Multi-Class Skin Cancer Classification Using Vision Transformer Networks and Convolutional Neural Network-Based Pre-Trained Models
Skin cancer, particularly melanoma, has been recognized as one of the most lethal forms of cancer. Detecting and diagnosing skin lesions accurately can be challenging due to the striking similarities between the various types of skin lesions, such as melanoma and nevi, especially when examining the...
Saved in:
Published in | Information (Basel) Vol. 14; no. 7; p. 415 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Skin cancer, particularly melanoma, has been recognized as one of the most lethal forms of cancer. Detecting and diagnosing skin lesions accurately can be challenging due to the striking similarities between the various types of skin lesions, such as melanoma and nevi, especially when examining the color images of the skin. However, early diagnosis plays a crucial role in saving lives and reducing the burden on medical resources. Consequently, the development of a robust autonomous system for skin cancer classification becomes imperative. Convolutional neural networks (CNNs) have been widely employed over the past decade to automate cancer diagnosis. Nonetheless, the emergence of the Vision Transformer (ViT) has recently gained a considerable level of popularity in the field and has emerged as a competitive alternative to CNNs. In light of this, the present study proposed an alternative method based on the off-the-shelf ViT for identifying various skin cancer diseases. To evaluate its performance, the proposed method was compared with 11 CNN-based transfer learning methods that have been known to outperform other deep learning techniques that are currently in use. Furthermore, this study addresses the issue of class imbalance within the dataset, a common challenge in skin cancer classification. In addressing this concern, the proposed study leverages the vision transformer and the CNN-based transfer learning models to classify seven distinct types of skin cancers. Through our investigation, we have found that the employment of pre-trained vision transformers achieved an impressive accuracy of 92.14%, surpassing CNN-based transfer learning models across several evaluation metrics for skin cancer diagnosis. |
---|---|
AbstractList | Skin cancer, particularly melanoma, has been recognized as one of the most lethal forms of cancer. Detecting and diagnosing skin lesions accurately can be challenging due to the striking similarities between the various types of skin lesions, such as melanoma and nevi, especially when examining the color images of the skin. However, early diagnosis plays a crucial role in saving lives and reducing the burden on medical resources. Consequently, the development of a robust autonomous system for skin cancer classification becomes imperative. Convolutional neural networks (CNNs) have been widely employed over the past decade to automate cancer diagnosis. Nonetheless, the emergence of the Vision Transformer (ViT) has recently gained a considerable level of popularity in the field and has emerged as a competitive alternative to CNNs. In light of this, the present study proposed an alternative method based on the off-the-shelf ViT for identifying various skin cancer diseases. To evaluate its performance, the proposed method was compared with 11 CNN-based transfer learning methods that have been known to outperform other deep learning techniques that are currently in use. Furthermore, this study addresses the issue of class imbalance within the dataset, a common challenge in skin cancer classification. In addressing this concern, the proposed study leverages the vision transformer and the CNN-based transfer learning models to classify seven distinct types of skin cancers. Through our investigation, we have found that the employment of pre-trained vision transformers achieved an impressive accuracy of 92.14%, surpassing CNN-based transfer learning models across several evaluation metrics for skin cancer diagnosis. |
Audience | Academic |
Author | Arshed, Muhammad Asad Ibrahim, Muhammad Shafi, Muhammad Tahir, Muhammad Ahmed, Saeed Mumtaz, Shahzad |
Author_xml | – sequence: 1 givenname: Muhammad Asad surname: Arshed fullname: Arshed, Muhammad Asad – sequence: 2 givenname: Shahzad orcidid: 0000-0003-2606-2405 surname: Mumtaz fullname: Mumtaz, Shahzad – sequence: 3 givenname: Muhammad surname: Ibrahim fullname: Ibrahim, Muhammad – sequence: 4 givenname: Saeed orcidid: 0000-0001-6910-7613 surname: Ahmed fullname: Ahmed, Saeed – sequence: 5 givenname: Muhammad surname: Tahir fullname: Tahir, Muhammad – sequence: 6 givenname: Muhammad surname: Shafi fullname: Shafi, Muhammad |
BookMark | eNptkstu1TAQhiNUJErpjgeIxJYUX8aXLEvEpVILSLRsLR9fjnyaYxc7AbHlyXFyEBRUezHj8ff_1mj8tDmKKbqmeY7RGaU9ehWiTxiQQIDZo-aYICE7ArI_upc_aU5L2aG6hJAg8XHz82oep9ANoy6l_XwbYjvoaFxu10rwwegppNjelBC37ZdQlsN11rH4lPeV--Cm7ynfllZH2w4pfkvjvCj0WK_mvIaV6F7r4mz7Kbuu6kOs-VWybizPmsdej8Wd_o4nzc3bN9fD--7y47uL4fyyM0Bh6jAQ20tHrDe-pxsERCAsLOktRhwYeCylZNT3oCXCYDHd8J4zJ2GDJWeenjQXB1-b9E7d5bDX-YdKOqi1kPJW6TwFMzpFqcaWawuSA0iwPXOcei88eE-kodXrxcHrLqevsyuT2qU516aLIhIo4kwQ_pfa6mq6DGjK2uxDMepcsB4zSsRCnT1A1W3dPpg6ZB9q_R_By4PA5FRKdv5PMxip5S-o-3-h4uQ_3IRpnWp9J4wPi34B57-4Bw |
CitedBy_id | crossref_primary_10_3390_sym16030366 crossref_primary_10_1038_s41598_024_80087_w crossref_primary_10_1016_j_measurement_2025_116646 crossref_primary_10_1007_s11831_024_10121_7 crossref_primary_10_1016_j_compbiomed_2024_108742 crossref_primary_10_3390_diagnostics15010099 crossref_primary_10_1007_s13198_024_02521_6 crossref_primary_10_1016_j_compbiomed_2025_109916 crossref_primary_10_1007_s11517_023_02969_x crossref_primary_10_1007_s11042_024_18973_8 crossref_primary_10_3233_IDT_240336 crossref_primary_10_1038_s41598_024_81961_3 crossref_primary_10_1016_j_patcog_2024_111182 crossref_primary_10_1016_j_eswa_2024_124113 crossref_primary_10_3390_diagnostics15050541 crossref_primary_10_1109_ACCESS_2024_3516535 crossref_primary_10_3390_diagnostics14060636 crossref_primary_10_3390_jimaging10110278 crossref_primary_10_1002_ima_23214 crossref_primary_10_1007_s00521_024_10225_y crossref_primary_10_1016_j_asoc_2024_112013 crossref_primary_10_32628_CSEIT24103124 crossref_primary_10_3390_diagnostics14131359 crossref_primary_10_1016_j_eswa_2023_122778 crossref_primary_10_1007_s13369_024_09900_y crossref_primary_10_17798_bitlisfen_1505636 crossref_primary_10_1016_j_eswa_2024_124056 crossref_primary_10_1111_srt_70040 |
Cites_doi | 10.1109/ISRITI48646.2019.9034624 10.3390/jcm12031134 10.1016/j.neucom.2021.08.096 10.1016/j.neuri.2021.100034 10.1093/annonc/mdy166 10.3390/diagnostics12102472 10.1109/CIBEC.2018.8641762 10.1109/CVPR.2016.90 10.1016/j.compbiomed.2020.104065 10.1038/nature21056 10.1007/s11063-022-10927-1 10.3390/s18020556 10.1007/s11042-018-5714-1 10.1109/JBHI.2018.2824327 10.1016/j.compeleceng.2013.11.024 10.1109/ICCIT51783.2020.9392716 10.3390/s21238142 10.1109/ICAIPR.2016.7585217 10.1016/j.neucom.2015.09.116 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/info14070415 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2078-2489 |
ExternalDocumentID | oai_doaj_org_article_33a1d6ad4864484d95e63ff7f4ff28c3 A759153276 10_3390_info14070415 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | .4I 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 MK~ ML~ MODMG M~E OK1 P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC XH6 PMFND 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c434t-142d98e2dfcf93b0427017d29d106454f188853f94a8014d13b6965e84b1865f3 |
IEDL.DBID | BENPR |
ISSN | 2078-2489 |
IngestDate | Wed Aug 27 01:31:18 EDT 2025 Sat Jul 26 00:42:55 EDT 2025 Tue Jun 17 20:41:50 EDT 2025 Tue Jun 10 21:34:21 EDT 2025 Tue Jul 01 04:24:49 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-142d98e2dfcf93b0427017d29d106454f188853f94a8014d13b6965e84b1865f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6910-7613 0000-0003-2606-2405 |
OpenAccessLink | https://www.proquest.com/docview/2843065726?pq-origsite=%requestingapplication% |
PQID | 2843065726 |
PQPubID | 2032384 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_33a1d6ad4864484d95e63ff7f4ff28c3 proquest_journals_2843065726 gale_infotracmisc_A759153276 gale_infotracacademiconefile_A759153276 crossref_primary_10_3390_info14070415 crossref_citationtrail_10_3390_info14070415 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Information (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Guo (ref_6) 2016; 187 Long (ref_26) 2015; 37 ref_35 Esteva (ref_11) 2017; 542 ref_33 ref_10 ref_31 Li (ref_8) 2021; 464 ref_19 ref_18 ref_17 ref_16 Chandrashekar (ref_13) 2014; 40 ref_15 Haenssle (ref_14) 2018; 29 Dorj (ref_30) 2018; 77 Ali (ref_34) 2022; 2 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 Ali (ref_32) 2021; 5 Kawahara (ref_12) 2019; 23 ref_1 Pomponiu (ref_5) 2016; 2016 ref_3 ref_2 ref_29 ref_28 ref_27 ref_4 Goyal (ref_9) 2020; 127 ref_7 |
References_xml | – ident: ref_28 – ident: ref_31 doi: 10.1109/ISRITI48646.2019.9034624 – ident: ref_35 doi: 10.3390/jcm12031134 – ident: ref_3 – volume: 464 start-page: 364 year: 2021 ident: ref_8 article-title: Skin disease diagnosis with deep learning: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.08.096 – ident: ref_24 – ident: ref_1 – ident: ref_18 – ident: ref_23 – volume: 2 start-page: 100034 year: 2022 ident: ref_34 article-title: Multiclass skin cancer classification using EfficientNets—A first step towards preventing skin cancer publication-title: Neurosci. Inform. doi: 10.1016/j.neuri.2021.100034 – ident: ref_21 – volume: 29 start-page: 1836 year: 2018 ident: ref_14 article-title: Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists publication-title: Ann. Oncol. doi: 10.1093/annonc/mdy166 – volume: 5 start-page: 100036 year: 2021 ident: ref_32 article-title: An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models publication-title: Mach. Learn. Appl. – volume: 2016 start-page: 2623 year: 2016 ident: ref_5 article-title: Deepmole: Deep neural networks for skin mole lesion classification publication-title: Proc. Int. Conf. Image Process. – ident: ref_15 doi: 10.3390/diagnostics12102472 – ident: ref_25 – ident: ref_4 – ident: ref_27 – ident: ref_29 doi: 10.1109/CIBEC.2018.8641762 – ident: ref_2 – ident: ref_20 doi: 10.1109/CVPR.2016.90 – volume: 37 start-page: 97 year: 2015 ident: ref_26 article-title: Learning Transferable Features with Deep Adaptation Networks publication-title: PMLR – volume: 127 start-page: 104065 year: 2020 ident: ref_9 article-title: Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104065 – volume: 542 start-page: 115 year: 2017 ident: ref_11 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: ref_17 doi: 10.1007/s11063-022-10927-1 – ident: ref_7 doi: 10.3390/s18020556 – volume: 77 start-page: 9909 year: 2018 ident: ref_30 article-title: The skin cancer classification using deep convolutional neural network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-5714-1 – volume: 23 start-page: 538 year: 2019 ident: ref_12 article-title: Seven-Point Checklist and Skin Lesion Classification Using Multitask Multimodal Neural Nets publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2824327 – volume: 40 start-page: 16 year: 2014 ident: ref_13 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – ident: ref_16 doi: 10.1109/ICCIT51783.2020.9392716 – ident: ref_19 – ident: ref_33 doi: 10.3390/s21238142 – ident: ref_10 doi: 10.1109/ICAIPR.2016.7585217 – ident: ref_22 – volume: 187 start-page: 27 year: 2016 ident: ref_6 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 |
SSID | ssj0000778481 |
Score | 2.4031305 |
Snippet | Skin cancer, particularly melanoma, has been recognized as one of the most lethal forms of cancer. Detecting and diagnosing skin lesions accurately can be... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 415 |
SubjectTerms | Accuracy Algorithms Analysis Artificial neural networks Cancer Classification Color imagery Datasets Deep learning Diagnosis Disease fine tuning Health care industry Lesions Machine learning Medical research Melanoma multi-class Neural networks Ozone Performance evaluation pretrained models Skin cancer skin cancer diagnosis transfer learning vision transformer |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTwIxEG2MJz0YPyOKpgeNB9OQbbvt9ghEQkwkHsBw22y37YksBtAf4C93prsQOBAvntgsL0vpTDudzcx7hDxgu6PlOjBlpGNS64IZLxwzQScGe9ELi-873kZqOJGv03S6JfWFNWE1PXA9cR0hisSpwskMMwnpTOqVCEEHGQLPysjzCTFvK5mKe7DWyBNfV7oLyOs7aC9IJjS2pO_EoEjVv29DjlFmcEpOmuMh7dbDOiMHvjonx1ukgRfkJ_bMsqhmSVE7i_bRcgsa72DlT5xsGosB6EfsHafj9fkUcKO68ntJi8rR_rz6brwPfhepOuJHRLAehDhH3xeejVFJAq5ROm22vCSTwcu4P2SNkgIrpZArlkjuTOa5C2UwwqK-BqxEx41LkK9OhgQS4VQEIwtkk3GJsMqo1GfSJplKg7gih9W88teEKoB5ACc2DRJ2gMz7YLJCeMFLKyxvkef13OZlQzOOahezHNINtES-bYkWedygP2t6jT24Hpppg0FS7HgDXCVvXCX_y1Va5AmNHB8MQyqLpgMB_hiSYOVdnRoIAFyrFmnvIGHJlbtfr90kb5b8Moc4D-lXqrm6-Y_B3pIjVLavK4Pb5HC1-PJ3cP5Z2fvo6r8XdQMI priority: 102 providerName: Directory of Open Access Journals |
Title | Multi-Class Skin Cancer Classification Using Vision Transformer Networks and Convolutional Neural Network-Based Pre-Trained Models |
URI | https://www.proquest.com/docview/2843065726 https://doaj.org/article/33a1d6ad4864484d95e63ff7f4ff28c3 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCbW5LIdhj2xrG2gw4YdBqGzJetxGpKsWTGsQbGlQ2-GbUm9FE6XZP0B_eUlZSVtDt3JhkU_KVEiTX4fwAcqd6xzHbiy0nGpdcWtF47boDNLtehVTfGO05k6OZc_LoqLFHBbpbTKjU2MhtotGoqRH6EZJZJznauv1385sUbR39VEobEHfTTBxvSgPz6enf3aRlm-aE148V3Gu0D__oj0hk6FptL0nbkoQvY_ZpjjbDN9Ac_TMpGNOr2-hCe-fQXPHoAHvobbWDvLI6slIw4tNiENLlk8QhlA8aOzmBTA_sQacjbfrFNRbtZlgK9Y1To2WbQ3qRfifQmyI26iBB_jVOfY2dLzOTFK4D5RqF2t3sD59Hg-OeGJUYE3Usg1z2TurPG5C02woiaeDRyRLrcuI9w6GTJ0iAsRrKwIVcZlolZWFd7IOjOqCOIt9NpF698BUyjmUTiriyDREhjvgzWV8CJvalHnA_i8-bZlk-DGifXiqkS3gzRRPtTEAD5upa87mI1H5Makpq0MgWPHA4vlZZnGGp5VZU5VThpyPqWzhVciBB1kCLlpxAA-kZLjhfGRmipVIuCLERhWOdKFxYkg12oABzuSOPSa3eZNNynT0F-V9x31_f-b9-Epcdd3ub8H0Fsv__lDXOGs6yHsmen3IfRH305__h6mTj2M8YI7Kbr_EA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nc9MwEN0p5QAcGD6ngQI60OHAaFpLsmQdGKYNhJS2GQ4p05uxLIlLxylJgOHKD-I3sivboTmUW0_xWBs79q52tcruewAvqd3RCRO5tspzZUzFbZCe22gyS73olaP9jpOJHp-qj2f52Qb86XthqKyy94nJUftZTXvku-hGieTcCP324hsn1ij6d7Wn0GjN4ij8-okp2-LN4TvU744Qo_fT4Zh3rAK8VlIteaaEt0UQPtbRSkdcE2iVXlifEXabihkmhbmMVlWErOIz6bTVeSiUywqdR4nXvQE3lcRITp3pow-rPZ09Ywidvq2vx_G9XbISTGEMNcKvRb5EEHBVGEixbXQP7naLUrbfWtF92AjNA7hzCarwIfxOnbo8cWgyYuxiQ7KXOUtnqN4oqZilEgT2OXWss2m_Kka5SVtvvmBV49lw1vzobB7vSwAh6SNJ8AMMrJ59mgc-Jf4KPCbCtvPFIzi9ljf9GDabWRO2gGkUCyicuTwq9DtFCNEWlQxS1E46MYDX_bst6w7cnDg2zktMckgT5WVNDGBnJX3RgnpcIXdAalrJEBR3OjGbfy27mY3fqjKvK68KSnWVt3nQMkYTVYyiqOUAXpGS04XxJ9VV1_eAD0bQW-W-yS2GHWH0ALbXJHGi1-vDvZmUnaNZlP-mxZP_D7-AW-PpyXF5fDg5egq3Ba7V2qrjbdhczr-HZ7i2WrrnyaAZfLnuGfQXon40fA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDzVQIE9UHFAq9S7613vAaEmbdRSiCKUot6M7d3lUjklCSCu_Cx-HTNrOzSHcuspkT2xE89rZzPzfQCvaNyxFCZwbZXjypiCWy8dt8EklmbRi5L2Oz5O9PGZen-enm_Bn24Whtoqu5gYA7WbV7RHPsAwSiTnRuhBaNsipofjd5ffODFI0T-tHZ1GYyKn_tdPLN-Wb08OUdd7QoyPZqNj3jIM8EpJteKJEs5mXrhQBStL4p1AC3XCuoRw3FRIsEBMZbCqIJQVl8hSW536TJVJptMg8bq3YNtQVdSD7eHRZPppvcOzbwxh1Tfd9lLa_QHZDBY0hsbiN_JgpAu4LinETDe-D_faJSo7aGzqAWz5-iHcvQJc-Ah-x7ldHhk1GfF3sRFZz4LFI9R9FBXOYkMC-xzn19msWyOj3KTpPl-yonZsNK9_tB6A9yW4kPgSJfgQ06xj04XnM2KzwPdE33axfAxnN_Ksn0Cvntd-B5hGMY_CSZkGhVEo8z7YrJBeiqqUpejDm-7Z5lULdU6MGxc5ljykifyqJvqwt5a-bCA-rpEbkprWMgTMHQ_MF1_z1s_xU0XidOFURoWvcjb1WoZgggpBZJXsw2tScrwwfqWqaKcg8IcREFd-YFKLSUgY3YfdDUl0-2rzdGcmeRt2lvk_J3n6_9Mv4TZ6T_7hZHL6DO4IXLg1Lci70FstvvvnuNBalS9ai2bw5aad6C80bDoO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Class+Skin+Cancer+Classification+Using+Vision+Transformer+Networks+and+Convolutional+Neural+Network-Based+Pre-Trained+Models&rft.jtitle=Information+%28Basel%29&rft.au=Arshed%2C+Muhammad+Asad&rft.au=Mumtaz%2C+Shahzad&rft.au=Ibrahim%2C+Muhammad&rft.au=Ahmed%2C+Saeed&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.issn=2078-2489&rft.eissn=2078-2489&rft.volume=14&rft.issue=7&rft_id=info:doi/10.3390%2Finfo14070415&rft.externalDocID=A759153276 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon |