A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas
Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification (UQ) deals with the estimation of statistics of the system response, given a computational model of the system and a probabilistic model of its inputs. In engineering applications it is common to assume that...
Saved in:
Published in | Probabilistic engineering mechanics Vol. 55; pp. 1 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.01.2019
Elsevier Science Ltd Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification (UQ) deals with the estimation of statistics of the system response, given a computational model of the system and a probabilistic model of its inputs. In engineering applications it is common to assume that the inputs are mutually independent or coupled by a Gaussian or elliptical dependence structure (copula).
In this paper we overcome such limitations by modelling the dependence structure of multivariate inputs through vine copulas. Vine copulas are models of multivariate dependence built from simpler pair-copulas. The vine representation is flexible enough to capture complex dependencies. This paper formalises the framework needed to build vine copula models of multivariate inputs and to combine them with virtually any UQ method. The framework allows for fully automated, data-driven inference of the probabilistic input model on available input data.
The procedure is exemplified on two finite element models of truss structures, both subject to inputs with non-Gaussian dependence structures. For each case, we analyse the moments of the model response (using polynomial chaos expansions), and perform structural reliability analysis to calculate the probability of failure of the system (using the first order reliability method and importance sampling). Reference solutions are obtained by Monte Carlo simulation. The results show that, while the Gaussian assumption yields biased statistics, the vine copula representation achieves significantly more precise estimates, even when its structure needs to be fully inferred from a limited amount of observations. |
---|---|
AbstractList | Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification(UQ) deals with the estimation of statistics of the system response, given a computationalmodel of the system and a probabilistic model of its inputs. In engineering applicationsit is common to assume that the inputs are mutually independent or coupled by a Gaussianor elliptical dependence structure (copula).In this paper we overcome such limitations by modelling the dependence structure ofmultivariate inputs as vine copulas. Vine copulas are models of multivariate dependencebuilt from simpler pair-copulas. The vine representation is flexible enough to capture complexdependencies. This paper formalises the framework needed to build vine copula modelsof multivariate inputs and to combine them with virtually any UQ method. The frameworkallows for a fully automated, data-driven inference of the probabilistic input model onavailable input data.The procedure is exemplified on two finite element models of truss structures, both subjectto inputs with non-Gaussian dependence structures. For each case, we analyse the momentsof the model response (using polynomial chaos expansions), and perform a structural reliabilityanalysis to calculate the probability of failure of the system (using the first orderreliability method and importance sampling). Reference solutions are obtained by MonteCarlo simulation. The results show that, while the Gaussian assumption yields biased statistics,the vine copula representation achieves significantly more precise estimates, even whenits structure needs to be fully inferred from a limited amount of observations. Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification (UQ) deals with the estimation of statistics of the system response, given a computational model of the system and a probabilistic model of its inputs. In engineering applications it is common to assume that the inputs are mutually independent or coupled by a Gaussian or elliptical dependence structure (copula). In this paper we overcome such limitations by modelling the dependence structure of multivariate inputs through vine copulas. Vine copulas are models of multivariate dependence built from simpler pair-copulas. The vine representation is flexible enough to capture complex dependencies. This paper formalises the framework needed to build vine copula models of multivariate inputs and to combine them with virtually any UQ method. The framework allows for fully automated, data-driven inference of the probabilistic input model on available input data. The procedure is exemplified on two finite element models of truss structures, both subject to inputs with non-Gaussian dependence structures. For each case, we analyse the moments of the model response (using polynomial chaos expansions), and perform structural reliability analysis to calculate the probability of failure of the system (using the first order reliability method and importance sampling). Reference solutions are obtained by Monte Carlo simulation. The results show that, while the Gaussian assumption yields biased statistics, the vine copula representation achieves significantly more precise estimates, even when its structure needs to be fully inferred from a limited amount of observations. Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification (UQ) deals with the estimation of statistics of the system response, given a computational model of the system and a probabilistic model of its inputs. In engineering applications it is common to assume that the inputs are mutually independent or coupled by a Gaussian or elliptical dependence structure (copula). In this paper we overcome such limitations by modelling the dependence structure of multivariate inputs through vine copulas. Vine copulas are models of multivariate dependence built from simpler pair-copulas. The vine representation is flexible enough to capture complex dependencies. This paper formalises the framework needed to build vine copula models of multivariate inputs and to combine them with virtually any UQ method. The framework allows for fully automated, data-driven inference of the probabilistic input model on available input data. The procedure is exemplified on two finite element models of truss structures, both subject to inputs with non-Gaussian dependence structures. For each case, we analyse the moments of the model response (using polynomial chaos expansions), and perform structural reliability analysis to calculate the probability of failure of the system (using the first order reliability method and importance sampling). Reference solutions are obtained by Monte Carlo simulation. The results show that, while the Gaussian assumption yields biased statistics, the vine copula representation achieves significantly more precise estimates, even when its structure needs to be fully inferred from a limited amount of observations. |
Author | Sudret, Bruno Embrechts, Paul Marelli, Stefano Torre, Emiliano |
Author_xml | – sequence: 1 givenname: Emiliano orcidid: 0000-0001-8263-9278 surname: Torre fullname: Torre, Emiliano email: torre@ibk.baug.ethz.ch organization: Risk Center, ETH Zurich, Zurich, Switzerland – sequence: 2 givenname: Stefano orcidid: 0000-0002-9268-9014 surname: Marelli fullname: Marelli, Stefano organization: Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Zurich, Switzerland – sequence: 3 givenname: Paul surname: Embrechts fullname: Embrechts, Paul organization: Risk Center, ETH Zurich, Zurich, Switzerland – sequence: 4 givenname: Bruno surname: Sudret fullname: Sudret, Bruno organization: Risk Center, ETH Zurich, Zurich, Switzerland |
BackLink | https://hal.science/hal-01901982$$DView record in HAL |
BookMark | eNqNkV1rHCEYhSUkkE2a_2DpVS9m68eM41yVZWmbwkJv2mtx9J2N21mdqLNt_n2dbCilV4GDwuvjUc65QZc-eEDoLSVrSqj4cFhPMfTg90cwD2tGqFyTIkIv0IrKVlY1a5tLtCJMiEp2jFyjm5QOBWhp3a1Q3OA9eIh6xEPUR_gV4k88hIitzrqy0Z3A49kbiFk7n5_w46x9doMzOruwHFmI2ITjNMJv7Pw0Z2xhgjL2xkHCc3J-j0_OQ6GmedTpDboa9Jjg7mW_RT8-f_q-va9237583W52lal5nSsmeN-T2raWiZ4NvCyitbYHyk0jajtI2hjDtbBaD0Iwqbum6SxvSGsNB8lv0fuz74Me1RTdUccnFbRT95udWmaEdkWSnWhh353ZkubjDCmrQ5ijL99TjBHBRMMlK1R3pkwMKUUY_tpSopY61EH9U4da6lCkiCwvfPzvrnH5OcMctRtf5bA9O0AJ7eQgqlQSLtVYF8FkZYN7hcsf7GWzOg |
CitedBy_id | crossref_primary_10_1002_cnm_3576 crossref_primary_10_1016_j_ress_2024_110240 crossref_primary_10_1007_s00158_021_03021_y crossref_primary_10_1016_j_cma_2022_115521 crossref_primary_10_1109_ACCESS_2019_2930830 crossref_primary_10_1061__ASCE_ST_1943_541X_0002729 crossref_primary_10_1007_s10064_020_01976_8 crossref_primary_10_1016_j_oceaneng_2024_117282 crossref_primary_10_1109_TSG_2022_3191530 crossref_primary_10_1007_s10669_023_09950_x crossref_primary_10_1016_j_cma_2022_115875 crossref_primary_10_1002_nme_6277 crossref_primary_10_3390_sym13040545 crossref_primary_10_1002_eqe_3448 crossref_primary_10_1016_j_istruc_2021_08_098 crossref_primary_10_1016_j_oceaneng_2022_112023 crossref_primary_10_1016_j_probengmech_2023_103442 crossref_primary_10_1016_j_jcp_2021_110192 crossref_primary_10_1016_j_probengmech_2023_103483 crossref_primary_10_1016_j_strusafe_2021_102179 crossref_primary_10_1016_j_engstruct_2024_119406 crossref_primary_10_1115_1_4047689 crossref_primary_10_1007_s40866_023_00175_0 crossref_primary_10_1137_22M1484031 crossref_primary_10_1016_j_engstruct_2022_114073 crossref_primary_10_1016_j_ijar_2020_04_002 crossref_primary_10_1109_TPWRS_2023_3320130 crossref_primary_10_1016_j_ijar_2021_08_002 crossref_primary_10_1109_TPWRS_2022_3188182 crossref_primary_10_23919_JSEE_2023_000086 crossref_primary_10_1016_j_catena_2023_107587 crossref_primary_10_1002_eqe_4059 crossref_primary_10_1109_TPWRS_2021_3114083 crossref_primary_10_1016_j_strusafe_2021_102101 crossref_primary_10_1016_j_probengmech_2020_103032 crossref_primary_10_1016_j_compstruc_2022_106808 crossref_primary_10_1016_j_oceaneng_2023_113862 crossref_primary_10_1016_j_cma_2019_03_049 crossref_primary_10_1016_j_jcp_2019_03_039 crossref_primary_10_1109_TIA_2022_3195475 crossref_primary_10_1115_1_4045177 crossref_primary_10_1016_j_ress_2021_107923 crossref_primary_10_1029_2022WR031954 crossref_primary_10_1186_s40323_020_00185_y crossref_primary_10_1515_demo_2020_0016 crossref_primary_10_1016_j_energy_2022_126173 crossref_primary_10_1016_j_ijepes_2021_107727 crossref_primary_10_1115_1_4048961 crossref_primary_10_1142_S0219876219500774 crossref_primary_10_1109_TSTE_2020_2992960 crossref_primary_10_1016_j_ress_2020_107168 crossref_primary_10_3390_math9192489 crossref_primary_10_3390_e21020100 crossref_primary_10_1016_j_compgeo_2024_106164 crossref_primary_10_1016_j_strusafe_2020_102028 crossref_primary_10_1016_j_strusafe_2023_102429 crossref_primary_10_1016_j_cma_2020_112906 crossref_primary_10_1109_TSTE_2023_3236446 crossref_primary_10_1007_s00158_024_03899_4 crossref_primary_10_1007_s00158_019_02290_y crossref_primary_10_1002_nme_6297 crossref_primary_10_1016_j_ress_2024_110150 crossref_primary_10_1080_15732479_2021_1946569 crossref_primary_10_1016_j_compfluid_2021_105129 crossref_primary_10_1063_5_0096285 crossref_primary_10_2514_1_J061143 crossref_primary_10_1155_2021_4347957 crossref_primary_10_1016_j_engstruct_2022_114810 crossref_primary_10_1016_j_ymssp_2021_108120 crossref_primary_10_1016_j_oceaneng_2024_119465 crossref_primary_10_1016_j_ress_2021_108223 crossref_primary_10_1016_j_ress_2021_107733 crossref_primary_10_1115_1_4063619 crossref_primary_10_1142_S0218539324500475 crossref_primary_10_1016_j_camwa_2021_01_015 crossref_primary_10_1016_j_jspi_2022_10_004 crossref_primary_10_3390_math9182211 crossref_primary_10_1016_j_chaos_2020_110558 crossref_primary_10_1002_wics_1557 crossref_primary_10_1109_ACCESS_2023_3335375 crossref_primary_10_1007_s11081_025_09955_2 |
Cites_doi | 10.1214/aos/1031689016 10.3166/remn.15.81-92 10.1016/j.coastaleng.2014.12.010 10.1061/(ASCE)0733-9399(1986)112:1(85) 10.1007/s00362-013-0498-x 10.1214/aoms/1177729394 10.1093/biomet/75.3.397 10.1016/j.apor.2016.07.008 10.1214/14-BA930 10.1016/j.strusafe.2015.05.004 10.1016/j.jmva.2013.04.014 10.1016/j.jcp.2011.01.002 10.1016/j.compstruc.2009.01.003 10.1016/j.strusafe.2017.07.002 10.1080/01621459.2012.682850 10.1016/j.jcp.2010.12.021 10.1016/j.jmva.2009.12.001 10.1016/j.strusafe.2016.09.003 10.1016/j.coastaleng.2007.05.007 10.1016/0167-4730(82)90024-8 10.1016/j.insmatheco.2007.02.001 10.1016/j.spl.2016.07.014 10.3390/econometrics4040043 10.1016/j.csda.2012.08.010 10.1016/j.strusafe.2009.09.003 10.1007/s10463-006-0076-2 10.1016/j.probengmech.2008.05.001 10.1016/j.probengmech.2009.04.006 10.1016/j.jcp.2015.02.025 10.1016/j.compgeo.2017.02.008 10.1006/jcph.2001.6889 10.1016/j.jmva.2015.01.001 10.1016/j.csda.2016.09.007 10.1016/j.ress.2017.12.018 10.1016/S0266-8920(01)00019-4 10.1016/S0266-8920(97)00020-9 10.1016/j.probengmech.2015.06.006 10.1111/sjos.12042 10.1051/m2an/2011045 10.1137/S1064827501387826 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier Science Ltd. Jan 2019 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jan 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 1XC VOOES |
DOI | 10.1016/j.probengmech.2018.08.001 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Statistics |
EISSN | 1878-4275 |
EndPage | 16 |
ExternalDocumentID | oai_HAL_hal_01901982v1 10_1016_j_probengmech_2018_08_001 S0266892018300341 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 KR7 1XC VOOES |
ID | FETCH-LOGICAL-c434t-263bb04d7d26b2f36b267ddbe13c564df815cc3a6daaf6628a9559d3507dc3e83 |
IEDL.DBID | .~1 |
ISSN | 0266-8920 |
IngestDate | Fri May 09 12:23:42 EDT 2025 Mon Jul 14 09:33:31 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 04:09:51 EDT 2025 Fri Feb 23 02:30:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Uncertainty quantification Input dependencies Reliability analysis Polynomial chaos expansions Vine copulas |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-263bb04d7d26b2f36b267ddbe13c564df815cc3a6daaf6628a9559d3507dc3e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9268-9014 0000-0001-8263-9278 0000-0002-9501-7395 |
OpenAccessLink | https://hal.science/hal-01901982 |
PQID | 2206265382 |
PQPubID | 2047568 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_01901982v1 proquest_journals_2206265382 crossref_primary_10_1016_j_probengmech_2018_08_001 crossref_citationtrail_10_1016_j_probengmech_2018_08_001 elsevier_sciencedirect_doi_10_1016_j_probengmech_2018_08_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Probabilistic engineering mechanics |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier Science Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd – name: Elsevier |
References | Embrechts, McNeil, Straumann (b30) 1999 Nataf (b12) 1962; 225 Gruber, Czado (b39) 2015; 10 Grønneberg, Hjort (b40) 2014; 41 J. Kirk, Traveling Salesman Problem –Genetic Algorithm Panagiotelis, Czado, Joe, Stöber (b70) 2017; 106 Melchers (b3) 1999 Bedford, Cooke (b22) 2002; 30 Kaveh, Talatahari (b67) 2009; 87 Wang, Li (b25) 2017; 89 Schepsmeier, Stöber (b48) 2014; 55 Zentner (b17) 2017; 64 Applegate, Bixby, Chvátal, Cook (b36) 2006 Rosenblatt (b11) 1952; 23 Aas, Czado, Frigessi, Bakkend (b27) 2009; 44 Czado (b43) 2010 Wang, Li (b24) 2017; 69 Hasofer, Lind (b1) 1974; 100 Fermanian (b41) 2012 Haff, Aas, Frigessi (b44) 2010; 101 Marelli, Sudret (b54) 2017 Doostan, Owhadi (b59) 2011; 230 Au, Beck (b4) 2001; 16 McKay, Beckman, Conover (b49) 1979; 2 Nelsen (b13) 2006 Spanhel, Kurz (b73) 2016; 119 Keese, Matthies (b56) 2003 Montes-Iturrizaga, Heredia-Zavoni (b20) 2016; 59 no date. [Online; accessed 21-09-17]. Papaioannou, Betz, Zwirglmaier, Straub (b10) 2015; 41 Jakeman, Eldred, Sargsyan (b60) 2015; 289 C. Klüpperberg, C. Czado, Vine Copula Models . Stöber, Joe, Czado (b45) 2013; 119 Blatman, Sudret (b61) 2011; 230 Aas (b23) 2016; 4 Ghanem, Spanos (b51) 2003 Marelli, Sudret (b65) 2014 Xiu (b57) 2010 2014. Michele, Salvadori, Passoni, Vezzoli (b18) 2007; 54 Goda (b15) 2010; 32 Matlab version 9.0.0.341360 (R2016a),The Mathworks Inc., Natick, Massachusetts, 2016. Sklar (b29) 1959; 8 Morales-Nápoles (b35) 2011 Fiessler, Neumann, Rackwitz (b2) 1979; 105 Panagiotelis, Czado, Joe (b69) 2012; 107 Dißmann, Brechmann, Czado, Kurowicka (b38) 2013; 59 Der Kiureghian, Liu (b63) 1986; 112 M. Kurz, Vine Copulas with Matlab Lebrun, Dutfoy (b47) 2009; 24 Ernst, Mugler, Starkloff, Ullmann (b53) 2012; 46 Berveiller, Sudret, Lemaire (b58) 2006; 15 (b14) 2015 Ditlevsen, Madsen (b5) 1996 Xiu, Karniadakis (b52) 2002; 24 Le Maître, Knio, Najm, Ghanem (b55) 2001; 173 Taylor (b32) 2007; 59 2015. Masina, Lamberti, Archetti (b19) 2015; 97 Schepsmeier (b72) 2010 Tawn (b68) 1988; 75 Smith (b66) 2009 Goda, Tesfamariam (b16) 2015; 56 Lemaire (b6) 2009 Li, Ghanem (b7) 1998; 13 Romanovsky (b50) 1925; 5 Lebrun, Dutfoy (b9) 2009; 24 Hohenbichler, Rackwitz (b62) 1983; 1 Matheron (b8) 1967; 60 Manner (b42) 2007 Scarsini (b31) 1984; 8 Kurowicka, Cooke (b34) 2005 Wang, Li (b26) 2018; 173 Joe (b21) 1996; 28 Z. Wei, D. Kim, E.M. Conlon, Parallel Computing for Copula Parameter Estimation with Big Data: A Simulation Study, 2016 Schepsmeier (b28) 2015; 138 Li (10.1016/j.probengmech.2018.08.001_b7) 1998; 13 (10.1016/j.probengmech.2018.08.001_b14) 2015 Wang (10.1016/j.probengmech.2018.08.001_b24) 2017; 69 Romanovsky (10.1016/j.probengmech.2018.08.001_b50) 1925; 5 Papaioannou (10.1016/j.probengmech.2018.08.001_b10) 2015; 41 Keese (10.1016/j.probengmech.2018.08.001_b56) 2003 Der Kiureghian (10.1016/j.probengmech.2018.08.001_b63) 1986; 112 Hasofer (10.1016/j.probengmech.2018.08.001_b1) 1974; 100 Smith (10.1016/j.probengmech.2018.08.001_b66) 2009 10.1016/j.probengmech.2018.08.001_b37 10.1016/j.probengmech.2018.08.001_b33 Manner (10.1016/j.probengmech.2018.08.001_b42) 2007 10.1016/j.probengmech.2018.08.001_b71 Au (10.1016/j.probengmech.2018.08.001_b4) 2001; 16 Jakeman (10.1016/j.probengmech.2018.08.001_b60) 2015; 289 Melchers (10.1016/j.probengmech.2018.08.001_b3) 1999 Aas (10.1016/j.probengmech.2018.08.001_b23) 2016; 4 Marelli (10.1016/j.probengmech.2018.08.001_b54) 2017 Le Maître (10.1016/j.probengmech.2018.08.001_b55) 2001; 173 Kaveh (10.1016/j.probengmech.2018.08.001_b67) 2009; 87 Bedford (10.1016/j.probengmech.2018.08.001_b22) 2002; 30 Wang (10.1016/j.probengmech.2018.08.001_b25) 2017; 89 Xiu (10.1016/j.probengmech.2018.08.001_b52) 2002; 24 Doostan (10.1016/j.probengmech.2018.08.001_b59) 2011; 230 Tawn (10.1016/j.probengmech.2018.08.001_b68) 1988; 75 Berveiller (10.1016/j.probengmech.2018.08.001_b58) 2006; 15 10.1016/j.probengmech.2018.08.001_b46 Xiu (10.1016/j.probengmech.2018.08.001_b57) 2010 Panagiotelis (10.1016/j.probengmech.2018.08.001_b69) 2012; 107 Scarsini (10.1016/j.probengmech.2018.08.001_b31) 1984; 8 Nelsen (10.1016/j.probengmech.2018.08.001_b13) 2006 Nataf (10.1016/j.probengmech.2018.08.001_b12) 1962; 225 Marelli (10.1016/j.probengmech.2018.08.001_b65) 2014 Schepsmeier (10.1016/j.probengmech.2018.08.001_b72) 2010 Zentner (10.1016/j.probengmech.2018.08.001_b17) 2017; 64 Embrechts (10.1016/j.probengmech.2018.08.001_b30) 1999 Fermanian (10.1016/j.probengmech.2018.08.001_b41) 2012 Panagiotelis (10.1016/j.probengmech.2018.08.001_b70) 2017; 106 Goda (10.1016/j.probengmech.2018.08.001_b15) 2010; 32 Czado (10.1016/j.probengmech.2018.08.001_b43) 2010 Matheron (10.1016/j.probengmech.2018.08.001_b8) 1967; 60 Schepsmeier (10.1016/j.probengmech.2018.08.001_b48) 2014; 55 Taylor (10.1016/j.probengmech.2018.08.001_b32) 2007; 59 Kurowicka (10.1016/j.probengmech.2018.08.001_b34) 2005 Sklar (10.1016/j.probengmech.2018.08.001_b29) 1959; 8 Morales-Nápoles (10.1016/j.probengmech.2018.08.001_b35) 2011 Lebrun (10.1016/j.probengmech.2018.08.001_b47) 2009; 24 Michele (10.1016/j.probengmech.2018.08.001_b18) 2007; 54 Grønneberg (10.1016/j.probengmech.2018.08.001_b40) 2014; 41 Ditlevsen (10.1016/j.probengmech.2018.08.001_b5) 1996 Blatman (10.1016/j.probengmech.2018.08.001_b61) 2011; 230 Spanhel (10.1016/j.probengmech.2018.08.001_b73) 2016; 119 Fiessler (10.1016/j.probengmech.2018.08.001_b2) 1979; 105 Masina (10.1016/j.probengmech.2018.08.001_b19) 2015; 97 Ghanem (10.1016/j.probengmech.2018.08.001_b51) 2003 Ernst (10.1016/j.probengmech.2018.08.001_b53) 2012; 46 Goda (10.1016/j.probengmech.2018.08.001_b16) 2015; 56 Hohenbichler (10.1016/j.probengmech.2018.08.001_b62) 1983; 1 Schepsmeier (10.1016/j.probengmech.2018.08.001_b28) 2015; 138 Dißmann (10.1016/j.probengmech.2018.08.001_b38) 2013; 59 Rosenblatt (10.1016/j.probengmech.2018.08.001_b11) 1952; 23 Aas (10.1016/j.probengmech.2018.08.001_b27) 2009; 44 Haff (10.1016/j.probengmech.2018.08.001_b44) 2010; 101 Lemaire (10.1016/j.probengmech.2018.08.001_b6) 2009 Stöber (10.1016/j.probengmech.2018.08.001_b45) 2013; 119 McKay (10.1016/j.probengmech.2018.08.001_b49) 1979; 2 10.1016/j.probengmech.2018.08.001_b64 Gruber (10.1016/j.probengmech.2018.08.001_b39) 2015; 10 Montes-Iturrizaga (10.1016/j.probengmech.2018.08.001_b20) 2016; 59 Joe (10.1016/j.probengmech.2018.08.001_b21) 1996; 28 Wang (10.1016/j.probengmech.2018.08.001_b26) 2018; 173 Lebrun (10.1016/j.probengmech.2018.08.001_b9) 2009; 24 Applegate (10.1016/j.probengmech.2018.08.001_b36) 2006 |
References_xml | – year: 2009 ident: b66 article-title: ABAQUS/Standard User’s Manual, Version 6.9 – volume: 56 start-page: 39 year: 2015 end-page: 51 ident: b16 article-title: Multi-variate seismic demand modelling using copulas: Application to non-ductile reinforced concrete frame in Victoria, Canada publication-title: Struct. Saf. – year: 2006 ident: b36 article-title: The Traveling Salesman Problem: A Computational Study – year: 2006 ident: b13 publication-title: An introduction to copulas – volume: 101 start-page: 1296 year: 2010 end-page: 1310 ident: b44 article-title: On the simplified pair-copula construction –Simply useful or too simplistic? publication-title: J. Multivariate Anal. – volume: 106 start-page: 138 year: 2017 end-page: 152 ident: b70 article-title: Model selection for discrete regular vine copulas publication-title: Comput. Statist. Data Anal. – volume: 230 start-page: 2345 year: 2011 end-page: 2367 ident: b61 article-title: Adaptive sparse polynomial chaos expansion based on Least Angle Regression publication-title: J. Comput. Phys. – volume: 55 start-page: 525 year: 2014 end-page: 542 ident: b48 article-title: Derivatives and Fisher information of bivariate copulas publication-title: Statist. Papers – volume: 173 start-page: 94 year: 2018 end-page: 104 ident: b26 article-title: System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations? publication-title: Reliab. Eng. Syst. Saf. – start-page: 189 year: 2011 end-page: 218 ident: b35 article-title: Counting Vines publication-title: Dependence Modeling: Vine Copula Handbook – reference: Matlab version 9.0.0.341360 (R2016a),The Mathworks Inc., Natick, Massachusetts, 2016. – volume: 41 start-page: 89 year: 2015 end-page: 103 ident: b10 article-title: MCMC algorithms for Subset Simulation publication-title: Probab. Eng. Mech. – year: 2010 ident: b72 article-title: Maximum likelihood estimation of C-vine pair copula constructions based on bivariate copulas from different families – year: 1999 ident: b3 article-title: Structural reliability analysis and prediction – volume: 89 start-page: 22 year: 2017 end-page: 32 ident: b25 article-title: Stochastic response surface method for reliability problems involving correlated multivariates with non-Gaussian dependence structure: Analysis under incomplete probability information publication-title: Comput. Geotech. – volume: 75 start-page: 397 year: 1988 end-page: 415 ident: b68 article-title: Bivariate extreme value theory: Models and estimation publication-title: Biometrika – volume: 5 start-page: 3 year: 1925 end-page: 46 ident: b50 article-title: On the moments of the standard deviation and of the correlation coefficient in samples from normal publication-title: Metron – volume: 32 start-page: 112 year: 2010 end-page: 123 ident: b15 article-title: Statistical modeling of joint probability distribution using copula: Application to peak and permanent displacement seismic demands publication-title: Struct. Saf. – volume: 24 start-page: 577 year: 2009 end-page: 584 ident: b9 article-title: Do Rosenblatt and Nataf isoprobabilistic transformations really differ? publication-title: Probab. Eng. Mech. – volume: 10 start-page: 937 year: 2015 end-page: 963 ident: b39 article-title: Sequential Bayesian model selection of regular vine copulas publication-title: Bayesian Anal. – volume: 119 start-page: 101 year: 2013 end-page: 118 ident: b45 article-title: Simplified pair copula constructions —limitations and extensions publication-title: J. Multivariate Anal. – volume: 105 start-page: 661 year: 1979 end-page: 676 ident: b2 article-title: Quadratic limit states in structural reliability publication-title: J. Eng. Mech. – reference: , 2015. – volume: 225 start-page: 42 year: 1962 end-page: 43 ident: b12 article-title: Détermination des distributions dont les marges sont données publication-title: C. R. Acad. Sci. Paris – volume: 28 start-page: 120 year: 1996 end-page: 141 ident: b21 article-title: Families of publication-title: Distributions with Fixed Marginals and Related Topics – volume: 23 start-page: 470 year: 1952 end-page: 472 ident: b11 article-title: Remarks on a multivariate transformation publication-title: Ann. Math. Statist. – volume: 173 start-page: 481 year: 2001 end-page: 511 ident: b55 article-title: A stochastic projection method for fluid flow –I. Basic formulation publication-title: J. Comput. Phys. – volume: 87 start-page: 267 year: 2009 end-page: 283 ident: b67 article-title: Particle swarm optimizer, and colony strategy and harmony search scheme hybridized for optimization of truss structures publication-title: Comput. Struct. – reference: J. Kirk, Traveling Salesman Problem –Genetic Algorithm, – volume: 2 start-page: 239 year: 1979 end-page: 245 ident: b49 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 44 start-page: 182 year: 2009 end-page: 198 ident: b27 article-title: Pair-copula constructions of multiple dependence publication-title: Insurance Math. Econom. – volume: 15 start-page: 81 year: 2006 end-page: 92 ident: b58 article-title: Stochastic finite elements: a non intrusive approach by regression publication-title: Eur. J. Comput. Mech. – start-page: 2554 year: 2014 end-page: 2563 ident: b65 article-title: UQLab: A framework for uncertainty quantification in Matlab publication-title: Vulnerability, Uncertainty, and Risk (Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and Management (ICVRAM2014), Liverpool, United Kingdom) – volume: 100 start-page: 111 year: 1974 end-page: 121 ident: b1 article-title: Exact and invariant second moment code format publication-title: J. Eng. Mech. – reference: M. Kurz, Vine Copulas with Matlab, – start-page: 309 year: 2005 end-page: 322 ident: b34 article-title: Distribution-free continuous Bayesian belief nets publication-title: Modern Statistical and Mathematical Methods in Reliability – volume: 138 start-page: 34 year: 2015 end-page: 52 ident: b28 article-title: Efficient information based goodness-of-fit tests for vine copula models with fixed margins publication-title: J. Multivariate Anal. – volume: 59 start-page: 789 year: 2007 end-page: 806 ident: b32 article-title: Multivariate measures of concordance publication-title: Ann. Inst. Statist. Math. – volume: 119 start-page: 76 year: 2016 end-page: 83 ident: b73 article-title: The partial copula: Properties and associated dependence measures publication-title: Statist. Probab. Lett. – volume: 230 start-page: 3015 year: 2011 end-page: 3034 ident: b59 article-title: A non-adapted sparse approximation of PDEs with stochastic inputs publication-title: J. Comput. Phys. – volume: 13 start-page: 125 year: 1998 end-page: 136 ident: b7 article-title: Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration publication-title: Probab. Eng. Mech. – year: 2015 ident: b14 publication-title: Dependence modeling with copulas – start-page: 176 year: 1999 end-page: 223 ident: b30 article-title: Correlation And Dependence In Risk Management: Properties And Pitfalls publication-title: Risk Management: Value At Risk and beyond – start-page: 61 year: 2012 end-page: 89 ident: b41 article-title: An overview of the goodness-of-fit test problem for copulas publication-title: Copulae in Mathematical and Quantitative Finance, vol. 213 – year: 2003 ident: b56 article-title: Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations,Technical Report – year: 2009 ident: b6 article-title: Structural reliability – volume: 8 start-page: 229 year: 1959 end-page: 231 ident: b29 article-title: Fonctions de répartition à publication-title: Publ.Inst. Statist.Univ. – year: 1996 ident: b5 article-title: Structural reliability methods – reference: C. Klüpperberg, C. Czado, Vine Copula Models, – volume: 1 start-page: 177 year: 1983 end-page: 188 ident: b62 article-title: First-order concepts in system reliability publication-title: Struct. Saf. – volume: 41 start-page: 436 year: 2014 end-page: 459 ident: b40 article-title: The copula information criteria publication-title: Scand. J. Stat. – year: 2017 ident: b54 publication-title: UQLab user manual –Polynomial chaos expansions, Technical Report – volume: 289 start-page: 18 year: 2015 end-page: 34 ident: b60 article-title: Enhancing publication-title: J. Comput. Phys. – volume: 97 start-page: 37 year: 2015 end-page: 52 ident: b19 article-title: A copula based approach for estimating the joint probability of water levels and waves publication-title: Coast. Eng. – volume: 64 start-page: 54 year: 2017 end-page: 61 ident: b17 article-title: A general framework for the estimation of analytical fragility functions based on multivariate probability distributions publication-title: Struct. Saf. – volume: 8 start-page: 201 year: 1984 end-page: 218 ident: b31 article-title: On measures of concordance publication-title: Stochastica – year: 2003 ident: b51 article-title: Stochastic Finite Elements : A Spectral Approach – volume: 4 start-page: 43 year: 2016 ident: b23 article-title: Pair-Copula Constructions for Financial Applications: A Review publication-title: Econometrics – start-page: 93 year: 2010 end-page: 109 ident: b43 publication-title: Pair-Copula Constructions of Multivariate Copulas – volume: 60 start-page: 1041 year: 1967 ident: b8 article-title: Kriging or polynomial interpolation procedures publication-title: Canadian Inst. Mining Bull. – volume: 30 start-page: 1031 year: 2002 end-page: 1068 ident: b22 article-title: Vines –A new graphical model for dependent random variables publication-title: Ann. Statist. – volume: 112 start-page: 85 year: 1986 end-page: 104 ident: b63 article-title: Structural reliability under incomplete probability information publication-title: J. Eng. Mech. – year: 2007 ident: b42 article-title: Estimation and Model Selection of Copulas with an Application to Exchange Rates, Research Memorandum 056 – volume: 59 start-page: 52 year: 2013 end-page: 69 ident: b38 article-title: Selecting and estimating regular vine copulae and application to financial returns publication-title: Comput. Statist. Data Anal. – volume: 24 start-page: 619 year: 2002 end-page: 644 ident: b52 article-title: The Wiener-Askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. – volume: 69 start-page: 1 year: 2017 end-page: 10 ident: b24 article-title: Towards reliability evaluation involving correlated multivariates under incomplete probability information: A reconstructed joint probability distribution for isoprobabilistic transformation publication-title: Struct. Saf. – reference: no date. [Online; accessed 21-09-17]. – reference: . – volume: 46 start-page: 317 year: 2012 end-page: 339 ident: b53 article-title: On the convergence of generalized polynomial chaos expansions publication-title: ESAIM: M2AN – volume: 59 start-page: 564 year: 2016 end-page: 576 ident: b20 article-title: Reliability analysis of mooring lines using copulas to model statistical dependence of environmental variables publication-title: Appl. Ocean Res. – volume: 16 start-page: 263 year: 2001 end-page: 277 ident: b4 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probab. Eng. Mech. – volume: 107 start-page: 1063 year: 2012 end-page: 1072 ident: b69 article-title: Pair copula constructions for multivariate discrete data publication-title: J. Amer. Statist. Assoc. – reference: Z. Wei, D. Kim, E.M. Conlon, Parallel Computing for Copula Parameter Estimation with Big Data: A Simulation Study, 2016, – year: 2010 ident: b57 article-title: Numerical methods for stochastic computations –A spectral method approach – reference: , 2014. – volume: 54 start-page: 734 year: 2007 end-page: 751 ident: b18 article-title: A multivariate model of sea storms using copulas publication-title: Coast. Eng. – volume: 24 start-page: 172 year: 2009 end-page: 178 ident: b47 article-title: A generalization of the Nataf transformation to distributions with elliptical copula publication-title: Probab. Eng. Mech. – volume: 30 start-page: 1031 issue: 4 year: 2002 ident: 10.1016/j.probengmech.2018.08.001_b22 article-title: Vines –A new graphical model for dependent random variables publication-title: Ann. Statist. doi: 10.1214/aos/1031689016 – volume: 15 start-page: 81 issue: 1–3 year: 2006 ident: 10.1016/j.probengmech.2018.08.001_b58 article-title: Stochastic finite elements: a non intrusive approach by regression publication-title: Eur. J. Comput. Mech. doi: 10.3166/remn.15.81-92 – volume: 105 start-page: 661 issue: 4 year: 1979 ident: 10.1016/j.probengmech.2018.08.001_b2 article-title: Quadratic limit states in structural reliability publication-title: J. Eng. Mech. – volume: 97 start-page: 37 year: 2015 ident: 10.1016/j.probengmech.2018.08.001_b19 article-title: A copula based approach for estimating the joint probability of water levels and waves publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2014.12.010 – ident: 10.1016/j.probengmech.2018.08.001_b46 – year: 2009 ident: 10.1016/j.probengmech.2018.08.001_b66 – volume: 112 start-page: 85 issue: 1 year: 1986 ident: 10.1016/j.probengmech.2018.08.001_b63 article-title: Structural reliability under incomplete probability information publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1986)112:1(85) – year: 2010 ident: 10.1016/j.probengmech.2018.08.001_b57 – volume: 55 start-page: 525 issue: 2 year: 2014 ident: 10.1016/j.probengmech.2018.08.001_b48 article-title: Derivatives and Fisher information of bivariate copulas publication-title: Statist. Papers doi: 10.1007/s00362-013-0498-x – volume: 23 start-page: 470 year: 1952 ident: 10.1016/j.probengmech.2018.08.001_b11 article-title: Remarks on a multivariate transformation publication-title: Ann. Math. Statist. doi: 10.1214/aoms/1177729394 – volume: 75 start-page: 397 issue: 3 year: 1988 ident: 10.1016/j.probengmech.2018.08.001_b68 article-title: Bivariate extreme value theory: Models and estimation publication-title: Biometrika doi: 10.1093/biomet/75.3.397 – year: 2010 ident: 10.1016/j.probengmech.2018.08.001_b72 – volume: 59 start-page: 564 year: 2016 ident: 10.1016/j.probengmech.2018.08.001_b20 article-title: Reliability analysis of mooring lines using copulas to model statistical dependence of environmental variables publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2016.07.008 – ident: 10.1016/j.probengmech.2018.08.001_b37 – volume: 10 start-page: 937 issue: 4 year: 2015 ident: 10.1016/j.probengmech.2018.08.001_b39 article-title: Sequential Bayesian model selection of regular vine copulas publication-title: Bayesian Anal. doi: 10.1214/14-BA930 – volume: 56 start-page: 39 year: 2015 ident: 10.1016/j.probengmech.2018.08.001_b16 article-title: Multi-variate seismic demand modelling using copulas: Application to non-ductile reinforced concrete frame in Victoria, Canada publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2015.05.004 – volume: 28 start-page: 120 year: 1996 ident: 10.1016/j.probengmech.2018.08.001_b21 article-title: Families of m-variate distributions with given margins and m(m−1)∕2 bivariate dependence parameters – start-page: 61 year: 2012 ident: 10.1016/j.probengmech.2018.08.001_b41 article-title: An overview of the goodness-of-fit test problem for copulas – volume: 119 start-page: 101 year: 2013 ident: 10.1016/j.probengmech.2018.08.001_b45 article-title: Simplified pair copula constructions —limitations and extensions publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2013.04.014 – start-page: 189 year: 2011 ident: 10.1016/j.probengmech.2018.08.001_b35 article-title: Counting Vines – ident: 10.1016/j.probengmech.2018.08.001_b71 – volume: 60 start-page: 1041 year: 1967 ident: 10.1016/j.probengmech.2018.08.001_b8 article-title: Kriging or polynomial interpolation procedures publication-title: Canadian Inst. Mining Bull. – ident: 10.1016/j.probengmech.2018.08.001_b33 – start-page: 309 year: 2005 ident: 10.1016/j.probengmech.2018.08.001_b34 article-title: Distribution-free continuous Bayesian belief nets – year: 2006 ident: 10.1016/j.probengmech.2018.08.001_b36 – volume: 8 start-page: 229 year: 1959 ident: 10.1016/j.probengmech.2018.08.001_b29 article-title: Fonctions de répartition à n dimensions et leurs marges publication-title: Publ.Inst. Statist.Univ. – year: 2003 ident: 10.1016/j.probengmech.2018.08.001_b51 – volume: 230 start-page: 3015 issue: 8 year: 2011 ident: 10.1016/j.probengmech.2018.08.001_b59 article-title: A non-adapted sparse approximation of PDEs with stochastic inputs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.01.002 – start-page: 93 year: 2010 ident: 10.1016/j.probengmech.2018.08.001_b43 – volume: 87 start-page: 267 year: 2009 ident: 10.1016/j.probengmech.2018.08.001_b67 article-title: Particle swarm optimizer, and colony strategy and harmony search scheme hybridized for optimization of truss structures publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2009.01.003 – volume: 69 start-page: 1 year: 2017 ident: 10.1016/j.probengmech.2018.08.001_b24 article-title: Towards reliability evaluation involving correlated multivariates under incomplete probability information: A reconstructed joint probability distribution for isoprobabilistic transformation publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2017.07.002 – ident: 10.1016/j.probengmech.2018.08.001_b64 – year: 2003 ident: 10.1016/j.probengmech.2018.08.001_b56 – volume: 107 start-page: 1063 year: 2012 ident: 10.1016/j.probengmech.2018.08.001_b69 article-title: Pair copula constructions for multivariate discrete data publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.2012.682850 – volume: 230 start-page: 2345 year: 2011 ident: 10.1016/j.probengmech.2018.08.001_b61 article-title: Adaptive sparse polynomial chaos expansion based on Least Angle Regression publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.12.021 – volume: 101 start-page: 1296 year: 2010 ident: 10.1016/j.probengmech.2018.08.001_b44 article-title: On the simplified pair-copula construction –Simply useful or too simplistic? publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2009.12.001 – volume: 64 start-page: 54 year: 2017 ident: 10.1016/j.probengmech.2018.08.001_b17 article-title: A general framework for the estimation of analytical fragility functions based on multivariate probability distributions publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2016.09.003 – year: 2007 ident: 10.1016/j.probengmech.2018.08.001_b42 – volume: 54 start-page: 734 year: 2007 ident: 10.1016/j.probengmech.2018.08.001_b18 article-title: A multivariate model of sea storms using copulas publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2007.05.007 – volume: 8 start-page: 201 issue: 3 year: 1984 ident: 10.1016/j.probengmech.2018.08.001_b31 article-title: On measures of concordance publication-title: Stochastica – volume: 1 start-page: 177 issue: 3 year: 1983 ident: 10.1016/j.probengmech.2018.08.001_b62 article-title: First-order concepts in system reliability publication-title: Struct. Saf. doi: 10.1016/0167-4730(82)90024-8 – year: 2017 ident: 10.1016/j.probengmech.2018.08.001_b54 – volume: 44 start-page: 182 issue: 2 year: 2009 ident: 10.1016/j.probengmech.2018.08.001_b27 article-title: Pair-copula constructions of multiple dependence publication-title: Insurance Math. Econom. doi: 10.1016/j.insmatheco.2007.02.001 – volume: 119 start-page: 76 year: 2016 ident: 10.1016/j.probengmech.2018.08.001_b73 article-title: The partial copula: Properties and associated dependence measures publication-title: Statist. Probab. Lett. doi: 10.1016/j.spl.2016.07.014 – volume: 4 start-page: 43 issue: 4 year: 2016 ident: 10.1016/j.probengmech.2018.08.001_b23 article-title: Pair-Copula Constructions for Financial Applications: A Review publication-title: Econometrics doi: 10.3390/econometrics4040043 – volume: 59 start-page: 52 year: 2013 ident: 10.1016/j.probengmech.2018.08.001_b38 article-title: Selecting and estimating regular vine copulae and application to financial returns publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2012.08.010 – year: 1999 ident: 10.1016/j.probengmech.2018.08.001_b3 – start-page: 2554 year: 2014 ident: 10.1016/j.probengmech.2018.08.001_b65 article-title: UQLab: A framework for uncertainty quantification in Matlab – volume: 32 start-page: 112 year: 2010 ident: 10.1016/j.probengmech.2018.08.001_b15 article-title: Statistical modeling of joint probability distribution using copula: Application to peak and permanent displacement seismic demands publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2009.09.003 – volume: 59 start-page: 789 issue: 4 year: 2007 ident: 10.1016/j.probengmech.2018.08.001_b32 article-title: Multivariate measures of concordance publication-title: Ann. Inst. Statist. Math. doi: 10.1007/s10463-006-0076-2 – volume: 100 start-page: 111 issue: 1 year: 1974 ident: 10.1016/j.probengmech.2018.08.001_b1 article-title: Exact and invariant second moment code format publication-title: J. Eng. Mech. – volume: 24 start-page: 172 issue: 2 year: 2009 ident: 10.1016/j.probengmech.2018.08.001_b47 article-title: A generalization of the Nataf transformation to distributions with elliptical copula publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2008.05.001 – volume: 24 start-page: 577 year: 2009 ident: 10.1016/j.probengmech.2018.08.001_b9 article-title: Do Rosenblatt and Nataf isoprobabilistic transformations really differ? publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2009.04.006 – year: 2015 ident: 10.1016/j.probengmech.2018.08.001_b14 – volume: 289 start-page: 18 year: 2015 ident: 10.1016/j.probengmech.2018.08.001_b60 article-title: Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.02.025 – volume: 89 start-page: 22 year: 2017 ident: 10.1016/j.probengmech.2018.08.001_b25 article-title: Stochastic response surface method for reliability problems involving correlated multivariates with non-Gaussian dependence structure: Analysis under incomplete probability information publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2017.02.008 – volume: 5 start-page: 3 issue: 4 year: 1925 ident: 10.1016/j.probengmech.2018.08.001_b50 article-title: On the moments of the standard deviation and of the correlation coefficient in samples from normal publication-title: Metron – volume: 173 start-page: 481 year: 2001 ident: 10.1016/j.probengmech.2018.08.001_b55 article-title: A stochastic projection method for fluid flow –I. Basic formulation publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6889 – volume: 138 start-page: 34 issue: C year: 2015 ident: 10.1016/j.probengmech.2018.08.001_b28 article-title: Efficient information based goodness-of-fit tests for vine copula models with fixed margins publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2015.01.001 – volume: 106 start-page: 138 year: 2017 ident: 10.1016/j.probengmech.2018.08.001_b70 article-title: Model selection for discrete regular vine copulas publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2016.09.007 – volume: 173 start-page: 94 year: 2018 ident: 10.1016/j.probengmech.2018.08.001_b26 article-title: System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations? publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.12.018 – volume: 16 start-page: 263 issue: 4 year: 2001 ident: 10.1016/j.probengmech.2018.08.001_b4 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probab. Eng. Mech. doi: 10.1016/S0266-8920(01)00019-4 – volume: 13 start-page: 125 issue: 2 year: 1998 ident: 10.1016/j.probengmech.2018.08.001_b7 article-title: Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration publication-title: Probab. Eng. Mech. doi: 10.1016/S0266-8920(97)00020-9 – year: 2006 ident: 10.1016/j.probengmech.2018.08.001_b13 – volume: 225 start-page: 42 year: 1962 ident: 10.1016/j.probengmech.2018.08.001_b12 article-title: Détermination des distributions dont les marges sont données publication-title: C. R. Acad. Sci. Paris – year: 2009 ident: 10.1016/j.probengmech.2018.08.001_b6 – volume: 41 start-page: 89 year: 2015 ident: 10.1016/j.probengmech.2018.08.001_b10 article-title: MCMC algorithms for Subset Simulation publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2015.06.006 – year: 1996 ident: 10.1016/j.probengmech.2018.08.001_b5 – volume: 41 start-page: 436 year: 2014 ident: 10.1016/j.probengmech.2018.08.001_b40 article-title: The copula information criteria publication-title: Scand. J. Stat. doi: 10.1111/sjos.12042 – volume: 46 start-page: 317 issue: 2 year: 2012 ident: 10.1016/j.probengmech.2018.08.001_b53 article-title: On the convergence of generalized polynomial chaos expansions publication-title: ESAIM: M2AN doi: 10.1051/m2an/2011045 – start-page: 176 year: 1999 ident: 10.1016/j.probengmech.2018.08.001_b30 article-title: Correlation And Dependence In Risk Management: Properties And Pitfalls – volume: 24 start-page: 619 issue: 2 year: 2002 ident: 10.1016/j.probengmech.2018.08.001_b52 article-title: The Wiener-Askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501387826 – volume: 2 start-page: 239 year: 1979 ident: 10.1016/j.probengmech.2018.08.001_b49 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics |
SSID | ssj0017149 |
Score | 2.501289 |
Snippet | Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification (UQ) deals with the estimation of statistics of the system... Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification(UQ) deals with the estimation of statistics of the system response,... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Applications Computer simulation Dependence Failure analysis Finite element analysis Finite element method Importance sampling Input dependencies Machine Learning Methodology Multivariate analysis Polynomial chaos expansions Polynomials Probabilistic inference Probabilistic models Reliability analysis Reliability engineering Representations Statistical analysis Statistics Structural reliability Uncertainty Uncertainty quantification Vine copulas |
Title | A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas |
URI | https://dx.doi.org/10.1016/j.probengmech.2018.08.001 https://www.proquest.com/docview/2206265382 https://hal.science/hal-01901982 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELaASogLtAVUWkBu1WvYxHa8jsRlhUDbbsuhLYKbFT-ybAXpdjeL4NLf3hnH2T7UA1IviWLZseVxZsbON98Q8tYa4axyGLHM8kTkxiRFmVVJmVqkbytcFoi0P57L4YV4f5VfrZCTLhYGYZVR97c6PWjrWNKLs9mbTia9z7B7kKoAA6Y4sqyECHbRx1V-9GMJ88D83kV7ziITrL1OXv_CeGHSFl-Pb334L5GpwOYZ88P8w0atXiNY8i-dHQzR2VOyGT1IOmgH-Yys-Po52YreJI3f6nybzAZ03HJK06pDYFFwUSmCQhM3QzVHwaq1mIDmgX5flC1yKAiLYnTZjAbIub-nk3q6aGiXMhc6mVOEzI_pHbipUAvTgM13yMXZ6ZeTYRIzLCRWcNEkTHJjUuH6jknDKg4X2XfO-IzbXApXqSy3lpfSlWUlJVMlEtY5Dk6ks9wrvkvW6m-1f0Eo0ipal3ukJBPSZ0al3pgKXqN45Ytsj6huTrWN9OOYBeNGdzizr_o3cWgUh8YMmSk0Zcum05aD4zGNjjvB6T8WlAZb8Zjmb0DYy-6QhHs4-KCxDKPvs0KxO6i0360FHT_9uWYshU0i2BH28v-G8IpswFPRnvfsk7VmtvAH4AE15jAs8UPyZPBuNDzH--jT5egn8jsK2Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIgEXyqviUcAgOIaNH3EdCQ4roNrSbS-0Um8mfmRZBGHZZPu48Kf6B5lJnOUhDpVQLzk4dhJ5JjPj5PP3EfLcWemd9rhjmWeJzKxN8oKVSZE6pG_LPWuJtPf21ehQvj_KjlbIeb8XBmGVMfZ3Mb2N1rFlEGdzMJtOBx9g9aB0DglMC2RZYRFZuRvOTmDdVr_eeQtGfsH59ruDN6MkSgskTgrZJFwJa1PptzxXlpcCDmrLexuYcJmSvtQsc04UyhdFqRTXBTK1eQHVk3ciaAHXXSVXJIQLlE14-WOJK0FB8bz7sKMSfLyr5OkvUBmqxIRq8jW0P0KYbulDoyDNP5Li6idEZ_6VJNrMt32T3IglKx12s3KLrITqNlmP5SuNwaG-Q-ZDOulIrGnZQ74o1MQUUaiJn2NcpZBGOxBCc0a_L4oOqtR6B8XtbHPaYtzDKZ1Ws0VDe41euElNEaM_ocdQF0Mv1B2r75LDS5n3DbJWfavCPUKRx9H5LCAHmlSBWZ0Ga0u4jBZlyNl9ovs5NS7ynaPsxhfTA9s-m9_MYdAcBiU5UxjKl0NnHenHRQa96g1n_vBgA8npIsOfgbGXt0PW79FwbLANt_uzXPNj6LTZ-4KJsaY2nKewKkVPfPB_j_CEXBsd7I3NeGd_9yG5Dmfy7mPTJllr5ovwCMqvxj5u3Z2Sj5f9fv0EJSxFWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+framework+for+data-driven+uncertainty+quantification+under+complex+input+dependencies+using+vine+copulas&rft.jtitle=Probabilistic+engineering+mechanics&rft.au=Torre%2C+Emiliano&rft.au=Marelli%2C+Stefano&rft.au=Embrechts%2C+Paul&rft.au=Sudret%2C+Bruno&rft.date=2019-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0266-8920&rft.eissn=1878-4275&rft.volume=55&rft.spage=1&rft_id=info:doi/10.1016%2Fj.probengmech.2018.08.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-8920&client=summon |