Noncovalent structure of SENP1 in complex with SUMO2

SUMOylation is a post‐translational modification in which a small ubiquitin‐like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper...

Full description

Saved in:
Bibliographic Details
Published inActa crystallographica. Section F, Structural biology communications Vol. 75; no. 5; pp. 332 - 339
Main Author Ambaye, Nigus D.
Format Journal Article
LanguageEnglish
Published 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.05.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMOylation is a post‐translational modification in which a small ubiquitin‐like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono‐SUMOylated proteins and engage in poly‐SUMO chain formation, while sentrin‐specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1–SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and Rfree values of 22.92% and 27.66%, respectively. The structure shows that SENP1–SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C‐terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1–SUMO2 complex formation. The complex of two key proteins of the SUMOylation pathway is presented to 2.6 Å. This work reveals the polar nature of the interaction between the proteins, and shows how the essential QQTGG motif of SUMO2 is arranged relative to the active site of SENP1.
AbstractList SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono-SUMOylated proteins and engage in poly-SUMO chain formation, while sentrin-specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1–SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and R free values of 22.92% and 27.66%, respectively. The structure shows that SENP1–SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C-terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1–SUMO2 complex formation.
SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono-SUMOylated proteins and engage in poly-SUMO chain formation, while sentrin-specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1-SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and R values of 22.92% and 27.66%, respectively. The structure shows that SENP1-SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C-terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1-SUMO2 complex formation.
SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono-SUMOylated proteins and engage in poly-SUMO chain formation, while sentrin-specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1-SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and Rfree values of 22.92% and 27.66%, respectively. The structure shows that SENP1-SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C-terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1-SUMO2 complex formation.SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono-SUMOylated proteins and engage in poly-SUMO chain formation, while sentrin-specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1-SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and Rfree values of 22.92% and 27.66%, respectively. The structure shows that SENP1-SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C-terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1-SUMO2 complex formation.
SUMOylation is a post‐translational modification in which a small ubiquitin‐like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono‐SUMOylated proteins and engage in poly‐SUMO chain formation, while sentrin‐specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1–SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and Rfree values of 22.92% and 27.66%, respectively. The structure shows that SENP1–SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C‐terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1–SUMO2 complex formation. The complex of two key proteins of the SUMOylation pathway is presented to 2.6 Å. This work reveals the polar nature of the interaction between the proteins, and shows how the essential QQTGG motif of SUMO2 is arranged relative to the active site of SENP1.
SUMOylation is a post‐translational modification in which a small ubiquitin‐like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono‐SUMOylated proteins and engage in poly‐SUMO chain formation, while sentrin‐specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1–SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and Rfree values of 22.92% and 27.66%, respectively. The structure shows that SENP1–SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C‐terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1–SUMO2 complex formation.
The complex of two key proteins of the SUMOylation pathway is presented to 2.6 Å. This work reveals the polar nature of the interaction between the proteins, and shows how the essential QQTGG motif of SUMO2 is arranged relative to the active site of SENP1. SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono-SUMOylated proteins and engage in poly-SUMO chain formation, while sentrin-specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1–SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and R free values of 22.92% and 27.66%, respectively. The structure shows that SENP1–SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C-terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1–SUMO2 complex formation.
Author Ambaye, Nigus D.
Author_xml – sequence: 1
  givenname: Nigus D.
  surname: Ambaye
  fullname: Ambaye, Nigus D.
  email: nambaye@coh.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31045562$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYMoPmp_gBsZcOOmmtdMzEYQsSr4gragq5BkEo1MJzWZ8fHvzVAVraCrhJvv3Jxz7wZYrn1tANhCcA8hyPZHGOYEE3iLOIQUF8USWO9Kg662_O2-BvoxPkIIOxlifBWsEQRpnhd4HdArX2v_LCtTN1lsQqubNpjM22x0cnWDMldn2k9nlXnNXlzzkI0ml9d4E6xYWUXT_zh7YDI8GR-fDS6uT8-Pjy4GmhLKB7kqlWZE2QPKc6Qw0QUpbGmRJQRRxSiEpcUlTozEWiuLWappg7iGSuWS9MDhvO-sVVNT6uQxyErMgpvK8Ca8dOLnS-0exL1_FgXlDKX8PbD70SD4p9bERkxd1KaqZG18GwXG3fAQoyyhOwvoo29DneJ11AEhGHOYqO3vjr6sfA40AWgO6OBjDMZ-IQiKbgHi196Shi1otGtk43wXylV_Kvlc-eIq8_b_V-LoboiH4xxyTt4BgK2pqg
CitedBy_id crossref_primary_10_1016_j_bmcl_2023_129460
crossref_primary_10_3389_fonc_2021_685009
crossref_primary_10_1038_s41467_022_34993_0
crossref_primary_10_1016_j_lfs_2021_120122
crossref_primary_10_1080_13543776_2022_2165910
crossref_primary_10_1007_s13659_021_00298_w
crossref_primary_10_1016_j_lfs_2023_122085
Cites_doi 10.1146/annurev.biochem.73.011303.074118
10.1016/S1047-8477(03)00050-9
10.1107/S0907444912001308
10.3390/ijms140611643
10.1016/j.jmb.2007.05.022
10.3892/or.2013.2318
10.1016/j.bbamcr.2012.01.010
10.1021/cb400177q
10.1016/j.molcel.2013.01.017
10.1042/BJ20052030
10.1016/j.canlet.2011.10.036
10.1016/S0092-8674(00)81862-0
10.1593/neo.06445
10.1074/jbc.M706978200
10.1007/s00018-007-7137-4
10.1016/j.jmb.2004.10.022
10.1038/ncb1716
10.1074/jbc.M109.071431
10.1042/BJ20060526
10.1038/nrm3011
10.1038/nrm3478
10.1021/acs.biochem.7b00947
10.1107/S0907444904019158
10.1038/ncomms5234
10.1016/j.canlet.2011.05.019
10.1038/nsmb1168
10.1107/S0108767389009815
10.1016/j.tcb.2007.08.002
10.1371/journal.ppat.1003480
10.1038/nsmb1172
10.1107/S0907444909047337
10.1038/sj.emboj.7600628
10.1210/me.2008-0219
10.1016/j.cytogfr.2016.04.003
10.1038/sj.onc.1208714
10.1038/ncomms5968
10.1107/S2053230X13033141
10.1016/j.str.2004.05.023
10.1107/S0021889807021206
10.1016/j.bbrc.2015.03.047
10.1038/ncb1717
10.1074/jbc.M706505200
10.1002/bab.1375
10.3892/or.2016.5036
10.1074/jbc.275.5.3355
10.1083/jcb.135.6.1457
10.1128/MCB.00583-08
10.1107/S0907444905036693
10.18632/oncotarget.12606
10.1111/j.1432-1033.2004.04349.x
10.1007/978-3-319-50044-7_18
10.3892/etm.2013.1259
10.1007/978-3-319-50044-7_17
ContentType Journal Article
Copyright International Union of Crystallography, 2019
Copyright Wiley Subscription Services, Inc. May 2019
International Union of Crystallography 2019 2019
Copyright_xml – notice: International Union of Crystallography, 2019
– notice: Copyright Wiley Subscription Services, Inc. May 2019
– notice: International Union of Crystallography 2019 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1107/S2053230X19004266
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate SENP1 in complex with SUMO2
EISSN 2053-230X
EndPage 339
ExternalDocumentID PMC6497105
31045562
10_1107_S2053230X19004266
AYF2FT5099
Genre article
Journal Article
GroupedDBID 0R~
1OC
33P
3SF
52U
53G
5VS
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BRXPI
BY8
DCZOG
DIK
DRFUL
DRSTM
EBS
EJD
G-S
GODZA
H.T
H.X
HGLYW
HH5
HYE
J0M
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
O66
P2W
RCJ
RPM
SUPJJ
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WYISQ
ZZTAW
AAYXX
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c4349-5bdbc73bf84951b23c636fdf1f3314b7400df2d2c73a2ccbf27740ce19c0bb5a3
ISSN 2053-230X
IngestDate Thu Aug 21 18:36:33 EDT 2025
Fri Jul 11 02:57:55 EDT 2025
Fri Jul 25 12:16:52 EDT 2025
Thu Apr 03 06:59:22 EDT 2025
Tue Jul 01 01:18:26 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Wed Jan 22 17:05:28 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords protease
SENP
SUMO2
X-ray diffraction
cancer
SUMOylation
SENP1
Language English
License Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, see http://journals.iucr.org/services/copyrightpolicy.html.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4349-5bdbc73bf84951b23c636fdf1f3314b7400df2d2c73a2ccbf27740ce19c0bb5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31045562
PQID 2218332290
PQPubID 1036388
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6497105
proquest_miscellaneous_2219001747
proquest_journals_2218332290
pubmed_primary_31045562
crossref_primary_10_1107_S2053230X19004266
crossref_citationtrail_10_1107_S2053230X19004266
wiley_primary_10_1107_S2053230X19004266_AYF2FT5099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
– name: United States
– name: Chester
PublicationTitle Acta crystallographica. Section F, Structural biology communications
PublicationTitleAlternate Acta Crystallogr F Struct Biol Commun
PublicationYear 2019
Publisher International Union of Crystallography
Wiley Subscription Services, Inc
Publisher_xml – name: International Union of Crystallography
– name: Wiley Subscription Services, Inc
References Gong (ft5099_bb15) 2000; 275
Hickey (ft5099_bb19) 2012; 13
Kaikkonen (ft5099_bb25) 2009; 23
Shen (ft5099_bb43) 2006; 397
Uzunova (ft5099_bb47) 2007; 282
Reverter (ft5099_bb39) 2005; 345
Lee (ft5099_bb29) 2008; 28
DeLucas (ft5099_bb9) 2003; 142
McCoy (ft5099_bb35) 2007; 40
Shen (ft5099_bb42) 2006; 13
Huang (ft5099_bb21) 2004; 271
Krissinel (ft5099_bb26) 2007; 372
Emsley (ft5099_bb11) 2004; 60
Rossmann (ft5099_bb40) 1990; 46
Hay (ft5099_bb18) 2007; 17
Kabsch (ft5099_bb24) 2010; 66
Han (ft5099_bb16) 2010; 285
Wang (ft5099_bb49) 2016; 36
Cheng (ft5099_bb8) 2006; 8
Sun (ft5099_bb45) 2013; 29
Chen (ft5099_bb7) 2014; 5
Johnson (ft5099_bb23) 2004; 73
ft5099_bb54
Reverter (ft5099_bb38) 2006; 13
Xiang-ming (ft5099_bb50) 2016; 63
Tatham (ft5099_bb46) 2008; 10
Matunis (ft5099_bb34) 1996; 135
Xu (ft5099_bb52) 2011; 309
Mahajan (ft5099_bb33) 1997; 88
Bawa-Khalfe (ft5099_bb3) 2007; 282
Evans (ft5099_bb12) 2006; 62
Ambaye (ft5099_bb2) 2018; 57
Fu (ft5099_bb13) 2005; 24
Dong (ft5099_bb10) 2016; 7
Lee (ft5099_bb30) 2017; 963
Wang (ft5099_bb48) 2013; 6
Huang (ft5099_bb20) 2014; 5
Madu (ft5099_bb32) 2013; 8
Jackson (ft5099_bb22) 2013; 49
Zhang (ft5099_bb55) 2017; 963
Liu (ft5099_bb31) 2013; 9
Bettermann (ft5099_bb5) 2012; 316
Gareau (ft5099_bb14) 2010; 11
Hannoun (ft5099_bb17) 2016; 29
Xu (ft5099_bb53) 2006; 398
Zhao (ft5099_bb56) 2007; 64
Russo Krauss (ft5099_bb41) 2013; 14
McPherson (ft5099_bb36) 2014; 70
Xu (ft5099_bb51) 2015; 460
Reverter (ft5099_bb37) 2004; 12
Shen (ft5099_bb44) 2005; 24
Afonine (ft5099_bb1) 2012; 68
Bellail (ft5099_bb4) 2014; 5
Častorálová (ft5099_bb6) 2012; 1823
Lallemand-Breitenbach (ft5099_bb27) 2008; 10
References_xml – volume: 73
  start-page: 355
  year: 2004
  ident: ft5099_bb23
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.73.011303.074118
– volume: 142
  start-page: 188
  year: 2003
  ident: ft5099_bb9
  publication-title: J. Struct. Biol.
  doi: 10.1016/S1047-8477(03)00050-9
– volume: 68
  start-page: 352
  year: 2012
  ident: ft5099_bb1
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444912001308
– volume: 14
  start-page: 11643
  year: 2013
  ident: ft5099_bb41
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms140611643
– volume: 372
  start-page: 774
  year: 2007
  ident: ft5099_bb26
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.022
– volume: 29
  start-page: 1701
  year: 2013
  ident: ft5099_bb45
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2013.2318
– volume: 1823
  start-page: 911
  year: 2012
  ident: ft5099_bb6
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2012.01.010
– volume: 8
  start-page: 1435
  year: 2013
  ident: ft5099_bb32
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb400177q
– volume: 49
  start-page: 795
  year: 2013
  ident: ft5099_bb22
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.01.017
– volume: 397
  start-page: 279
  year: 2006
  ident: ft5099_bb43
  publication-title: Biochem. J.
  doi: 10.1042/BJ20052030
– volume: 316
  start-page: 113
  year: 2012
  ident: ft5099_bb5
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2011.10.036
– volume: 88
  start-page: 97
  year: 1997
  ident: ft5099_bb33
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81862-0
– volume: 8
  start-page: 667
  year: 2006
  ident: ft5099_bb8
  publication-title: Neoplasia
  doi: 10.1593/neo.06445
– volume: 282
  start-page: 37341
  year: 2007
  ident: ft5099_bb3
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706978200
– volume: 64
  start-page: 3017
  year: 2007
  ident: ft5099_bb56
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-007-7137-4
– volume: 345
  start-page: 141
  year: 2005
  ident: ft5099_bb39
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.10.022
– volume: 10
  start-page: 538
  year: 2008
  ident: ft5099_bb46
  publication-title: Nature Cell Biol.
  doi: 10.1038/ncb1716
– volume: 285
  start-page: 12906
  year: 2010
  ident: ft5099_bb16
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.071431
– volume: 398
  start-page: 345
  year: 2006
  ident: ft5099_bb53
  publication-title: Biochem. J.
  doi: 10.1042/BJ20060526
– volume: 11
  start-page: 861
  year: 2010
  ident: ft5099_bb14
  publication-title: Nature Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3011
– volume: 13
  start-page: 755
  year: 2012
  ident: ft5099_bb19
  publication-title: Nature Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3478
– volume: 57
  start-page: 1807
  year: 2018
  ident: ft5099_bb2
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b00947
– volume: 60
  start-page: 2126
  year: 2004
  ident: ft5099_bb11
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444904019158
– volume: 5
  start-page: 309
  year: 2014
  ident: ft5099_bb20
  publication-title: Am. J. Cancer Res.
– volume: 5
  start-page: 4234
  year: 2014
  ident: ft5099_bb4
  publication-title: Nature Commun.
  doi: 10.1038/ncomms5234
– volume: 309
  start-page: 78
  year: 2011
  ident: ft5099_bb52
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2011.05.019
– volume: 13
  start-page: 1060
  year: 2006
  ident: ft5099_bb38
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb1168
– volume: 46
  start-page: 73
  year: 1990
  ident: ft5099_bb40
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767389009815
– volume: 17
  start-page: 370
  year: 2007
  ident: ft5099_bb18
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2007.08.002
– volume: 9
  start-page: e1003480
  year: 2013
  ident: ft5099_bb31
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003480
– volume: 13
  start-page: 1069
  year: 2006
  ident: ft5099_bb42
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb1172
– volume: 66
  start-page: 125
  year: 2010
  ident: ft5099_bb24
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444909047337
– ident: ft5099_bb54
– volume: 24
  start-page: 1341
  year: 2005
  ident: ft5099_bb44
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600628
– volume: 23
  start-page: 292
  year: 2009
  ident: ft5099_bb25
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2008-0219
– volume: 29
  start-page: 3
  year: 2016
  ident: ft5099_bb17
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2016.04.003
– volume: 24
  start-page: 5401
  year: 2005
  ident: ft5099_bb13
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208714
– volume: 5
  start-page: 4968
  year: 2014
  ident: ft5099_bb7
  publication-title: Nature Commun.
  doi: 10.1038/ncomms5968
– volume: 70
  start-page: 2
  year: 2014
  ident: ft5099_bb36
  publication-title: Acta Cryst. F
  doi: 10.1107/S2053230X13033141
– volume: 12
  start-page: 1519
  year: 2004
  ident: ft5099_bb37
  publication-title: Structure
  doi: 10.1016/j.str.2004.05.023
– volume: 40
  start-page: 658
  year: 2007
  ident: ft5099_bb35
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889807021206
– volume: 460
  start-page: 409
  year: 2015
  ident: ft5099_bb51
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.03.047
– volume: 10
  start-page: 547
  year: 2008
  ident: ft5099_bb27
  publication-title: Nature Cell Biol.
  doi: 10.1038/ncb1717
– volume: 282
  start-page: 34167
  year: 2007
  ident: ft5099_bb47
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706505200
– volume: 63
  start-page: 435
  year: 2016
  ident: ft5099_bb50
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1002/bab.1375
– volume: 36
  start-page: 2071
  year: 2016
  ident: ft5099_bb49
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2016.5036
– volume: 275
  start-page: 3355
  year: 2000
  ident: ft5099_bb15
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.5.3355
– volume: 135
  start-page: 1457
  year: 1996
  ident: ft5099_bb34
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.135.6.1457
– volume: 28
  start-page: 6056
  year: 2008
  ident: ft5099_bb29
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00583-08
– volume: 62
  start-page: 72
  year: 2006
  ident: ft5099_bb12
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444905036693
– volume: 7
  start-page: 80435
  year: 2016
  ident: ft5099_bb10
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.12606
– volume: 271
  start-page: 4114
  year: 2004
  ident: ft5099_bb21
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.2004.04349.x
– volume: 963
  start-page: 299
  year: 2017
  ident: ft5099_bb55
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-50044-7_18
– volume: 6
  start-page: 1054
  year: 2013
  ident: ft5099_bb48
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2013.1259
– volume: 963
  start-page: 283
  year: 2017
  ident: ft5099_bb30
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-50044-7_17
SSID ssj0001107179
Score 2.1833017
Snippet SUMOylation is a post‐translational modification in which a small ubiquitin‐like molecule (SUMO) is appended to substrate proteins and is known to influence...
SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence...
The complex of two key proteins of the SUMOylation pathway is presented to 2.6 Å. This work reveals the polar nature of the interaction between the proteins,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 332
SubjectTerms Amino Acid Sequence
Binding Sites
Biological activity
cancer
Catalysis
Cloning, Molecular
Complex formation
Crystallography, X-Ray
Cysteine Endopeptidases - chemistry
Cysteine Endopeptidases - genetics
Cysteine Endopeptidases - metabolism
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Expression
Genetic Vectors - chemistry
Genetic Vectors - metabolism
Humans
Hydrophobicity
Models, Molecular
protease
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Research Communications
SENP
SENP1
Small Ubiquitin-Related Modifier Proteins - chemistry
Small Ubiquitin-Related Modifier Proteins - genetics
Small Ubiquitin-Related Modifier Proteins - metabolism
Structural Homology, Protein
Substrates
SUMO protein
SUMO2
SUMOylation
Thermodynamics
Ubiquitin
X‐ray diffraction
Title Noncovalent structure of SENP1 in complex with SUMO2
URI https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS2053230X19004266
https://www.ncbi.nlm.nih.gov/pubmed/31045562
https://www.proquest.com/docview/2218332290
https://www.proquest.com/docview/2219001747
https://pubmed.ncbi.nlm.nih.gov/PMC6497105
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB6MvY2VfXtvhwZ4WnMWSbFmPoWtoN5YVlkL2ZCxZ3gqpXdoU1v31u5Nk18H7fjGJpZzj-0nH76TTHSGvjNKykGUcZVqIiGcqhSlVgDEUFTdVwWDM4HrHh3l6dMrfLZNlW6vcny5Zq7H-_tNzJf-DKtwDXPGU7D8g2wmFG_AZ8IUrIAzXv8J43tS6AYG4n-8SweJ2AB5DOZyfxCMfYr4y39xyK1jQj7TPRqd6XYz05Q0wxJXPXQ2YjXER3g6LmYsDc4IByzZjk-6fKulI-fRcFTfGDa8v11c-ltivKOAhpjZ-b2ys5aEwMyPwTZZ9M-kKnPjhcLIeJT2zx9wa5dAc2wiMTygPxQH5QJct7fcFjV6cW3yAaPIk8bZ5Mwd223SX3KPgDmClirfH72_X0mL0SqXftIYvbwaP3Cb3WyGbDGTgVgyjY_tei6Udi4fkgfcXwqkDf4fcMfUjwnvAhx3wYVOFFvjwrA498CECH1rgH5PT2eHi4Cjy5S8izRmXUaJKpQVTVQZObKwo0ylLq7KKK8ZirgRY37KiJYU-BdVaVaAaPtEmlnqiVFKwJ2SrbmrzjITGAO3gMeiBJhgHJTNJTWZokWZpJkQSkEmrklz73PBYomSVWx9xIvKBQgPyuvvJhUuM8rvOe62ecz9_rnKK7JxhvYGAvOyawbrhllVRm-ba9pFIpLgIyFMHS_e0Fs-AiA3Aug6YOX2zpT77ajOop1wCs4bXphbaP79APv08o7MFsGv5_Jd_ZJds306nPbIF8Jt9oKxr9cKO1x-Yqoz_
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncovalent+structure+of+SENP1+in+complex+with+SUMO2&rft.jtitle=Acta+crystallographica.+Section+F%2C+Structural+biology+communications&rft.au=Ambaye%2C+Nigus+D&rft.date=2019-05-01&rft.eissn=2053-230X&rft.volume=75&rft.issue=Pt+5&rft.spage=332&rft_id=info:doi/10.1107%2FS2053230X19004266&rft_id=info%3Apmid%2F31045562&rft.externalDocID=31045562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2053-230X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2053-230X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2053-230X&client=summon