyr-Comp and Gyr-Tub scaffolds possessed higher compressive strength and noticeably promoted in vitro cell proliferation, osteogenic differentiation, and angiogenic activities compared with conventional scaffolds with cross-hatch structures. After implantation into rabbit cranial defects for 12 weeks, Gyr-Tub achieved the best repairing effects by accelerating the generation of bone tissues and blood vessels. This work provides an advanced strategy to prepare biomimetic biomaterials that fit the structural and functional needs of efficacious bone regeneration. |
---|---|
AbstractList | The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study, we originally developed 2 types of flat-bone-mimetic β-tricalcium phosphate bioceramic scaffolds (Gyr-Comp and Gyr-Tub) by high-precision vat-photopolymerization-based 3-dimensional printing. Both scaffolds had 2 outer layers and an inner layer with gyroid pores mimicking the diploe structure. The outer layers of Gyr-Comp scaffolds simulated the low porosity of outer tables, while those of Gyr-Tub scaffolds mimicked the tubular pore structure in the tables of flat bones. The Gyr-Comp and Gyr-Tub scaffolds possessed higher compressive strength and noticeably promoted in vitro cell proliferation, osteogenic differentiation, and angiogenic activities compared with conventional scaffolds with cross-hatch structures. After implantation into rabbit cranial defects for 12 weeks, Gyr-Tub achieved the best repairing effects by accelerating the generation of bone tissues and blood vessels. This work provides an advanced strategy to prepare biomimetic biomaterials that fit the structural and functional needs of efficacious bone regeneration. The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study, we originally developed 2 types of flat-bone-mimetic β-tricalcium phosphate bioceramic scaffolds (Gyr-Comp and Gyr-Tub) by high-precision vat-photopolymerization-based 3-dimensional printing. Both scaffolds had 2 outer layers and an inner layer with gyroid pores mimicking the diploe structure. The outer layers of Gyr-Comp scaffolds simulated the low porosity of outer tables, while those of Gyr-Tub scaffolds mimicked the tubular pore structure in the tables of flat bones. The Gyr-Comp and Gyr-Tub scaffolds possessed higher compressive strength and noticeably promoted in vitro cell proliferation, osteogenic differentiation, and angiogenic activities compared with conventional scaffolds with cross-hatch structures. After implantation into rabbit cranial defects for 12 weeks, Gyr-Tub achieved the best repairing effects by accelerating the generation of bone tissues and blood vessels. This work provides an advanced strategy to prepare biomimetic biomaterials that fit the structural and functional needs of efficacious bone regeneration.The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study, we originally developed 2 types of flat-bone-mimetic β-tricalcium phosphate bioceramic scaffolds (Gyr-Comp and Gyr-Tub) by high-precision vat-photopolymerization-based 3-dimensional printing. Both scaffolds had 2 outer layers and an inner layer with gyroid pores mimicking the diploe structure. The outer layers of Gyr-Comp scaffolds simulated the low porosity of outer tables, while those of Gyr-Tub scaffolds mimicked the tubular pore structure in the tables of flat bones. The Gyr-Comp and Gyr-Tub scaffolds possessed higher compressive strength and noticeably promoted in vitro cell proliferation, osteogenic differentiation, and angiogenic activities compared with conventional scaffolds with cross-hatch structures. After implantation into rabbit cranial defects for 12 weeks, Gyr-Tub achieved the best repairing effects by accelerating the generation of bone tissues and blood vessels. This work provides an advanced strategy to prepare biomimetic biomaterials that fit the structural and functional needs of efficacious bone regeneration. |
Author | Shi, Xuetao Yan, Shengtao He, Fupo Lu, Haotian Zhang, Qiang Zhang, Yihang |
AuthorAffiliation | 3 Peking Union Medical College Graduate School , Beijing 100730, P. R. China 1 School of Electromechanical Engineering , Guangdong University of Technology , Guangzhou 510006, P. R. China 2 School of Materials Science and Engineering , South China University of Technology , Guangzhou 510641, P. R. China 4 Department of Emergency , China-Japan Friendship Hospital , Beijing 100029, P. R. China |
AuthorAffiliation_xml | – name: 1 School of Electromechanical Engineering , Guangdong University of Technology , Guangzhou 510006, P. R. China – name: 3 Peking Union Medical College Graduate School , Beijing 100730, P. R. China – name: 2 School of Materials Science and Engineering , South China University of Technology , Guangzhou 510641, P. R. China – name: 4 Department of Emergency , China-Japan Friendship Hospital , Beijing 100029, P. R. China |
Author_xml | – sequence: 1 givenname: Yihang surname: Zhang fullname: Zhang, Yihang organization: School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China – sequence: 2 givenname: Fupo surname: He fullname: He, Fupo organization: School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China – sequence: 3 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China – sequence: 4 givenname: Haotian surname: Lu fullname: Lu, Haotian organization: Peking Union Medical College Graduate School, Beijing 100730, P. R. China – sequence: 5 givenname: Shengtao surname: Yan fullname: Yan, Shengtao organization: Peking Union Medical College Graduate School, Beijing 100730, P. R. China., Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, P. R. China – sequence: 6 givenname: Xuetao orcidid: 0000-0003-3896-5097 surname: Shi fullname: Shi, Xuetao organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China |
BookMark | eNp1kUtvFDEQhC0UJELIlfMcuczSHj_nhMhCyEpBIB5nq9ePxJFnHOxZJP49zm6CCBInt2zXV6Wu5-RozrMn5CWFFeOUsdfFV4_FXq9gEOIJOR4kG3sxKH701_yMnNZ6AwADVTCO4phs2Lv-c4nz4l13nnDpzxq3_xgnv0TbncVsfcGpjV8thpCTq13IpVsXnCOm7ouvSy64xDy_IE8DpupP788T8v38_bf1RX_56cNm_fayt5zxpWdyq8HiCNoLVFQpcEhBO-5Cy-WsZ1qMiNQG5RwL1EkOo5USlIBBKsdOyObAdRlvzG2JE5ZfJmM0-4tcrgyWFj55Ix264EB5TQVnUmq1leAcVWKkcthCY705sG5328k383kpmB5BH7_M8dpc5Z-GggTGxqERXt0TSv6xa9swU6zWp4Szz7tqBq051YyyO7PV4astudbiwx8fCmZfonko0dyV2AT8H4GNy37XLUtM_5P9Bp2PpNU |
CitedBy_id | crossref_primary_10_1002_adhm_202404346 crossref_primary_10_1016_j_compositesb_2024_111812 crossref_primary_10_1016_j_ceramint_2024_08_021 crossref_primary_10_1016_j_ceramint_2024_08_197 crossref_primary_10_1002_smll_202405642 crossref_primary_10_1186_s12951_024_03087_y crossref_primary_10_1016_j_cej_2024_157930 crossref_primary_10_1002_adfm_202418438 crossref_primary_10_1016_j_jot_2024_04_002 crossref_primary_10_3390_polym17070858 crossref_primary_10_1088_1748_605X_adbaa2 crossref_primary_10_1021_acsbiomaterials_4c01661 crossref_primary_10_34133_research_0555 crossref_primary_10_37349_emed_2024_00203 |
Cites_doi | 10.34133/2022/9834140 10.34133/research.0089 10.1016/j.actbio.2020.06.022 10.1097/PRS.0b013e3181b5a308 10.1016/S8756-3282(01)00672-X 10.1021/acsbiomaterials.3c00399 10.1016/j.biomaterials.2019.119739 10.1016/j.apmt.2021.101166 10.1038/boneres.2017.59 10.1073/pnas.2206684119 10.1016/j.biomaterials.2005.02.002 10.4103/2231-0746.161044 10.1016/j.jeurceramsoc.2022.02.039 10.1016/j.tafmec.2022.103349 10.1177/1759720X16670154 10.1016/j.jbiomech.2012.01.019 10.1002/adfm.202204182 10.34133/research.0131 10.1016/j.apmt.2021.101230 10.1038/s41578-020-0204-2 10.1016/j.ijbiomac.2023.123788 10.1182/blood-2018-01-769018 10.1002/adhm.201700232 10.1016/j.biomaterials.2009.11.005 10.4103/ajns.AJNS_139_17 10.1002/jcb.10276 10.34133/research.0021 10.3233/THC-2007-15102 10.1016/j.jormas.2021.04.009 10.1016/j.mser.2014.04.001 10.34133/2019/9854593 10.1007/s11517-017-1649-3 10.1097/SCS.0000000000004991 10.1016/j.actbio.2018.09.003 10.1126/sciadv.aaz6725 10.1016/j.actbio.2018.09.031 10.1002/jbmr.1901 10.1097/PRS.0b013e31829f4b59 10.1371/journal.pone.0229244 10.1016/j.biomaterials.2017.05.005 10.1016/j.jeurceramsoc.2022.07.033 10.1186/s40729-020-00274-y 10.1007/s12012-018-9491-x 10.1089/ten.teb.2018.0353 10.1093/rb/rbab077 10.1016/j.bioactmat.2020.11.004 10.1002/jcb.27948 10.1038/s41467-018-06504-7 10.3390/biomimetics7030112 10.1309/AJCPRHM8CZH5EMFD 10.1021/acsami.7b13167 10.1039/C4BM00291A 10.3390/bioengineering9110627 10.1016/j.apmt.2021.101168 10.1016/j.bioactmat.2023.02.025 10.1021/acsbiomaterials.3c00051 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Yihang Zhang et al. Copyright © 2023 Yihang Zhang et al. 2023 Yihang Zhang et al. |
Copyright_xml | – notice: Copyright © 2023 Yihang Zhang et al. – notice: Copyright © 2023 Yihang Zhang et al. 2023 Yihang Zhang et al. |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.34133/research.0255 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2639-5274 |
ExternalDocumentID | oai_doaj_org_article_6dadfd07e815436687b60dd1759162b0 PMC10603392 10_34133_research_0255 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION HYE M~E OK1 PGMZT RPM 7X8 5PM GROUPED_DOAJ |
ID | FETCH-LOGICAL-c434t-36b80ca908e5a71770da108d4df000dce3859aa1cf7dd3f1d6409c660750267d3 |
IEDL.DBID | DOA |
ISSN | 2639-5274 |
IngestDate | Wed Aug 27 01:27:20 EDT 2025 Thu Aug 21 18:36:16 EDT 2025 Fri Jul 11 05:09:06 EDT 2025 Tue Jul 01 03:44:27 EDT 2025 Thu Apr 24 22:56:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Exclusive licensee Science and Technology Review Publishing House. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-36b80ca908e5a71770da108d4df000dce3859aa1cf7dd3f1d6409c660750267d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-3896-5097 |
OpenAccessLink | https://doaj.org/article/6dadfd07e815436687b60dd1759162b0 |
PQID | 2884183130 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6dadfd07e815436687b60dd1759162b0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10603392 proquest_miscellaneous_2884183130 crossref_primary_10_34133_research_0255 crossref_citationtrail_10_34133_research_0255 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Research (Washington) |
PublicationYear | 2023 |
Publisher | AAAS American Association for the Advancement of Science (AAAS) |
Publisher_xml | – name: AAAS – name: American Association for the Advancement of Science (AAAS) |
References | Chen Z (e_1_3_4_46_2) 2023; 234 Teven CM (e_1_3_4_8_2) 2015; 5 Abaza A (e_1_3_4_42_2) 2022; 119 Taneja G (e_1_3_4_51_2) 2019; 19 Zhang X (e_1_3_4_31_2) 2022; 2022 Wu F (e_1_3_4_23_2) 2021; 9 Feng B (e_1_3_4_30_2) 2022; 22 Randi AM (e_1_3_4_53_2) 2018; 132 Bai J (e_1_3_4_26_2) 2022; 2022 Karageorgiou V (e_1_3_4_40_2) 2005; 26 Zapata U (e_1_3_4_32_2) 2020; 15 e_1_3_4_29_2 Xin T (e_1_3_4_49_2) 2017; 9 Wei J (e_1_3_4_39_2) 2010; 31 Gao C (e_1_3_4_44_2) 2017; 5 Yao A (e_1_3_4_6_2) 2019; 30 Bohner M (e_1_3_4_15_2) 2020; 113 Hayashi K (e_1_3_4_59_2) 2022; 9 e_1_3_4_11_2 e_1_3_4_55_2 Chatelet M (e_1_3_4_61_2) 2022; 123 Tay JRH (e_1_3_4_60_2) 2020; 6 Hart NH (e_1_3_4_33_2) 2017; 17 Narisawa S (e_1_3_4_45_2) 2013; 28 e_1_3_4_19_2 Mirkhalaf M (e_1_3_4_20_2) 2021; 25 e_1_3_4_17_2 Callens SJP (e_1_3_4_24_2) 2020; 232 Wang D (e_1_3_4_4_2) 2020; 26 Jinnai H (e_1_3_4_35_2) 2002; 30 e_1_3_4_2_2 Yang Y (e_1_3_4_36_2) 2022; 119 Carvalho MS (e_1_3_4_47_2) 2019; 120 Wubneh A (e_1_3_4_41_2) 2018; 80 Mishriki S (e_1_3_4_21_2) 2019; 2019 Pupilli F (e_1_3_4_13_2) 2022; 7 Zhu H (e_1_3_4_37_2) 2021; 25 O’Brien FJ (e_1_3_4_57_2) 2007; 15 e_1_3_4_22_2 Lee JC (e_1_3_4_7_2) 2013; 132 Zhang Y (e_1_3_4_38_2) 2022; 42 Vanchinathan V (e_1_3_4_50_2) 2015; 143 Mirkhalaf M (e_1_3_4_28_2) 2021; 25 Wu S (e_1_3_4_43_2) 2022; 56 Barba A (e_1_3_4_25_2) 2018; 79 Velho V (e_1_3_4_5_2) 2019; 14 Gu L (e_1_3_4_9_2) 2023; 9 Langdahl B (e_1_3_4_34_2) 2016; 8 Komori T (e_1_3_4_48_2) 2002; 87 Qu H (e_1_3_4_18_2) 2021; 2021 e_1_3_4_52_2 Bogu VP (e_1_3_4_3_2) 2017; 55 e_1_3_4_12_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_16_2 e_1_3_4_14_2 e_1_3_4_56_2 Liu M (e_1_3_4_27_2) 2023; 9 Dias MR (e_1_3_4_58_2) 2012; 45 Harry LE (e_1_3_4_62_2) 2009; 124 |
References_xml | – volume: 2022 start-page: 9834140 year: 2022 ident: e_1_3_4_31_2 article-title: Construction of photoresponsive 3D structures based on triphenylethylene photochromic building blocks publication-title: Research doi: 10.34133/2022/9834140 – volume: 2021 start-page: 9892689 year: 2021 ident: e_1_3_4_18_2 article-title: Fractal design boosts extrusion-based 3D printing of bone-mimicking radial-gradient scaffolds publication-title: Research – ident: e_1_3_4_11_2 doi: 10.34133/research.0089 – volume: 113 start-page: 23 year: 2020 ident: e_1_3_4_15_2 article-title: β-Tricalcium phosphate for bone substitution: Synthesis and properties publication-title: Acta Biomater doi: 10.1016/j.actbio.2020.06.022 – volume: 124 start-page: 1211 issue: 4 year: 2009 ident: e_1_3_4_62_2 article-title: Comparison of the vascularity of fasciocutaneous tissue and muscle for coverage of open tibial fractures publication-title: Plast Reconstr Surg doi: 10.1097/PRS.0b013e3181b5a308 – volume: 30 start-page: 191 issue: 1 year: 2002 ident: e_1_3_4_35_2 article-title: Surface curvatures of trabecular bone microarchitecture publication-title: Bone doi: 10.1016/S8756-3282(01)00672-X – volume: 9 start-page: 4462 issue: 8 year: 2023 ident: e_1_3_4_9_2 article-title: Advances and prospects in materials for craniofacial bone reconstruction publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.3c00399 – volume: 232 year: 2020 ident: e_1_3_4_24_2 article-title: Substrate curvature as a cue to guide spatiotemporal cell and tissue organization publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119739 – volume: 25 year: 2021 ident: e_1_3_4_37_2 article-title: 3D printed tricalcium phosphate-bioglass scaffold with gyroid structure enhance bone ingrowth in challenging bone defect treatment publication-title: Appl Mater Today doi: 10.1016/j.apmt.2021.101166 – volume: 5 start-page: 17059 year: 2017 ident: e_1_3_4_44_2 article-title: Bone biomaterials and interactions with stem cells publication-title: Bone Res doi: 10.1038/boneres.2017.59 – volume: 119 issue: 41 year: 2022 ident: e_1_3_4_36_2 article-title: Gaussian curvature-driven direction of cell fate toward osteogenesis with triply periodic minimal surface scaffolds publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2206684119 – volume: 26 start-page: 5474 issue: 27 year: 2005 ident: e_1_3_4_40_2 article-title: Porosity of 3D biomaterial scaffolds and osteogenesis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.02.002 – volume: 2022 start-page: 9823784 year: 2022 ident: e_1_3_4_26_2 article-title: Engineering stem cell recruitment and osteoinduction via bioadhesive molecular mimics to improve osteoporotic bone-implant integration publication-title: Research – volume: 17 start-page: 114 issue: 3 year: 2017 ident: e_1_3_4_33_2 article-title: Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action publication-title: J Musculoskelet Neuronal Interact – volume: 5 start-page: 4 issue: 1 year: 2015 ident: e_1_3_4_8_2 article-title: Biomimetic approaches to complex craniofacial defects publication-title: Ann Maxillofac Surg doi: 10.4103/2231-0746.161044 – ident: e_1_3_4_19_2 doi: 10.1016/j.jeurceramsoc.2022.02.039 – volume: 119 year: 2022 ident: e_1_3_4_42_2 article-title: Prediction of crack nucleation and propagation in porous ceramics using the phase-field approach publication-title: Theor Appl Fract Mec doi: 10.1016/j.tafmec.2022.103349 – volume: 8 start-page: 225 issue: 6 year: 2016 ident: e_1_3_4_34_2 article-title: Bone modeling and remodeling: Potential as therapeutic targets for the treatment of osteoporosis publication-title: Ther Adv Musculoskelet Dis doi: 10.1177/1759720X16670154 – volume: 45 start-page: 938 issue: 6 year: 2012 ident: e_1_3_4_58_2 article-title: Permeability analysis of scaffolds for bone tissue engineering publication-title: J Biomech doi: 10.1016/j.jbiomech.2012.01.019 – ident: e_1_3_4_29_2 doi: 10.1002/adfm.202204182 – ident: e_1_3_4_52_2 doi: 10.34133/research.0131 – volume: 25 year: 2021 ident: e_1_3_4_28_2 article-title: Highly substituted calcium silicates 3D printed with complex architectures to produce stiff, strong and bioactive scaffolds for bone regeneration publication-title: Appl Mater Today doi: 10.1016/j.apmt.2021.101230 – ident: e_1_3_4_10_2 doi: 10.1038/s41578-020-0204-2 – volume: 234 year: 2023 ident: e_1_3_4_46_2 article-title: Dual-crosslinked network of polyacrylamide-carboxymethylcellulose hydrogel promotes osteogenic differentiation in vitro publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2023.123788 – volume: 132 start-page: 132 issue: 2 year: 2018 ident: e_1_3_4_53_2 article-title: von Willebrand factor regulation of blood vessel formation publication-title: Blood doi: 10.1182/blood-2018-01-769018 – ident: e_1_3_4_2_2 doi: 10.1002/adhm.201700232 – volume: 31 start-page: 1260 issue: 6 year: 2010 ident: e_1_3_4_39_2 article-title: Hierarchically microporous/macroporous scaffold of magnesium–calcium phosphate for bone tissue regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.005 – volume: 14 start-page: 718 issue: 3 year: 2019 ident: e_1_3_4_5_2 article-title: Management strategies of cranial encephaloceles: A neurosurgical challenge publication-title: Asian J Neurosurg doi: 10.4103/ajns.AJNS_139_17 – volume: 87 start-page: 1 issue: 1 year: 2002 ident: e_1_3_4_48_2 article-title: Runx2, a multifunctional transcription factor in skeletal development publication-title: J Cell Biochem doi: 10.1002/jcb.10276 – ident: e_1_3_4_12_2 doi: 10.34133/research.0021 – volume: 15 start-page: 3 issue: 1 year: 2007 ident: e_1_3_4_57_2 article-title: The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering publication-title: Technol Health Care doi: 10.3233/THC-2007-15102 – volume: 123 start-page: 222 issue: 2 year: 2022 ident: e_1_3_4_61_2 article-title: Review of bone graft and implant survival rate: A comparison between autogenous bone block versus guided bone regeneration publication-title: J Stomatol Oral Maxillofac Surg doi: 10.1016/j.jormas.2021.04.009 – ident: e_1_3_4_17_2 doi: 10.1016/j.mser.2014.04.001 – volume: 2019 start-page: 9854593 year: 2019 ident: e_1_3_4_21_2 article-title: Rapid magnetic 3D printing of cellular structures with MCF-7 cell inks publication-title: Research doi: 10.34133/2019/9854593 – volume: 55 start-page: 2053 issue: 11 year: 2017 ident: e_1_3_4_3_2 article-title: Homogenous scaffold-based cranial/skull implant modelling and structural analysis-unit cell algorithm-meshless approach publication-title: Med Biol Eng Comput doi: 10.1007/s11517-017-1649-3 – volume: 30 start-page: E65 issue: 1 year: 2019 ident: e_1_3_4_6_2 article-title: Systemic changes affecting the morphology of calvarial bone publication-title: J Craniofac Surg doi: 10.1097/SCS.0000000000004991 – volume: 79 start-page: 135 year: 2018 ident: e_1_3_4_25_2 article-title: Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.09.003 – ident: e_1_3_4_16_2 doi: 10.1126/sciadv.aaz6725 – volume: 56 year: 2022 ident: e_1_3_4_43_2 article-title: Si/SiC ceramic lattices with a triply periodic minimal surface structure prepared by laser powder bed fusion publication-title: Addit Manuf – volume: 80 start-page: 1 year: 2018 ident: e_1_3_4_41_2 article-title: Current state of fabrication technologies and materials for bone tissue engineering publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.09.031 – volume: 28 start-page: 1587 issue: 7 year: 2013 ident: e_1_3_4_45_2 article-title: In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin publication-title: J Bone Miner Res doi: 10.1002/jbmr.1901 – volume: 132 start-page: 967 issue: 4 year: 2013 ident: e_1_3_4_7_2 article-title: Autologous immediate cranioplasty with vascularized bone in high-risk composite cranial defects publication-title: Plast Reconstr Surg doi: 10.1097/PRS.0b013e31829f4b59 – volume: 15 issue: 3 year: 2020 ident: e_1_3_4_32_2 article-title: Material properties of the skull layers of the primate parietal bone: A single-subject study publication-title: PLoS One doi: 10.1371/journal.pone.0229244 – ident: e_1_3_4_55_2 doi: 10.1016/j.biomaterials.2017.05.005 – volume: 42 start-page: 6713 year: 2022 ident: e_1_3_4_38_2 article-title: Fabrication of cancellous-bone-mimicking β-tricalcium phosphate bioceramic scaffolds with tunable architecture and mechanical strength by stereolithography 3D printing publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2022.07.033 – volume: 6 start-page: 76 issue: 1 year: 2020 ident: e_1_3_4_60_2 article-title: Clinical and histological sequelae of surgical complications in horizontal guided bone regeneration: A systematic review and proposal for management publication-title: Int J Implant Dent doi: 10.1186/s40729-020-00274-y – volume: 19 start-page: 1 issue: 1 year: 2019 ident: e_1_3_4_51_2 article-title: Nano-medicine and vascular endothelial dysfunction: Options and delivery strategies publication-title: Cardiovasc Toxicol doi: 10.1007/s12012-018-9491-x – volume: 26 start-page: 46 issue: 1 year: 2020 ident: e_1_3_4_4_2 article-title: Calvarial versus long bone: Implications for tailoring skeletal tissue engineering publication-title: Tissue Eng Part B Rev doi: 10.1089/ten.teb.2018.0353 – volume: 9 start-page: rbab077 year: 2021 ident: e_1_3_4_23_2 article-title: Integrating pore architectures to evaluate vascularization efficacy in silicate-based bioceramic scaffolds publication-title: Regen Biomater doi: 10.1093/rb/rbab077 – ident: e_1_3_4_14_2 doi: 10.1016/j.bioactmat.2020.11.004 – volume: 120 start-page: 6555 issue: 4 year: 2019 ident: e_1_3_4_47_2 article-title: Synergistic effect of extracellularly supplemented osteopontin and osteocalcin on stem cell proliferation, osteogenic differentiation, and angiogenic properties publication-title: J Cell Biochem doi: 10.1002/jcb.27948 – ident: e_1_3_4_54_2 doi: 10.1038/s41467-018-06504-7 – volume: 7 start-page: 112 issue: 3 year: 2022 ident: e_1_3_4_13_2 article-title: Design strategies and biomimetic approaches for calcium phosphate scaffolds in bone tissue regeneration publication-title: Biomimetics doi: 10.3390/biomimetics7030112 – volume: 143 start-page: 177 issue: 6 year: 2015 ident: e_1_3_4_50_2 article-title: The vascular marker CD31 also highlights histiocytes and histiocyte-like cells within cutaneous tumors publication-title: Am J Clin Pathol doi: 10.1309/AJCPRHM8CZH5EMFD – volume: 9 start-page: 41168 issue: 47 year: 2017 ident: e_1_3_4_49_2 article-title: Inorganic strengthened hydrogel membrane as regenerative periosteum publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b13167 – ident: e_1_3_4_56_2 doi: 10.1039/C4BM00291A – volume: 22 start-page: 127 year: 2022 ident: e_1_3_4_30_2 article-title: 3D printing of conch-like scaffolds for guiding cell migration and directional bone growth publication-title: Bioact Mater – volume: 9 start-page: 627 issue: 11 year: 2022 ident: e_1_3_4_59_2 article-title: Channel aperture characteristics of carbonate apatite honeycomb scaffolds affect ingrowths of bone and fibrous tissues in vertical bone augmentation publication-title: Bioengineering doi: 10.3390/bioengineering9110627 – volume: 25 year: 2021 ident: e_1_3_4_20_2 article-title: Redefining architectural effects in 3D printed scaffolds through rational design for optimal bone tissue regeneration publication-title: Appl Mater Today doi: 10.1016/j.apmt.2021.101168 – ident: e_1_3_4_22_2 doi: 10.1016/j.bioactmat.2023.02.025 – volume: 9 start-page: 3032 issue: 6 year: 2023 ident: e_1_3_4_27_2 article-title: Comprehensive review on fabricating bioactive ceramic bone scaffold using vat photopolymerization publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.3c00051 |
SSID | ssj0002170995 |
Score | 2.3384047 |
Snippet | The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 0255 |
Title | 3D-Printed Flat-Bone-Mimetic Bioceramic Scaffolds for Cranial Restoration |
URI | https://www.proquest.com/docview/2884183130 https://pubmed.ncbi.nlm.nih.gov/PMC10603392 https://doaj.org/article/6dadfd07e815436687b60dd1759162b0 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPVFBEE9RLudNk2Pru6iwoqoC95KmklwYe3KPq7-didtV7YH8eKlhza06cwk3zdp-g1jp4lyISoHwkIeiygMaR4EkCJFA6hdHCfo1zv6j_JuED28xW9Lpb78nrBKHrgy3JVEjQ6DxCoCe5BSJbkMEAn1iNiEeZmtE-YtJVN-DiaiTdQnrlQa_UQNV7V4zvulZ9ENFCrF-hsMs7k_cglwehtsvWaK_Lrq4SZbscUW26zH4pSf14LRF9vsHm7F08QLPyDvjfRMdMaFFf3hh_9BkXeGBFETX3aevxjt3HiEU05Uld8QTFH08eeyuEzpoR026HVfb-5EXSJBmAiimQCZq8DoNFA21pSZJQHqdqAwQkdWoBcAFadat41LEMG1UVI-Z6T0RCGUCcIuWy2oT3uME3ORKjZhLi1EENiUbts22toUiLM512JiYbLM1PrhvozFKKM8ojRxtjBx5k3cYmc_7T8r5YxfW3a8B35aecXr8gTFQVbHQfZXHLTYycJ_GY0Q_9lDF3Y8n2ahUhFNXATWLaYajm08sXmlGL6XWtuUMQdAHHL_P_p4wNZ8tfpqBeeQrc4mc3tEnGaWH5fhS8f-V_cbj4v3dw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Printed+Flat-Bone-Mimetic+Bioceramic+Scaffolds+for+Cranial+Restoration&rft.jtitle=Research+%28Washington%29&rft.au=Zhang%2C+Yihang&rft.au=He%2C+Fupo&rft.au=Zhang%2C+Qiang&rft.au=Lu%2C+Haotian&rft.date=2023&rft.issn=2639-5274&rft.eissn=2639-5274&rft.volume=6&rft_id=info:doi/10.34133%2Fresearch.0255&rft.externalDBID=n%2Fa&rft.externalDocID=10_34133_research_0255 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-5274&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-5274&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-5274&client=summon |