A method to determine rates and patterns of variability in ecological communities

It is well known that ecological communities are spatially and temporally dynamic. Quantifying temporal variability in ecological communities is challenging, however, especially for time-series data sets of less than 40 measurement intervals. In this paper, we describe a method to quantify temporal...

Full description

Saved in:
Bibliographic Details
Published inOikos Vol. 91; no. 2; pp. 285 - 293
Main Authors Collins, Scott L., Micheli, Fiorenza, Hartt, Laura
Format Journal Article
LanguageEnglish
Published Copenhagen Munksgaard International Publishers 01.11.2000
Munksgaard International Publishers, Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is well known that ecological communities are spatially and temporally dynamic. Quantifying temporal variability in ecological communities is challenging, however, especially for time-series data sets of less than 40 measurement intervals. In this paper, we describe a method to quantify temporal variability in multispecies communities over time frames of 10-40 measurement intervals. Our approach is a community-level extension of autocorrelation analysis, but we use Euclidean distance to measure similarity of community samples at increasing time lags rather than the correlation coefficient. Regressing Euclidean distances versus increasing time lags yields a measure of the rate and nature of community change over time. We demonstrate the method with empirical data sets from shortgrass steppe, old-field succession and zooplankton dynamics in lakes, and we investigate properties of the analysis using simulation models. Results indicate that time-lag analysis provides a useful quantitative measurement of the rate and pattern of temporal dynamics in communities over time frames that are too short for more traditional autocorrelation approaches.
AbstractList It is well known that ecological communities are spatially and temporally dynamic. Quantifying temporal variability in ecological communities is challenging, however, especially for time-series data sets of less than 40 measurement intervals. In this paper, we describe a method to quantify temporal variability in multispecies communities over time frames of 10-40 measurement intervals. Our approach is a community-level extension of autocorrelation analysis, but we use Euclidean distance to measure similarity of community samples at increasing time lags rather than the correlation coefficient. Regressing Euclidean distances versus increasing time lags yields a measure of the rate and nature of community change over time. We demonstrate the method with empirical data sets from shortgrass steppe, old-field succession and zooplankton dynamics in lakes, and we investigate properties of the analysis using simulation models. Results indicate that time-lag analysis provides a useful quantitative measurement of the rate and pattern of temporal dynamics in communities over time frames that are too short for more traditional autocorrelation approaches.
Author Micheli, Fiorenza
Hartt, Laura
Collins, Scott L.
Author_xml – sequence: 1
  givenname: Scott L.
  surname: Collins
  fullname: Collins, Scott L.
– sequence: 2
  givenname: Fiorenza
  surname: Micheli
  fullname: Micheli, Fiorenza
– sequence: 3
  givenname: Laura
  surname: Hartt
  fullname: Hartt, Laura
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=931621$$DView record in Pascal Francis
BookMark eNqNkEFv1DAQhS1UJLaFf8DBCIlbUjtO7PgE1Ra2pRUFBELiYk0cB7wk9mJ76e6_J1HaPfTU01jz3vvGesfoyHlnEHpFSU4JK0_XOeWEZEQQnheEkFxSUhCZ756gxUE5QgtCGMloIeUzdBzjenQKIcoF-nKGB5N--xYnj1uTTBisMzhAMhGDa_EG0rh0EfsO_4NgobG9TXtsHTba9_6X1dBj7Ydh62yyJj5HTzvoo3lxN0_Q9w_vvy0vsuub1eXy7DrTJStlZoCapmMALUgCvKqLWgjOoSmBcSZYU3NNOiMZLyvZUUo115KD6Oqm1K0U7AS9mbmb4P9uTUxqsFGbvgdn_DYqOuJYzeVofH1nhDj-tQvgtI1qE-wAYa8ko7ygo-vt7NLBxxhMp7RNkKx3KYDtFSVqKlyt1VSrmmpVU-FqLlztRoJ8QLg_8Zjsuzl7a3uzf3xQ3Vxeze8R8XJGrGPy4YBgVSmqcpKzWbYxmd1BhvBHccFEpX58Wqlzsvz4eflzpb6y_-yZs9k
CODEN OIKSAA
CitedBy_id crossref_primary_10_1371_journal_pone_0114228
crossref_primary_10_1016_j_mimet_2009_07_020
crossref_primary_10_1002_eap_1544
crossref_primary_10_1016_j_scitotenv_2021_147298
crossref_primary_10_1093_femsec_fiab036
crossref_primary_10_1191_0309133306pp477ra
crossref_primary_10_1007_s11104_023_05884_0
crossref_primary_10_1016_j_baae_2011_08_006
crossref_primary_10_7717_peerj_6056
crossref_primary_10_1016_j_scitotenv_2021_145948
crossref_primary_10_1038_s41598_024_84789_z
crossref_primary_10_1111_1365_2745_12376
crossref_primary_10_1111_nph_12852
crossref_primary_10_1007_s11273_019_09665_4
crossref_primary_10_1093_jpe_rtx041
crossref_primary_10_1111_eff_12235
crossref_primary_10_1111_j_1461_0248_2008_01191_x
crossref_primary_10_1007_s10641_011_9936_6
crossref_primary_10_1128_AEM_00322_20
crossref_primary_10_1016_j_chemosphere_2017_06_003
crossref_primary_10_1111_jvs_12906
crossref_primary_10_1086_700402
crossref_primary_10_1111_1365_2664_12959
crossref_primary_10_1007_s11802_017_3217_8
crossref_primary_10_1016_j_mbs_2022_108939
crossref_primary_10_1016_j_pedobi_2004_07_011
crossref_primary_10_1111_2041_210X_14094
crossref_primary_10_1016_j_envres_2024_119798
crossref_primary_10_1016_j_foreco_2020_118180
crossref_primary_10_1007_s10750_015_2603_8
crossref_primary_10_1007_s43393_021_00064_6
crossref_primary_10_1016_j_scitotenv_2024_169899
crossref_primary_10_1007_s10750_018_3531_1
crossref_primary_10_1111_mec_15864
crossref_primary_10_1139_X09_165
crossref_primary_10_1016_j_ecolind_2017_03_022
crossref_primary_10_1016_j_scitotenv_2019_135626
crossref_primary_10_1038_s41559_018_0524_4
crossref_primary_10_1890_10_1323_1
crossref_primary_10_1016_j_biocon_2024_110698
crossref_primary_10_1890_0012_9658_2006_87_2058_SIOFAG_2_0_CO_2
crossref_primary_10_1890_09_0350_1
crossref_primary_10_1890_09_0392_1
crossref_primary_10_1016_j_actao_2007_06_005
crossref_primary_10_3161_00016454AO2022_57_1_005
crossref_primary_10_7717_peerj_11096
crossref_primary_10_1016_j_seares_2014_09_001
crossref_primary_10_1111_j_1365_2427_2007_01859_x
crossref_primary_10_1016_j_fishres_2021_106099
crossref_primary_10_1890_10_2138_1
crossref_primary_10_3390_microorganisms9040719
crossref_primary_10_1111_1365_2745_12714
crossref_primary_10_3389_fevo_2024_1457476
crossref_primary_10_1002_iroh_201201473
crossref_primary_10_1016_j_aquaculture_2019_734733
crossref_primary_10_1016_j_scitotenv_2022_159866
crossref_primary_10_1525_bio_2010_60_6_7
crossref_primary_10_1038_srep20120
crossref_primary_10_3389_fenvs_2022_875789
crossref_primary_10_1139_f02_163
crossref_primary_10_1139_f02_164
crossref_primary_10_1016_j_foreco_2019_117475
crossref_primary_10_1111_j_1574_6941_2012_01302_x
crossref_primary_10_1007_s10750_006_0531_3
crossref_primary_10_1021_acs_est_5b02637
crossref_primary_10_1016_j_watres_2020_116232
crossref_primary_10_1080_02705060_2012_708673
crossref_primary_10_1080_09670262_2013_779390
crossref_primary_10_1016_j_aquaculture_2018_07_053
crossref_primary_10_1016_j_scitotenv_2019_135724
crossref_primary_10_1890_14_1061_1
crossref_primary_10_1007_s10750_012_1198_6
crossref_primary_10_3389_fbioe_2023_1143622
crossref_primary_10_1086_679315
crossref_primary_10_1007_s11356_020_08665_9
crossref_primary_10_1111_geb_12156
crossref_primary_10_1093_femsec_fiaa161
crossref_primary_10_1186_2046_9063_9_20
crossref_primary_10_1016_j_ecoleng_2010_03_016
crossref_primary_10_1590_S2179_975X2012005000010
crossref_primary_10_1890_11_1047_1
crossref_primary_10_1139_cjfas_2012_0339
crossref_primary_10_1111_ele_12864
crossref_primary_10_1007_s00300_015_1887_5
crossref_primary_10_3389_fmicb_2015_01330
crossref_primary_10_1016_j_pedobi_2021_150708
crossref_primary_10_1007_s00267_009_9421_6
crossref_primary_10_1016_j_scitotenv_2021_146724
crossref_primary_10_3897_zookeys_1168_95833
crossref_primary_10_1038_s41586_024_08456_z
crossref_primary_10_1002_ecy_2154
crossref_primary_10_1111_j_1526_100X_2009_00609_x
crossref_primary_10_1002_ecm_1350
crossref_primary_10_1029_2022JC019511
crossref_primary_10_1016_j_quaint_2016_09_012
crossref_primary_10_1016_j_aqrep_2021_100965
crossref_primary_10_1371_journal_pone_0051554
crossref_primary_10_1016_j_still_2020_104928
crossref_primary_10_1890_0012_9658_2006_87_2895_DOSCDU_2_0_CO_2
crossref_primary_10_1111_mec_14693
crossref_primary_10_1016_j_isci_2023_106007
crossref_primary_10_1098_rstb_2010_0262
crossref_primary_10_1111_ele_12590
crossref_primary_10_1890_03_0276
crossref_primary_10_1007_s10201_018_0558_y
crossref_primary_10_1016_j_actatropica_2019_04_027
crossref_primary_10_1016_j_envpol_2018_11_007
crossref_primary_10_7717_peerj_18094
crossref_primary_10_1007_s10651_012_0219_y
crossref_primary_10_3390_biology12040590
crossref_primary_10_1016_j_scitotenv_2020_137684
crossref_primary_10_3389_fpls_2021_580340
crossref_primary_10_1002_ecs2_2881
crossref_primary_10_1016_j_heliyon_2024_e39428
crossref_primary_10_1007_s10980_005_7007_0
crossref_primary_10_1038_s41396_018_0159_0
crossref_primary_10_1890_04_0321
crossref_primary_10_1016_j_scitotenv_2017_08_044
crossref_primary_10_1046_j_1461_0248_2003_00431_x
crossref_primary_10_1093_ee_nvw065
crossref_primary_10_1111_j_1365_2427_2006_01609_x
crossref_primary_10_1111_j_1758_2229_2012_00393_x
crossref_primary_10_1002_eap_2732
crossref_primary_10_1002_ecs2_2629
crossref_primary_10_1002_eap_2615
crossref_primary_10_1038_s41558_021_01249_6
crossref_primary_10_3390_w11102179
crossref_primary_10_1128_msystems_00886_23
crossref_primary_10_1890_13_0327_1
crossref_primary_10_1002_ecy_4430
crossref_primary_10_1139_cjfas_2017_0518
crossref_primary_10_1111_2041_210X_12569
crossref_primary_10_1890_0012_9658_2006_87_2905_CBSEAL_2_0_CO_2
crossref_primary_10_1038_s41598_020_70901_6
crossref_primary_10_1111_1365_2664_12165
crossref_primary_10_3389_fmicb_2018_01037
crossref_primary_10_1016_j_ecolind_2023_110243
crossref_primary_10_1093_femsec_fiaa236
crossref_primary_10_1186_s12915_021_01169_z
crossref_primary_10_1016_j_scitotenv_2019_133585
crossref_primary_10_1093_icesjms_fsae139
crossref_primary_10_1890_10_0157_1
crossref_primary_10_1371_journal_pone_0237368
crossref_primary_10_1080_11956860_2021_1871826
crossref_primary_10_1111_1365_2745_13555
crossref_primary_10_1007_s11356_018_4025_4
crossref_primary_10_1371_journal_pone_0035272
crossref_primary_10_1155_2008_149694
crossref_primary_10_1666_08092_1
crossref_primary_10_1111_jbi_14045
crossref_primary_10_1007_s00442_020_04841_3
crossref_primary_10_1016_j_pecon_2018_09_002
crossref_primary_10_1890_07_0391_1
crossref_primary_10_1371_journal_pone_0133501
crossref_primary_10_1007_s00442_014_2979_6
crossref_primary_10_1890_0012_9658_2006_87_2746_BROPCS_2_0_CO_2
ContentType Journal Article
Copyright Copyright 2000 Oikos
2001 INIST-CNRS
Copyright_xml – notice: Copyright 2000 Oikos
– notice: 2001 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SN
C1K
DOI 10.1034/j.1600-0706.2000.910209.x
DatabaseName Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Ecology Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Ecology Abstracts


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1600-0706
EndPage 293
ExternalDocumentID 931621
10_1034_j_1600_0706_2000_910209_x
OIK910209
3547549
ark_67375_WNG_D0CJPCZG_R
Genre article
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2AX
2~F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AANLZ
AAONW
AASGY
AAXRX
AAXTN
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACKIV
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEJZ
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGUYK
AHBTC
AHXOZ
AIAGR
AICQM
AIDBO
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQVQM
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CBGCD
COF
CS3
D-E
D-F
DATOO
DCZOG
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OES
OIG
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TEORI
TN5
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
Y2W
YFH
YNT
YUY
YV5
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACHIC
ACRPL
ACYXJ
ADNMO
ADXHL
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
AETEA
AGHNM
CITATION
IQODW
7SN
C1K
ID FETCH-LOGICAL-c4349-ea1ebf3aada90a658287766ab4a36373b86c0fe936459f111c6c96a7f8b4cd973
IEDL.DBID DR2
ISSN 0030-1299
IngestDate Fri Jul 11 10:32:21 EDT 2025
Mon Jul 21 09:09:57 EDT 2025
Tue Jul 01 04:10:30 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Wed Jan 22 16:48:41 EST 2025
Thu Jul 03 21:20:57 EDT 2025
Wed Oct 30 09:56:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Biocenosis
Steppe
Old field
Analytical method
Lakes
Euclidean space
Simulation model
Measurement method
Autocorrelation
Time variation
Zooplankton
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4349-ea1ebf3aada90a658287766ab4a36373b86c0fe936459f111c6c96a7f8b4cd973
Notes istex:F150A3FFF1D04C604A906C4F1D0C911F0A5DEC8F
ark:/67375/WNG-D0CJPCZG-R
ArticleID:OIK910209
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 17763869
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_17763869
pascalfrancis_primary_931621
crossref_citationtrail_10_1034_j_1600_0706_2000_910209_x
crossref_primary_10_1034_j_1600_0706_2000_910209_x
wiley_primary_10_1034_j_1600_0706_2000_910209_x_OIK910209
jstor_primary_3547549
istex_primary_ark_67375_WNG_D0CJPCZG_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2000
PublicationDateYYYYMMDD 2000-11-01
PublicationDate_xml – month: 11
  year: 2000
  text: November 2000
PublicationDecade 2000
PublicationPlace Copenhagen
PublicationPlace_xml – name: Copenhagen
– name: Oxford
PublicationTitle Oikos
PublicationTitleAlternate Oikos
PublicationYear 2000
Publisher Munksgaard International Publishers
Munksgaard International Publishers, Ltd
Blackwell
Publisher_xml – name: Munksgaard International Publishers
– name: Munksgaard International Publishers, Ltd
– name: Blackwell
SSID ssj0007774
Score 2.0818594
Snippet It is well known that ecological communities are spatially and temporally dynamic. Quantifying temporal variability in ecological communities is challenging,...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 285
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Datasets
Experimental data
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Techniques
Linear regression
Methods and techniques (sampling, tagging, trapping, modelling...)
Modeling
Ordination
Simulations
Species
Synecology
Time series
Vegetation
Title A method to determine rates and patterns of variability in ecological communities
URI https://api.istex.fr/ark:/67375/WNG-D0CJPCZG-R/fulltext.pdf
https://www.jstor.org/stable/3547549
https://onlinelibrary.wiley.com/doi/abs/10.1034%2Fj.1600-0706.2000.910209.x
https://www.proquest.com/docview/17763869
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3_a9UwEA8yUfxFp25YN2cE8bc-05c0aX4cz7fNiVOHw-EvIUlTkI2-sb43tv31yyVp5xOEgf4WaC-018t96d19DqG3pqjrUjOeu5KSnElrclOVPPe2j9TSm2gbut4_H_C9I7Z_XB6ncUDQCxPxIYYfbnAygr6GA65Nl9rEWTzkHLqiBQmVBmTkDd-YyBE4lFC7BQ7S4S2UlBAJkZlCNYKUD9GbtNf7v-60ZKvuA9sv-7JFqKHUnWdjE-dfLDmov7u5wU7tPEGn_RvG8pST0WJuRvb6D_DH_8SCVfQ4-bN4OwrgU3TPtc_Qgzjh8sqvpjat1qe3LXWeIOmU7jn6to3jGGs8n-E6Vec4DBAWHdZtjc8CBGjb4VmDL3xoH5HFr_CvFjvb625sY6cL4MOuoaOd6ffJXp4GPeSWUSZzpwtnGqp1rSXRHDJ5QnCuDdOUU0FNxS1pnISUqWy8drbcSq5FUxlmaynoOlppZ617gTBzPqRnlfO6ivtgTphaU1E1RSNsWRdEZqjqP6myCQUdhnGcqpCNpwyiIc9UBUyFGZ1ERaaqywyNB9KzCAVyF6J3QW4GCn1-ArV0olQ_DnbVBzLZ_zr5uasOM7QWBGu4kZZM-OA9Q5tLgjZcl_4Nx0WGXvdyp7xigGyPbt1s0anCs5BW3G8ggwzd_ZnVl4-f4vrlP9BuoEcBtiD0bW6ilfn5wr3yDtzcbIWTeQMG1TJF
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELZQK44XzlYECjUS4i2Ls3bs-LFatt1eC1StqHixfEWqCtmq2UUtvx5fSVkkpErwZikZK56M57BnvgHgrSqMKSWhuS0xygnXKldVSXNn-5DhzkTrUPV-OKWTE7J3Wp6m8mhfCxPxIfoDN78zgr72G9wfSKc6cRJ3OfVl0QyFVAM0cJZviPjAeZSrvsN3CLCObsCkGEuYzNjnI3B-D7xJk73_61RL1mrVM_6qS1z0WZSydYysYweMJRf1d0c3WKrtR-B7t8aYoHI-WMzVQP_8A_7xfzHhMXiYXFq4FWXwCbhjm6fgbmxyee1GY51G6-ObqjpHkNRK-wx83oKxkzWcz6BJCToWehSLFsrGwIuAAtq0cFbDHy66j-Di1_CsgVZ36hvqWOziIWLXwMn2-Hg0yVOvh1wTTHhuZWFVjaU0kiNJ_WUeY5RKRSSmmGFVUY1qy_2tKa-dgtZUcypZXSmiDWd4Haw0s8Y-B5BYF9WTyjp1RV08x5SRmFV1UTNdmgLxDFTdPxU6AaH7fhzfRLiQx8QHRI6pwjPVt-lEIjJVXGVg2JNeRDSQ2xC9C4LTU8jLc59Ox0rxZbojPqDR3qfR1x1xlIG1IFn9i7gkzMXvGdhYkrT-OXcrHBYZ2OwETzjd4C98ZGNni1YUjoW4om4CHoTo9t8sPu7ux_GLf6DdBPcnx4cH4mB3uv8SPAgoBqGMcwOszC8X9pXz5-bqddimvwAxNjZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEF-kxeIX66PF2GpXEL_l3NxudrMfyz360rMWi8Uvy74C0pI7enfS-te7r6SeIBT020IySzKZnUdm5jcAvFWFMaUkNLclRjnhWuWqKmnubB8y3JloHbreP07o4Tk5vigv0jgg3wsT8SG6H27-ZAR97Q_4zNSpTZzEQ059VzRDodIA9Zzh6yPecw7lOqGo8iI-PLvDkmIsQTJjX47A-QZ4kzZ7_9etVozVuuf7TVu36Iso5dzxsY4DMFY81N_93GCoxpvgqn3FWJ9y2VsuVE___AP98T_x4Al4nBxauB8l8Cl4YJtn4GEccXnrViOdVtuju546R5CUyvw5-LwP4xxruJhCk8pzLPQYFnMoGwNnAQO0mcNpDX-42D5Ci9_C7w20ulXeUMdWFw8QuwXOx6Mvg8M8TXrINcGE51YWVtVYSiM5ktSn8hijVCoiMcUMq4pqVFvuc6a8dupZU82pZHWliDac4W2w1kwb-wJAYl1MTyrrlBV10RxTRmJW1UXNdGkKxDNQtZ9U6ASD7qdxXImQjsfEh0OOqcIz1Q_pRCIyVdxkoN-RziIWyH2I3gW56Sjk9aUvpmOl-Do5EEM0OD4dfDsQZxnYCoLV3YhLwlz0noHdFUHrrnP3hv0iA3ut3AmnGXy6RzZ2upyLwrEQV9RtwIMM3f-Zxaejk7h--Q-0e2DjdDgWH44mJzvgUYAwCD2cu2Btcb20r5wzt1CvwyH9BWhFNRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+to+determine+rates+and+patterns+of+variability+in+ecological+communities&rft.jtitle=Oikos&rft.au=COLLINS%2C+Scott+L&rft.au=MICHELI%2C+Fiorenza&rft.au=HARTT%2C+Laura&rft.date=2000-11-01&rft.pub=Blackwell&rft.issn=0030-1299&rft.volume=91&rft.issue=2&rft.spage=285&rft.epage=293&rft_id=info:doi/10.1034%2Fj.1600-0706.2000.910209.x&rft.externalDBID=n%2Fa&rft.externalDocID=931621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-1299&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-1299&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-1299&client=summon