Finite/fixed-time synchronization of inertial memristive neural networks by interval matrix method for secure communication

This paper investigates the finite/fixed-time synchronization problem of delayed inertial memristive neural networks (DIMNNs) using interval matrix-based methods within a unified control framework. By employing set-valued mapping and differential inclusion theory, two distinct methods are applied to...

Full description

Saved in:
Bibliographic Details
Published inNeural Networks Vol. 167; pp. 168 - 182
Main Authors Wei, Fei, Chen, Guici, Zeng, Zhigang, Gunasekaran, Nallappan
Format Journal Article
LanguageEnglish
Japanese
Published Elsevier Ltd 01.10.2023
Elsevier BV
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2023.08.015

Cover

Abstract This paper investigates the finite/fixed-time synchronization problem of delayed inertial memristive neural networks (DIMNNs) using interval matrix-based methods within a unified control framework. By employing set-valued mapping and differential inclusion theory, two distinct methods are applied to handle the switching behavior of memristor parameters: the maximum absolute value method and the interval matrix method. Based on these different approaches, two control strategies are proposed to select appropriate control parameters, enabling the system to achieve finite and fixed-time synchronization, respectively. Additionally, the resulting theoretical criteria differ based on the chosen control strategy, with one expressed in algebraic form and the other in the form of linear matrix inequalities (LMIs). Numerical simulations demonstrate that the interval matrix method outperforms the maximum absolute value method in terms of handling memristor parameter switching, achieving faster finite/fixed-time synchronization. Furthermore, the theoretical results are extended to the field of image encryption, where the response system is utilized for decryption and expanding the keyspace. •Inertial memristive neural networks (IMNNs) employ two methods to manage switching behaviors: maximum absolute value and interval matrix.•Controllers based on these methods yield distinct theorems: one in algebraic form and the other in the form of linear matrix inequalities (LMIs).•Simulation shows Theorem 2 (interval matrix) yields faster synchronization convergence than Theorem 1 (maximum absolute value), and the findings are also applicable to image encryption.
AbstractList This paper investigates the finite/fixed-time synchronization problem of delayed inertial memristive neural networks (DIMNNs) using interval matrix-based methods within a unified control framework. By employing set-valued mapping and differential inclusion theory, two distinct methods are applied to handle the switching behavior of memristor parameters: the maximum absolute value method and the interval matrix method. Based on these different approaches, two control strategies are proposed to select appropriate control parameters, enabling the system to achieve finite and fixed-time synchronization, respectively. Additionally, the resulting theoretical criteria differ based on the chosen control strategy, with one expressed in algebraic form and the other in the form of linear matrix inequalities (LMIs). Numerical simulations demonstrate that the interval matrix method outperforms the maximum absolute value method in terms of handling memristor parameter switching, achieving faster finite/fixed-time synchronization. Furthermore, the theoretical results are extended to the field of image encryption, where the response system is utilized for decryption and expanding the keyspace. •Inertial memristive neural networks (IMNNs) employ two methods to manage switching behaviors: maximum absolute value and interval matrix.•Controllers based on these methods yield distinct theorems: one in algebraic form and the other in the form of linear matrix inequalities (LMIs).•Simulation shows Theorem 2 (interval matrix) yields faster synchronization convergence than Theorem 1 (maximum absolute value), and the findings are also applicable to image encryption.
This paper investigates the finite/fixed-time synchronization problem of delayed inertial memristive neural networks (DIMNNs) using interval matrix-based methods within a unified control framework. By employing set-valued mapping and differential inclusion theory, two distinct methods are applied to handle the switching behavior of memristor parameters: the maximum absolute value method and the interval matrix method. Based on these different approaches, two control strategies are proposed to select appropriate control parameters, enabling the system to achieve finite and fixed-time synchronization, respectively. Additionally, the resulting theoretical criteria differ based on the chosen control strategy, with one expressed in algebraic form and the other in the form of linear matrix inequalities (LMIs). Numerical simulations demonstrate that the interval matrix method outperforms the maximum absolute value method in terms of handling memristor parameter switching, achieving faster finite/fixed-time synchronization. Furthermore, the theoretical results are extended to the field of image encryption, where the response system is utilized for decryption and expanding the keyspace.This paper investigates the finite/fixed-time synchronization problem of delayed inertial memristive neural networks (DIMNNs) using interval matrix-based methods within a unified control framework. By employing set-valued mapping and differential inclusion theory, two distinct methods are applied to handle the switching behavior of memristor parameters: the maximum absolute value method and the interval matrix method. Based on these different approaches, two control strategies are proposed to select appropriate control parameters, enabling the system to achieve finite and fixed-time synchronization, respectively. Additionally, the resulting theoretical criteria differ based on the chosen control strategy, with one expressed in algebraic form and the other in the form of linear matrix inequalities (LMIs). Numerical simulations demonstrate that the interval matrix method outperforms the maximum absolute value method in terms of handling memristor parameter switching, achieving faster finite/fixed-time synchronization. Furthermore, the theoretical results are extended to the field of image encryption, where the response system is utilized for decryption and expanding the keyspace.
Author Chen, Guici
Gunasekaran, Nallappan
Zeng, Zhigang
Wei, Fei
Author_xml – sequence: 1
  givenname: Fei
  surname: Wei
  fullname: Wei, Fei
  email: weifei@mail.xhu.edu.cn
  organization: School of Science, Xihua University, Chengdu, 610039, China
– sequence: 2
  givenname: Guici
  orcidid: 0000-0002-3069-0829
  surname: Chen
  fullname: Chen, Guici
  email: chenguici@wust.edu.cn
  organization: Hubei Province Key Laboratory of System Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430065, China
– sequence: 3
  givenname: Zhigang
  orcidid: 0000-0003-4587-3588
  surname: Zeng
  fullname: Zeng, Zhigang
  email: zgzeng@hust.edu.cn
  organization: School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 4
  givenname: Nallappan
  orcidid: 0000-0003-0375-7917
  surname: Gunasekaran
  fullname: Gunasekaran, Nallappan
  email: gunasmaths@gmail.com
  organization: The Computational Intelligence Laboratory, Toyota Technological Institute, Nagoya 468-8511, Japan
BackLink https://cir.nii.ac.jp/crid/1874242817600679424$$DView record in CiNii
BookMark eNqFkTtvFDEUhS0UJDaBf0AxBQXNTK4fOw8KJBSRBCkSDdSW176j3GXGDrZnycKfx5uhooDGlq3vnKN77jk788EjY685NBx4e7lvPC4ecyNAyAb6Bvj2Gdvwvhtq0fXijG2gH2TdQg8v2HlKewBoeyU37Nc1ecp4OdIjujrTjFU6ensfg6efJlPwVRgr8hgzmamacY6UMh2wKpGx_JTYHyF-S9XuWLCM8XDCTI70WOh8H1w1hlgltEvEyoZ5XjzZJ-eX7PlopoSv_twX7Ov1xy9Xt_Xd55tPVx_uaqukyrUAu2uNG4V0EpXrzDCMI2xRCskHNE70bbvtrBC70Q2tNDtunOmUQjAgwQp5wd6uvg8xfF8wZT1TsjhNxmNYki4GoKAbeFtQtaI2hpQijvoh0mziUXPQp671Xq9d61PXGnpdui6yd3_JLOWnGXM0NP1P_GYVe6KiO51lc0oo0fOuLYvqhvIo2PsVw1LVgTDqZAm9RUcRbdYu0L9zfgMFd62l
CitedBy_id crossref_primary_10_3390_fractalfract8110631
crossref_primary_10_1109_TSMC_2024_3408469
crossref_primary_10_1109_TSMC_2024_3525038
crossref_primary_10_1016_j_neucom_2024_129069
crossref_primary_10_3390_math12071108
crossref_primary_10_1002_eng2_13092
crossref_primary_10_1016_j_ins_2024_121512
crossref_primary_10_3934_math_2024935
crossref_primary_10_1016_j_eswa_2023_122475
crossref_primary_10_1016_j_neucom_2024_128958
crossref_primary_10_1016_j_ins_2024_121702
crossref_primary_10_3390_math12070949
Cites_doi 10.1063/5.0079834
10.1109/TCT.1971.1083337
10.1016/j.jfranklin.2018.04.026
10.1038/nature06932
10.1007/s11071-018-4606-2
10.1109/TNNLS.2016.2561298
10.1016/j.neunet.2019.01.014
10.1109/TNNLS.2018.2852497
10.1007/s11571-017-9455-z
10.1007/BF00317936
10.1016/j.automatica.2017.06.008
10.1016/j.neucom.2019.03.040
10.1085/jgp.55.4.497
10.1155/2022/2006947
10.1016/j.knosys.2021.107395
10.1016/j.neunet.2017.02.001
10.1016/j.neunet.2017.10.003
10.1038/s41598-017-05480-0
10.1007/BF00197284
10.1103/PhysRevE.80.026206
10.1109/TCYB.2019.2953236
10.1007/s00500-022-07207-4
10.1109/TNNLS.2018.2874035
10.1016/j.neunet.2015.10.009
10.1038/s41563-019-0291-x
10.1038/s41586-021-04223-6
10.1109/TNNLS.2020.3006516
10.1016/j.neunet.2016.04.011
10.1109/TCYB.2019.2947859
10.1073/pnas.81.10.3088
10.1016/j.neucom.2017.05.075
10.1109/TCYB.2017.2676978
10.1109/TSMC.2018.2850157
10.1016/0167-2789(86)90152-1
10.1016/j.neucom.2019.07.036
10.1109/TAC.2011.2179869
10.1109/TVLSI.2019.2942267
10.1073/pnas.79.8.2554
10.1109/TCYB.2019.2957398
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID RYH
AAYXX
CITATION
7X8
DOI 10.1016/j.neunet.2023.08.015
DatabaseName CiNii Complete
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 182
ExternalDocumentID 10_1016_j_neunet_2023_08_015
S0893608023004343
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61473213
– fundername: Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology)
  grantid: Z202101; Z202102
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADRHT
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSH
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AAYWO
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
RYH
AAYXX
AGQPQ
CITATION
7X8
EFKBS
EFLBG
ID FETCH-LOGICAL-c434t-20cb6adf23d3e4d7a99ff05e32319ead286657c22bfd963ab1ada744e0a030c23
IEDL.DBID AIKHN
ISSN 0893-6080
1879-2782
IngestDate Fri Sep 05 04:37:45 EDT 2025
Tue Jul 01 03:32:15 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Thu Jun 26 22:17:27 EDT 2025
Sun Apr 06 06:52:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Image encryption
Finite/fixed-time synchronization
Unified control framework
Settling time functions
Delayed inertial memristive neural networks (DIMNNs)
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-20cb6adf23d3e4d7a99ff05e32319ead286657c22bfd963ab1ada744e0a030c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3069-0829
0000-0003-0375-7917
0000-0003-4587-3588
PQID 2860407916
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2860407916
crossref_primary_10_1016_j_neunet_2023_08_015
crossref_citationtrail_10_1016_j_neunet_2023_08_015
nii_cinii_1874242817600679424
elsevier_sciencedirect_doi_10_1016_j_neunet_2023_08_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-01
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Neural Networks
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Fan, Huang, Li, Xia, Chen (b8) 2019; 49
Yang, Cao, Liang (b42) 2017; 28
Sheng, Huang, Zeng, Li (b27) 2021; 51
Sakthivel, Pallavi, Ma, Vijayakumar (b25) 2022; 26
Shen, Wang, Cao, Lu, Song, Huang (b26) 2018; 30
Gong, Guo, Wen, Huang (b10) 2021; 51
Ji, Hu, Yu, Jiang (b15) 2018; 355
Hopfield (b11) 1982; 79
Wan, Cao, Wen, Yu (b31) 2016; 73
Ashmore, Attwell (b2) 1985; 226
Polyakov (b23) 2011; 57
Hu, Yu, Chen, Jiang, Huang (b13) 2017; 89
Lu, Liu, Chen (b18) 2016; 81
Parsegov, Polyakov, Shcherbakov (b21) 2012
Wei, Chen, Wang (b36) 2021; 230
Chua (b7) 1971; 18
Sakthivel, Ma, Mounika Devi, Manopriya, Vijayakumar, Huh (b24) 2022; 2022
Xiao, Zeng (b39) 2017; 47
Koch (b16) 1984; 50
Mauro, Conti, Dodge, Schor (b19) 1970; 55
Strukov, Snider, Stewart, Williams (b30) 2008; 453
Wang, Ge, Hu, Zhang (b32) 2019; 95
Xiao, Zeng, Wen, Wu, Wang (b40) 2019; 51
Wright, Onodera, Stein, Wang, Schachter, Hu (b37) 2022; 601
Huang, Jiang, Jian (b14) 2017; 266
Filippov (b9) 1964
Chen, Li, Peng, Yang, Mi, Wang (b6) 2019; 349
Hopfield (b12) 1984; 81
Sheng, Lewis, Zeng (b28) 2019; 30
Song, Wang, Holloway, Krstic (b29) 2017; 83
Xiao, Zeng, Wen, Wu, Wang (b41) 2021; 32
Babcock, Westervelt (b3) 1986; 23
Pedretti, Milo, Ambrogio, Carboni, Bianchi, Calderoni (b22) 2017; 7
Wang, Perc, Duan, Chen (b33) 2009; 80
Angelaki, Correia (b1) 1991; 65
Parastesh, Mehrabbeik, Rajagopal, Jafari, Perc (b20) 2022; 32
Li, Gao, Cao, Zhang (b17) 2019; 363
Wei, Cao (b34) 2019; 113
Zhang, Zeng, Hu (b43) 2018; 97
Chandrasekar, Radhika, Zhu (b5) 2022
Bai, An, Liu, Yi (b4) 2020; 28
Wei, Cao, Alsaedi (b35) 2018; 12
Xia, Yang (b38) 2019; 18
Yang (10.1016/j.neunet.2023.08.015_b42) 2017; 28
Gong (10.1016/j.neunet.2023.08.015_b10) 2021; 51
Wei (10.1016/j.neunet.2023.08.015_b34) 2019; 113
Parsegov (10.1016/j.neunet.2023.08.015_b21) 2012
Sheng (10.1016/j.neunet.2023.08.015_b27) 2021; 51
Chua (10.1016/j.neunet.2023.08.015_b7) 1971; 18
Wei (10.1016/j.neunet.2023.08.015_b35) 2018; 12
Angelaki (10.1016/j.neunet.2023.08.015_b1) 1991; 65
Lu (10.1016/j.neunet.2023.08.015_b18) 2016; 81
Ashmore (10.1016/j.neunet.2023.08.015_b2) 1985; 226
Xiao (10.1016/j.neunet.2023.08.015_b39) 2017; 47
Babcock (10.1016/j.neunet.2023.08.015_b3) 1986; 23
Li (10.1016/j.neunet.2023.08.015_b17) 2019; 363
Filippov (10.1016/j.neunet.2023.08.015_b9) 1964
Koch (10.1016/j.neunet.2023.08.015_b16) 1984; 50
Hopfield (10.1016/j.neunet.2023.08.015_b12) 1984; 81
Bai (10.1016/j.neunet.2023.08.015_b4) 2020; 28
Strukov (10.1016/j.neunet.2023.08.015_b30) 2008; 453
Song (10.1016/j.neunet.2023.08.015_b29) 2017; 83
Sakthivel (10.1016/j.neunet.2023.08.015_b24) 2022; 2022
Shen (10.1016/j.neunet.2023.08.015_b26) 2018; 30
Wei (10.1016/j.neunet.2023.08.015_b36) 2021; 230
Mauro (10.1016/j.neunet.2023.08.015_b19) 1970; 55
Chen (10.1016/j.neunet.2023.08.015_b6) 2019; 349
Chandrasekar (10.1016/j.neunet.2023.08.015_b5) 2022
Fan (10.1016/j.neunet.2023.08.015_b8) 2019; 49
Ji (10.1016/j.neunet.2023.08.015_b15) 2018; 355
Sakthivel (10.1016/j.neunet.2023.08.015_b25) 2022; 26
Wan (10.1016/j.neunet.2023.08.015_b31) 2016; 73
Huang (10.1016/j.neunet.2023.08.015_b14) 2017; 266
Wang (10.1016/j.neunet.2023.08.015_b32) 2019; 95
Zhang (10.1016/j.neunet.2023.08.015_b43) 2018; 97
Pedretti (10.1016/j.neunet.2023.08.015_b22) 2017; 7
Wang (10.1016/j.neunet.2023.08.015_b33) 2009; 80
Polyakov (10.1016/j.neunet.2023.08.015_b23) 2011; 57
Hu (10.1016/j.neunet.2023.08.015_b13) 2017; 89
Xiao (10.1016/j.neunet.2023.08.015_b40) 2019; 51
Xiao (10.1016/j.neunet.2023.08.015_b41) 2021; 32
Parastesh (10.1016/j.neunet.2023.08.015_b20) 2022; 32
Xia (10.1016/j.neunet.2023.08.015_b38) 2019; 18
Hopfield (10.1016/j.neunet.2023.08.015_b11) 1982; 79
Wright (10.1016/j.neunet.2023.08.015_b37) 2022; 601
Sheng (10.1016/j.neunet.2023.08.015_b28) 2019; 30
References_xml – volume: 51
  start-page: 3004
  year: 2019
  end-page: 3016
  ident: b40
  article-title: A unified framework design for finite-time and fixed-time synchronization of discontinuous neural networks
  publication-title: IEEE Transactions on Cybernetics
– volume: 73
  start-page: 86
  year: 2016
  end-page: 94
  ident: b31
  article-title: Robust fixed-time synchronization of delayed cohen–grossberg neural networks
  publication-title: Neural Networks
– volume: 23
  start-page: 464
  year: 1986
  end-page: 469
  ident: b3
  article-title: Stability and dynamics of simple electronic neural networks with added inertia
  publication-title: Physica D: Nonlinear Phenomena
– volume: 226
  start-page: 325
  year: 1985
  end-page: 344
  ident: b2
  article-title: Models for electrical tuning in hair cells
  publication-title: Proceedings of the Royal Society of London. Series B. Biological Sciences
– volume: 57
  start-page: 2106
  year: 2011
  end-page: 2110
  ident: b23
  article-title: Nonlinear feedback design for fixed-time stabilization of linear control systems
  publication-title: IEEE Transactions on Automatic Control
– volume: 83
  start-page: 243
  year: 2017
  end-page: 251
  ident: b29
  article-title: Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time
  publication-title: Automatica
– volume: 32
  year: 2022
  ident: b20
  article-title: Synchronization in hindmarsh–rose neurons subject to higher-order interactions
  publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science
– volume: 81
  start-page: 3088
  year: 1984
  end-page: -3092
  ident: b12
  article-title: Neurons with graded response have collective computational properties like those of two-state neurons
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 7732
  year: 2012
  end-page: 7737
  ident: b21
  article-title: Nonlinear fixed-time control protocol for uniform allocation of agents on a segment
  publication-title: 2012 IEEE 51st IEEE conference on decision and control
– volume: 266
  start-page: 527
  year: 2017
  end-page: 539
  ident: b14
  article-title: Finite-time synchronization of inertial memristive neural networks with time-varying delays via sampled-date control
  publication-title: Neurocomputing
– volume: 28
  start-page: 62
  year: 2020
  end-page: 75
  ident: b4
  article-title: A training-efficient hybrid-structured deep neural network with reconfigurable memristive synapses
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
– volume: 18
  start-page: 507
  year: 1971
  end-page: 519
  ident: b7
  article-title: Memristor-the missing circuit element
  publication-title: IEEE Transactions on Circuit Theory
– volume: 80
  year: 2009
  ident: b33
  article-title: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays
  publication-title: Physical Review E
– volume: 363
  start-page: 236
  year: 2019
  end-page: 245
  ident: b17
  article-title: Dissipativity and exponential state estimation for quaternion-valued memristive neural networks
  publication-title: Neurocomputing
– volume: 65
  start-page: 1
  year: 1991
  end-page: 10
  ident: b1
  article-title: Models of membrane resonance in pigeon semicircular canal type ii hair cells
  publication-title: Biological Cybernetics
– volume: 601
  start-page: 549
  year: 2022
  end-page: 555
  ident: b37
  article-title: Deep physical neural networks trained with backpropagation
  publication-title: Nature
– volume: 50
  start-page: 15
  year: 1984
  end-page: -33
  ident: b16
  article-title: Cable theory in neurons with active, linearized membranes
  publication-title: Biological Cybernetics
– volume: 79
  start-page: 2554
  year: 1982
  end-page: -2558
  ident: b11
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 30
  start-page: 739
  year: 2019
  end-page: 750
  ident: b28
  article-title: Exponential stabilization of fuzzy memristive neural networks with hybrid unbounded time-varying delays
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 51
  start-page: 579
  year: 2021
  end-page: 588
  ident: b27
  article-title: Exponential stabilization of inertial memristive neural networks with multiple time delays
  publication-title: IEEE Transactions on Cybernetics
– volume: 2022
  year: 2022
  ident: b24
  article-title: Nonuniform sampled-data control for synchronization of semi-markovian jump stochastic complex dynamical networks with time-varying delays
  publication-title: Complexity
– volume: 349
  start-page: 290
  year: 2019
  end-page: 300
  ident: b6
  article-title: A new fixed-time stability theorem and its application to the synchronization control of memristive neural networks
  publication-title: Neurocomputing
– volume: 28
  start-page: 1878
  year: 2017
  end-page: 1888
  ident: b42
  article-title: Exponential synchronization of memristive neural networks with delays: Interval matrix method
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 7
  year: 2017
  ident: b22
  article-title: Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity
  publication-title: Scientific Reports
– volume: 55
  start-page: 497
  year: 1970
  end-page: -523
  ident: b19
  article-title: Subthreshold behavior and phenomenological impedance of the squid giant axon
  publication-title: The Journal of General Physiology
– volume: 47
  start-page: 2984
  year: 2017
  end-page: 2994
  ident: b39
  article-title: Scale-limited lagrange stability and finite-time synchronization for memristive recurrent neural networks on time scales
  publication-title: IEEE Transactions on Cybernetics
– volume: 32
  start-page: 2535
  year: 2021
  end-page: 2546
  ident: b41
  article-title: Finite-/fixed-time synchronization of delayed coupled discontinuous neural networks with unified control schemes
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 453
  start-page: 80
  year: 2008
  end-page: 83
  ident: b30
  article-title: The missing memristor found
  publication-title: Nature
– volume: 89
  start-page: 74
  year: 2017
  end-page: 83
  ident: b13
  article-title: Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks
  publication-title: Neural Networks
– volume: 230
  year: 2021
  ident: b36
  article-title: Finite-time stabilization of memristor-based inertial neural networks with time-varying delays combined with interval matrix method
  publication-title: Knowledge-Based Systems
– volume: 95
  start-page: 943
  year: 2019
  end-page: 955
  ident: b32
  article-title: Global stability and stabilization for inertial memristive neural networks with unbounded distributed delays
  publication-title: Nonlinear Dynamics
– volume: 355
  start-page: 4665
  year: 2018
  end-page: 4685
  ident: b15
  article-title: Finite-time and fixed-time synchronization of discontinuous complex networks: A unified control framework design
  publication-title: Journal of the Franklin Institute
– volume: 30
  start-page: 1841
  year: 2018
  end-page: 1853
  ident: b26
  article-title: Nonfragile dissipative synchronization for markovian memristive neural networks: A gain-scheduled control scheme
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 1
  year: 2022
  end-page: 19
  ident: b5
  article-title: State estimation for genetic regulatory networks with two delay components by using second-order reciprocally convex approach
  publication-title: Neural Processing Letters
– year: 1964
  ident: b9
  article-title: Differential equations with discontinuous right-hand side
– volume: 81
  start-page: 11
  year: 2016
  end-page: 15
  ident: b18
  article-title: A note on finite-time and fixed-time stability
  publication-title: Neural Networks
– volume: 49
  start-page: 2254
  year: 2019
  end-page: 2265
  ident: b8
  article-title: Aperiodically intermittent control for quasi-synchronization of delayed memristive neural networks: An interval matrix and matrix measure combined method
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 51
  start-page: 2944
  year: 2021
  end-page: 2955
  ident: b10
  article-title: Finite-time and fixed-time synchronization of coupled memristive neural networks with time delay
  publication-title: IEEE Transactions on Cybernetics
– volume: 113
  start-page: 1
  year: 2019
  end-page: 10
  ident: b34
  article-title: Fixed-time synchronization of quaternion-valued memristive neural networks with time delays
  publication-title: Neural Networks
– volume: 97
  start-page: 183
  year: 2018
  end-page: 191
  ident: b43
  article-title: New results on global exponential dissipativity analysis of memristive inertial neural networks with distributed time-varying delays
  publication-title: Neural Networks
– volume: 26
  start-page: 8371
  year: 2022
  end-page: 8386
  ident: b25
  article-title: Finite-time dissipative synchronization of discrete-time semi-markovian jump complex dynamical networks with actuator faults
  publication-title: Soft Computing
– volume: 12
  year: 2018
  ident: b35
  article-title: Finite-time and fixed-time synchronization analysis of inertial memristive neural networks with time-varying delays
  publication-title: Cognitive Neurodynamics
– volume: 18
  start-page: 309
  year: 2019
  end-page: 323
  ident: b38
  article-title: Memristive crossbar arrays for brain-inspired computing
  publication-title: Nature Materials
– volume: 32
  year: 2022
  ident: 10.1016/j.neunet.2023.08.015_b20
  article-title: Synchronization in hindmarsh–rose neurons subject to higher-order interactions
  publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science
  doi: 10.1063/5.0079834
– volume: 18
  start-page: 507
  year: 1971
  ident: 10.1016/j.neunet.2023.08.015_b7
  article-title: Memristor-the missing circuit element
  publication-title: IEEE Transactions on Circuit Theory
  doi: 10.1109/TCT.1971.1083337
– volume: 355
  start-page: 4665
  year: 2018
  ident: 10.1016/j.neunet.2023.08.015_b15
  article-title: Finite-time and fixed-time synchronization of discontinuous complex networks: A unified control framework design
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2018.04.026
– volume: 453
  start-page: 80
  year: 2008
  ident: 10.1016/j.neunet.2023.08.015_b30
  article-title: The missing memristor found
  publication-title: Nature
  doi: 10.1038/nature06932
– volume: 95
  start-page: 943
  year: 2019
  ident: 10.1016/j.neunet.2023.08.015_b32
  article-title: Global stability and stabilization for inertial memristive neural networks with unbounded distributed delays
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-018-4606-2
– volume: 28
  start-page: 1878
  year: 2017
  ident: 10.1016/j.neunet.2023.08.015_b42
  article-title: Exponential synchronization of memristive neural networks with delays: Interval matrix method
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2561298
– volume: 113
  start-page: 1
  year: 2019
  ident: 10.1016/j.neunet.2023.08.015_b34
  article-title: Fixed-time synchronization of quaternion-valued memristive neural networks with time delays
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.01.014
– volume: 30
  start-page: 739
  year: 2019
  ident: 10.1016/j.neunet.2023.08.015_b28
  article-title: Exponential stabilization of fuzzy memristive neural networks with hybrid unbounded time-varying delays
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2852497
– volume: 12
  year: 2018
  ident: 10.1016/j.neunet.2023.08.015_b35
  article-title: Finite-time and fixed-time synchronization analysis of inertial memristive neural networks with time-varying delays
  publication-title: Cognitive Neurodynamics
  doi: 10.1007/s11571-017-9455-z
– volume: 50
  start-page: 15
  year: 1984
  ident: 10.1016/j.neunet.2023.08.015_b16
  article-title: Cable theory in neurons with active, linearized membranes
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00317936
– volume: 83
  start-page: 243
  year: 2017
  ident: 10.1016/j.neunet.2023.08.015_b29
  article-title: Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.06.008
– volume: 349
  start-page: 290
  year: 2019
  ident: 10.1016/j.neunet.2023.08.015_b6
  article-title: A new fixed-time stability theorem and its application to the synchronization control of memristive neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.040
– volume: 55
  start-page: 497
  year: 1970
  ident: 10.1016/j.neunet.2023.08.015_b19
  article-title: Subthreshold behavior and phenomenological impedance of the squid giant axon
  publication-title: The Journal of General Physiology
  doi: 10.1085/jgp.55.4.497
– volume: 2022
  year: 2022
  ident: 10.1016/j.neunet.2023.08.015_b24
  article-title: Nonuniform sampled-data control for synchronization of semi-markovian jump stochastic complex dynamical networks with time-varying delays
  publication-title: Complexity
  doi: 10.1155/2022/2006947
– start-page: 1
  year: 2022
  ident: 10.1016/j.neunet.2023.08.015_b5
  article-title: State estimation for genetic regulatory networks with two delay components by using second-order reciprocally convex approach
  publication-title: Neural Processing Letters
– volume: 230
  year: 2021
  ident: 10.1016/j.neunet.2023.08.015_b36
  article-title: Finite-time stabilization of memristor-based inertial neural networks with time-varying delays combined with interval matrix method
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107395
– volume: 89
  start-page: 74
  year: 2017
  ident: 10.1016/j.neunet.2023.08.015_b13
  article-title: Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2017.02.001
– volume: 97
  start-page: 183
  year: 2018
  ident: 10.1016/j.neunet.2023.08.015_b43
  article-title: New results on global exponential dissipativity analysis of memristive inertial neural networks with distributed time-varying delays
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2017.10.003
– volume: 7
  year: 2017
  ident: 10.1016/j.neunet.2023.08.015_b22
  article-title: Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-05480-0
– volume: 65
  start-page: 1
  year: 1991
  ident: 10.1016/j.neunet.2023.08.015_b1
  article-title: Models of membrane resonance in pigeon semicircular canal type ii hair cells
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00197284
– volume: 80
  year: 2009
  ident: 10.1016/j.neunet.2023.08.015_b33
  article-title: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.80.026206
– volume: 51
  start-page: 2944
  year: 2021
  ident: 10.1016/j.neunet.2023.08.015_b10
  article-title: Finite-time and fixed-time synchronization of coupled memristive neural networks with time delay
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2953236
– volume: 26
  start-page: 8371
  year: 2022
  ident: 10.1016/j.neunet.2023.08.015_b25
  article-title: Finite-time dissipative synchronization of discrete-time semi-markovian jump complex dynamical networks with actuator faults
  publication-title: Soft Computing
  doi: 10.1007/s00500-022-07207-4
– volume: 30
  start-page: 1841
  year: 2018
  ident: 10.1016/j.neunet.2023.08.015_b26
  article-title: Nonfragile dissipative synchronization for markovian memristive neural networks: A gain-scheduled control scheme
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2874035
– volume: 73
  start-page: 86
  year: 2016
  ident: 10.1016/j.neunet.2023.08.015_b31
  article-title: Robust fixed-time synchronization of delayed cohen–grossberg neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2015.10.009
– volume: 18
  start-page: 309
  year: 2019
  ident: 10.1016/j.neunet.2023.08.015_b38
  article-title: Memristive crossbar arrays for brain-inspired computing
  publication-title: Nature Materials
  doi: 10.1038/s41563-019-0291-x
– volume: 601
  start-page: 549
  year: 2022
  ident: 10.1016/j.neunet.2023.08.015_b37
  article-title: Deep physical neural networks trained with backpropagation
  publication-title: Nature
  doi: 10.1038/s41586-021-04223-6
– volume: 32
  start-page: 2535
  year: 2021
  ident: 10.1016/j.neunet.2023.08.015_b41
  article-title: Finite-/fixed-time synchronization of delayed coupled discontinuous neural networks with unified control schemes
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3006516
– year: 1964
  ident: 10.1016/j.neunet.2023.08.015_b9
– volume: 226
  start-page: 325
  year: 1985
  ident: 10.1016/j.neunet.2023.08.015_b2
  article-title: Models for electrical tuning in hair cells
  publication-title: Proceedings of the Royal Society of London. Series B. Biological Sciences
– volume: 81
  start-page: 11
  year: 2016
  ident: 10.1016/j.neunet.2023.08.015_b18
  article-title: A note on finite-time and fixed-time stability
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2016.04.011
– volume: 51
  start-page: 579
  year: 2021
  ident: 10.1016/j.neunet.2023.08.015_b27
  article-title: Exponential stabilization of inertial memristive neural networks with multiple time delays
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2947859
– volume: 81
  start-page: 3088
  year: 1984
  ident: 10.1016/j.neunet.2023.08.015_b12
  article-title: Neurons with graded response have collective computational properties like those of two-state neurons
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.81.10.3088
– volume: 266
  start-page: 527
  year: 2017
  ident: 10.1016/j.neunet.2023.08.015_b14
  article-title: Finite-time synchronization of inertial memristive neural networks with time-varying delays via sampled-date control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.075
– volume: 47
  start-page: 2984
  year: 2017
  ident: 10.1016/j.neunet.2023.08.015_b39
  article-title: Scale-limited lagrange stability and finite-time synchronization for memristive recurrent neural networks on time scales
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2676978
– volume: 49
  start-page: 2254
  year: 2019
  ident: 10.1016/j.neunet.2023.08.015_b8
  article-title: Aperiodically intermittent control for quasi-synchronization of delayed memristive neural networks: An interval matrix and matrix measure combined method
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2018.2850157
– volume: 23
  start-page: 464
  year: 1986
  ident: 10.1016/j.neunet.2023.08.015_b3
  article-title: Stability and dynamics of simple electronic neural networks with added inertia
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(86)90152-1
– volume: 363
  start-page: 236
  year: 2019
  ident: 10.1016/j.neunet.2023.08.015_b17
  article-title: Dissipativity and exponential state estimation for quaternion-valued memristive neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.036
– volume: 57
  start-page: 2106
  year: 2011
  ident: 10.1016/j.neunet.2023.08.015_b23
  article-title: Nonlinear feedback design for fixed-time stabilization of linear control systems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2011.2179869
– volume: 28
  start-page: 62
  year: 2020
  ident: 10.1016/j.neunet.2023.08.015_b4
  article-title: A training-efficient hybrid-structured deep neural network with reconfigurable memristive synapses
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  doi: 10.1109/TVLSI.2019.2942267
– volume: 79
  start-page: 2554
  year: 1982
  ident: 10.1016/j.neunet.2023.08.015_b11
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.79.8.2554
– volume: 51
  start-page: 3004
  year: 2019
  ident: 10.1016/j.neunet.2023.08.015_b40
  article-title: A unified framework design for finite-time and fixed-time synchronization of discontinuous neural networks
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2957398
– start-page: 7732
  year: 2012
  ident: 10.1016/j.neunet.2023.08.015_b21
  article-title: Nonlinear fixed-time control protocol for uniform allocation of agents on a segment
SSID ssj0006843
ssib042110500
ssib000975146
ssib001209980
ssib020738578
Score 2.5004027
Snippet This paper investigates the finite/fixed-time synchronization problem of delayed inertial memristive neural networks (DIMNNs) using interval matrix-based...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 168
SubjectTerms Algorithms
Communication
Delayed inertial memristive neural networks (DIMNNs)
Finite/fixed-time synchronization
Image encryption
Neural Networks, Computer
Settling time functions
Time Factors
Unified control framework
Title Finite/fixed-time synchronization of inertial memristive neural networks by interval matrix method for secure communication
URI https://dx.doi.org/10.1016/j.neunet.2023.08.015
https://cir.nii.ac.jp/crid/1874242817600679424
https://www.proquest.com/docview/2860407916
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC6c8eJlfezKji8ieO2d6aSfRxGHUdGLCt5Ckk6gF82IMyOK4G-3qtMtLgrCXho6JHST1ONLUlUfwAGd5tuUF1Ghc9ygFNpEZcltpJ1O0ip3wjRch-cX2eQ6Ob1Jb5bgqMuFobDK1vYHm95Y67Zl2M7m8L6uh5cjdLUZpYpS0SiRiB4sc1FmaR-WD0_OJhfvBjkrQvAc9o9oQJdB14R5ebvwloIquWhqeRI_7tcequfr-pPFbtzQeA1-tPiRHYZfXIcl6zdgteNmYK2q_oSXcU1ocujqJ1tFxCDPZs_eNKVwQ-YlmzpGmX-o4rfszt412v5oGVW4xBYf4sNnTD-zugmMpG5U0P-JBdpphniXzei83jLzMc_kF1yPj6-OJlFLtBAZnLg5aorRmaocF5WwSZWrsnRulFqB4K9EUeNUFC83nGtXocIqHatK5UliRwpthOFiE_p-6u1vYIjIMkJVuJEziStKFVc6wy1VikhOuVQNQHSTK01bhZzIMG5lF272V4YlkbQkkjgy43QA0fuo-1CF45v-ebdu8h9pkugovhm5i8uMv0ZP4itECFPEdHuZoeXiyQD2OwGQqIh0u6K8nS5mEicJDWKOcHvrv7--DSv0FoIFd6A_f1jYXQQ9c70HvT-v8V4r2m8BHgHO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFH-oPbSXar9w_WhT6HW6u0nm6yjism3VSxW8hSSTwBTNSndXFMG_3feSmWqxIPQyh0zCDEneyy_J770fwBc6zXc5r7LKlLhBqYzN6pq7zHgj86b0wkatw6PjYnoqv5_lZyuw38fCEK2y8_3Jp0dv3ZUMu94cXrbt8OcIl9qCQkUpaZSQYhVeyFyUxOv7evfA8yiqRJ3D2hlV7-PnIskruGVwRKnkImbyJHXcf69Pq6Ftn_jruAhNNuB1hx7ZXvrBN7DiwltY75UZWGeo7-B20hKWHPr22jUZ6cez-U2wMRFuirtkM88o7g8N_JxduIto61eOUX5LLAmJHT5n5oa1kRZJ1Sid_zVLotMM0S6b02m9Y_ZxlMl7OJ0cnOxPs05mIbPYbQu0E2sK3XguGuFkU-q69n6UO4HQr8aJxiklXmk5N75Bc9VmrBtdSulGGj2E5eIDrIVZcJvAEI8VhKlwG2elr2o9bkyBG6occZz2uR6A6DtX2S4HOUlhnKuebPZLpSFRNCSKFDLH-QCyP60uUw6OZ-qX_bipv-aSwmXimZa7OMz4a_QktUIEMNWY7i4L9FtcDuBzPwEUmiHdrejgZsu5wk5Cd1gi2N76769_gpfTk6NDdfjt-Mc2vKI3iTa4A2uL30u3i_BnYT7G6X0PMuYCmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite%2Ffixed-time+synchronization+of+inertial+memristive+neural+networks+by+interval+matrix+method+for+secure+communication&rft.jtitle=Neural+networks&rft.au=Wei%2C+Fei&rft.au=Chen%2C+Guici&rft.au=Zeng%2C+Zhigang&rft.au=Gunasekaran%2C+Nallappan&rft.date=2023-10-01&rft.issn=0893-6080&rft.volume=167&rft.spage=168&rft.epage=182&rft_id=info:doi/10.1016%2Fj.neunet.2023.08.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2023_08_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon