Multi-Class Skin Cancer Classification Using Vision Transformer Networks and Convolutional Neural Network-Based Pre-Trained Models

Skin cancer, particularly melanoma, has been recognized as one of the most lethal forms of cancer. Detecting and diagnosing skin lesions accurately can be challenging due to the striking similarities between the various types of skin lesions, such as melanoma and nevi, especially when examining the...

Full description

Saved in:
Bibliographic Details
Published inInformation (Basel) Vol. 14; no. 7; p. 415
Main Authors Arshed, Muhammad Asad, Mumtaz, Shahzad, Ibrahim, Muhammad, Ahmed, Saeed, Tahir, Muhammad, Shafi, Muhammad
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Skin cancer, particularly melanoma, has been recognized as one of the most lethal forms of cancer. Detecting and diagnosing skin lesions accurately can be challenging due to the striking similarities between the various types of skin lesions, such as melanoma and nevi, especially when examining the color images of the skin. However, early diagnosis plays a crucial role in saving lives and reducing the burden on medical resources. Consequently, the development of a robust autonomous system for skin cancer classification becomes imperative. Convolutional neural networks (CNNs) have been widely employed over the past decade to automate cancer diagnosis. Nonetheless, the emergence of the Vision Transformer (ViT) has recently gained a considerable level of popularity in the field and has emerged as a competitive alternative to CNNs. In light of this, the present study proposed an alternative method based on the off-the-shelf ViT for identifying various skin cancer diseases. To evaluate its performance, the proposed method was compared with 11 CNN-based transfer learning methods that have been known to outperform other deep learning techniques that are currently in use. Furthermore, this study addresses the issue of class imbalance within the dataset, a common challenge in skin cancer classification. In addressing this concern, the proposed study leverages the vision transformer and the CNN-based transfer learning models to classify seven distinct types of skin cancers. Through our investigation, we have found that the employment of pre-trained vision transformers achieved an impressive accuracy of 92.14%, surpassing CNN-based transfer learning models across several evaluation metrics for skin cancer diagnosis.
AbstractList Skin cancer, particularly melanoma, has been recognized as one of the most lethal forms of cancer. Detecting and diagnosing skin lesions accurately can be challenging due to the striking similarities between the various types of skin lesions, such as melanoma and nevi, especially when examining the color images of the skin. However, early diagnosis plays a crucial role in saving lives and reducing the burden on medical resources. Consequently, the development of a robust autonomous system for skin cancer classification becomes imperative. Convolutional neural networks (CNNs) have been widely employed over the past decade to automate cancer diagnosis. Nonetheless, the emergence of the Vision Transformer (ViT) has recently gained a considerable level of popularity in the field and has emerged as a competitive alternative to CNNs. In light of this, the present study proposed an alternative method based on the off-the-shelf ViT for identifying various skin cancer diseases. To evaluate its performance, the proposed method was compared with 11 CNN-based transfer learning methods that have been known to outperform other deep learning techniques that are currently in use. Furthermore, this study addresses the issue of class imbalance within the dataset, a common challenge in skin cancer classification. In addressing this concern, the proposed study leverages the vision transformer and the CNN-based transfer learning models to classify seven distinct types of skin cancers. Through our investigation, we have found that the employment of pre-trained vision transformers achieved an impressive accuracy of 92.14%, surpassing CNN-based transfer learning models across several evaluation metrics for skin cancer diagnosis.
Audience Academic
Author Arshed, Muhammad Asad
Ibrahim, Muhammad
Shafi, Muhammad
Tahir, Muhammad
Ahmed, Saeed
Mumtaz, Shahzad
Author_xml – sequence: 1
  givenname: Muhammad Asad
  surname: Arshed
  fullname: Arshed, Muhammad Asad
– sequence: 2
  givenname: Shahzad
  orcidid: 0000-0003-2606-2405
  surname: Mumtaz
  fullname: Mumtaz, Shahzad
– sequence: 3
  givenname: Muhammad
  surname: Ibrahim
  fullname: Ibrahim, Muhammad
– sequence: 4
  givenname: Saeed
  orcidid: 0000-0001-6910-7613
  surname: Ahmed
  fullname: Ahmed, Saeed
– sequence: 5
  givenname: Muhammad
  surname: Tahir
  fullname: Tahir, Muhammad
– sequence: 6
  givenname: Muhammad
  surname: Shafi
  fullname: Shafi, Muhammad
BookMark eNptkstu1TAQhiNUJErpjgeIxJYUX8aXLEvEpVILSLRsLR9fjnyaYxc7AbHlyXFyEBRUezHj8ff_1mj8tDmKKbqmeY7RGaU9ehWiTxiQQIDZo-aYICE7ArI_upc_aU5L2aG6hJAg8XHz82oep9ANoy6l_XwbYjvoaFxu10rwwegppNjelBC37ZdQlsN11rH4lPeV--Cm7ynfllZH2w4pfkvjvCj0WK_mvIaV6F7r4mz7Kbuu6kOs-VWybizPmsdej8Wd_o4nzc3bN9fD--7y47uL4fyyM0Bh6jAQ20tHrDe-pxsERCAsLOktRhwYeCylZNT3oCXCYDHd8J4zJ2GDJWeenjQXB1-b9E7d5bDX-YdKOqi1kPJW6TwFMzpFqcaWawuSA0iwPXOcei88eE-kodXrxcHrLqevsyuT2qU516aLIhIo4kwQ_pfa6mq6DGjK2uxDMepcsB4zSsRCnT1A1W3dPpg6ZB9q_R_By4PA5FRKdv5PMxip5S-o-3-h4uQ_3IRpnWp9J4wPi34B57-4Bw
CitedBy_id crossref_primary_10_3390_sym16030366
crossref_primary_10_1038_s41598_024_80087_w
crossref_primary_10_1016_j_measurement_2025_116646
crossref_primary_10_1007_s11831_024_10121_7
crossref_primary_10_1016_j_compbiomed_2024_108742
crossref_primary_10_3390_diagnostics15010099
crossref_primary_10_1007_s13198_024_02521_6
crossref_primary_10_1016_j_compbiomed_2025_109916
crossref_primary_10_1007_s11517_023_02969_x
crossref_primary_10_1007_s11042_024_18973_8
crossref_primary_10_3233_IDT_240336
crossref_primary_10_1038_s41598_024_81961_3
crossref_primary_10_1016_j_patcog_2024_111182
crossref_primary_10_1016_j_eswa_2024_124113
crossref_primary_10_3390_diagnostics15050541
crossref_primary_10_1109_ACCESS_2024_3516535
crossref_primary_10_3390_diagnostics14060636
crossref_primary_10_3390_jimaging10110278
crossref_primary_10_1002_ima_23214
crossref_primary_10_1007_s00521_024_10225_y
crossref_primary_10_1016_j_asoc_2024_112013
crossref_primary_10_32628_CSEIT24103124
crossref_primary_10_3390_diagnostics14131359
crossref_primary_10_1016_j_eswa_2023_122778
crossref_primary_10_1007_s13369_024_09900_y
crossref_primary_10_17798_bitlisfen_1505636
crossref_primary_10_1016_j_eswa_2024_124056
crossref_primary_10_1111_srt_70040
Cites_doi 10.1109/ISRITI48646.2019.9034624
10.3390/jcm12031134
10.1016/j.neucom.2021.08.096
10.1016/j.neuri.2021.100034
10.1093/annonc/mdy166
10.3390/diagnostics12102472
10.1109/CIBEC.2018.8641762
10.1109/CVPR.2016.90
10.1016/j.compbiomed.2020.104065
10.1038/nature21056
10.1007/s11063-022-10927-1
10.3390/s18020556
10.1007/s11042-018-5714-1
10.1109/JBHI.2018.2824327
10.1016/j.compeleceng.2013.11.024
10.1109/ICCIT51783.2020.9392716
10.3390/s21238142
10.1109/ICAIPR.2016.7585217
10.1016/j.neucom.2015.09.116
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/info14070415
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2078-2489
ExternalDocumentID oai_doaj_org_article_33a1d6ad4864484d95e63ff7f4ff28c3
A759153276
10_3390_info14070415
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID .4I
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
MK~
ML~
MODMG
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
XH6
PMFND
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c434t-142d98e2dfcf93b0427017d29d106454f188853f94a8014d13b6965e84b1865f3
IEDL.DBID BENPR
ISSN 2078-2489
IngestDate Wed Aug 27 01:31:18 EDT 2025
Sat Jul 26 00:42:55 EDT 2025
Tue Jun 17 20:41:50 EDT 2025
Tue Jun 10 21:34:21 EDT 2025
Tue Jul 01 04:24:49 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-142d98e2dfcf93b0427017d29d106454f188853f94a8014d13b6965e84b1865f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6910-7613
0000-0003-2606-2405
OpenAccessLink https://www.proquest.com/docview/2843065726?pq-origsite=%requestingapplication%
PQID 2843065726
PQPubID 2032384
ParticipantIDs doaj_primary_oai_doaj_org_article_33a1d6ad4864484d95e63ff7f4ff28c3
proquest_journals_2843065726
gale_infotracmisc_A759153276
gale_infotracacademiconefile_A759153276
crossref_primary_10_3390_info14070415
crossref_citationtrail_10_3390_info14070415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Information (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Guo (ref_6) 2016; 187
Long (ref_26) 2015; 37
ref_35
Esteva (ref_11) 2017; 542
ref_33
ref_10
ref_31
Li (ref_8) 2021; 464
ref_19
ref_18
ref_17
ref_16
Chandrashekar (ref_13) 2014; 40
ref_15
Haenssle (ref_14) 2018; 29
Dorj (ref_30) 2018; 77
Ali (ref_34) 2022; 2
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
Ali (ref_32) 2021; 5
Kawahara (ref_12) 2019; 23
ref_1
Pomponiu (ref_5) 2016; 2016
ref_3
ref_2
ref_29
ref_28
ref_27
ref_4
Goyal (ref_9) 2020; 127
ref_7
References_xml – ident: ref_28
– ident: ref_31
  doi: 10.1109/ISRITI48646.2019.9034624
– ident: ref_35
  doi: 10.3390/jcm12031134
– ident: ref_3
– volume: 464
  start-page: 364
  year: 2021
  ident: ref_8
  article-title: Skin disease diagnosis with deep learning: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.096
– ident: ref_24
– ident: ref_1
– ident: ref_18
– ident: ref_23
– volume: 2
  start-page: 100034
  year: 2022
  ident: ref_34
  article-title: Multiclass skin cancer classification using EfficientNets—A first step towards preventing skin cancer
  publication-title: Neurosci. Inform.
  doi: 10.1016/j.neuri.2021.100034
– ident: ref_21
– volume: 29
  start-page: 1836
  year: 2018
  ident: ref_14
  article-title: Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdy166
– volume: 5
  start-page: 100036
  year: 2021
  ident: ref_32
  article-title: An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models
  publication-title: Mach. Learn. Appl.
– volume: 2016
  start-page: 2623
  year: 2016
  ident: ref_5
  article-title: Deepmole: Deep neural networks for skin mole lesion classification
  publication-title: Proc. Int. Conf. Image Process.
– ident: ref_15
  doi: 10.3390/diagnostics12102472
– ident: ref_25
– ident: ref_4
– ident: ref_27
– ident: ref_29
  doi: 10.1109/CIBEC.2018.8641762
– ident: ref_2
– ident: ref_20
  doi: 10.1109/CVPR.2016.90
– volume: 37
  start-page: 97
  year: 2015
  ident: ref_26
  article-title: Learning Transferable Features with Deep Adaptation Networks
  publication-title: PMLR
– volume: 127
  start-page: 104065
  year: 2020
  ident: ref_9
  article-title: Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104065
– volume: 542
  start-page: 115
  year: 2017
  ident: ref_11
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: ref_17
  doi: 10.1007/s11063-022-10927-1
– ident: ref_7
  doi: 10.3390/s18020556
– volume: 77
  start-page: 9909
  year: 2018
  ident: ref_30
  article-title: The skin cancer classification using deep convolutional neural network
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-5714-1
– volume: 23
  start-page: 538
  year: 2019
  ident: ref_12
  article-title: Seven-Point Checklist and Skin Lesion Classification Using Multitask Multimodal Neural Nets
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2824327
– volume: 40
  start-page: 16
  year: 2014
  ident: ref_13
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: ref_16
  doi: 10.1109/ICCIT51783.2020.9392716
– ident: ref_19
– ident: ref_33
  doi: 10.3390/s21238142
– ident: ref_10
  doi: 10.1109/ICAIPR.2016.7585217
– ident: ref_22
– volume: 187
  start-page: 27
  year: 2016
  ident: ref_6
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
SSID ssj0000778481
Score 2.4031305
Snippet Skin cancer, particularly melanoma, has been recognized as one of the most lethal forms of cancer. Detecting and diagnosing skin lesions accurately can be...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 415
SubjectTerms Accuracy
Algorithms
Analysis
Artificial neural networks
Cancer
Classification
Color imagery
Datasets
Deep learning
Diagnosis
Disease
fine tuning
Health care industry
Lesions
Machine learning
Medical research
Melanoma
multi-class
Neural networks
Ozone
Performance evaluation
pretrained models
Skin cancer
skin cancer diagnosis
transfer learning
vision transformer
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTwIxEG2MJz0YPyOKpgeNB9OQbbvt9ghEQkwkHsBw22y37YksBtAf4C93prsQOBAvntgsL0vpTDudzcx7hDxgu6PlOjBlpGNS64IZLxwzQScGe9ELi-873kZqOJGv03S6JfWFNWE1PXA9cR0hisSpwskMMwnpTOqVCEEHGQLPysjzCTFvK5mKe7DWyBNfV7oLyOs7aC9IJjS2pO_EoEjVv29DjlFmcEpOmuMh7dbDOiMHvjonx1ukgRfkJ_bMsqhmSVE7i_bRcgsa72DlT5xsGosB6EfsHafj9fkUcKO68ntJi8rR_rz6brwPfhepOuJHRLAehDhH3xeejVFJAq5ROm22vCSTwcu4P2SNkgIrpZArlkjuTOa5C2UwwqK-BqxEx41LkK9OhgQS4VQEIwtkk3GJsMqo1GfSJplKg7gih9W88teEKoB5ACc2DRJ2gMz7YLJCeMFLKyxvkef13OZlQzOOahezHNINtES-bYkWedygP2t6jT24Hpppg0FS7HgDXCVvXCX_y1Va5AmNHB8MQyqLpgMB_hiSYOVdnRoIAFyrFmnvIGHJlbtfr90kb5b8Moc4D-lXqrm6-Y_B3pIjVLavK4Pb5HC1-PJ3cP5Z2fvo6r8XdQMI
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Class Skin Cancer Classification Using Vision Transformer Networks and Convolutional Neural Network-Based Pre-Trained Models
URI https://www.proquest.com/docview/2843065726
https://doaj.org/article/33a1d6ad4864484d95e63ff7f4ff28c3
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCbW5LIdhj2xrG2gw4YdBqGzJetxGpKsWTGsQbGlQ2-GbUm9FE6XZP0B_eUlZSVtDt3JhkU_KVEiTX4fwAcqd6xzHbiy0nGpdcWtF47boDNLtehVTfGO05k6OZc_LoqLFHBbpbTKjU2MhtotGoqRH6EZJZJznauv1385sUbR39VEobEHfTTBxvSgPz6enf3aRlm-aE148V3Gu0D__oj0hk6FptL0nbkoQvY_ZpjjbDN9Ac_TMpGNOr2-hCe-fQXPHoAHvobbWDvLI6slIw4tNiENLlk8QhlA8aOzmBTA_sQacjbfrFNRbtZlgK9Y1To2WbQ3qRfifQmyI26iBB_jVOfY2dLzOTFK4D5RqF2t3sD59Hg-OeGJUYE3Usg1z2TurPG5C02woiaeDRyRLrcuI9w6GTJ0iAsRrKwIVcZlolZWFd7IOjOqCOIt9NpF698BUyjmUTiriyDREhjvgzWV8CJvalHnA_i8-bZlk-DGifXiqkS3gzRRPtTEAD5upa87mI1H5Makpq0MgWPHA4vlZZnGGp5VZU5VThpyPqWzhVciBB1kCLlpxAA-kZLjhfGRmipVIuCLERhWOdKFxYkg12oABzuSOPSa3eZNNynT0F-V9x31_f-b9-Epcdd3ub8H0Fsv__lDXOGs6yHsmen3IfRH305__h6mTj2M8YI7Kbr_EA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nc9MwEN0p5QAcGD6ngQI60OHAaFpLsmQdGKYNhJS2GQ4p05uxLIlLxylJgOHKD-I3sivboTmUW0_xWBs79q52tcruewAvqd3RCRO5tspzZUzFbZCe22gyS73olaP9jpOJHp-qj2f52Qb86XthqKyy94nJUftZTXvku-hGieTcCP324hsn1ij6d7Wn0GjN4ij8-okp2-LN4TvU744Qo_fT4Zh3rAK8VlIteaaEt0UQPtbRSkdcE2iVXlifEXabihkmhbmMVlWErOIz6bTVeSiUywqdR4nXvQE3lcRITp3pow-rPZ09Ywidvq2vx_G9XbISTGEMNcKvRb5EEHBVGEixbXQP7naLUrbfWtF92AjNA7hzCarwIfxOnbo8cWgyYuxiQ7KXOUtnqN4oqZilEgT2OXWss2m_Kka5SVtvvmBV49lw1vzobB7vSwAh6SNJ8AMMrJ59mgc-Jf4KPCbCtvPFIzi9ljf9GDabWRO2gGkUCyicuTwq9DtFCNEWlQxS1E46MYDX_bst6w7cnDg2zktMckgT5WVNDGBnJX3RgnpcIXdAalrJEBR3OjGbfy27mY3fqjKvK68KSnWVt3nQMkYTVYyiqOUAXpGS04XxJ9VV1_eAD0bQW-W-yS2GHWH0ALbXJHGi1-vDvZmUnaNZlP-mxZP_D7-AW-PpyXF5fDg5egq3Ba7V2qrjbdhczr-HZ7i2WrrnyaAZfLnuGfQXon40fA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDzVQIE9UHFAq9S7613vAaEmbdRSiCKUot6M7d3lUjklCSCu_Cx-HTNrOzSHcuspkT2xE89rZzPzfQCvaNyxFCZwbZXjypiCWy8dt8EklmbRi5L2Oz5O9PGZen-enm_Bn24Whtoqu5gYA7WbV7RHPsAwSiTnRuhBaNsipofjd5ffODFI0T-tHZ1GYyKn_tdPLN-Wb08OUdd7QoyPZqNj3jIM8EpJteKJEs5mXrhQBStL4p1AC3XCuoRw3FRIsEBMZbCqIJQVl8hSW536TJVJptMg8bq3YNtQVdSD7eHRZPppvcOzbwxh1Tfd9lLa_QHZDBY0hsbiN_JgpAu4LinETDe-D_faJSo7aGzqAWz5-iHcvQJc-Ah-x7ldHhk1GfF3sRFZz4LFI9R9FBXOYkMC-xzn19msWyOj3KTpPl-yonZsNK9_tB6A9yW4kPgSJfgQ06xj04XnM2KzwPdE33axfAxnN_Ksn0Cvntd-B5hGMY_CSZkGhVEo8z7YrJBeiqqUpejDm-7Z5lULdU6MGxc5ljykifyqJvqwt5a-bCA-rpEbkprWMgTMHQ_MF1_z1s_xU0XidOFURoWvcjb1WoZgggpBZJXsw2tScrwwfqWqaKcg8IcREFd-YFKLSUgY3YfdDUl0-2rzdGcmeRt2lvk_J3n6_9Mv4TZ6T_7hZHL6DO4IXLg1Lci70FstvvvnuNBalS9ai2bw5aad6C80bDoO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Class+Skin+Cancer+Classification+Using+Vision+Transformer+Networks+and+Convolutional+Neural+Network-Based+Pre-Trained+Models&rft.jtitle=Information+%28Basel%29&rft.au=Arshed%2C+Muhammad+Asad&rft.au=Mumtaz%2C+Shahzad&rft.au=Ibrahim%2C+Muhammad&rft.au=Ahmed%2C+Saeed&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.issn=2078-2489&rft.eissn=2078-2489&rft.volume=14&rft.issue=7&rft_id=info:doi/10.3390%2Finfo14070415&rft.externalDocID=A759153276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon