Weak Convergence of the Wild Bootstrap for the Aalen-Johansen Estimator of the Cumulative Incidence Function of a Competing Risk

We give a rigorous study of weak convergence of the wild bootstrap for non-parametric estimation of the cumulative event probability of a competing risk. The data may be subject to independent left-truncation and right-censoring. Inclusion of left-truncation is motivated by a study on pregnancy outc...

Full description

Saved in:
Bibliographic Details
Published inScandinavian journal of statistics Vol. 40; no. 3; pp. 387 - 402
Main Authors BEYERSMANN, JAN, TERMINI, SUSANNA DI, PAULY, MARKUS
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2013
Wiley Publishing
Subjects
Online AccessGet full text
ISSN0303-6898
1467-9469
DOI10.1111/j.1467-9469.2012.00817.x

Cover

Abstract We give a rigorous study of weak convergence of the wild bootstrap for non-parametric estimation of the cumulative event probability of a competing risk. The data may be subject to independent left-truncation and right-censoring. Inclusion of left-truncation is motivated by a study on pregnancy outcomes. The wild bootstrap includes as one case a popular resampling technique, where the limit distribution is approximated by repeatedly generating standard normal variates, while the data are kept fixed. Simulation results and a data example are also presented.
AbstractList We give a rigorous study of weak convergence of the wild bootstrap for non-parametric estimation of the cumulative event probability of a competing risk. The data may be subject to independent left-truncation and right-censoring. Inclusion of left-truncation is motivated by a study on pregnancy outcomes. The wild bootstrap includes as one case a popular resampling technique, where the limit distribution is approximated by repeatedly generating standard normal variates, while the data are kept fixed. Simulation results and a data example are also presented.
. We give a rigorous study of weak convergence of the wild bootstrap for non‐parametric estimation of the cumulative event probability of a competing risk. The data may be subject to independent left‐truncation and right‐censoring. Inclusion of left‐truncation is motivated by a study on pregnancy outcomes. The wild bootstrap includes as one case a popular resampling technique, where the limit distribution is approximated by repeatedly generating standard normal variates, while the data are kept fixed. Simulation results and a data example are also presented.
We give a rigorous study of weak convergence of the wild bootstrap for non-parametric estimation of the cumulative event probability of a competing risk. The data may be subject to independent left-truncation and right-censoring. Inclusion of left-truncation is motivated by a study on pregnancy outcomes. The wild bootstrap includes as one case a popular resampling technique, where the limit distribution is approximated by repeatedly generating standard normal variates, while the data are kept fixed. Simulation results and a data example are also presented. [PUBLICATION ABSTRACT]
Author TERMINI, SUSANNA DI
BEYERSMANN, JAN
PAULY, MARKUS
Author_xml – sequence: 1
  givenname: JAN
  surname: BEYERSMANN
  fullname: BEYERSMANN, JAN
  organization: Freiburg Centre for Data Analysis and Modeling, University of Freiburg and Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg
– sequence: 2
  givenname: SUSANNA DI
  surname: TERMINI
  fullname: TERMINI, SUSANNA DI
  organization: Freiburg Centre for Data Analysis and Modeling, University of Freiburg and Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg
– sequence: 3
  givenname: MARKUS
  surname: PAULY
  fullname: PAULY, MARKUS
  organization: Institute of Mathematics, University of Duesseldorf
BookMark eNqNUU1v2yAYtqZOWtruJ0yytMsu9sAQjA-b1LlN2q5apXVbjoiS1y2OAxngLr3tpxfHVQ49lcuLeD6A5zlMDow1kCQpRjmO63ObY8rKrKKsyguEixwhjst8-yaZ7IGDZIIIIhnjFX-XHHrfIoQZxXyS_F-AXKW1NQ_g7sAoSG2ThntIF7pbpt-sDT44uUkb63bHJ7IDk13ae2k8mPTMB72WIYLPsrpf950M-gHSC6P0cmc5640K2pqBJONl6w0Ebe7Sn9qvjpO3jew8vH-eR8nv2dmv-jy7up5f1CdXmaKElhmRDWMVAqBV1SjJl4XiVIFEFV7GiTEnt4goYLjEU1yQouFldQuqmeJpASUhR8mn0Xfj7N8efBBr7RV0nTRgey8wKzHlpKAoUj--oLa2dya-TuAYWuQwPhh-HVnKWe8dNELpIIdvxsB0JzASQ0GiFUMPYuhBDAWJXUFiGw34C4ONi2G6x9dIv4zSf7qDx1frxM3l9U3cRf2HUd_62N1eX9ApZ6wc8GzEtQ-w3ePSrQQrSTkVix9z8ef0lM_r85n4Tp4AKmnDJA
CitedBy_id crossref_primary_10_1007_s00184_019_00729_2
crossref_primary_10_1016_j_jmva_2018_12_005
crossref_primary_10_1016_j_csda_2019_02_001
crossref_primary_10_1016_j_jmva_2017_12_008
crossref_primary_10_4054_DemRes_2014_30_62
crossref_primary_10_1186_s12874_015_0025_y
crossref_primary_10_1093_biomet_asx026
crossref_primary_10_1111_biom_13259
crossref_primary_10_1111_biom_13710
crossref_primary_10_1111_biom_12861
crossref_primary_10_1111_biom_13059
crossref_primary_10_1111_sjos_12443
crossref_primary_10_1007_s11222_024_10420_w
crossref_primary_10_1038_s41416_022_01920_5
crossref_primary_10_1093_biomet_asaa058
crossref_primary_10_1093_biostatistics_kxaa030
crossref_primary_10_1080_02331888_2017_1336171
crossref_primary_10_1093_jncics_pkae072
crossref_primary_10_1002_pst_1915
crossref_primary_10_1128_AAC_01691_17
crossref_primary_10_1214_14_EJS972
crossref_primary_10_1111_sjos_12714
crossref_primary_10_1016_j_cct_2020_106213
crossref_primary_10_1007_s10985_019_09487_9
crossref_primary_10_1016_j_insmatheco_2018_05_004
crossref_primary_10_1080_10485252_2025_2466649
crossref_primary_10_1093_cid_ciy516
crossref_primary_10_1002_sim_6409
crossref_primary_10_1007_s10985_018_9423_x
crossref_primary_10_1214_17_EJS1319
crossref_primary_10_1016_j_jamda_2016_08_022
crossref_primary_10_1016_j_csda_2016_06_016
crossref_primary_10_1002_bimj_70008
crossref_primary_10_1002_sim_8404
Cites_doi 10.1007/978-0-387-68560-1
10.1093/biomet/asr052
10.1007/s10985-009-9129-1
10.1016/j.reprotox.2008.06.006
10.1002/9780470316962
10.1093/biomet/80.3.557
10.1214/aos/1176349025
10.1002/(SICI)1097-0258(19970430)16:8<901::AID-SIM543>3.0.CO;2-M
10.1007/978-1-4612-2950-6
10.1214/11-EJS596
10.1016/j.csda.2006.05.011
10.2307/2337051
10.1093/biomet/asq012
10.1016/j.jhin.2011.02.003
10.1111/j.0006-341X.2003.00119.x
10.1214/aos/1176350143
10.1016/j.jeconom.2008.08.003
10.1214/aos/1056562462
10.1007/978-1-4614-2035-4
10.1002/bimj.200900039
10.1214/aos/1176350142
10.1007/978-94-015-7983-4_18
10.1214/aos/1176347617
ContentType Journal Article
Copyright Copyright © 2013 Board of the Foundation of the Scandinavian Journal of Statistics
2012 Board of the Foundation of the Scandinavian Journal of Statistics
Copyright_xml – notice: Copyright © 2013 Board of the Foundation of the Scandinavian Journal of Statistics
– notice: 2012 Board of the Foundation of the Scandinavian Journal of Statistics
DBID BSCLL
AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1111/j.1467-9469.2012.00817.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Aerospace Database
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Public Health
EISSN 1467-9469
EndPage 402
ExternalDocumentID 3038950441
10_1111_j_1467_9469_2012_00817_x
SJOS817
24586677
ark_67375_WNG_VDD8GCHF_K
Genre article
Feature
GroupedDBID -ET
.3N
.GA
.GJ
.L6
.Y3
05W
0R~
10A
123
1OC
3-9
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A03
AAESR
AAEVG
AAHHS
AAKYL
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABFAN
ABIVO
ABJNI
ABPVW
ABQDR
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACDIW
ACGFS
ACIWK
ACMTB
ACPOU
ACSCC
ACTMH
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AELLO
AELPN
AEMOZ
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFVYC
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKBRZ
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BHOJU
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
ECEWR
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GIFXF
GODZA
H.T
H.X
HF~
HGLYW
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
ZZTAW
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAWIL
AAYCA
ABAWQ
ACHJO
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGLNM
AGQPQ
AGXDD
AGYGG
AHQJS
AIDQK
AIDYY
AIHAF
ALRMG
ALVPJ
AMVHM
AAYXX
AGHNM
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4347-3af6690ee499fca8d2c84cea091d4ce1183b03ce617151232f879becf5152e733
IEDL.DBID DR2
ISSN 0303-6898
IngestDate Fri Jul 11 16:17:53 EDT 2025
Sat Jul 05 23:20:41 EDT 2025
Tue Jul 01 01:27:14 EDT 2025
Thu Apr 24 22:52:53 EDT 2025
Wed Jan 22 16:23:51 EST 2025
Sun Aug 31 12:00:40 EDT 2025
Wed Oct 30 09:56:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4347-3af6690ee499fca8d2c84cea091d4ce1183b03ce617151232f879becf5152e733
Notes ark:/67375/WNG-VDD8GCHF-K
ArticleID:SJOS817
istex:87BB37416C2BD04D07B0013D8EE641858632C435
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1418324683
PQPubID 30873
PageCount 16
ParticipantIDs proquest_miscellaneous_1671483240
proquest_journals_1418324683
crossref_citationtrail_10_1111_j_1467_9469_2012_00817_x
crossref_primary_10_1111_j_1467_9469_2012_00817_x
wiley_primary_10_1111_j_1467_9469_2012_00817_x_SJOS817
jstor_primary_24586677
istex_primary_ark_67375_WNG_VDD8GCHF_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09
20130901
September 2013
2013-09-00
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Scandinavian journal of statistics
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Publishing
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Publishing
References Keiding, N. & Gill, R. (1990). Random truncation models and Markov processes. Ann. Statist.18, 582-602.
Aalen, O., Borgan, Ø. & Gjessing, H. (2008). Survival and event history analysis. Springer, New York.
Lin, D. Y., Fleming, T. R. & Wei, L. J. (1994). Confidence bands for survival curves under the proportional hazards model. Biometrika81, 73-81.
Mammen, E. (1992). When does bootstrap work? Asymptotic results and simulations. Springer, New York, NY.
Scheike, T. & Zhang, M. (2003). Extensions and applications of the Cox-Aalen survival model. Biometrics39, 1036-1045.
De Angelis, G., Allignol, A., Murthy, A., Wolkewitz, M., Beyersmann, J., Safran, E., Schrenzel, J., Pittet, D. & Harbarth, S. (2011). Multistate modelling to estimate the excess length of stay associated with meticillin-resistant staphylococcus aureus colonisation and infection in surgical patients. J. Hosp. Infect.78, 86-91.
Beyersmann, J., Allignol, A. & Schumacher, M. (2012). Competing risks and multistate models with R. Springer, New York.
Elgmati, E., Farewell, D. & Henderson, R. (2010). A martingale residual diagnostic for longitudinal and recurrent event data. Lifetime Data Anal.16, 118-135.
Martinussen, T. & Scheike, T. (2006). Dynamic regression models for survival data. Springer, New York, NY.
Meister, R. & Schaefer, C. (2008). Statistical methods for estimating the probability of spontaneous abortion in observational studies-analyzing pregnancies exposed to coumarin derivatives. Reprod. Toxicol.26, 31-35.
Pauly, M. (2011). Weighted resampling of martingale difference arrays with applications. Electron. J. Stat.5, 41-52.
Andersen, P., Borgan, Ø., Gill, R. D. & Keiding, N. (1993). Statistical models based on counting processes, Springer Series in Statistics. Springer, New York, NY.
Janssen, A. & Pauls, T. (2003). How do bootstrap and permutation tests work?Ann. Statist.31, 768-806.
Davidson, R. & Flachaire, E. (2008). The wild bootstrap, tamed at last. J. Econometrics146, 162-169.
Lin, D. Y., Wei, L. J. & Ying, Z. (1993). Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika80, 557-572.
Wu, C. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist.14, 1261-1295.
Bajorunaite, R. & Klein, J. P. (2007). Two-sample tests of the equality of two cumulative incidence functions. Comput. Statist. Data Anal.51, 4269-4281.
Beran, R. (2000). Discussion: Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist.14, 1295-1298.
Lin, D. (1997). Non-parametric inference for cumulative incidence functions in competing risks studies. Stat. Med.16, 901-910.
Billingsley, P. (1999). Convergence of probability measures. Wiley, New York.
Aalen, O. & Johansen, S. (1978). An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scand. J. Statist.5, 141-150.
Hieke, S., Dettenkofer, M., Bertz, H., Schumacher, M. & Beyersmann, J. (2012). Initially fewer bloodstream infections for allogeneic versus autologous stem-cell transplants in neutropenic patients. Epidemiol. Infect. doi: 10.1017/S0950268812000283 (in press).
Oza, N. & Russell, S. (2001). Online bagging and boosting. Artif. Intell. Statist.1, 105-112.
Allignol, A., Schumacher, M. & Beyersmann, J. (2010). A note on variance estimation of the Aalen-Johansen estimator of the cumulative incidence function in competing risks, with a view towards left-truncated data. Biom. J.52, 126-137.
Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear modelsAnn. Statist.21, 255-285.
Lee, H. K. H. & Clyde, M. C. (2004). Lossless online Bayesian bagging. J. Mach. Learn. Res.5, 143-151.
Cai, T., Tian, L., Uno, H., Solomon, S. & Wei, L. (2010). Calibrating parametric subject-specific risk estimation. Biometrika. 97, 389-404.
Feng, X., He, X. & Hu, J. (2011). Wild bootstrap for quantile regression. Biometrika98, 995-999.
2010; 97
2010; 16
2012
1990; 18
1993; 21
1986; 14
2008
1978; 5
2011; 98
2004; 5
2006
2003; 39
1993
2011; 78
2007; 51
1992
2008; 146
1994; 81
2011; 5
2003; 31
1999
2000; 14
2008; 26
1997; 16
1993; 80
2001; 1
2010; 52
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Martinussen T. (e_1_2_10_25_1) 2006
Hieke S. (e_1_2_10_15_1) 2012
Lee H. K. H. (e_1_2_10_19_1) 2004; 5
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
Andersen P. (e_1_2_10_5_1) 1993
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_30_1
Oza N. (e_1_2_10_27_1) 2001; 1
Aalen O. (e_1_2_10_3_1) 1978; 5
N. Keiding (e_1_2_10_17_1) 1992
e_1_2_10_29_1
e_1_2_10_28_1
e_1_2_10_26_1
References_xml – reference: Wu, C. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist.14, 1261-1295.
– reference: Andersen, P., Borgan, Ø., Gill, R. D. & Keiding, N. (1993). Statistical models based on counting processes, Springer Series in Statistics. Springer, New York, NY.
– reference: De Angelis, G., Allignol, A., Murthy, A., Wolkewitz, M., Beyersmann, J., Safran, E., Schrenzel, J., Pittet, D. & Harbarth, S. (2011). Multistate modelling to estimate the excess length of stay associated with meticillin-resistant staphylococcus aureus colonisation and infection in surgical patients. J. Hosp. Infect.78, 86-91.
– reference: Feng, X., He, X. & Hu, J. (2011). Wild bootstrap for quantile regression. Biometrika98, 995-999.
– reference: Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear modelsAnn. Statist.21, 255-285.
– reference: Lee, H. K. H. & Clyde, M. C. (2004). Lossless online Bayesian bagging. J. Mach. Learn. Res.5, 143-151.
– reference: Oza, N. & Russell, S. (2001). Online bagging and boosting. Artif. Intell. Statist.1, 105-112.
– reference: Lin, D. (1997). Non-parametric inference for cumulative incidence functions in competing risks studies. Stat. Med.16, 901-910.
– reference: Allignol, A., Schumacher, M. & Beyersmann, J. (2010). A note on variance estimation of the Aalen-Johansen estimator of the cumulative incidence function in competing risks, with a view towards left-truncated data. Biom. J.52, 126-137.
– reference: Janssen, A. & Pauls, T. (2003). How do bootstrap and permutation tests work?Ann. Statist.31, 768-806.
– reference: Martinussen, T. & Scheike, T. (2006). Dynamic regression models for survival data. Springer, New York, NY.
– reference: Aalen, O., Borgan, Ø. & Gjessing, H. (2008). Survival and event history analysis. Springer, New York.
– reference: Lin, D. Y., Wei, L. J. & Ying, Z. (1993). Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika80, 557-572.
– reference: Cai, T., Tian, L., Uno, H., Solomon, S. & Wei, L. (2010). Calibrating parametric subject-specific risk estimation. Biometrika. 97, 389-404.
– reference: Bajorunaite, R. & Klein, J. P. (2007). Two-sample tests of the equality of two cumulative incidence functions. Comput. Statist. Data Anal.51, 4269-4281.
– reference: Pauly, M. (2011). Weighted resampling of martingale difference arrays with applications. Electron. J. Stat.5, 41-52.
– reference: Beran, R. (2000). Discussion: Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist.14, 1295-1298.
– reference: Hieke, S., Dettenkofer, M., Bertz, H., Schumacher, M. & Beyersmann, J. (2012). Initially fewer bloodstream infections for allogeneic versus autologous stem-cell transplants in neutropenic patients. Epidemiol. Infect. doi: 10.1017/S0950268812000283 (in press).
– reference: Meister, R. & Schaefer, C. (2008). Statistical methods for estimating the probability of spontaneous abortion in observational studies-analyzing pregnancies exposed to coumarin derivatives. Reprod. Toxicol.26, 31-35.
– reference: Elgmati, E., Farewell, D. & Henderson, R. (2010). A martingale residual diagnostic for longitudinal and recurrent event data. Lifetime Data Anal.16, 118-135.
– reference: Billingsley, P. (1999). Convergence of probability measures. Wiley, New York.
– reference: Keiding, N. & Gill, R. (1990). Random truncation models and Markov processes. Ann. Statist.18, 582-602.
– reference: Aalen, O. & Johansen, S. (1978). An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scand. J. Statist.5, 141-150.
– reference: Davidson, R. & Flachaire, E. (2008). The wild bootstrap, tamed at last. J. Econometrics146, 162-169.
– reference: Scheike, T. & Zhang, M. (2003). Extensions and applications of the Cox-Aalen survival model. Biometrics39, 1036-1045.
– reference: Lin, D. Y., Fleming, T. R. & Wei, L. J. (1994). Confidence bands for survival curves under the proportional hazards model. Biometrika81, 73-81.
– reference: Beyersmann, J., Allignol, A. & Schumacher, M. (2012). Competing risks and multistate models with R. Springer, New York.
– reference: Mammen, E. (1992). When does bootstrap work? Asymptotic results and simulations. Springer, New York, NY.
– year: 2012
  article-title: Initially fewer bloodstream infections for allogeneic versus autologous stem‐cell transplants in neutropenic patients
  publication-title: Epidemiol. Infect.
– volume: 81
  start-page: 73
  year: 1994
  end-page: 81
  article-title: Confidence bands for survival curves under the proportional hazards model
  publication-title: Biometrika
– volume: 14
  start-page: 1295
  year: 2000
  end-page: 1298
  article-title: Discussion: Jackknife, bootstrap and other resampling methods in regression analysis
  publication-title: Ann. Statist.
– volume: 18
  start-page: 582
  year: 1990
  end-page: 602
  article-title: Random truncation models and Markov processes
  publication-title: Ann. Statist.
– volume: 16
  start-page: 901
  year: 1997
  end-page: 910
  article-title: Non‐parametric inference for cumulative incidence functions in competing risks studies
  publication-title: Stat. Med.
– volume: 21
  start-page: 255
  year: 1993
  end-page: 285
  article-title: Bootstrap and wild bootstrap for high dimensional linear models
  publication-title: Ann. Statist.
– volume: 31
  start-page: 768
  year: 2003
  end-page: 806
  article-title: How do bootstrap and permutation tests work?
  publication-title: Ann. Statist.
– volume: 14
  start-page: 1261
  year: 1986
  end-page: 1295
  article-title: Jackknife, bootstrap and other resampling methods in regression analysis
  publication-title: Ann. Statist.
– year: 1992
– volume: 1
  start-page: 105
  year: 2001
  end-page: 112
  article-title: Online bagging and boosting
  publication-title: Artif. Intell. Statist.
– volume: 98
  start-page: 995
  year: 2011
  end-page: 999
  article-title: Wild bootstrap for quantile regression
  publication-title: Biometrika
– year: 2012
– volume: 97
  start-page: 389
  year: 2010
  end-page: 404
  article-title: Calibrating parametric subject‐specific risk estimation
  publication-title: Biometrika
– volume: 146
  start-page: 162
  year: 2008
  end-page: 169
  article-title: The wild bootstrap, tamed at last
  publication-title: J. Econometrics
– volume: 80
  start-page: 557
  year: 1993
  end-page: 572
  article-title: Checking the Cox model with cumulative sums of martingale‐based residuals
  publication-title: Biometrika
– volume: 78
  start-page: 86
  year: 2011
  end-page: 91
  article-title: Multistate modelling to estimate the excess length of stay associated with meticillin‐resistant staphylococcus aureus colonisation and infection in surgical patients
  publication-title: J. Hosp. Infect.
– year: 2008
– year: 2006
– volume: 5
  start-page: 41
  year: 2011
  end-page: 52
  article-title: Weighted resampling of martingale difference arrays with applications
  publication-title: Electron. J. Stat.
– volume: 52
  start-page: 126
  year: 2010
  end-page: 137
  article-title: A note on variance estimation of the Aalen–Johansen estimator of the cumulative incidence function in competing risks, with a view towards left‐truncated data
  publication-title: Biom. J.
– volume: 26
  start-page: 31
  year: 2008
  end-page: 35
  article-title: Statistical methods for estimating the probability of spontaneous abortion in observational studies–analyzing pregnancies exposed to coumarin derivatives
  publication-title: Reprod. Toxicol.
– volume: 5
  start-page: 141
  year: 1978
  end-page: 150
  article-title: An empirical transition matrix for non‐homogeneous Markov chains based on censored observations
  publication-title: Scand. J. Statist.
– volume: 51
  start-page: 4269
  year: 2007
  end-page: 4281
  article-title: Two‐sample tests of the equality of two cumulative incidence functions
  publication-title: Comput. Statist. Data Anal.
– volume: 16
  start-page: 118
  year: 2010
  end-page: 135
  article-title: A martingale residual diagnostic for longitudinal and recurrent event data
  publication-title: Lifetime Data Anal.
– start-page: 309
  year: 1992
  end-page: 326
– volume: 39
  start-page: 1036
  year: 2003
  end-page: 1045
  article-title: Extensions and applications of the Cox‐Aalen survival model
  publication-title: Biometrics
– volume: 5
  start-page: 143
  year: 2004
  end-page: 151
  article-title: Lossless online Bayesian bagging
  publication-title: J. Mach. Learn. Res.
– year: 1993
– year: 1999
– volume: 5
  start-page: 141
  year: 1978
  ident: e_1_2_10_3_1
  article-title: An empirical transition matrix for non‐homogeneous Markov chains based on censored observations
  publication-title: Scand. J. Statist.
– ident: e_1_2_10_2_1
  doi: 10.1007/978-0-387-68560-1
– ident: e_1_2_10_14_1
  doi: 10.1093/biomet/asr052
– ident: e_1_2_10_13_1
  doi: 10.1007/s10985-009-9129-1
– volume-title: Dynamic regression models for survival data
  year: 2006
  ident: e_1_2_10_25_1
– ident: e_1_2_10_26_1
  doi: 10.1016/j.reprotox.2008.06.006
– ident: e_1_2_10_9_1
  doi: 10.1002/9780470316962
– ident: e_1_2_10_22_1
  doi: 10.1093/biomet/80.3.557
– ident: e_1_2_10_24_1
  doi: 10.1214/aos/1176349025
– ident: e_1_2_10_20_1
  doi: 10.1002/(SICI)1097-0258(19970430)16:8<901::AID-SIM543>3.0.CO;2-M
– ident: e_1_2_10_23_1
  doi: 10.1007/978-1-4612-2950-6
– ident: e_1_2_10_28_1
  doi: 10.1214/11-EJS596
– ident: e_1_2_10_6_1
  doi: 10.1016/j.csda.2006.05.011
– ident: e_1_2_10_21_1
  doi: 10.2307/2337051
– volume: 1
  start-page: 105
  year: 2001
  ident: e_1_2_10_27_1
  article-title: Online bagging and boosting
  publication-title: Artif. Intell. Statist.
– ident: e_1_2_10_10_1
  doi: 10.1093/biomet/asq012
– ident: e_1_2_10_12_1
  doi: 10.1016/j.jhin.2011.02.003
– ident: e_1_2_10_29_1
  doi: 10.1111/j.0006-341X.2003.00119.x
– year: 2012
  ident: e_1_2_10_15_1
  article-title: Initially fewer bloodstream infections for allogeneic versus autologous stem‐cell transplants in neutropenic patients
  publication-title: Epidemiol. Infect.
– ident: e_1_2_10_7_1
  doi: 10.1214/aos/1176350143
– ident: e_1_2_10_11_1
  doi: 10.1016/j.jeconom.2008.08.003
– ident: e_1_2_10_16_1
  doi: 10.1214/aos/1056562462
– ident: e_1_2_10_8_1
  doi: 10.1007/978-1-4614-2035-4
– ident: e_1_2_10_4_1
  doi: 10.1002/bimj.200900039
– ident: e_1_2_10_30_1
  doi: 10.1214/aos/1176350142
– volume-title: Statistical models based on counting processes, Springer Series in Statistics
  year: 1993
  ident: e_1_2_10_5_1
– start-page: 309
  volume-title: Survival analysis: state of the art
  year: 1992
  ident: e_1_2_10_17_1
  doi: 10.1007/978-94-015-7983-4_18
– volume: 5
  start-page: 143
  year: 2004
  ident: e_1_2_10_19_1
  article-title: Lossless online Bayesian bagging
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_10_18_1
  doi: 10.1214/aos/1176347617
SSID ssj0016418
Score 2.2271392
Snippet We give a rigorous study of weak convergence of the wild bootstrap for non-parametric estimation of the cumulative event probability of a competing risk. The...
. We give a rigorous study of weak convergence of the wild bootstrap for non‐parametric estimation of the cumulative event probability of a competing risk. The...
We give a rigorous study of weak convergence of the wild bootstrap for non‐parametric estimation of the cumulative event probability of a competing risk. The...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 387
SubjectTerms abortion
Approximation
Bootstrap method
Clinical outcomes
Convergence
Estimating techniques
Estimators
Inclusions
left-truncation
Pregnancy
Probability
Public health
right-censoring
Risk
Simulation
simultaneous confidence bands
Statistical analysis
Statistical methods
Statistics
Studies
Title Weak Convergence of the Wild Bootstrap for the Aalen-Johansen Estimator of the Cumulative Incidence Function of a Competing Risk
URI https://api.istex.fr/ark:/67375/WNG-VDD8GCHF-K/fulltext.pdf
https://www.jstor.org/stable/24586677
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-9469.2012.00817.x
https://www.proquest.com/docview/1418324683
https://www.proquest.com/docview/1671483240
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLfQdhkHBoOJsDEZCXFL1caJ7RzbbKEq2pA2xnazXNsRKCyZ1hZNnBBfgW_IJ-E9548ocJgQp1SpX9o478_vvTz_TMjLwulCD20cGgHmFuvUhFpIExaWw3kuODe43vn4hE_P49llctn2P-FamIYfoi-4oWV4f40GrueLP408hfwOO7SQd1OOxADx5IhxpNE_PO2ZpCAp8KU-UGkWcpnK9aaev15oLVJt4qTfdk2La3D0V1Dro1K-TcrufppmlHKwWs4H5stvVI__54YfkgcteKXjRtsekXuu2iH3j3vm18UO2UL02pA_PybfLpwuaYaN7X6Np6N1QWEwBV9k6aSul1houaYAnP3pMUSr6sfX77P6g8aaNz2CC11hWaATzFZXfr-xz46CZ2s2RKU5xGbULxykaeYzAYjI9PTjonxCzvOjd9k0bDd9CE3MYnB4uuCQsTsHqVhhtLSRkbFxGnCNhSPkQ2w-ZMYB8kKwwqJCihQUsQBgFjnB2C7ZqOrKPSWUsRTyB-t4AUmmTaUWfOSYlJbzJLFDGxDRPWBlWkZ03Jjjk1rLjITCKVc45cpPuboNyKiXvG5YQe4g88rrUC-gb0rsqhOJujh5rd7jm51smqs3Adn1StYPjOJEci5EQPY7rVOtp1nAj6FTjrlkAXnRfw0-Al_86MrVKxjDBWS9SL0YEO5V7M7_Wp3N3p7Bp2f_KrhHtiK_gwi25e2TjeXNyj0HHLecH5DN8eRwkh94S_0JH2I6Lg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6h9kA58ChUNRRYJMTNUeJ1dtfHYhpC2gSpD9rbarNeC5TWrpoEVZwQf4F_yC9hZv0QAQ4V4uTI2XHi9ezM941nZwBe5s7kppvFoZW43GKT2NBIZcM8E3heSCEs7XceT8TwJB6d9c_qdkC0F6aqD9EG3GhleHtNC5wC0n-u8gQJHqVoUeFN1ZMdBJTrMeIOYmJvDttaUkgLfLAPlZqHQiVqNa3nr1da8VXrNO3XTdriCiD9FdZ6vzS4B-fNHVXpKLPOcjHt2C-_FXv8T7d8H-7W-JXtVgr3AG65YhPujNvir_NN2CAAW9V_fgjfTp2ZsZRy2_02T8fKnOFghuYoY6_LckGxlkuG2Nmf3kWHVfz4-n1UfjQU9mZ7eKELigw0gunywrcc--wYGreqJyoboHsmFaNBhqWeDKBTZoef5rNHcDLYO06HYd33IbQxj9HmmVwgaXcO2Vhujcoiq2LrDEKbDI9Iifi0y61D8EV4hUe5kgnqYo7YLHKS8y1YK8rCbQPjPEEKkTmRI8_MEmWk6DmuVCZEv591swBk84S1rYuiU2-Oc71CjqSmKdc05dpPub4OoNdKXlaFQW4g88orUStgrmaUWCf7-nTyVn-glzvpcKD3A9jyWtYOjOK-EkLKAHYatdO1sZnjj5FdjoXiAbxov0YzQe9-TOHKJY4REokvVV8MQHgdu_G_1kej90f46fG_Cj6H28Pj8YE-eDfZfwIbkW8oQll6O7C2uFq6pwjrFtNnfrn-BOjfPNs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLbQJqFxwc9gWrYBRkLcpWrjxHYuR1goHStoY2x3lms7AoUl1dqiiSvEK_CGPAnnOE1EgYsJcZUq9Ukb5_x838nxMSFPC6cL3bdxaASYW6xTE2ohTVhYDue54NzgeuejMR-exqPz5HxZ_4RrYZr-EF3CDS3D-2s08Kkt_jTyFPgdVmhh3005ED3Ak-sxB2CBAOm4ayUFrMDn-kCnWchlKlerev56pZVQtY6zftVWLa7g0V9RrQ9L-R1StjfUVKOUvcV80jNffuv1-H_u-C65vUSvdL9Rt3vkhqs2ya2jrvXrbJNsIHxtuj_fJ9_OnC5phpXtfpGno3VBYTAFZ2Tp87qeY6ZlSgE5-9P7EK6qH1-_j-oPGpPe9AAudIF5gVYwW1z4Dcc-OwqurdkRleYQnFHBcJCmmacCEJLp8cdZ-YCc5gfvsmG43PUhNDGLwePpggNldw64WGG0tJGRsXEagI2FIxAiNukz4wB6IVphUSFFCppYADKLnGBsi6xVdeW2CWUsBQJhHS-AZdpUasEHjklpOU8S27cBEe0DVmbZEh135vikVqiRUDjlCqdc-SlXVwEZdJLTpi3INWSeeR3qBPRliWV1IlFn45fqPb7ayYa5OgzIlleybmAUJ5JzIQKy12qdWrqaGfwYeuWYSxaQJ93X4CTwzY-uXL2AMVwA7cXeiwHhXsWu_a_VyejNCXza-VfBx-Tm2xe5ev1qfLhLNiK_mwiW6O2Rtfnlwj0ETDefPPLG-hPsNjuK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+Convergence+of+the+Wild+Bootstrap+for+the+Aalen%E2%80%93Johansen+Estimator+of+the+Cumulative+Incidence+Function+of+a+Competing+Risk&rft.jtitle=Scandinavian+journal+of+statistics&rft.au=BEYERSMANN%2C+JAN&rft.au=TERMINI%2C+SUSANNA+DI&rft.au=PAULY%2C+MARKUS&rft.date=2013-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0303-6898&rft.eissn=1467-9469&rft.volume=40&rft.issue=3&rft.spage=387&rft.epage=402&rft_id=info:doi/10.1111%2Fj.1467-9469.2012.00817.x&rft.externalDBID=10.1111%252Fj.1467-9469.2012.00817.x&rft.externalDocID=SJOS817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6898&client=summon