Noncovalent structure of SENP1 in complex with SUMO2
SUMOylation is a post‐translational modification in which a small ubiquitin‐like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper...
Saved in:
Published in | Acta crystallographica. Section F, Structural biology communications Vol. 75; no. 5; pp. 332 - 339 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
5 Abbey Square, Chester, Cheshire CH1 2HU, England
International Union of Crystallography
01.05.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMOylation is a post‐translational modification in which a small ubiquitin‐like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono‐SUMOylated proteins and engage in poly‐SUMO chain formation, while sentrin‐specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1–SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and Rfree values of 22.92% and 27.66%, respectively. The structure shows that SENP1–SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C‐terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1–SUMO2 complex formation.
The complex of two key proteins of the SUMOylation pathway is presented to 2.6 Å. This work reveals the polar nature of the interaction between the proteins, and shows how the essential QQTGG motif of SUMO2 is arranged relative to the active site of SENP1. |
---|---|
AbstractList | SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono-SUMOylated proteins and engage in poly-SUMO chain formation, while sentrin-specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1–SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with
R
and
R
free
values of 22.92% and 27.66%, respectively. The structure shows that SENP1–SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C-terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1–SUMO2 complex formation. SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono-SUMOylated proteins and engage in poly-SUMO chain formation, while sentrin-specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1-SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and R values of 22.92% and 27.66%, respectively. The structure shows that SENP1-SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C-terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1-SUMO2 complex formation. SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono-SUMOylated proteins and engage in poly-SUMO chain formation, while sentrin-specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1-SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and Rfree values of 22.92% and 27.66%, respectively. The structure shows that SENP1-SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C-terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1-SUMO2 complex formation.SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono-SUMOylated proteins and engage in poly-SUMO chain formation, while sentrin-specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1-SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and Rfree values of 22.92% and 27.66%, respectively. The structure shows that SENP1-SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C-terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1-SUMO2 complex formation. SUMOylation is a post‐translational modification in which a small ubiquitin‐like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono‐SUMOylated proteins and engage in poly‐SUMO chain formation, while sentrin‐specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1–SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and Rfree values of 22.92% and 27.66%, respectively. The structure shows that SENP1–SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C‐terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1–SUMO2 complex formation. The complex of two key proteins of the SUMOylation pathway is presented to 2.6 Å. This work reveals the polar nature of the interaction between the proteins, and shows how the essential QQTGG motif of SUMO2 is arranged relative to the active site of SENP1. SUMOylation is a post‐translational modification in which a small ubiquitin‐like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono‐SUMOylated proteins and engage in poly‐SUMO chain formation, while sentrin‐specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1–SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and Rfree values of 22.92% and 27.66%, respectively. The structure shows that SENP1–SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C‐terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1–SUMO2 complex formation. The complex of two key proteins of the SUMOylation pathway is presented to 2.6 Å. This work reveals the polar nature of the interaction between the proteins, and shows how the essential QQTGG motif of SUMO2 is arranged relative to the active site of SENP1. SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono-SUMOylated proteins and engage in poly-SUMO chain formation, while sentrin-specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1–SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and R free values of 22.92% and 27.66%, respectively. The structure shows that SENP1–SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C-terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1–SUMO2 complex formation. |
Author | Ambaye, Nigus D. |
Author_xml | – sequence: 1 givenname: Nigus D. surname: Ambaye fullname: Ambaye, Nigus D. email: nambaye@coh.org |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31045562$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYMoPmp_gBsZcOOmmtdMzEYQsSr4gragq5BkEo1MJzWZ8fHvzVAVraCrhJvv3Jxz7wZYrn1tANhCcA8hyPZHGOYEE3iLOIQUF8USWO9Kg662_O2-BvoxPkIIOxlifBWsEQRpnhd4HdArX2v_LCtTN1lsQqubNpjM22x0cnWDMldn2k9nlXnNXlzzkI0ml9d4E6xYWUXT_zh7YDI8GR-fDS6uT8-Pjy4GmhLKB7kqlWZE2QPKc6Qw0QUpbGmRJQRRxSiEpcUlTozEWiuLWappg7iGSuWS9MDhvO-sVVNT6uQxyErMgpvK8Ca8dOLnS-0exL1_FgXlDKX8PbD70SD4p9bERkxd1KaqZG18GwXG3fAQoyyhOwvoo29DneJ11AEhGHOYqO3vjr6sfA40AWgO6OBjDMZ-IQiKbgHi196Shi1otGtk43wXylV_Kvlc-eIq8_b_V-LoboiH4xxyTt4BgK2pqg |
CitedBy_id | crossref_primary_10_1016_j_bmcl_2023_129460 crossref_primary_10_3389_fonc_2021_685009 crossref_primary_10_1038_s41467_022_34993_0 crossref_primary_10_1016_j_lfs_2021_120122 crossref_primary_10_1080_13543776_2022_2165910 crossref_primary_10_1007_s13659_021_00298_w crossref_primary_10_1016_j_lfs_2023_122085 |
Cites_doi | 10.1146/annurev.biochem.73.011303.074118 10.1016/S1047-8477(03)00050-9 10.1107/S0907444912001308 10.3390/ijms140611643 10.1016/j.jmb.2007.05.022 10.3892/or.2013.2318 10.1016/j.bbamcr.2012.01.010 10.1021/cb400177q 10.1016/j.molcel.2013.01.017 10.1042/BJ20052030 10.1016/j.canlet.2011.10.036 10.1016/S0092-8674(00)81862-0 10.1593/neo.06445 10.1074/jbc.M706978200 10.1007/s00018-007-7137-4 10.1016/j.jmb.2004.10.022 10.1038/ncb1716 10.1074/jbc.M109.071431 10.1042/BJ20060526 10.1038/nrm3011 10.1038/nrm3478 10.1021/acs.biochem.7b00947 10.1107/S0907444904019158 10.1038/ncomms5234 10.1016/j.canlet.2011.05.019 10.1038/nsmb1168 10.1107/S0108767389009815 10.1016/j.tcb.2007.08.002 10.1371/journal.ppat.1003480 10.1038/nsmb1172 10.1107/S0907444909047337 10.1038/sj.emboj.7600628 10.1210/me.2008-0219 10.1016/j.cytogfr.2016.04.003 10.1038/sj.onc.1208714 10.1038/ncomms5968 10.1107/S2053230X13033141 10.1016/j.str.2004.05.023 10.1107/S0021889807021206 10.1016/j.bbrc.2015.03.047 10.1038/ncb1717 10.1074/jbc.M706505200 10.1002/bab.1375 10.3892/or.2016.5036 10.1074/jbc.275.5.3355 10.1083/jcb.135.6.1457 10.1128/MCB.00583-08 10.1107/S0907444905036693 10.18632/oncotarget.12606 10.1111/j.1432-1033.2004.04349.x 10.1007/978-3-319-50044-7_18 10.3892/etm.2013.1259 10.1007/978-3-319-50044-7_17 |
ContentType | Journal Article |
Copyright | International Union of Crystallography, 2019 Copyright Wiley Subscription Services, Inc. May 2019 International Union of Crystallography 2019 2019 |
Copyright_xml | – notice: International Union of Crystallography, 2019 – notice: Copyright Wiley Subscription Services, Inc. May 2019 – notice: International Union of Crystallography 2019 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1107/S2053230X19004266 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | SENP1 in complex with SUMO2 |
EISSN | 2053-230X |
EndPage | 339 |
ExternalDocumentID | PMC6497105 31045562 10_1107_S2053230X19004266 AYF2FT5099 |
Genre | article Journal Article |
GroupedDBID | 0R~ 1OC 33P 3SF 52U 53G 5VS AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AOIJS ATUGU AUFTA AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BRXPI BY8 DCZOG DIK DRFUL DRSTM EBS EJD G-S GODZA H.T H.X HGLYW HH5 HYE J0M LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM O66 P2W RCJ RPM SUPJJ W99 WBFHL WBKPD WIH WIK WOHZO WYISQ ZZTAW AAYXX ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c4349-5bdbc73bf84951b23c636fdf1f3314b7400df2d2c73a2ccbf27740ce19c0bb5a3 |
ISSN | 2053-230X |
IngestDate | Thu Aug 21 18:36:33 EDT 2025 Fri Jul 11 02:57:55 EDT 2025 Fri Jul 25 12:16:52 EDT 2025 Thu Apr 03 06:59:22 EDT 2025 Tue Jul 01 01:18:26 EDT 2025 Thu Apr 24 22:59:23 EDT 2025 Wed Jan 22 17:05:28 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | protease SENP SUMO2 X-ray diffraction cancer SUMOylation SENP1 |
Language | English |
License | Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, see http://journals.iucr.org/services/copyrightpolicy.html. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4349-5bdbc73bf84951b23c636fdf1f3314b7400df2d2c73a2ccbf27740ce19c0bb5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31045562 |
PQID | 2218332290 |
PQPubID | 1036388 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6497105 proquest_miscellaneous_2219001747 proquest_journals_2218332290 pubmed_primary_31045562 crossref_primary_10_1107_S2053230X19004266 crossref_citationtrail_10_1107_S2053230X19004266 wiley_primary_10_1107_S2053230X19004266_AYF2FT5099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationPlace | 5 Abbey Square, Chester, Cheshire CH1 2HU, England |
PublicationPlace_xml | – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England – name: United States – name: Chester |
PublicationTitle | Acta crystallographica. Section F, Structural biology communications |
PublicationTitleAlternate | Acta Crystallogr F Struct Biol Commun |
PublicationYear | 2019 |
Publisher | International Union of Crystallography Wiley Subscription Services, Inc |
Publisher_xml | – name: International Union of Crystallography – name: Wiley Subscription Services, Inc |
References | Gong (ft5099_bb15) 2000; 275 Hickey (ft5099_bb19) 2012; 13 Kaikkonen (ft5099_bb25) 2009; 23 Shen (ft5099_bb43) 2006; 397 Uzunova (ft5099_bb47) 2007; 282 Reverter (ft5099_bb39) 2005; 345 Lee (ft5099_bb29) 2008; 28 DeLucas (ft5099_bb9) 2003; 142 McCoy (ft5099_bb35) 2007; 40 Shen (ft5099_bb42) 2006; 13 Huang (ft5099_bb21) 2004; 271 Krissinel (ft5099_bb26) 2007; 372 Emsley (ft5099_bb11) 2004; 60 Rossmann (ft5099_bb40) 1990; 46 Hay (ft5099_bb18) 2007; 17 Kabsch (ft5099_bb24) 2010; 66 Han (ft5099_bb16) 2010; 285 Wang (ft5099_bb49) 2016; 36 Cheng (ft5099_bb8) 2006; 8 Sun (ft5099_bb45) 2013; 29 Chen (ft5099_bb7) 2014; 5 Johnson (ft5099_bb23) 2004; 73 ft5099_bb54 Reverter (ft5099_bb38) 2006; 13 Xiang-ming (ft5099_bb50) 2016; 63 Tatham (ft5099_bb46) 2008; 10 Matunis (ft5099_bb34) 1996; 135 Xu (ft5099_bb52) 2011; 309 Mahajan (ft5099_bb33) 1997; 88 Bawa-Khalfe (ft5099_bb3) 2007; 282 Evans (ft5099_bb12) 2006; 62 Ambaye (ft5099_bb2) 2018; 57 Fu (ft5099_bb13) 2005; 24 Dong (ft5099_bb10) 2016; 7 Lee (ft5099_bb30) 2017; 963 Wang (ft5099_bb48) 2013; 6 Huang (ft5099_bb20) 2014; 5 Madu (ft5099_bb32) 2013; 8 Jackson (ft5099_bb22) 2013; 49 Zhang (ft5099_bb55) 2017; 963 Liu (ft5099_bb31) 2013; 9 Bettermann (ft5099_bb5) 2012; 316 Gareau (ft5099_bb14) 2010; 11 Hannoun (ft5099_bb17) 2016; 29 Xu (ft5099_bb53) 2006; 398 Zhao (ft5099_bb56) 2007; 64 Russo Krauss (ft5099_bb41) 2013; 14 McPherson (ft5099_bb36) 2014; 70 Xu (ft5099_bb51) 2015; 460 Reverter (ft5099_bb37) 2004; 12 Shen (ft5099_bb44) 2005; 24 Afonine (ft5099_bb1) 2012; 68 Bellail (ft5099_bb4) 2014; 5 Častorálová (ft5099_bb6) 2012; 1823 Lallemand-Breitenbach (ft5099_bb27) 2008; 10 |
References_xml | – volume: 73 start-page: 355 year: 2004 ident: ft5099_bb23 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.73.011303.074118 – volume: 142 start-page: 188 year: 2003 ident: ft5099_bb9 publication-title: J. Struct. Biol. doi: 10.1016/S1047-8477(03)00050-9 – volume: 68 start-page: 352 year: 2012 ident: ft5099_bb1 publication-title: Acta Cryst. D doi: 10.1107/S0907444912001308 – volume: 14 start-page: 11643 year: 2013 ident: ft5099_bb41 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms140611643 – volume: 372 start-page: 774 year: 2007 ident: ft5099_bb26 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – volume: 29 start-page: 1701 year: 2013 ident: ft5099_bb45 publication-title: Oncol. Rep. doi: 10.3892/or.2013.2318 – volume: 1823 start-page: 911 year: 2012 ident: ft5099_bb6 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2012.01.010 – volume: 8 start-page: 1435 year: 2013 ident: ft5099_bb32 publication-title: ACS Chem. Biol. doi: 10.1021/cb400177q – volume: 49 start-page: 795 year: 2013 ident: ft5099_bb22 publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.01.017 – volume: 397 start-page: 279 year: 2006 ident: ft5099_bb43 publication-title: Biochem. J. doi: 10.1042/BJ20052030 – volume: 316 start-page: 113 year: 2012 ident: ft5099_bb5 publication-title: Cancer Lett. doi: 10.1016/j.canlet.2011.10.036 – volume: 88 start-page: 97 year: 1997 ident: ft5099_bb33 publication-title: Cell doi: 10.1016/S0092-8674(00)81862-0 – volume: 8 start-page: 667 year: 2006 ident: ft5099_bb8 publication-title: Neoplasia doi: 10.1593/neo.06445 – volume: 282 start-page: 37341 year: 2007 ident: ft5099_bb3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M706978200 – volume: 64 start-page: 3017 year: 2007 ident: ft5099_bb56 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-007-7137-4 – volume: 345 start-page: 141 year: 2005 ident: ft5099_bb39 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.10.022 – volume: 10 start-page: 538 year: 2008 ident: ft5099_bb46 publication-title: Nature Cell Biol. doi: 10.1038/ncb1716 – volume: 285 start-page: 12906 year: 2010 ident: ft5099_bb16 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.071431 – volume: 398 start-page: 345 year: 2006 ident: ft5099_bb53 publication-title: Biochem. J. doi: 10.1042/BJ20060526 – volume: 11 start-page: 861 year: 2010 ident: ft5099_bb14 publication-title: Nature Rev. Mol. Cell Biol. doi: 10.1038/nrm3011 – volume: 13 start-page: 755 year: 2012 ident: ft5099_bb19 publication-title: Nature Rev. Mol. Cell Biol. doi: 10.1038/nrm3478 – volume: 57 start-page: 1807 year: 2018 ident: ft5099_bb2 publication-title: Biochemistry doi: 10.1021/acs.biochem.7b00947 – volume: 60 start-page: 2126 year: 2004 ident: ft5099_bb11 publication-title: Acta Cryst. D doi: 10.1107/S0907444904019158 – volume: 5 start-page: 309 year: 2014 ident: ft5099_bb20 publication-title: Am. J. Cancer Res. – volume: 5 start-page: 4234 year: 2014 ident: ft5099_bb4 publication-title: Nature Commun. doi: 10.1038/ncomms5234 – volume: 309 start-page: 78 year: 2011 ident: ft5099_bb52 publication-title: Cancer Lett. doi: 10.1016/j.canlet.2011.05.019 – volume: 13 start-page: 1060 year: 2006 ident: ft5099_bb38 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb1168 – volume: 46 start-page: 73 year: 1990 ident: ft5099_bb40 publication-title: Acta Cryst. A doi: 10.1107/S0108767389009815 – volume: 17 start-page: 370 year: 2007 ident: ft5099_bb18 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2007.08.002 – volume: 9 start-page: e1003480 year: 2013 ident: ft5099_bb31 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003480 – volume: 13 start-page: 1069 year: 2006 ident: ft5099_bb42 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb1172 – volume: 66 start-page: 125 year: 2010 ident: ft5099_bb24 publication-title: Acta Cryst. D doi: 10.1107/S0907444909047337 – ident: ft5099_bb54 – volume: 24 start-page: 1341 year: 2005 ident: ft5099_bb44 publication-title: EMBO J. doi: 10.1038/sj.emboj.7600628 – volume: 23 start-page: 292 year: 2009 ident: ft5099_bb25 publication-title: Mol. Endocrinol. doi: 10.1210/me.2008-0219 – volume: 29 start-page: 3 year: 2016 ident: ft5099_bb17 publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2016.04.003 – volume: 24 start-page: 5401 year: 2005 ident: ft5099_bb13 publication-title: Oncogene doi: 10.1038/sj.onc.1208714 – volume: 5 start-page: 4968 year: 2014 ident: ft5099_bb7 publication-title: Nature Commun. doi: 10.1038/ncomms5968 – volume: 70 start-page: 2 year: 2014 ident: ft5099_bb36 publication-title: Acta Cryst. F doi: 10.1107/S2053230X13033141 – volume: 12 start-page: 1519 year: 2004 ident: ft5099_bb37 publication-title: Structure doi: 10.1016/j.str.2004.05.023 – volume: 40 start-page: 658 year: 2007 ident: ft5099_bb35 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889807021206 – volume: 460 start-page: 409 year: 2015 ident: ft5099_bb51 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.03.047 – volume: 10 start-page: 547 year: 2008 ident: ft5099_bb27 publication-title: Nature Cell Biol. doi: 10.1038/ncb1717 – volume: 282 start-page: 34167 year: 2007 ident: ft5099_bb47 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M706505200 – volume: 63 start-page: 435 year: 2016 ident: ft5099_bb50 publication-title: Biotechnol. Appl. Biochem. doi: 10.1002/bab.1375 – volume: 36 start-page: 2071 year: 2016 ident: ft5099_bb49 publication-title: Oncol. Rep. doi: 10.3892/or.2016.5036 – volume: 275 start-page: 3355 year: 2000 ident: ft5099_bb15 publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.5.3355 – volume: 135 start-page: 1457 year: 1996 ident: ft5099_bb34 publication-title: J. Cell Biol. doi: 10.1083/jcb.135.6.1457 – volume: 28 start-page: 6056 year: 2008 ident: ft5099_bb29 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00583-08 – volume: 62 start-page: 72 year: 2006 ident: ft5099_bb12 publication-title: Acta Cryst. D doi: 10.1107/S0907444905036693 – volume: 7 start-page: 80435 year: 2016 ident: ft5099_bb10 publication-title: Oncotarget doi: 10.18632/oncotarget.12606 – volume: 271 start-page: 4114 year: 2004 ident: ft5099_bb21 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.2004.04349.x – volume: 963 start-page: 299 year: 2017 ident: ft5099_bb55 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-50044-7_18 – volume: 6 start-page: 1054 year: 2013 ident: ft5099_bb48 publication-title: Exp. Ther. Med. doi: 10.3892/etm.2013.1259 – volume: 963 start-page: 283 year: 2017 ident: ft5099_bb30 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-50044-7_17 |
SSID | ssj0001107179 |
Score | 2.1833017 |
Snippet | SUMOylation is a post‐translational modification in which a small ubiquitin‐like molecule (SUMO) is appended to substrate proteins and is known to influence... SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence... The complex of two key proteins of the SUMOylation pathway is presented to 2.6 Å. This work reveals the polar nature of the interaction between the proteins,... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 332 |
SubjectTerms | Amino Acid Sequence Binding Sites Biological activity cancer Catalysis Cloning, Molecular Complex formation Crystallography, X-Ray Cysteine Endopeptidases - chemistry Cysteine Endopeptidases - genetics Cysteine Endopeptidases - metabolism Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Genetic Vectors - chemistry Genetic Vectors - metabolism Humans Hydrophobicity Models, Molecular protease Protein Binding Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein Interaction Domains and Motifs Proteins Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Research Communications SENP SENP1 Small Ubiquitin-Related Modifier Proteins - chemistry Small Ubiquitin-Related Modifier Proteins - genetics Small Ubiquitin-Related Modifier Proteins - metabolism Structural Homology, Protein Substrates SUMO protein SUMO2 SUMOylation Thermodynamics Ubiquitin X‐ray diffraction |
Title | Noncovalent structure of SENP1 in complex with SUMO2 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS2053230X19004266 https://www.ncbi.nlm.nih.gov/pubmed/31045562 https://www.proquest.com/docview/2218332290 https://www.proquest.com/docview/2219001747 https://pubmed.ncbi.nlm.nih.gov/PMC6497105 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB6MvY2VfXtvhwZ4WnMWSbFmPoWtoN5YVlkL2ZCxZ3gqpXdoU1v31u5Nk18H7fjGJpZzj-0nH76TTHSGvjNKykGUcZVqIiGcqhSlVgDEUFTdVwWDM4HrHh3l6dMrfLZNlW6vcny5Zq7H-_tNzJf-DKtwDXPGU7D8g2wmFG_AZ8IUrIAzXv8J43tS6AYG4n-8SweJ2AB5DOZyfxCMfYr4y39xyK1jQj7TPRqd6XYz05Q0wxJXPXQ2YjXER3g6LmYsDc4IByzZjk-6fKulI-fRcFTfGDa8v11c-ltivKOAhpjZ-b2ys5aEwMyPwTZZ9M-kKnPjhcLIeJT2zx9wa5dAc2wiMTygPxQH5QJct7fcFjV6cW3yAaPIk8bZ5Mwd223SX3KPgDmClirfH72_X0mL0SqXftIYvbwaP3Cb3WyGbDGTgVgyjY_tei6Udi4fkgfcXwqkDf4fcMfUjwnvAhx3wYVOFFvjwrA498CECH1rgH5PT2eHi4Cjy5S8izRmXUaJKpQVTVQZObKwo0ylLq7KKK8ZirgRY37KiJYU-BdVaVaAaPtEmlnqiVFKwJ2SrbmrzjITGAO3gMeiBJhgHJTNJTWZokWZpJkQSkEmrklz73PBYomSVWx9xIvKBQgPyuvvJhUuM8rvOe62ecz9_rnKK7JxhvYGAvOyawbrhllVRm-ba9pFIpLgIyFMHS_e0Fs-AiA3Aug6YOX2zpT77ajOop1wCs4bXphbaP79APv08o7MFsGv5_Jd_ZJds306nPbIF8Jt9oKxr9cKO1x-Yqoz_ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncovalent+structure+of+SENP1+in+complex+with+SUMO2&rft.jtitle=Acta+crystallographica.+Section+F%2C+Structural+biology+communications&rft.au=Ambaye%2C+Nigus+D&rft.date=2019-05-01&rft.eissn=2053-230X&rft.volume=75&rft.issue=Pt+5&rft.spage=332&rft_id=info:doi/10.1107%2FS2053230X19004266&rft_id=info%3Apmid%2F31045562&rft.externalDocID=31045562 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2053-230X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2053-230X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2053-230X&client=summon |