A method to determine rates and patterns of variability in ecological communities
It is well known that ecological communities are spatially and temporally dynamic. Quantifying temporal variability in ecological communities is challenging, however, especially for time-series data sets of less than 40 measurement intervals. In this paper, we describe a method to quantify temporal...
Saved in:
Published in | Oikos Vol. 91; no. 2; pp. 285 - 293 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Copenhagen
Munksgaard International Publishers
01.11.2000
Munksgaard International Publishers, Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is well known that ecological communities are spatially and temporally dynamic. Quantifying temporal variability in ecological communities is challenging, however, especially for time-series data sets of less than 40 measurement intervals. In this paper, we describe a method to quantify temporal variability in multispecies communities over time frames of 10-40 measurement intervals. Our approach is a community-level extension of autocorrelation analysis, but we use Euclidean distance to measure similarity of community samples at increasing time lags rather than the correlation coefficient. Regressing Euclidean distances versus increasing time lags yields a measure of the rate and nature of community change over time. We demonstrate the method with empirical data sets from shortgrass steppe, old-field succession and zooplankton dynamics in lakes, and we investigate properties of the analysis using simulation models. Results indicate that time-lag analysis provides a useful quantitative measurement of the rate and pattern of temporal dynamics in communities over time frames that are too short for more traditional autocorrelation approaches. |
---|---|
AbstractList | It is well known that ecological communities are spatially and temporally dynamic. Quantifying temporal variability in ecological communities is challenging, however, especially for time-series data sets of less than 40 measurement intervals. In this paper, we describe a method to quantify temporal variability in multispecies communities over time frames of 10-40 measurement intervals. Our approach is a community-level extension of autocorrelation analysis, but we use Euclidean distance to measure similarity of community samples at increasing time lags rather than the correlation coefficient. Regressing Euclidean distances versus increasing time lags yields a measure of the rate and nature of community change over time. We demonstrate the method with empirical data sets from shortgrass steppe, old-field succession and zooplankton dynamics in lakes, and we investigate properties of the analysis using simulation models. Results indicate that time-lag analysis provides a useful quantitative measurement of the rate and pattern of temporal dynamics in communities over time frames that are too short for more traditional autocorrelation approaches. |
Author | Micheli, Fiorenza Hartt, Laura Collins, Scott L. |
Author_xml | – sequence: 1 givenname: Scott L. surname: Collins fullname: Collins, Scott L. – sequence: 2 givenname: Fiorenza surname: Micheli fullname: Micheli, Fiorenza – sequence: 3 givenname: Laura surname: Hartt fullname: Hartt, Laura |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=931621$$DView record in Pascal Francis |
BookMark | eNqNkEFv1DAQhS1UJLaFf8DBCIlbUjtO7PgE1Ra2pRUFBELiYk0cB7wk9mJ76e6_J1HaPfTU01jz3vvGesfoyHlnEHpFSU4JK0_XOeWEZEQQnheEkFxSUhCZ756gxUE5QgtCGMloIeUzdBzjenQKIcoF-nKGB5N--xYnj1uTTBisMzhAMhGDa_EG0rh0EfsO_4NgobG9TXtsHTba9_6X1dBj7Ydh62yyJj5HTzvoo3lxN0_Q9w_vvy0vsuub1eXy7DrTJStlZoCapmMALUgCvKqLWgjOoSmBcSZYU3NNOiMZLyvZUUo115KD6Oqm1K0U7AS9mbmb4P9uTUxqsFGbvgdn_DYqOuJYzeVofH1nhDj-tQvgtI1qE-wAYa8ko7ygo-vt7NLBxxhMp7RNkKx3KYDtFSVqKlyt1VSrmmpVU-FqLlztRoJ8QLg_8Zjsuzl7a3uzf3xQ3Vxeze8R8XJGrGPy4YBgVSmqcpKzWbYxmd1BhvBHccFEpX58Wqlzsvz4eflzpb6y_-yZs9k |
CODEN | OIKSAA |
CitedBy_id | crossref_primary_10_1371_journal_pone_0114228 crossref_primary_10_1016_j_mimet_2009_07_020 crossref_primary_10_1002_eap_1544 crossref_primary_10_1016_j_scitotenv_2021_147298 crossref_primary_10_1093_femsec_fiab036 crossref_primary_10_1191_0309133306pp477ra crossref_primary_10_1007_s11104_023_05884_0 crossref_primary_10_1016_j_baae_2011_08_006 crossref_primary_10_7717_peerj_6056 crossref_primary_10_1016_j_scitotenv_2021_145948 crossref_primary_10_1038_s41598_024_84789_z crossref_primary_10_1111_1365_2745_12376 crossref_primary_10_1111_nph_12852 crossref_primary_10_1007_s11273_019_09665_4 crossref_primary_10_1093_jpe_rtx041 crossref_primary_10_1111_eff_12235 crossref_primary_10_1111_j_1461_0248_2008_01191_x crossref_primary_10_1007_s10641_011_9936_6 crossref_primary_10_1128_AEM_00322_20 crossref_primary_10_1016_j_chemosphere_2017_06_003 crossref_primary_10_1111_jvs_12906 crossref_primary_10_1086_700402 crossref_primary_10_1111_1365_2664_12959 crossref_primary_10_1007_s11802_017_3217_8 crossref_primary_10_1016_j_mbs_2022_108939 crossref_primary_10_1016_j_pedobi_2004_07_011 crossref_primary_10_1111_2041_210X_14094 crossref_primary_10_1016_j_envres_2024_119798 crossref_primary_10_1016_j_foreco_2020_118180 crossref_primary_10_1007_s10750_015_2603_8 crossref_primary_10_1007_s43393_021_00064_6 crossref_primary_10_1016_j_scitotenv_2024_169899 crossref_primary_10_1007_s10750_018_3531_1 crossref_primary_10_1111_mec_15864 crossref_primary_10_1139_X09_165 crossref_primary_10_1016_j_ecolind_2017_03_022 crossref_primary_10_1016_j_scitotenv_2019_135626 crossref_primary_10_1038_s41559_018_0524_4 crossref_primary_10_1890_10_1323_1 crossref_primary_10_1016_j_biocon_2024_110698 crossref_primary_10_1890_0012_9658_2006_87_2058_SIOFAG_2_0_CO_2 crossref_primary_10_1890_09_0350_1 crossref_primary_10_1890_09_0392_1 crossref_primary_10_1016_j_actao_2007_06_005 crossref_primary_10_3161_00016454AO2022_57_1_005 crossref_primary_10_7717_peerj_11096 crossref_primary_10_1016_j_seares_2014_09_001 crossref_primary_10_1111_j_1365_2427_2007_01859_x crossref_primary_10_1016_j_fishres_2021_106099 crossref_primary_10_1890_10_2138_1 crossref_primary_10_3390_microorganisms9040719 crossref_primary_10_1111_1365_2745_12714 crossref_primary_10_3389_fevo_2024_1457476 crossref_primary_10_1002_iroh_201201473 crossref_primary_10_1016_j_aquaculture_2019_734733 crossref_primary_10_1016_j_scitotenv_2022_159866 crossref_primary_10_1525_bio_2010_60_6_7 crossref_primary_10_1038_srep20120 crossref_primary_10_3389_fenvs_2022_875789 crossref_primary_10_1139_f02_163 crossref_primary_10_1139_f02_164 crossref_primary_10_1016_j_foreco_2019_117475 crossref_primary_10_1111_j_1574_6941_2012_01302_x crossref_primary_10_1007_s10750_006_0531_3 crossref_primary_10_1021_acs_est_5b02637 crossref_primary_10_1016_j_watres_2020_116232 crossref_primary_10_1080_02705060_2012_708673 crossref_primary_10_1080_09670262_2013_779390 crossref_primary_10_1016_j_aquaculture_2018_07_053 crossref_primary_10_1016_j_scitotenv_2019_135724 crossref_primary_10_1890_14_1061_1 crossref_primary_10_1007_s10750_012_1198_6 crossref_primary_10_3389_fbioe_2023_1143622 crossref_primary_10_1086_679315 crossref_primary_10_1007_s11356_020_08665_9 crossref_primary_10_1111_geb_12156 crossref_primary_10_1093_femsec_fiaa161 crossref_primary_10_1186_2046_9063_9_20 crossref_primary_10_1016_j_ecoleng_2010_03_016 crossref_primary_10_1590_S2179_975X2012005000010 crossref_primary_10_1890_11_1047_1 crossref_primary_10_1139_cjfas_2012_0339 crossref_primary_10_1111_ele_12864 crossref_primary_10_1007_s00300_015_1887_5 crossref_primary_10_3389_fmicb_2015_01330 crossref_primary_10_1016_j_pedobi_2021_150708 crossref_primary_10_1007_s00267_009_9421_6 crossref_primary_10_1016_j_scitotenv_2021_146724 crossref_primary_10_3897_zookeys_1168_95833 crossref_primary_10_1038_s41586_024_08456_z crossref_primary_10_1002_ecy_2154 crossref_primary_10_1111_j_1526_100X_2009_00609_x crossref_primary_10_1002_ecm_1350 crossref_primary_10_1029_2022JC019511 crossref_primary_10_1016_j_quaint_2016_09_012 crossref_primary_10_1016_j_aqrep_2021_100965 crossref_primary_10_1371_journal_pone_0051554 crossref_primary_10_1016_j_still_2020_104928 crossref_primary_10_1890_0012_9658_2006_87_2895_DOSCDU_2_0_CO_2 crossref_primary_10_1111_mec_14693 crossref_primary_10_1016_j_isci_2023_106007 crossref_primary_10_1098_rstb_2010_0262 crossref_primary_10_1111_ele_12590 crossref_primary_10_1890_03_0276 crossref_primary_10_1007_s10201_018_0558_y crossref_primary_10_1016_j_actatropica_2019_04_027 crossref_primary_10_1016_j_envpol_2018_11_007 crossref_primary_10_7717_peerj_18094 crossref_primary_10_1007_s10651_012_0219_y crossref_primary_10_3390_biology12040590 crossref_primary_10_1016_j_scitotenv_2020_137684 crossref_primary_10_3389_fpls_2021_580340 crossref_primary_10_1002_ecs2_2881 crossref_primary_10_1016_j_heliyon_2024_e39428 crossref_primary_10_1007_s10980_005_7007_0 crossref_primary_10_1038_s41396_018_0159_0 crossref_primary_10_1890_04_0321 crossref_primary_10_1016_j_scitotenv_2017_08_044 crossref_primary_10_1046_j_1461_0248_2003_00431_x crossref_primary_10_1093_ee_nvw065 crossref_primary_10_1111_j_1365_2427_2006_01609_x crossref_primary_10_1111_j_1758_2229_2012_00393_x crossref_primary_10_1002_eap_2732 crossref_primary_10_1002_ecs2_2629 crossref_primary_10_1002_eap_2615 crossref_primary_10_1038_s41558_021_01249_6 crossref_primary_10_3390_w11102179 crossref_primary_10_1128_msystems_00886_23 crossref_primary_10_1890_13_0327_1 crossref_primary_10_1002_ecy_4430 crossref_primary_10_1139_cjfas_2017_0518 crossref_primary_10_1111_2041_210X_12569 crossref_primary_10_1890_0012_9658_2006_87_2905_CBSEAL_2_0_CO_2 crossref_primary_10_1038_s41598_020_70901_6 crossref_primary_10_1111_1365_2664_12165 crossref_primary_10_3389_fmicb_2018_01037 crossref_primary_10_1016_j_ecolind_2023_110243 crossref_primary_10_1093_femsec_fiaa236 crossref_primary_10_1186_s12915_021_01169_z crossref_primary_10_1016_j_scitotenv_2019_133585 crossref_primary_10_1093_icesjms_fsae139 crossref_primary_10_1890_10_0157_1 crossref_primary_10_1371_journal_pone_0237368 crossref_primary_10_1080_11956860_2021_1871826 crossref_primary_10_1111_1365_2745_13555 crossref_primary_10_1007_s11356_018_4025_4 crossref_primary_10_1371_journal_pone_0035272 crossref_primary_10_1155_2008_149694 crossref_primary_10_1666_08092_1 crossref_primary_10_1111_jbi_14045 crossref_primary_10_1007_s00442_020_04841_3 crossref_primary_10_1016_j_pecon_2018_09_002 crossref_primary_10_1890_07_0391_1 crossref_primary_10_1371_journal_pone_0133501 crossref_primary_10_1007_s00442_014_2979_6 crossref_primary_10_1890_0012_9658_2006_87_2746_BROPCS_2_0_CO_2 |
ContentType | Journal Article |
Copyright | Copyright 2000 Oikos 2001 INIST-CNRS |
Copyright_xml | – notice: Copyright 2000 Oikos – notice: 2001 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7SN C1K |
DOI | 10.1034/j.1600-0706.2000.910209.x |
DatabaseName | Istex CrossRef Pascal-Francis Ecology Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Ecology Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Ecology Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1600-0706 |
EndPage | 293 |
ExternalDocumentID | 931621 10_1034_j_1600_0706_2000_910209_x OIK910209 3547549 ark_67375_WNG_D0CJPCZG_R |
Genre | article |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 2AX 2~F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AANLZ AAONW AASGY AAXRX AAXTN AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACKIV ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEJZ AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AIAGR AICQM AIDBO AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQVQM ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CBGCD COF CS3 D-E D-F DATOO DCZOG DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TEORI TN5 UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 Y2W YFH YNT YUY YV5 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACHIC ACRPL ACYXJ ADNMO ADXHL AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AETEA AGHNM CITATION IQODW 7SN C1K |
ID | FETCH-LOGICAL-c4349-ea1ebf3aada90a658287766ab4a36373b86c0fe936459f111c6c96a7f8b4cd973 |
IEDL.DBID | DR2 |
ISSN | 0030-1299 |
IngestDate | Fri Jul 11 10:32:21 EDT 2025 Mon Jul 21 09:09:57 EDT 2025 Tue Jul 01 04:10:30 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Wed Jan 22 16:48:41 EST 2025 Thu Jul 03 21:20:57 EDT 2025 Wed Oct 30 09:56:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Biocenosis Steppe Old field Analytical method Lakes Euclidean space Simulation model Measurement method Autocorrelation Time variation Zooplankton |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4349-ea1ebf3aada90a658287766ab4a36373b86c0fe936459f111c6c96a7f8b4cd973 |
Notes | istex:F150A3FFF1D04C604A906C4F1D0C911F0A5DEC8F ark:/67375/WNG-D0CJPCZG-R ArticleID:OIK910209 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 17763869 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_17763869 pascalfrancis_primary_931621 crossref_citationtrail_10_1034_j_1600_0706_2000_910209_x crossref_primary_10_1034_j_1600_0706_2000_910209_x wiley_primary_10_1034_j_1600_0706_2000_910209_x_OIK910209 jstor_primary_3547549 istex_primary_ark_67375_WNG_D0CJPCZG_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2000 |
PublicationDateYYYYMMDD | 2000-11-01 |
PublicationDate_xml | – month: 11 year: 2000 text: November 2000 |
PublicationDecade | 2000 |
PublicationPlace | Copenhagen |
PublicationPlace_xml | – name: Copenhagen – name: Oxford |
PublicationTitle | Oikos |
PublicationTitleAlternate | Oikos |
PublicationYear | 2000 |
Publisher | Munksgaard International Publishers Munksgaard International Publishers, Ltd Blackwell |
Publisher_xml | – name: Munksgaard International Publishers – name: Munksgaard International Publishers, Ltd – name: Blackwell |
SSID | ssj0007774 |
Score | 2.0818594 |
Snippet | It is well known that ecological communities are spatially and temporally dynamic. Quantifying temporal variability in ecological communities is challenging,... |
SourceID | proquest pascalfrancis crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 285 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences Datasets Experimental data Fundamental and applied biological sciences. Psychology General aspects General aspects. Techniques Linear regression Methods and techniques (sampling, tagging, trapping, modelling...) Modeling Ordination Simulations Species Synecology Time series Vegetation |
Title | A method to determine rates and patterns of variability in ecological communities |
URI | https://api.istex.fr/ark:/67375/WNG-D0CJPCZG-R/fulltext.pdf https://www.jstor.org/stable/3547549 https://onlinelibrary.wiley.com/doi/abs/10.1034%2Fj.1600-0706.2000.910209.x https://www.proquest.com/docview/17763869 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3_a9UwEA8yUfxFp25YN2cE8bc-05c0aX4cz7fNiVOHw-EvIUlTkI2-sb43tv31yyVp5xOEgf4WaC-018t96d19DqG3pqjrUjOeu5KSnElrclOVPPe2j9TSm2gbut4_H_C9I7Z_XB6ncUDQCxPxIYYfbnAygr6GA65Nl9rEWTzkHLqiBQmVBmTkDd-YyBE4lFC7BQ7S4S2UlBAJkZlCNYKUD9GbtNf7v-60ZKvuA9sv-7JFqKHUnWdjE-dfLDmov7u5wU7tPEGn_RvG8pST0WJuRvb6D_DH_8SCVfQ4-bN4OwrgU3TPtc_Qgzjh8sqvpjat1qe3LXWeIOmU7jn6to3jGGs8n-E6Vec4DBAWHdZtjc8CBGjb4VmDL3xoH5HFr_CvFjvb625sY6cL4MOuoaOd6ffJXp4GPeSWUSZzpwtnGqp1rSXRHDJ5QnCuDdOUU0FNxS1pnISUqWy8drbcSq5FUxlmaynoOlppZ617gTBzPqRnlfO6ivtgTphaU1E1RSNsWRdEZqjqP6myCQUdhnGcqpCNpwyiIc9UBUyFGZ1ERaaqywyNB9KzCAVyF6J3QW4GCn1-ArV0olQ_DnbVBzLZ_zr5uasOM7QWBGu4kZZM-OA9Q5tLgjZcl_4Nx0WGXvdyp7xigGyPbt1s0anCs5BW3G8ggwzd_ZnVl4-f4vrlP9BuoEcBtiD0bW6ilfn5wr3yDtzcbIWTeQMG1TJF |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELZQK44XzlYECjUS4i2Ls3bs-LFatt1eC1StqHixfEWqCtmq2UUtvx5fSVkkpErwZikZK56M57BnvgHgrSqMKSWhuS0xygnXKldVSXNn-5DhzkTrUPV-OKWTE7J3Wp6m8mhfCxPxIfoDN78zgr72G9wfSKc6cRJ3OfVl0QyFVAM0cJZviPjAeZSrvsN3CLCObsCkGEuYzNjnI3B-D7xJk73_61RL1mrVM_6qS1z0WZSydYysYweMJRf1d0c3WKrtR-B7t8aYoHI-WMzVQP_8A_7xfzHhMXiYXFq4FWXwCbhjm6fgbmxyee1GY51G6-ObqjpHkNRK-wx83oKxkzWcz6BJCToWehSLFsrGwIuAAtq0cFbDHy66j-Di1_CsgVZ36hvqWOziIWLXwMn2-Hg0yVOvh1wTTHhuZWFVjaU0kiNJ_WUeY5RKRSSmmGFVUY1qy_2tKa-dgtZUcypZXSmiDWd4Haw0s8Y-B5BYF9WTyjp1RV08x5SRmFV1UTNdmgLxDFTdPxU6AaH7fhzfRLiQx8QHRI6pwjPVt-lEIjJVXGVg2JNeRDSQ2xC9C4LTU8jLc59Ox0rxZbojPqDR3qfR1x1xlIG1IFn9i7gkzMXvGdhYkrT-OXcrHBYZ2OwETzjd4C98ZGNni1YUjoW4om4CHoTo9t8sPu7ux_GLf6DdBPcnx4cH4mB3uv8SPAgoBqGMcwOszC8X9pXz5-bqddimvwAxNjZg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEF-kxeIX66PF2GpXEL_l3NxudrMfyz360rMWi8Uvy74C0pI7enfS-te7r6SeIBT020IySzKZnUdm5jcAvFWFMaUkNLclRjnhWuWqKmnubB8y3JloHbreP07o4Tk5vigv0jgg3wsT8SG6H27-ZAR97Q_4zNSpTZzEQ059VzRDodIA9Zzh6yPecw7lOqGo8iI-PLvDkmIsQTJjX47A-QZ4kzZ7_9etVozVuuf7TVu36Iso5dzxsY4DMFY81N_93GCoxpvgqn3FWJ9y2VsuVE___AP98T_x4Al4nBxauB8l8Cl4YJtn4GEccXnrViOdVtuju546R5CUyvw5-LwP4xxruJhCk8pzLPQYFnMoGwNnAQO0mcNpDX-42D5Ci9_C7w20ulXeUMdWFw8QuwXOx6Mvg8M8TXrINcGE51YWVtVYSiM5ktSn8hijVCoiMcUMq4pqVFvuc6a8dupZU82pZHWliDac4W2w1kwb-wJAYl1MTyrrlBV10RxTRmJW1UXNdGkKxDNQtZ9U6ASD7qdxXImQjsfEh0OOqcIz1Q_pRCIyVdxkoN-RziIWyH2I3gW56Sjk9aUvpmOl-Do5EEM0OD4dfDsQZxnYCoLV3YhLwlz0noHdFUHrrnP3hv0iA3ut3AmnGXy6RzZ2upyLwrEQV9RtwIMM3f-Zxaejk7h--Q-0e2DjdDgWH44mJzvgUYAwCD2cu2Btcb20r5wzt1CvwyH9BWhFNRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+to+determine+rates+and+patterns+of+variability+in+ecological+communities&rft.jtitle=Oikos&rft.au=COLLINS%2C+Scott+L&rft.au=MICHELI%2C+Fiorenza&rft.au=HARTT%2C+Laura&rft.date=2000-11-01&rft.pub=Blackwell&rft.issn=0030-1299&rft.volume=91&rft.issue=2&rft.spage=285&rft.epage=293&rft_id=info:doi/10.1034%2Fj.1600-0706.2000.910209.x&rft.externalDBID=n%2Fa&rft.externalDocID=931621 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-1299&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-1299&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-1299&client=summon |