A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas

Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification (UQ) deals with the estimation of statistics of the system response, given a computational model of the system and a probabilistic model of its inputs. In engineering applications it is common to assume that...

Full description

Saved in:
Bibliographic Details
Published inProbabilistic engineering mechanics Vol. 55; pp. 1 - 16
Main Authors Torre, Emiliano, Marelli, Stefano, Embrechts, Paul, Sudret, Bruno
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.01.2019
Elsevier Science Ltd
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification (UQ) deals with the estimation of statistics of the system response, given a computational model of the system and a probabilistic model of its inputs. In engineering applications it is common to assume that the inputs are mutually independent or coupled by a Gaussian or elliptical dependence structure (copula). In this paper we overcome such limitations by modelling the dependence structure of multivariate inputs through vine copulas. Vine copulas are models of multivariate dependence built from simpler pair-copulas. The vine representation is flexible enough to capture complex dependencies. This paper formalises the framework needed to build vine copula models of multivariate inputs and to combine them with virtually any UQ method. The framework allows for fully automated, data-driven inference of the probabilistic input model on available input data. The procedure is exemplified on two finite element models of truss structures, both subject to inputs with non-Gaussian dependence structures. For each case, we analyse the moments of the model response (using polynomial chaos expansions), and perform structural reliability analysis to calculate the probability of failure of the system (using the first order reliability method and importance sampling). Reference solutions are obtained by Monte Carlo simulation. The results show that, while the Gaussian assumption yields biased statistics, the vine copula representation achieves significantly more precise estimates, even when its structure needs to be fully inferred from a limited amount of observations.
AbstractList Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification(UQ) deals with the estimation of statistics of the system response, given a computationalmodel of the system and a probabilistic model of its inputs. In engineering applicationsit is common to assume that the inputs are mutually independent or coupled by a Gaussianor elliptical dependence structure (copula).In this paper we overcome such limitations by modelling the dependence structure ofmultivariate inputs as vine copulas. Vine copulas are models of multivariate dependencebuilt from simpler pair-copulas. The vine representation is flexible enough to capture complexdependencies. This paper formalises the framework needed to build vine copula modelsof multivariate inputs and to combine them with virtually any UQ method. The frameworkallows for a fully automated, data-driven inference of the probabilistic input model onavailable input data.The procedure is exemplified on two finite element models of truss structures, both subjectto inputs with non-Gaussian dependence structures. For each case, we analyse the momentsof the model response (using polynomial chaos expansions), and perform a structural reliabilityanalysis to calculate the probability of failure of the system (using the first orderreliability method and importance sampling). Reference solutions are obtained by MonteCarlo simulation. The results show that, while the Gaussian assumption yields biased statistics,the vine copula representation achieves significantly more precise estimates, even whenits structure needs to be fully inferred from a limited amount of observations.
Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification (UQ) deals with the estimation of statistics of the system response, given a computational model of the system and a probabilistic model of its inputs. In engineering applications it is common to assume that the inputs are mutually independent or coupled by a Gaussian or elliptical dependence structure (copula). In this paper we overcome such limitations by modelling the dependence structure of multivariate inputs through vine copulas. Vine copulas are models of multivariate dependence built from simpler pair-copulas. The vine representation is flexible enough to capture complex dependencies. This paper formalises the framework needed to build vine copula models of multivariate inputs and to combine them with virtually any UQ method. The framework allows for fully automated, data-driven inference of the probabilistic input model on available input data. The procedure is exemplified on two finite element models of truss structures, both subject to inputs with non-Gaussian dependence structures. For each case, we analyse the moments of the model response (using polynomial chaos expansions), and perform structural reliability analysis to calculate the probability of failure of the system (using the first order reliability method and importance sampling). Reference solutions are obtained by Monte Carlo simulation. The results show that, while the Gaussian assumption yields biased statistics, the vine copula representation achieves significantly more precise estimates, even when its structure needs to be fully inferred from a limited amount of observations.
Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification (UQ) deals with the estimation of statistics of the system response, given a computational model of the system and a probabilistic model of its inputs. In engineering applications it is common to assume that the inputs are mutually independent or coupled by a Gaussian or elliptical dependence structure (copula). In this paper we overcome such limitations by modelling the dependence structure of multivariate inputs through vine copulas. Vine copulas are models of multivariate dependence built from simpler pair-copulas. The vine representation is flexible enough to capture complex dependencies. This paper formalises the framework needed to build vine copula models of multivariate inputs and to combine them with virtually any UQ method. The framework allows for fully automated, data-driven inference of the probabilistic input model on available input data. The procedure is exemplified on two finite element models of truss structures, both subject to inputs with non-Gaussian dependence structures. For each case, we analyse the moments of the model response (using polynomial chaos expansions), and perform structural reliability analysis to calculate the probability of failure of the system (using the first order reliability method and importance sampling). Reference solutions are obtained by Monte Carlo simulation. The results show that, while the Gaussian assumption yields biased statistics, the vine copula representation achieves significantly more precise estimates, even when its structure needs to be fully inferred from a limited amount of observations.
Author Sudret, Bruno
Embrechts, Paul
Marelli, Stefano
Torre, Emiliano
Author_xml – sequence: 1
  givenname: Emiliano
  orcidid: 0000-0001-8263-9278
  surname: Torre
  fullname: Torre, Emiliano
  email: torre@ibk.baug.ethz.ch
  organization: Risk Center, ETH Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Stefano
  orcidid: 0000-0002-9268-9014
  surname: Marelli
  fullname: Marelli, Stefano
  organization: Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Zurich, Switzerland
– sequence: 3
  givenname: Paul
  surname: Embrechts
  fullname: Embrechts, Paul
  organization: Risk Center, ETH Zurich, Zurich, Switzerland
– sequence: 4
  givenname: Bruno
  surname: Sudret
  fullname: Sudret, Bruno
  organization: Risk Center, ETH Zurich, Zurich, Switzerland
BackLink https://hal.science/hal-01901982$$DView record in HAL
BookMark eNqNkV1rHCEYhSUkkE2a_2DpVS9m68eM41yVZWmbwkJv2mtx9J2N21mdqLNt_n2dbCilV4GDwuvjUc65QZc-eEDoLSVrSqj4cFhPMfTg90cwD2tGqFyTIkIv0IrKVlY1a5tLtCJMiEp2jFyjm5QOBWhp3a1Q3OA9eIh6xEPUR_gV4k88hIitzrqy0Z3A49kbiFk7n5_w46x9doMzOruwHFmI2ITjNMJv7Pw0Z2xhgjL2xkHCc3J-j0_OQ6GmedTpDboa9Jjg7mW_RT8-f_q-va9237583W52lal5nSsmeN-T2raWiZ4NvCyitbYHyk0jajtI2hjDtbBaD0Iwqbum6SxvSGsNB8lv0fuz74Me1RTdUccnFbRT95udWmaEdkWSnWhh353ZkubjDCmrQ5ijL99TjBHBRMMlK1R3pkwMKUUY_tpSopY61EH9U4da6lCkiCwvfPzvrnH5OcMctRtf5bA9O0AJ7eQgqlQSLtVYF8FkZYN7hcsf7GWzOg
CitedBy_id crossref_primary_10_1002_cnm_3576
crossref_primary_10_1016_j_ress_2024_110240
crossref_primary_10_1007_s00158_021_03021_y
crossref_primary_10_1016_j_cma_2022_115521
crossref_primary_10_1109_ACCESS_2019_2930830
crossref_primary_10_1061__ASCE_ST_1943_541X_0002729
crossref_primary_10_1007_s10064_020_01976_8
crossref_primary_10_1016_j_oceaneng_2024_117282
crossref_primary_10_1109_TSG_2022_3191530
crossref_primary_10_1007_s10669_023_09950_x
crossref_primary_10_1016_j_cma_2022_115875
crossref_primary_10_1002_nme_6277
crossref_primary_10_3390_sym13040545
crossref_primary_10_1002_eqe_3448
crossref_primary_10_1016_j_istruc_2021_08_098
crossref_primary_10_1016_j_oceaneng_2022_112023
crossref_primary_10_1016_j_probengmech_2023_103442
crossref_primary_10_1016_j_jcp_2021_110192
crossref_primary_10_1016_j_probengmech_2023_103483
crossref_primary_10_1016_j_strusafe_2021_102179
crossref_primary_10_1016_j_engstruct_2024_119406
crossref_primary_10_1115_1_4047689
crossref_primary_10_1007_s40866_023_00175_0
crossref_primary_10_1137_22M1484031
crossref_primary_10_1016_j_engstruct_2022_114073
crossref_primary_10_1016_j_ijar_2020_04_002
crossref_primary_10_1109_TPWRS_2023_3320130
crossref_primary_10_1016_j_ijar_2021_08_002
crossref_primary_10_1109_TPWRS_2022_3188182
crossref_primary_10_23919_JSEE_2023_000086
crossref_primary_10_1016_j_catena_2023_107587
crossref_primary_10_1002_eqe_4059
crossref_primary_10_1109_TPWRS_2021_3114083
crossref_primary_10_1016_j_strusafe_2021_102101
crossref_primary_10_1016_j_probengmech_2020_103032
crossref_primary_10_1016_j_compstruc_2022_106808
crossref_primary_10_1016_j_oceaneng_2023_113862
crossref_primary_10_1016_j_cma_2019_03_049
crossref_primary_10_1016_j_jcp_2019_03_039
crossref_primary_10_1109_TIA_2022_3195475
crossref_primary_10_1115_1_4045177
crossref_primary_10_1016_j_ress_2021_107923
crossref_primary_10_1029_2022WR031954
crossref_primary_10_1186_s40323_020_00185_y
crossref_primary_10_1515_demo_2020_0016
crossref_primary_10_1016_j_energy_2022_126173
crossref_primary_10_1016_j_ijepes_2021_107727
crossref_primary_10_1115_1_4048961
crossref_primary_10_1142_S0219876219500774
crossref_primary_10_1109_TSTE_2020_2992960
crossref_primary_10_1016_j_ress_2020_107168
crossref_primary_10_3390_math9192489
crossref_primary_10_3390_e21020100
crossref_primary_10_1016_j_compgeo_2024_106164
crossref_primary_10_1016_j_strusafe_2020_102028
crossref_primary_10_1016_j_strusafe_2023_102429
crossref_primary_10_1016_j_cma_2020_112906
crossref_primary_10_1109_TSTE_2023_3236446
crossref_primary_10_1007_s00158_024_03899_4
crossref_primary_10_1007_s00158_019_02290_y
crossref_primary_10_1002_nme_6297
crossref_primary_10_1016_j_ress_2024_110150
crossref_primary_10_1080_15732479_2021_1946569
crossref_primary_10_1016_j_compfluid_2021_105129
crossref_primary_10_1063_5_0096285
crossref_primary_10_2514_1_J061143
crossref_primary_10_1155_2021_4347957
crossref_primary_10_1016_j_engstruct_2022_114810
crossref_primary_10_1016_j_ymssp_2021_108120
crossref_primary_10_1016_j_oceaneng_2024_119465
crossref_primary_10_1016_j_ress_2021_108223
crossref_primary_10_1016_j_ress_2021_107733
crossref_primary_10_1115_1_4063619
crossref_primary_10_1142_S0218539324500475
crossref_primary_10_1016_j_camwa_2021_01_015
crossref_primary_10_1016_j_jspi_2022_10_004
crossref_primary_10_3390_math9182211
crossref_primary_10_1016_j_chaos_2020_110558
crossref_primary_10_1002_wics_1557
crossref_primary_10_1109_ACCESS_2023_3335375
crossref_primary_10_1007_s11081_025_09955_2
Cites_doi 10.1214/aos/1031689016
10.3166/remn.15.81-92
10.1016/j.coastaleng.2014.12.010
10.1061/(ASCE)0733-9399(1986)112:1(85)
10.1007/s00362-013-0498-x
10.1214/aoms/1177729394
10.1093/biomet/75.3.397
10.1016/j.apor.2016.07.008
10.1214/14-BA930
10.1016/j.strusafe.2015.05.004
10.1016/j.jmva.2013.04.014
10.1016/j.jcp.2011.01.002
10.1016/j.compstruc.2009.01.003
10.1016/j.strusafe.2017.07.002
10.1080/01621459.2012.682850
10.1016/j.jcp.2010.12.021
10.1016/j.jmva.2009.12.001
10.1016/j.strusafe.2016.09.003
10.1016/j.coastaleng.2007.05.007
10.1016/0167-4730(82)90024-8
10.1016/j.insmatheco.2007.02.001
10.1016/j.spl.2016.07.014
10.3390/econometrics4040043
10.1016/j.csda.2012.08.010
10.1016/j.strusafe.2009.09.003
10.1007/s10463-006-0076-2
10.1016/j.probengmech.2008.05.001
10.1016/j.probengmech.2009.04.006
10.1016/j.jcp.2015.02.025
10.1016/j.compgeo.2017.02.008
10.1006/jcph.2001.6889
10.1016/j.jmva.2015.01.001
10.1016/j.csda.2016.09.007
10.1016/j.ress.2017.12.018
10.1016/S0266-8920(01)00019-4
10.1016/S0266-8920(97)00020-9
10.1016/j.probengmech.2015.06.006
10.1111/sjos.12042
10.1051/m2an/2011045
10.1137/S1064827501387826
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier Science Ltd. Jan 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jan 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
1XC
VOOES
DOI 10.1016/j.probengmech.2018.08.001
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Statistics
EISSN 1878-4275
EndPage 16
ExternalDocumentID oai_HAL_hal_01901982v1
10_1016_j_probengmech_2018_08_001
S0266892018300341
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
KR7
1XC
VOOES
ID FETCH-LOGICAL-c434t-263bb04d7d26b2f36b267ddbe13c564df815cc3a6daaf6628a9559d3507dc3e83
IEDL.DBID .~1
ISSN 0266-8920
IngestDate Fri May 09 12:23:42 EDT 2025
Mon Jul 14 09:33:31 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 04:09:51 EDT 2025
Fri Feb 23 02:30:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty quantification
Input dependencies
Reliability analysis
Polynomial chaos expansions
Vine copulas
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-263bb04d7d26b2f36b267ddbe13c564df815cc3a6daaf6628a9559d3507dc3e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9268-9014
0000-0001-8263-9278
0000-0002-9501-7395
OpenAccessLink https://hal.science/hal-01901982
PQID 2206265382
PQPubID 2047568
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_01901982v1
proquest_journals_2206265382
crossref_primary_10_1016_j_probengmech_2018_08_001
crossref_citationtrail_10_1016_j_probengmech_2018_08_001
elsevier_sciencedirect_doi_10_1016_j_probengmech_2018_08_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Probabilistic engineering mechanics
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
– name: Elsevier
References Embrechts, McNeil, Straumann (b30) 1999
Nataf (b12) 1962; 225
Gruber, Czado (b39) 2015; 10
Grønneberg, Hjort (b40) 2014; 41
J. Kirk, Traveling Salesman Problem –Genetic Algorithm
Panagiotelis, Czado, Joe, Stöber (b70) 2017; 106
Melchers (b3) 1999
Bedford, Cooke (b22) 2002; 30
Kaveh, Talatahari (b67) 2009; 87
Wang, Li (b25) 2017; 89
Schepsmeier, Stöber (b48) 2014; 55
Zentner (b17) 2017; 64
Applegate, Bixby, Chvátal, Cook (b36) 2006
Rosenblatt (b11) 1952; 23
Aas, Czado, Frigessi, Bakkend (b27) 2009; 44
Czado (b43) 2010
Wang, Li (b24) 2017; 69
Hasofer, Lind (b1) 1974; 100
Fermanian (b41) 2012
Haff, Aas, Frigessi (b44) 2010; 101
Marelli, Sudret (b54) 2017
Doostan, Owhadi (b59) 2011; 230
Au, Beck (b4) 2001; 16
McKay, Beckman, Conover (b49) 1979; 2
Nelsen (b13) 2006
Spanhel, Kurz (b73) 2016; 119
Keese, Matthies (b56) 2003
Montes-Iturrizaga, Heredia-Zavoni (b20) 2016; 59
no date. [Online; accessed 21-09-17].
Papaioannou, Betz, Zwirglmaier, Straub (b10) 2015; 41
Jakeman, Eldred, Sargsyan (b60) 2015; 289
C. Klüpperberg, C. Czado, Vine Copula Models
.
Stöber, Joe, Czado (b45) 2013; 119
Blatman, Sudret (b61) 2011; 230
Aas (b23) 2016; 4
Ghanem, Spanos (b51) 2003
Marelli, Sudret (b65) 2014
Xiu (b57) 2010
2014.
Michele, Salvadori, Passoni, Vezzoli (b18) 2007; 54
Goda (b15) 2010; 32
Matlab version 9.0.0.341360 (R2016a),The Mathworks Inc., Natick, Massachusetts, 2016.
Sklar (b29) 1959; 8
Morales-Nápoles (b35) 2011
Fiessler, Neumann, Rackwitz (b2) 1979; 105
Panagiotelis, Czado, Joe (b69) 2012; 107
Dißmann, Brechmann, Czado, Kurowicka (b38) 2013; 59
Der Kiureghian, Liu (b63) 1986; 112
M. Kurz, Vine Copulas with Matlab
Lebrun, Dutfoy (b47) 2009; 24
Ernst, Mugler, Starkloff, Ullmann (b53) 2012; 46
Berveiller, Sudret, Lemaire (b58) 2006; 15
(b14) 2015
Ditlevsen, Madsen (b5) 1996
Xiu, Karniadakis (b52) 2002; 24
Le Maître, Knio, Najm, Ghanem (b55) 2001; 173
Taylor (b32) 2007; 59
2015.
Masina, Lamberti, Archetti (b19) 2015; 97
Schepsmeier (b72) 2010
Tawn (b68) 1988; 75
Smith (b66) 2009
Goda, Tesfamariam (b16) 2015; 56
Lemaire (b6) 2009
Li, Ghanem (b7) 1998; 13
Romanovsky (b50) 1925; 5
Lebrun, Dutfoy (b9) 2009; 24
Hohenbichler, Rackwitz (b62) 1983; 1
Matheron (b8) 1967; 60
Manner (b42) 2007
Scarsini (b31) 1984; 8
Kurowicka, Cooke (b34) 2005
Wang, Li (b26) 2018; 173
Joe (b21) 1996; 28
Z. Wei, D. Kim, E.M. Conlon, Parallel Computing for Copula Parameter Estimation with Big Data: A Simulation Study, 2016
Schepsmeier (b28) 2015; 138
Li (10.1016/j.probengmech.2018.08.001_b7) 1998; 13
(10.1016/j.probengmech.2018.08.001_b14) 2015
Wang (10.1016/j.probengmech.2018.08.001_b24) 2017; 69
Romanovsky (10.1016/j.probengmech.2018.08.001_b50) 1925; 5
Papaioannou (10.1016/j.probengmech.2018.08.001_b10) 2015; 41
Keese (10.1016/j.probengmech.2018.08.001_b56) 2003
Der Kiureghian (10.1016/j.probengmech.2018.08.001_b63) 1986; 112
Hasofer (10.1016/j.probengmech.2018.08.001_b1) 1974; 100
Smith (10.1016/j.probengmech.2018.08.001_b66) 2009
10.1016/j.probengmech.2018.08.001_b37
10.1016/j.probengmech.2018.08.001_b33
Manner (10.1016/j.probengmech.2018.08.001_b42) 2007
10.1016/j.probengmech.2018.08.001_b71
Au (10.1016/j.probengmech.2018.08.001_b4) 2001; 16
Jakeman (10.1016/j.probengmech.2018.08.001_b60) 2015; 289
Melchers (10.1016/j.probengmech.2018.08.001_b3) 1999
Aas (10.1016/j.probengmech.2018.08.001_b23) 2016; 4
Marelli (10.1016/j.probengmech.2018.08.001_b54) 2017
Le Maître (10.1016/j.probengmech.2018.08.001_b55) 2001; 173
Kaveh (10.1016/j.probengmech.2018.08.001_b67) 2009; 87
Bedford (10.1016/j.probengmech.2018.08.001_b22) 2002; 30
Wang (10.1016/j.probengmech.2018.08.001_b25) 2017; 89
Xiu (10.1016/j.probengmech.2018.08.001_b52) 2002; 24
Doostan (10.1016/j.probengmech.2018.08.001_b59) 2011; 230
Tawn (10.1016/j.probengmech.2018.08.001_b68) 1988; 75
Berveiller (10.1016/j.probengmech.2018.08.001_b58) 2006; 15
10.1016/j.probengmech.2018.08.001_b46
Xiu (10.1016/j.probengmech.2018.08.001_b57) 2010
Panagiotelis (10.1016/j.probengmech.2018.08.001_b69) 2012; 107
Scarsini (10.1016/j.probengmech.2018.08.001_b31) 1984; 8
Nelsen (10.1016/j.probengmech.2018.08.001_b13) 2006
Nataf (10.1016/j.probengmech.2018.08.001_b12) 1962; 225
Marelli (10.1016/j.probengmech.2018.08.001_b65) 2014
Schepsmeier (10.1016/j.probengmech.2018.08.001_b72) 2010
Zentner (10.1016/j.probengmech.2018.08.001_b17) 2017; 64
Embrechts (10.1016/j.probengmech.2018.08.001_b30) 1999
Fermanian (10.1016/j.probengmech.2018.08.001_b41) 2012
Panagiotelis (10.1016/j.probengmech.2018.08.001_b70) 2017; 106
Goda (10.1016/j.probengmech.2018.08.001_b15) 2010; 32
Czado (10.1016/j.probengmech.2018.08.001_b43) 2010
Matheron (10.1016/j.probengmech.2018.08.001_b8) 1967; 60
Schepsmeier (10.1016/j.probengmech.2018.08.001_b48) 2014; 55
Taylor (10.1016/j.probengmech.2018.08.001_b32) 2007; 59
Kurowicka (10.1016/j.probengmech.2018.08.001_b34) 2005
Sklar (10.1016/j.probengmech.2018.08.001_b29) 1959; 8
Morales-Nápoles (10.1016/j.probengmech.2018.08.001_b35) 2011
Lebrun (10.1016/j.probengmech.2018.08.001_b47) 2009; 24
Michele (10.1016/j.probengmech.2018.08.001_b18) 2007; 54
Grønneberg (10.1016/j.probengmech.2018.08.001_b40) 2014; 41
Ditlevsen (10.1016/j.probengmech.2018.08.001_b5) 1996
Blatman (10.1016/j.probengmech.2018.08.001_b61) 2011; 230
Spanhel (10.1016/j.probengmech.2018.08.001_b73) 2016; 119
Fiessler (10.1016/j.probengmech.2018.08.001_b2) 1979; 105
Masina (10.1016/j.probengmech.2018.08.001_b19) 2015; 97
Ghanem (10.1016/j.probengmech.2018.08.001_b51) 2003
Ernst (10.1016/j.probengmech.2018.08.001_b53) 2012; 46
Goda (10.1016/j.probengmech.2018.08.001_b16) 2015; 56
Hohenbichler (10.1016/j.probengmech.2018.08.001_b62) 1983; 1
Schepsmeier (10.1016/j.probengmech.2018.08.001_b28) 2015; 138
Dißmann (10.1016/j.probengmech.2018.08.001_b38) 2013; 59
Rosenblatt (10.1016/j.probengmech.2018.08.001_b11) 1952; 23
Aas (10.1016/j.probengmech.2018.08.001_b27) 2009; 44
Haff (10.1016/j.probengmech.2018.08.001_b44) 2010; 101
Lemaire (10.1016/j.probengmech.2018.08.001_b6) 2009
Stöber (10.1016/j.probengmech.2018.08.001_b45) 2013; 119
McKay (10.1016/j.probengmech.2018.08.001_b49) 1979; 2
10.1016/j.probengmech.2018.08.001_b64
Gruber (10.1016/j.probengmech.2018.08.001_b39) 2015; 10
Montes-Iturrizaga (10.1016/j.probengmech.2018.08.001_b20) 2016; 59
Joe (10.1016/j.probengmech.2018.08.001_b21) 1996; 28
Wang (10.1016/j.probengmech.2018.08.001_b26) 2018; 173
Lebrun (10.1016/j.probengmech.2018.08.001_b9) 2009; 24
Applegate (10.1016/j.probengmech.2018.08.001_b36) 2006
References_xml – year: 2009
  ident: b66
  article-title: ABAQUS/Standard User’s Manual, Version 6.9
– volume: 56
  start-page: 39
  year: 2015
  end-page: 51
  ident: b16
  article-title: Multi-variate seismic demand modelling using copulas: Application to non-ductile reinforced concrete frame in Victoria, Canada
  publication-title: Struct. Saf.
– year: 2006
  ident: b36
  article-title: The Traveling Salesman Problem: A Computational Study
– year: 2006
  ident: b13
  publication-title: An introduction to copulas
– volume: 101
  start-page: 1296
  year: 2010
  end-page: 1310
  ident: b44
  article-title: On the simplified pair-copula construction –Simply useful or too simplistic?
  publication-title: J. Multivariate Anal.
– volume: 106
  start-page: 138
  year: 2017
  end-page: 152
  ident: b70
  article-title: Model selection for discrete regular vine copulas
  publication-title: Comput. Statist. Data Anal.
– volume: 230
  start-page: 2345
  year: 2011
  end-page: 2367
  ident: b61
  article-title: Adaptive sparse polynomial chaos expansion based on Least Angle Regression
  publication-title: J. Comput. Phys.
– volume: 55
  start-page: 525
  year: 2014
  end-page: 542
  ident: b48
  article-title: Derivatives and Fisher information of bivariate copulas
  publication-title: Statist. Papers
– volume: 173
  start-page: 94
  year: 2018
  end-page: 104
  ident: b26
  article-title: System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations?
  publication-title: Reliab. Eng. Syst. Saf.
– start-page: 189
  year: 2011
  end-page: 218
  ident: b35
  article-title: Counting Vines
  publication-title: Dependence Modeling: Vine Copula Handbook
– reference: Matlab version 9.0.0.341360 (R2016a),The Mathworks Inc., Natick, Massachusetts, 2016.
– volume: 41
  start-page: 89
  year: 2015
  end-page: 103
  ident: b10
  article-title: MCMC algorithms for Subset Simulation
  publication-title: Probab. Eng. Mech.
– year: 2010
  ident: b72
  article-title: Maximum likelihood estimation of C-vine pair copula constructions based on bivariate copulas from different families
– year: 1999
  ident: b3
  article-title: Structural reliability analysis and prediction
– volume: 89
  start-page: 22
  year: 2017
  end-page: 32
  ident: b25
  article-title: Stochastic response surface method for reliability problems involving correlated multivariates with non-Gaussian dependence structure: Analysis under incomplete probability information
  publication-title: Comput. Geotech.
– volume: 75
  start-page: 397
  year: 1988
  end-page: 415
  ident: b68
  article-title: Bivariate extreme value theory: Models and estimation
  publication-title: Biometrika
– volume: 5
  start-page: 3
  year: 1925
  end-page: 46
  ident: b50
  article-title: On the moments of the standard deviation and of the correlation coefficient in samples from normal
  publication-title: Metron
– volume: 32
  start-page: 112
  year: 2010
  end-page: 123
  ident: b15
  article-title: Statistical modeling of joint probability distribution using copula: Application to peak and permanent displacement seismic demands
  publication-title: Struct. Saf.
– volume: 24
  start-page: 577
  year: 2009
  end-page: 584
  ident: b9
  article-title: Do Rosenblatt and Nataf isoprobabilistic transformations really differ?
  publication-title: Probab. Eng. Mech.
– volume: 10
  start-page: 937
  year: 2015
  end-page: 963
  ident: b39
  article-title: Sequential Bayesian model selection of regular vine copulas
  publication-title: Bayesian Anal.
– volume: 119
  start-page: 101
  year: 2013
  end-page: 118
  ident: b45
  article-title: Simplified pair copula constructions —limitations and extensions
  publication-title: J. Multivariate Anal.
– volume: 105
  start-page: 661
  year: 1979
  end-page: 676
  ident: b2
  article-title: Quadratic limit states in structural reliability
  publication-title: J. Eng. Mech.
– reference: , 2015.
– volume: 225
  start-page: 42
  year: 1962
  end-page: 43
  ident: b12
  article-title: Détermination des distributions dont les marges sont données
  publication-title: C. R. Acad. Sci. Paris
– volume: 28
  start-page: 120
  year: 1996
  end-page: 141
  ident: b21
  article-title: Families of
  publication-title: Distributions with Fixed Marginals and Related Topics
– volume: 23
  start-page: 470
  year: 1952
  end-page: 472
  ident: b11
  article-title: Remarks on a multivariate transformation
  publication-title: Ann. Math. Statist.
– volume: 173
  start-page: 481
  year: 2001
  end-page: 511
  ident: b55
  article-title: A stochastic projection method for fluid flow –I. Basic formulation
  publication-title: J. Comput. Phys.
– volume: 87
  start-page: 267
  year: 2009
  end-page: 283
  ident: b67
  article-title: Particle swarm optimizer, and colony strategy and harmony search scheme hybridized for optimization of truss structures
  publication-title: Comput. Struct.
– reference: J. Kirk, Traveling Salesman Problem –Genetic Algorithm,
– volume: 2
  start-page: 239
  year: 1979
  end-page: 245
  ident: b49
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 44
  start-page: 182
  year: 2009
  end-page: 198
  ident: b27
  article-title: Pair-copula constructions of multiple dependence
  publication-title: Insurance Math. Econom.
– volume: 15
  start-page: 81
  year: 2006
  end-page: 92
  ident: b58
  article-title: Stochastic finite elements: a non intrusive approach by regression
  publication-title: Eur. J. Comput. Mech.
– start-page: 2554
  year: 2014
  end-page: 2563
  ident: b65
  article-title: UQLab: A framework for uncertainty quantification in Matlab
  publication-title: Vulnerability, Uncertainty, and Risk (Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and Management (ICVRAM2014), Liverpool, United Kingdom)
– volume: 100
  start-page: 111
  year: 1974
  end-page: 121
  ident: b1
  article-title: Exact and invariant second moment code format
  publication-title: J. Eng. Mech.
– reference: M. Kurz, Vine Copulas with Matlab,
– start-page: 309
  year: 2005
  end-page: 322
  ident: b34
  article-title: Distribution-free continuous Bayesian belief nets
  publication-title: Modern Statistical and Mathematical Methods in Reliability
– volume: 138
  start-page: 34
  year: 2015
  end-page: 52
  ident: b28
  article-title: Efficient information based goodness-of-fit tests for vine copula models with fixed margins
  publication-title: J. Multivariate Anal.
– volume: 59
  start-page: 789
  year: 2007
  end-page: 806
  ident: b32
  article-title: Multivariate measures of concordance
  publication-title: Ann. Inst. Statist. Math.
– volume: 119
  start-page: 76
  year: 2016
  end-page: 83
  ident: b73
  article-title: The partial copula: Properties and associated dependence measures
  publication-title: Statist. Probab. Lett.
– volume: 230
  start-page: 3015
  year: 2011
  end-page: 3034
  ident: b59
  article-title: A non-adapted sparse approximation of PDEs with stochastic inputs
  publication-title: J. Comput. Phys.
– volume: 13
  start-page: 125
  year: 1998
  end-page: 136
  ident: b7
  article-title: Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration
  publication-title: Probab. Eng. Mech.
– year: 2015
  ident: b14
  publication-title: Dependence modeling with copulas
– start-page: 176
  year: 1999
  end-page: 223
  ident: b30
  article-title: Correlation And Dependence In Risk Management: Properties And Pitfalls
  publication-title: Risk Management: Value At Risk and beyond
– start-page: 61
  year: 2012
  end-page: 89
  ident: b41
  article-title: An overview of the goodness-of-fit test problem for copulas
  publication-title: Copulae in Mathematical and Quantitative Finance, vol. 213
– year: 2003
  ident: b56
  article-title: Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations,Technical Report
– year: 2009
  ident: b6
  article-title: Structural reliability
– volume: 8
  start-page: 229
  year: 1959
  end-page: 231
  ident: b29
  article-title: Fonctions de répartition à
  publication-title: Publ.Inst. Statist.Univ.
– year: 1996
  ident: b5
  article-title: Structural reliability methods
– reference: C. Klüpperberg, C. Czado, Vine Copula Models,
– volume: 1
  start-page: 177
  year: 1983
  end-page: 188
  ident: b62
  article-title: First-order concepts in system reliability
  publication-title: Struct. Saf.
– volume: 41
  start-page: 436
  year: 2014
  end-page: 459
  ident: b40
  article-title: The copula information criteria
  publication-title: Scand. J. Stat.
– year: 2017
  ident: b54
  publication-title: UQLab user manual –Polynomial chaos expansions, Technical Report
– volume: 289
  start-page: 18
  year: 2015
  end-page: 34
  ident: b60
  article-title: Enhancing
  publication-title: J. Comput. Phys.
– volume: 97
  start-page: 37
  year: 2015
  end-page: 52
  ident: b19
  article-title: A copula based approach for estimating the joint probability of water levels and waves
  publication-title: Coast. Eng.
– volume: 64
  start-page: 54
  year: 2017
  end-page: 61
  ident: b17
  article-title: A general framework for the estimation of analytical fragility functions based on multivariate probability distributions
  publication-title: Struct. Saf.
– volume: 8
  start-page: 201
  year: 1984
  end-page: 218
  ident: b31
  article-title: On measures of concordance
  publication-title: Stochastica
– year: 2003
  ident: b51
  article-title: Stochastic Finite Elements : A Spectral Approach
– volume: 4
  start-page: 43
  year: 2016
  ident: b23
  article-title: Pair-Copula Constructions for Financial Applications: A Review
  publication-title: Econometrics
– start-page: 93
  year: 2010
  end-page: 109
  ident: b43
  publication-title: Pair-Copula Constructions of Multivariate Copulas
– volume: 60
  start-page: 1041
  year: 1967
  ident: b8
  article-title: Kriging or polynomial interpolation procedures
  publication-title: Canadian Inst. Mining Bull.
– volume: 30
  start-page: 1031
  year: 2002
  end-page: 1068
  ident: b22
  article-title: Vines –A new graphical model for dependent random variables
  publication-title: Ann. Statist.
– volume: 112
  start-page: 85
  year: 1986
  end-page: 104
  ident: b63
  article-title: Structural reliability under incomplete probability information
  publication-title: J. Eng. Mech.
– year: 2007
  ident: b42
  article-title: Estimation and Model Selection of Copulas with an Application to Exchange Rates, Research Memorandum 056
– volume: 59
  start-page: 52
  year: 2013
  end-page: 69
  ident: b38
  article-title: Selecting and estimating regular vine copulae and application to financial returns
  publication-title: Comput. Statist. Data Anal.
– volume: 24
  start-page: 619
  year: 2002
  end-page: 644
  ident: b52
  article-title: The Wiener-Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 69
  start-page: 1
  year: 2017
  end-page: 10
  ident: b24
  article-title: Towards reliability evaluation involving correlated multivariates under incomplete probability information: A reconstructed joint probability distribution for isoprobabilistic transformation
  publication-title: Struct. Saf.
– reference: no date. [Online; accessed 21-09-17].
– reference: .
– volume: 46
  start-page: 317
  year: 2012
  end-page: 339
  ident: b53
  article-title: On the convergence of generalized polynomial chaos expansions
  publication-title: ESAIM: M2AN
– volume: 59
  start-page: 564
  year: 2016
  end-page: 576
  ident: b20
  article-title: Reliability analysis of mooring lines using copulas to model statistical dependence of environmental variables
  publication-title: Appl. Ocean Res.
– volume: 16
  start-page: 263
  year: 2001
  end-page: 277
  ident: b4
  article-title: Estimation of small failure probabilities in high dimensions by subset simulation
  publication-title: Probab. Eng. Mech.
– volume: 107
  start-page: 1063
  year: 2012
  end-page: 1072
  ident: b69
  article-title: Pair copula constructions for multivariate discrete data
  publication-title: J. Amer. Statist. Assoc.
– reference: Z. Wei, D. Kim, E.M. Conlon, Parallel Computing for Copula Parameter Estimation with Big Data: A Simulation Study, 2016,
– year: 2010
  ident: b57
  article-title: Numerical methods for stochastic computations –A spectral method approach
– reference: , 2014.
– volume: 54
  start-page: 734
  year: 2007
  end-page: 751
  ident: b18
  article-title: A multivariate model of sea storms using copulas
  publication-title: Coast. Eng.
– volume: 24
  start-page: 172
  year: 2009
  end-page: 178
  ident: b47
  article-title: A generalization of the Nataf transformation to distributions with elliptical copula
  publication-title: Probab. Eng. Mech.
– volume: 30
  start-page: 1031
  issue: 4
  year: 2002
  ident: 10.1016/j.probengmech.2018.08.001_b22
  article-title: Vines –A new graphical model for dependent random variables
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1031689016
– volume: 15
  start-page: 81
  issue: 1–3
  year: 2006
  ident: 10.1016/j.probengmech.2018.08.001_b58
  article-title: Stochastic finite elements: a non intrusive approach by regression
  publication-title: Eur. J. Comput. Mech.
  doi: 10.3166/remn.15.81-92
– volume: 105
  start-page: 661
  issue: 4
  year: 1979
  ident: 10.1016/j.probengmech.2018.08.001_b2
  article-title: Quadratic limit states in structural reliability
  publication-title: J. Eng. Mech.
– volume: 97
  start-page: 37
  year: 2015
  ident: 10.1016/j.probengmech.2018.08.001_b19
  article-title: A copula based approach for estimating the joint probability of water levels and waves
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2014.12.010
– ident: 10.1016/j.probengmech.2018.08.001_b46
– year: 2009
  ident: 10.1016/j.probengmech.2018.08.001_b66
– volume: 112
  start-page: 85
  issue: 1
  year: 1986
  ident: 10.1016/j.probengmech.2018.08.001_b63
  article-title: Structural reliability under incomplete probability information
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1986)112:1(85)
– year: 2010
  ident: 10.1016/j.probengmech.2018.08.001_b57
– volume: 55
  start-page: 525
  issue: 2
  year: 2014
  ident: 10.1016/j.probengmech.2018.08.001_b48
  article-title: Derivatives and Fisher information of bivariate copulas
  publication-title: Statist. Papers
  doi: 10.1007/s00362-013-0498-x
– volume: 23
  start-page: 470
  year: 1952
  ident: 10.1016/j.probengmech.2018.08.001_b11
  article-title: Remarks on a multivariate transformation
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177729394
– volume: 75
  start-page: 397
  issue: 3
  year: 1988
  ident: 10.1016/j.probengmech.2018.08.001_b68
  article-title: Bivariate extreme value theory: Models and estimation
  publication-title: Biometrika
  doi: 10.1093/biomet/75.3.397
– year: 2010
  ident: 10.1016/j.probengmech.2018.08.001_b72
– volume: 59
  start-page: 564
  year: 2016
  ident: 10.1016/j.probengmech.2018.08.001_b20
  article-title: Reliability analysis of mooring lines using copulas to model statistical dependence of environmental variables
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2016.07.008
– ident: 10.1016/j.probengmech.2018.08.001_b37
– volume: 10
  start-page: 937
  issue: 4
  year: 2015
  ident: 10.1016/j.probengmech.2018.08.001_b39
  article-title: Sequential Bayesian model selection of regular vine copulas
  publication-title: Bayesian Anal.
  doi: 10.1214/14-BA930
– volume: 56
  start-page: 39
  year: 2015
  ident: 10.1016/j.probengmech.2018.08.001_b16
  article-title: Multi-variate seismic demand modelling using copulas: Application to non-ductile reinforced concrete frame in Victoria, Canada
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2015.05.004
– volume: 28
  start-page: 120
  year: 1996
  ident: 10.1016/j.probengmech.2018.08.001_b21
  article-title: Families of m-variate distributions with given margins and m(m−1)∕2 bivariate dependence parameters
– start-page: 61
  year: 2012
  ident: 10.1016/j.probengmech.2018.08.001_b41
  article-title: An overview of the goodness-of-fit test problem for copulas
– volume: 119
  start-page: 101
  year: 2013
  ident: 10.1016/j.probengmech.2018.08.001_b45
  article-title: Simplified pair copula constructions —limitations and extensions
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2013.04.014
– start-page: 189
  year: 2011
  ident: 10.1016/j.probengmech.2018.08.001_b35
  article-title: Counting Vines
– ident: 10.1016/j.probengmech.2018.08.001_b71
– volume: 60
  start-page: 1041
  year: 1967
  ident: 10.1016/j.probengmech.2018.08.001_b8
  article-title: Kriging or polynomial interpolation procedures
  publication-title: Canadian Inst. Mining Bull.
– ident: 10.1016/j.probengmech.2018.08.001_b33
– start-page: 309
  year: 2005
  ident: 10.1016/j.probengmech.2018.08.001_b34
  article-title: Distribution-free continuous Bayesian belief nets
– year: 2006
  ident: 10.1016/j.probengmech.2018.08.001_b36
– volume: 8
  start-page: 229
  year: 1959
  ident: 10.1016/j.probengmech.2018.08.001_b29
  article-title: Fonctions de répartition à n dimensions et leurs marges
  publication-title: Publ.Inst. Statist.Univ.
– year: 2003
  ident: 10.1016/j.probengmech.2018.08.001_b51
– volume: 230
  start-page: 3015
  issue: 8
  year: 2011
  ident: 10.1016/j.probengmech.2018.08.001_b59
  article-title: A non-adapted sparse approximation of PDEs with stochastic inputs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.002
– start-page: 93
  year: 2010
  ident: 10.1016/j.probengmech.2018.08.001_b43
– volume: 87
  start-page: 267
  year: 2009
  ident: 10.1016/j.probengmech.2018.08.001_b67
  article-title: Particle swarm optimizer, and colony strategy and harmony search scheme hybridized for optimization of truss structures
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2009.01.003
– volume: 69
  start-page: 1
  year: 2017
  ident: 10.1016/j.probengmech.2018.08.001_b24
  article-title: Towards reliability evaluation involving correlated multivariates under incomplete probability information: A reconstructed joint probability distribution for isoprobabilistic transformation
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2017.07.002
– ident: 10.1016/j.probengmech.2018.08.001_b64
– year: 2003
  ident: 10.1016/j.probengmech.2018.08.001_b56
– volume: 107
  start-page: 1063
  year: 2012
  ident: 10.1016/j.probengmech.2018.08.001_b69
  article-title: Pair copula constructions for multivariate discrete data
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2012.682850
– volume: 230
  start-page: 2345
  year: 2011
  ident: 10.1016/j.probengmech.2018.08.001_b61
  article-title: Adaptive sparse polynomial chaos expansion based on Least Angle Regression
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.12.021
– volume: 101
  start-page: 1296
  year: 2010
  ident: 10.1016/j.probengmech.2018.08.001_b44
  article-title: On the simplified pair-copula construction –Simply useful or too simplistic?
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2009.12.001
– volume: 64
  start-page: 54
  year: 2017
  ident: 10.1016/j.probengmech.2018.08.001_b17
  article-title: A general framework for the estimation of analytical fragility functions based on multivariate probability distributions
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2016.09.003
– year: 2007
  ident: 10.1016/j.probengmech.2018.08.001_b42
– volume: 54
  start-page: 734
  year: 2007
  ident: 10.1016/j.probengmech.2018.08.001_b18
  article-title: A multivariate model of sea storms using copulas
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2007.05.007
– volume: 8
  start-page: 201
  issue: 3
  year: 1984
  ident: 10.1016/j.probengmech.2018.08.001_b31
  article-title: On measures of concordance
  publication-title: Stochastica
– volume: 1
  start-page: 177
  issue: 3
  year: 1983
  ident: 10.1016/j.probengmech.2018.08.001_b62
  article-title: First-order concepts in system reliability
  publication-title: Struct. Saf.
  doi: 10.1016/0167-4730(82)90024-8
– year: 2017
  ident: 10.1016/j.probengmech.2018.08.001_b54
– volume: 44
  start-page: 182
  issue: 2
  year: 2009
  ident: 10.1016/j.probengmech.2018.08.001_b27
  article-title: Pair-copula constructions of multiple dependence
  publication-title: Insurance Math. Econom.
  doi: 10.1016/j.insmatheco.2007.02.001
– volume: 119
  start-page: 76
  year: 2016
  ident: 10.1016/j.probengmech.2018.08.001_b73
  article-title: The partial copula: Properties and associated dependence measures
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/j.spl.2016.07.014
– volume: 4
  start-page: 43
  issue: 4
  year: 2016
  ident: 10.1016/j.probengmech.2018.08.001_b23
  article-title: Pair-Copula Constructions for Financial Applications: A Review
  publication-title: Econometrics
  doi: 10.3390/econometrics4040043
– volume: 59
  start-page: 52
  year: 2013
  ident: 10.1016/j.probengmech.2018.08.001_b38
  article-title: Selecting and estimating regular vine copulae and application to financial returns
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2012.08.010
– year: 1999
  ident: 10.1016/j.probengmech.2018.08.001_b3
– start-page: 2554
  year: 2014
  ident: 10.1016/j.probengmech.2018.08.001_b65
  article-title: UQLab: A framework for uncertainty quantification in Matlab
– volume: 32
  start-page: 112
  year: 2010
  ident: 10.1016/j.probengmech.2018.08.001_b15
  article-title: Statistical modeling of joint probability distribution using copula: Application to peak and permanent displacement seismic demands
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2009.09.003
– volume: 59
  start-page: 789
  issue: 4
  year: 2007
  ident: 10.1016/j.probengmech.2018.08.001_b32
  article-title: Multivariate measures of concordance
  publication-title: Ann. Inst. Statist. Math.
  doi: 10.1007/s10463-006-0076-2
– volume: 100
  start-page: 111
  issue: 1
  year: 1974
  ident: 10.1016/j.probengmech.2018.08.001_b1
  article-title: Exact and invariant second moment code format
  publication-title: J. Eng. Mech.
– volume: 24
  start-page: 172
  issue: 2
  year: 2009
  ident: 10.1016/j.probengmech.2018.08.001_b47
  article-title: A generalization of the Nataf transformation to distributions with elliptical copula
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2008.05.001
– volume: 24
  start-page: 577
  year: 2009
  ident: 10.1016/j.probengmech.2018.08.001_b9
  article-title: Do Rosenblatt and Nataf isoprobabilistic transformations really differ?
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2009.04.006
– year: 2015
  ident: 10.1016/j.probengmech.2018.08.001_b14
– volume: 289
  start-page: 18
  year: 2015
  ident: 10.1016/j.probengmech.2018.08.001_b60
  article-title: Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.02.025
– volume: 89
  start-page: 22
  year: 2017
  ident: 10.1016/j.probengmech.2018.08.001_b25
  article-title: Stochastic response surface method for reliability problems involving correlated multivariates with non-Gaussian dependence structure: Analysis under incomplete probability information
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2017.02.008
– volume: 5
  start-page: 3
  issue: 4
  year: 1925
  ident: 10.1016/j.probengmech.2018.08.001_b50
  article-title: On the moments of the standard deviation and of the correlation coefficient in samples from normal
  publication-title: Metron
– volume: 173
  start-page: 481
  year: 2001
  ident: 10.1016/j.probengmech.2018.08.001_b55
  article-title: A stochastic projection method for fluid flow –I. Basic formulation
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6889
– volume: 138
  start-page: 34
  issue: C
  year: 2015
  ident: 10.1016/j.probengmech.2018.08.001_b28
  article-title: Efficient information based goodness-of-fit tests for vine copula models with fixed margins
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2015.01.001
– volume: 106
  start-page: 138
  year: 2017
  ident: 10.1016/j.probengmech.2018.08.001_b70
  article-title: Model selection for discrete regular vine copulas
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2016.09.007
– volume: 173
  start-page: 94
  year: 2018
  ident: 10.1016/j.probengmech.2018.08.001_b26
  article-title: System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations?
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.12.018
– volume: 16
  start-page: 263
  issue: 4
  year: 2001
  ident: 10.1016/j.probengmech.2018.08.001_b4
  article-title: Estimation of small failure probabilities in high dimensions by subset simulation
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/S0266-8920(01)00019-4
– volume: 13
  start-page: 125
  issue: 2
  year: 1998
  ident: 10.1016/j.probengmech.2018.08.001_b7
  article-title: Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/S0266-8920(97)00020-9
– year: 2006
  ident: 10.1016/j.probengmech.2018.08.001_b13
– volume: 225
  start-page: 42
  year: 1962
  ident: 10.1016/j.probengmech.2018.08.001_b12
  article-title: Détermination des distributions dont les marges sont données
  publication-title: C. R. Acad. Sci. Paris
– year: 2009
  ident: 10.1016/j.probengmech.2018.08.001_b6
– volume: 41
  start-page: 89
  year: 2015
  ident: 10.1016/j.probengmech.2018.08.001_b10
  article-title: MCMC algorithms for Subset Simulation
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2015.06.006
– year: 1996
  ident: 10.1016/j.probengmech.2018.08.001_b5
– volume: 41
  start-page: 436
  year: 2014
  ident: 10.1016/j.probengmech.2018.08.001_b40
  article-title: The copula information criteria
  publication-title: Scand. J. Stat.
  doi: 10.1111/sjos.12042
– volume: 46
  start-page: 317
  issue: 2
  year: 2012
  ident: 10.1016/j.probengmech.2018.08.001_b53
  article-title: On the convergence of generalized polynomial chaos expansions
  publication-title: ESAIM: M2AN
  doi: 10.1051/m2an/2011045
– start-page: 176
  year: 1999
  ident: 10.1016/j.probengmech.2018.08.001_b30
  article-title: Correlation And Dependence In Risk Management: Properties And Pitfalls
– volume: 24
  start-page: 619
  issue: 2
  year: 2002
  ident: 10.1016/j.probengmech.2018.08.001_b52
  article-title: The Wiener-Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501387826
– volume: 2
  start-page: 239
  year: 1979
  ident: 10.1016/j.probengmech.2018.08.001_b49
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
SSID ssj0017149
Score 2.501289
Snippet Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification (UQ) deals with the estimation of statistics of the system...
Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification(UQ) deals with the estimation of statistics of the system response,...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Applications
Computer simulation
Dependence
Failure analysis
Finite element analysis
Finite element method
Importance sampling
Input dependencies
Machine Learning
Methodology
Multivariate analysis
Polynomial chaos expansions
Polynomials
Probabilistic inference
Probabilistic models
Reliability analysis
Reliability engineering
Representations
Statistical analysis
Statistics
Structural reliability
Uncertainty
Uncertainty quantification
Vine copulas
Title A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas
URI https://dx.doi.org/10.1016/j.probengmech.2018.08.001
https://www.proquest.com/docview/2206265382
https://hal.science/hal-01901982
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELaASogLtAVUWkBu1WvYxHa8jsRlhUDbbsuhLYKbFT-ybAXpdjeL4NLf3hnH2T7UA1IviWLZseVxZsbON98Q8tYa4axyGLHM8kTkxiRFmVVJmVqkbytcFoi0P57L4YV4f5VfrZCTLhYGYZVR97c6PWjrWNKLs9mbTia9z7B7kKoAA6Y4sqyECHbRx1V-9GMJ88D83kV7ziITrL1OXv_CeGHSFl-Pb334L5GpwOYZ88P8w0atXiNY8i-dHQzR2VOyGT1IOmgH-Yys-Po52YreJI3f6nybzAZ03HJK06pDYFFwUSmCQhM3QzVHwaq1mIDmgX5flC1yKAiLYnTZjAbIub-nk3q6aGiXMhc6mVOEzI_pHbipUAvTgM13yMXZ6ZeTYRIzLCRWcNEkTHJjUuH6jknDKg4X2XfO-IzbXApXqSy3lpfSlWUlJVMlEtY5Dk6ks9wrvkvW6m-1f0Eo0ipal3ukJBPSZ0al3pgKXqN45Ytsj6huTrWN9OOYBeNGdzizr_o3cWgUh8YMmSk0Zcum05aD4zGNjjvB6T8WlAZb8Zjmb0DYy-6QhHs4-KCxDKPvs0KxO6i0360FHT_9uWYshU0i2BH28v-G8IpswFPRnvfsk7VmtvAH4AE15jAs8UPyZPBuNDzH--jT5egn8jsK2Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIgEXyqviUcAgOIaNH3EdCQ4roNrSbS-0Um8mfmRZBGHZZPu48Kf6B5lJnOUhDpVQLzk4dhJ5JjPj5PP3EfLcWemd9rhjmWeJzKxN8oKVSZE6pG_LPWuJtPf21ehQvj_KjlbIeb8XBmGVMfZ3Mb2N1rFlEGdzMJtOBx9g9aB0DglMC2RZYRFZuRvOTmDdVr_eeQtGfsH59ruDN6MkSgskTgrZJFwJa1PptzxXlpcCDmrLexuYcJmSvtQsc04UyhdFqRTXBTK1eQHVk3ciaAHXXSVXJIQLlE14-WOJK0FB8bz7sKMSfLyr5OkvUBmqxIRq8jW0P0KYbulDoyDNP5Li6idEZ_6VJNrMt32T3IglKx12s3KLrITqNlmP5SuNwaG-Q-ZDOulIrGnZQ74o1MQUUaiJn2NcpZBGOxBCc0a_L4oOqtR6B8XtbHPaYtzDKZ1Ws0VDe41euElNEaM_ocdQF0Mv1B2r75LDS5n3DbJWfavCPUKRx9H5LCAHmlSBWZ0Ga0u4jBZlyNl9ovs5NS7ynaPsxhfTA9s-m9_MYdAcBiU5UxjKl0NnHenHRQa96g1n_vBgA8npIsOfgbGXt0PW79FwbLANt_uzXPNj6LTZ-4KJsaY2nKewKkVPfPB_j_CEXBsd7I3NeGd_9yG5Dmfy7mPTJllr5ovwCMqvxj5u3Z2Sj5f9fv0EJSxFWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+framework+for+data-driven+uncertainty+quantification+under+complex+input+dependencies+using+vine+copulas&rft.jtitle=Probabilistic+engineering+mechanics&rft.au=Torre%2C+Emiliano&rft.au=Marelli%2C+Stefano&rft.au=Embrechts%2C+Paul&rft.au=Sudret%2C+Bruno&rft.date=2019-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0266-8920&rft.eissn=1878-4275&rft.volume=55&rft.spage=1&rft_id=info:doi/10.1016%2Fj.probengmech.2018.08.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-8920&client=summon