Weak Convergence of the Wild Bootstrap for the Aalen-Johansen Estimator of the Cumulative Incidence Function of a Competing Risk
We give a rigorous study of weak convergence of the wild bootstrap for non-parametric estimation of the cumulative event probability of a competing risk. The data may be subject to independent left-truncation and right-censoring. Inclusion of left-truncation is motivated by a study on pregnancy outc...
Saved in:
Published in | Scandinavian journal of statistics Vol. 40; no. 3; pp. 387 - 402 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2013
Wiley Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0303-6898 1467-9469 |
DOI | 10.1111/j.1467-9469.2012.00817.x |
Cover
Abstract | We give a rigorous study of weak convergence of the wild bootstrap for non-parametric estimation of the cumulative event probability of a competing risk. The data may be subject to independent left-truncation and right-censoring. Inclusion of left-truncation is motivated by a study on pregnancy outcomes. The wild bootstrap includes as one case a popular resampling technique, where the limit distribution is approximated by repeatedly generating standard normal variates, while the data are kept fixed. Simulation results and a data example are also presented. |
---|---|
AbstractList | We give a rigorous study of weak convergence of the wild bootstrap for non-parametric estimation of the cumulative event probability of a competing risk. The data may be subject to independent left-truncation and right-censoring. Inclusion of left-truncation is motivated by a study on pregnancy outcomes. The wild bootstrap includes as one case a popular resampling technique, where the limit distribution is approximated by repeatedly generating standard normal variates, while the data are kept fixed. Simulation results and a data example are also presented. . We give a rigorous study of weak convergence of the wild bootstrap for non‐parametric estimation of the cumulative event probability of a competing risk. The data may be subject to independent left‐truncation and right‐censoring. Inclusion of left‐truncation is motivated by a study on pregnancy outcomes. The wild bootstrap includes as one case a popular resampling technique, where the limit distribution is approximated by repeatedly generating standard normal variates, while the data are kept fixed. Simulation results and a data example are also presented. We give a rigorous study of weak convergence of the wild bootstrap for non-parametric estimation of the cumulative event probability of a competing risk. The data may be subject to independent left-truncation and right-censoring. Inclusion of left-truncation is motivated by a study on pregnancy outcomes. The wild bootstrap includes as one case a popular resampling technique, where the limit distribution is approximated by repeatedly generating standard normal variates, while the data are kept fixed. Simulation results and a data example are also presented. [PUBLICATION ABSTRACT] |
Author | TERMINI, SUSANNA DI BEYERSMANN, JAN PAULY, MARKUS |
Author_xml | – sequence: 1 givenname: JAN surname: BEYERSMANN fullname: BEYERSMANN, JAN organization: Freiburg Centre for Data Analysis and Modeling, University of Freiburg and Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg – sequence: 2 givenname: SUSANNA DI surname: TERMINI fullname: TERMINI, SUSANNA DI organization: Freiburg Centre for Data Analysis and Modeling, University of Freiburg and Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg – sequence: 3 givenname: MARKUS surname: PAULY fullname: PAULY, MARKUS organization: Institute of Mathematics, University of Duesseldorf |
BookMark | eNqNUU1v2yAYtqZOWtruJ0yytMsu9sAQjA-b1LlN2q5apXVbjoiS1y2OAxngLr3tpxfHVQ49lcuLeD6A5zlMDow1kCQpRjmO63ObY8rKrKKsyguEixwhjst8-yaZ7IGDZIIIIhnjFX-XHHrfIoQZxXyS_F-AXKW1NQ_g7sAoSG2ThntIF7pbpt-sDT44uUkb63bHJ7IDk13ae2k8mPTMB72WIYLPsrpf950M-gHSC6P0cmc5640K2pqBJONl6w0Ebe7Sn9qvjpO3jew8vH-eR8nv2dmv-jy7up5f1CdXmaKElhmRDWMVAqBV1SjJl4XiVIFEFV7GiTEnt4goYLjEU1yQouFldQuqmeJpASUhR8mn0Xfj7N8efBBr7RV0nTRgey8wKzHlpKAoUj--oLa2dya-TuAYWuQwPhh-HVnKWe8dNELpIIdvxsB0JzASQ0GiFUMPYuhBDAWJXUFiGw34C4ONi2G6x9dIv4zSf7qDx1frxM3l9U3cRf2HUd_62N1eX9ApZ6wc8GzEtQ-w3ePSrQQrSTkVix9z8ef0lM_r85n4Tp4AKmnDJA |
CitedBy_id | crossref_primary_10_1007_s00184_019_00729_2 crossref_primary_10_1016_j_jmva_2018_12_005 crossref_primary_10_1016_j_csda_2019_02_001 crossref_primary_10_1016_j_jmva_2017_12_008 crossref_primary_10_4054_DemRes_2014_30_62 crossref_primary_10_1186_s12874_015_0025_y crossref_primary_10_1093_biomet_asx026 crossref_primary_10_1111_biom_13259 crossref_primary_10_1111_biom_13710 crossref_primary_10_1111_biom_12861 crossref_primary_10_1111_biom_13059 crossref_primary_10_1111_sjos_12443 crossref_primary_10_1007_s11222_024_10420_w crossref_primary_10_1038_s41416_022_01920_5 crossref_primary_10_1093_biomet_asaa058 crossref_primary_10_1093_biostatistics_kxaa030 crossref_primary_10_1080_02331888_2017_1336171 crossref_primary_10_1093_jncics_pkae072 crossref_primary_10_1002_pst_1915 crossref_primary_10_1128_AAC_01691_17 crossref_primary_10_1214_14_EJS972 crossref_primary_10_1111_sjos_12714 crossref_primary_10_1016_j_cct_2020_106213 crossref_primary_10_1007_s10985_019_09487_9 crossref_primary_10_1016_j_insmatheco_2018_05_004 crossref_primary_10_1080_10485252_2025_2466649 crossref_primary_10_1093_cid_ciy516 crossref_primary_10_1002_sim_6409 crossref_primary_10_1007_s10985_018_9423_x crossref_primary_10_1214_17_EJS1319 crossref_primary_10_1016_j_jamda_2016_08_022 crossref_primary_10_1016_j_csda_2016_06_016 crossref_primary_10_1002_bimj_70008 crossref_primary_10_1002_sim_8404 |
Cites_doi | 10.1007/978-0-387-68560-1 10.1093/biomet/asr052 10.1007/s10985-009-9129-1 10.1016/j.reprotox.2008.06.006 10.1002/9780470316962 10.1093/biomet/80.3.557 10.1214/aos/1176349025 10.1002/(SICI)1097-0258(19970430)16:8<901::AID-SIM543>3.0.CO;2-M 10.1007/978-1-4612-2950-6 10.1214/11-EJS596 10.1016/j.csda.2006.05.011 10.2307/2337051 10.1093/biomet/asq012 10.1016/j.jhin.2011.02.003 10.1111/j.0006-341X.2003.00119.x 10.1214/aos/1176350143 10.1016/j.jeconom.2008.08.003 10.1214/aos/1056562462 10.1007/978-1-4614-2035-4 10.1002/bimj.200900039 10.1214/aos/1176350142 10.1007/978-94-015-7983-4_18 10.1214/aos/1176347617 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Board of the Foundation of the Scandinavian Journal of Statistics 2012 Board of the Foundation of the Scandinavian Journal of Statistics |
Copyright_xml | – notice: Copyright © 2013 Board of the Foundation of the Scandinavian Journal of Statistics – notice: 2012 Board of the Foundation of the Scandinavian Journal of Statistics |
DBID | BSCLL AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1111/j.1467-9469.2012.00817.x |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Public Health |
EISSN | 1467-9469 |
EndPage | 402 |
ExternalDocumentID | 3038950441 10_1111_j_1467_9469_2012_00817_x SJOS817 24586677 ark_67375_WNG_VDD8GCHF_K |
Genre | article Feature |
GroupedDBID | -ET .3N .GA .GJ .L6 .Y3 05W 0R~ 10A 123 1OC 3-9 31~ 33P 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8V8 930 A03 AAESR AAEVG AAHHS AAKYL AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABDBF ABEML ABFAN ABIVO ABJNI ABPVW ABQDR ABXSQ ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACDIW ACGFS ACIWK ACMTB ACPOU ACSCC ACTMH ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADODI ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AELLO AELPN AEMOZ AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFVYC AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR AKBRZ AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BHOJU BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DU5 EAD EAP EBA EBO EBR EBS EBU ECEWR EJD EMK EST ESX F00 F01 F04 F5P FEDTE G-S G.N GIFXF GODZA H.T H.X HF~ HGLYW HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SA0 SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 ZZTAW ~IA ~WT AAHQN AAMMB AAMNL AANHP AAWIL AAYCA ABAWQ ACHJO ACRPL ACUHS ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGLNM AGQPQ AGXDD AGYGG AHQJS AIDQK AIDYY AIHAF ALRMG ALVPJ AMVHM AAYXX AGHNM CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c4347-3af6690ee499fca8d2c84cea091d4ce1183b03ce617151232f879becf5152e733 |
IEDL.DBID | DR2 |
ISSN | 0303-6898 |
IngestDate | Fri Jul 11 16:17:53 EDT 2025 Sat Jul 05 23:20:41 EDT 2025 Tue Jul 01 01:27:14 EDT 2025 Thu Apr 24 22:52:53 EDT 2025 Wed Jan 22 16:23:51 EST 2025 Sun Aug 31 12:00:40 EDT 2025 Wed Oct 30 09:56:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4347-3af6690ee499fca8d2c84cea091d4ce1183b03ce617151232f879becf5152e733 |
Notes | ark:/67375/WNG-VDD8GCHF-K ArticleID:SJOS817 istex:87BB37416C2BD04D07B0013D8EE641858632C435 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1418324683 |
PQPubID | 30873 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1671483240 proquest_journals_1418324683 crossref_citationtrail_10_1111_j_1467_9469_2012_00817_x crossref_primary_10_1111_j_1467_9469_2012_00817_x wiley_primary_10_1111_j_1467_9469_2012_00817_x_SJOS817 jstor_primary_24586677 istex_primary_ark_67375_WNG_VDD8GCHF_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09 20130901 September 2013 2013-09-00 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Scandinavian journal of statistics |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Publishing |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Publishing |
References | Keiding, N. & Gill, R. (1990). Random truncation models and Markov processes. Ann. Statist.18, 582-602. Aalen, O., Borgan, Ø. & Gjessing, H. (2008). Survival and event history analysis. Springer, New York. Lin, D. Y., Fleming, T. R. & Wei, L. J. (1994). Confidence bands for survival curves under the proportional hazards model. Biometrika81, 73-81. Mammen, E. (1992). When does bootstrap work? Asymptotic results and simulations. Springer, New York, NY. Scheike, T. & Zhang, M. (2003). Extensions and applications of the Cox-Aalen survival model. Biometrics39, 1036-1045. De Angelis, G., Allignol, A., Murthy, A., Wolkewitz, M., Beyersmann, J., Safran, E., Schrenzel, J., Pittet, D. & Harbarth, S. (2011). Multistate modelling to estimate the excess length of stay associated with meticillin-resistant staphylococcus aureus colonisation and infection in surgical patients. J. Hosp. Infect.78, 86-91. Beyersmann, J., Allignol, A. & Schumacher, M. (2012). Competing risks and multistate models with R. Springer, New York. Elgmati, E., Farewell, D. & Henderson, R. (2010). A martingale residual diagnostic for longitudinal and recurrent event data. Lifetime Data Anal.16, 118-135. Martinussen, T. & Scheike, T. (2006). Dynamic regression models for survival data. Springer, New York, NY. Meister, R. & Schaefer, C. (2008). Statistical methods for estimating the probability of spontaneous abortion in observational studies-analyzing pregnancies exposed to coumarin derivatives. Reprod. Toxicol.26, 31-35. Pauly, M. (2011). Weighted resampling of martingale difference arrays with applications. Electron. J. Stat.5, 41-52. Andersen, P., Borgan, Ø., Gill, R. D. & Keiding, N. (1993). Statistical models based on counting processes, Springer Series in Statistics. Springer, New York, NY. Janssen, A. & Pauls, T. (2003). How do bootstrap and permutation tests work?Ann. Statist.31, 768-806. Davidson, R. & Flachaire, E. (2008). The wild bootstrap, tamed at last. J. Econometrics146, 162-169. Lin, D. Y., Wei, L. J. & Ying, Z. (1993). Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika80, 557-572. Wu, C. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist.14, 1261-1295. Bajorunaite, R. & Klein, J. P. (2007). Two-sample tests of the equality of two cumulative incidence functions. Comput. Statist. Data Anal.51, 4269-4281. Beran, R. (2000). Discussion: Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist.14, 1295-1298. Lin, D. (1997). Non-parametric inference for cumulative incidence functions in competing risks studies. Stat. Med.16, 901-910. Billingsley, P. (1999). Convergence of probability measures. Wiley, New York. Aalen, O. & Johansen, S. (1978). An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scand. J. Statist.5, 141-150. Hieke, S., Dettenkofer, M., Bertz, H., Schumacher, M. & Beyersmann, J. (2012). Initially fewer bloodstream infections for allogeneic versus autologous stem-cell transplants in neutropenic patients. Epidemiol. Infect. doi: 10.1017/S0950268812000283 (in press). Oza, N. & Russell, S. (2001). Online bagging and boosting. Artif. Intell. Statist.1, 105-112. Allignol, A., Schumacher, M. & Beyersmann, J. (2010). A note on variance estimation of the Aalen-Johansen estimator of the cumulative incidence function in competing risks, with a view towards left-truncated data. Biom. J.52, 126-137. Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear modelsAnn. Statist.21, 255-285. Lee, H. K. H. & Clyde, M. C. (2004). Lossless online Bayesian bagging. J. Mach. Learn. Res.5, 143-151. Cai, T., Tian, L., Uno, H., Solomon, S. & Wei, L. (2010). Calibrating parametric subject-specific risk estimation. Biometrika. 97, 389-404. Feng, X., He, X. & Hu, J. (2011). Wild bootstrap for quantile regression. Biometrika98, 995-999. 2010; 97 2010; 16 2012 1990; 18 1993; 21 1986; 14 2008 1978; 5 2011; 98 2004; 5 2006 2003; 39 1993 2011; 78 2007; 51 1992 2008; 146 1994; 81 2011; 5 2003; 31 1999 2000; 14 2008; 26 1997; 16 1993; 80 2001; 1 2010; 52 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 Martinussen T. (e_1_2_10_25_1) 2006 Hieke S. (e_1_2_10_15_1) 2012 Lee H. K. H. (e_1_2_10_19_1) 2004; 5 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 Andersen P. (e_1_2_10_5_1) 1993 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_30_1 Oza N. (e_1_2_10_27_1) 2001; 1 Aalen O. (e_1_2_10_3_1) 1978; 5 N. Keiding (e_1_2_10_17_1) 1992 e_1_2_10_29_1 e_1_2_10_28_1 e_1_2_10_26_1 |
References_xml | – reference: Wu, C. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist.14, 1261-1295. – reference: Andersen, P., Borgan, Ø., Gill, R. D. & Keiding, N. (1993). Statistical models based on counting processes, Springer Series in Statistics. Springer, New York, NY. – reference: De Angelis, G., Allignol, A., Murthy, A., Wolkewitz, M., Beyersmann, J., Safran, E., Schrenzel, J., Pittet, D. & Harbarth, S. (2011). Multistate modelling to estimate the excess length of stay associated with meticillin-resistant staphylococcus aureus colonisation and infection in surgical patients. J. Hosp. Infect.78, 86-91. – reference: Feng, X., He, X. & Hu, J. (2011). Wild bootstrap for quantile regression. Biometrika98, 995-999. – reference: Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear modelsAnn. Statist.21, 255-285. – reference: Lee, H. K. H. & Clyde, M. C. (2004). Lossless online Bayesian bagging. J. Mach. Learn. Res.5, 143-151. – reference: Oza, N. & Russell, S. (2001). Online bagging and boosting. Artif. Intell. Statist.1, 105-112. – reference: Lin, D. (1997). Non-parametric inference for cumulative incidence functions in competing risks studies. Stat. Med.16, 901-910. – reference: Allignol, A., Schumacher, M. & Beyersmann, J. (2010). A note on variance estimation of the Aalen-Johansen estimator of the cumulative incidence function in competing risks, with a view towards left-truncated data. Biom. J.52, 126-137. – reference: Janssen, A. & Pauls, T. (2003). How do bootstrap and permutation tests work?Ann. Statist.31, 768-806. – reference: Martinussen, T. & Scheike, T. (2006). Dynamic regression models for survival data. Springer, New York, NY. – reference: Aalen, O., Borgan, Ø. & Gjessing, H. (2008). Survival and event history analysis. Springer, New York. – reference: Lin, D. Y., Wei, L. J. & Ying, Z. (1993). Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika80, 557-572. – reference: Cai, T., Tian, L., Uno, H., Solomon, S. & Wei, L. (2010). Calibrating parametric subject-specific risk estimation. Biometrika. 97, 389-404. – reference: Bajorunaite, R. & Klein, J. P. (2007). Two-sample tests of the equality of two cumulative incidence functions. Comput. Statist. Data Anal.51, 4269-4281. – reference: Pauly, M. (2011). Weighted resampling of martingale difference arrays with applications. Electron. J. Stat.5, 41-52. – reference: Beran, R. (2000). Discussion: Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist.14, 1295-1298. – reference: Hieke, S., Dettenkofer, M., Bertz, H., Schumacher, M. & Beyersmann, J. (2012). Initially fewer bloodstream infections for allogeneic versus autologous stem-cell transplants in neutropenic patients. Epidemiol. Infect. doi: 10.1017/S0950268812000283 (in press). – reference: Meister, R. & Schaefer, C. (2008). Statistical methods for estimating the probability of spontaneous abortion in observational studies-analyzing pregnancies exposed to coumarin derivatives. Reprod. Toxicol.26, 31-35. – reference: Elgmati, E., Farewell, D. & Henderson, R. (2010). A martingale residual diagnostic for longitudinal and recurrent event data. Lifetime Data Anal.16, 118-135. – reference: Billingsley, P. (1999). Convergence of probability measures. Wiley, New York. – reference: Keiding, N. & Gill, R. (1990). Random truncation models and Markov processes. Ann. Statist.18, 582-602. – reference: Aalen, O. & Johansen, S. (1978). An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scand. J. Statist.5, 141-150. – reference: Davidson, R. & Flachaire, E. (2008). The wild bootstrap, tamed at last. J. Econometrics146, 162-169. – reference: Scheike, T. & Zhang, M. (2003). Extensions and applications of the Cox-Aalen survival model. Biometrics39, 1036-1045. – reference: Lin, D. Y., Fleming, T. R. & Wei, L. J. (1994). Confidence bands for survival curves under the proportional hazards model. Biometrika81, 73-81. – reference: Beyersmann, J., Allignol, A. & Schumacher, M. (2012). Competing risks and multistate models with R. Springer, New York. – reference: Mammen, E. (1992). When does bootstrap work? Asymptotic results and simulations. Springer, New York, NY. – year: 2012 article-title: Initially fewer bloodstream infections for allogeneic versus autologous stem‐cell transplants in neutropenic patients publication-title: Epidemiol. Infect. – volume: 81 start-page: 73 year: 1994 end-page: 81 article-title: Confidence bands for survival curves under the proportional hazards model publication-title: Biometrika – volume: 14 start-page: 1295 year: 2000 end-page: 1298 article-title: Discussion: Jackknife, bootstrap and other resampling methods in regression analysis publication-title: Ann. Statist. – volume: 18 start-page: 582 year: 1990 end-page: 602 article-title: Random truncation models and Markov processes publication-title: Ann. Statist. – volume: 16 start-page: 901 year: 1997 end-page: 910 article-title: Non‐parametric inference for cumulative incidence functions in competing risks studies publication-title: Stat. Med. – volume: 21 start-page: 255 year: 1993 end-page: 285 article-title: Bootstrap and wild bootstrap for high dimensional linear models publication-title: Ann. Statist. – volume: 31 start-page: 768 year: 2003 end-page: 806 article-title: How do bootstrap and permutation tests work? publication-title: Ann. Statist. – volume: 14 start-page: 1261 year: 1986 end-page: 1295 article-title: Jackknife, bootstrap and other resampling methods in regression analysis publication-title: Ann. Statist. – year: 1992 – volume: 1 start-page: 105 year: 2001 end-page: 112 article-title: Online bagging and boosting publication-title: Artif. Intell. Statist. – volume: 98 start-page: 995 year: 2011 end-page: 999 article-title: Wild bootstrap for quantile regression publication-title: Biometrika – year: 2012 – volume: 97 start-page: 389 year: 2010 end-page: 404 article-title: Calibrating parametric subject‐specific risk estimation publication-title: Biometrika – volume: 146 start-page: 162 year: 2008 end-page: 169 article-title: The wild bootstrap, tamed at last publication-title: J. Econometrics – volume: 80 start-page: 557 year: 1993 end-page: 572 article-title: Checking the Cox model with cumulative sums of martingale‐based residuals publication-title: Biometrika – volume: 78 start-page: 86 year: 2011 end-page: 91 article-title: Multistate modelling to estimate the excess length of stay associated with meticillin‐resistant staphylococcus aureus colonisation and infection in surgical patients publication-title: J. Hosp. Infect. – year: 2008 – year: 2006 – volume: 5 start-page: 41 year: 2011 end-page: 52 article-title: Weighted resampling of martingale difference arrays with applications publication-title: Electron. J. Stat. – volume: 52 start-page: 126 year: 2010 end-page: 137 article-title: A note on variance estimation of the Aalen–Johansen estimator of the cumulative incidence function in competing risks, with a view towards left‐truncated data publication-title: Biom. J. – volume: 26 start-page: 31 year: 2008 end-page: 35 article-title: Statistical methods for estimating the probability of spontaneous abortion in observational studies–analyzing pregnancies exposed to coumarin derivatives publication-title: Reprod. Toxicol. – volume: 5 start-page: 141 year: 1978 end-page: 150 article-title: An empirical transition matrix for non‐homogeneous Markov chains based on censored observations publication-title: Scand. J. Statist. – volume: 51 start-page: 4269 year: 2007 end-page: 4281 article-title: Two‐sample tests of the equality of two cumulative incidence functions publication-title: Comput. Statist. Data Anal. – volume: 16 start-page: 118 year: 2010 end-page: 135 article-title: A martingale residual diagnostic for longitudinal and recurrent event data publication-title: Lifetime Data Anal. – start-page: 309 year: 1992 end-page: 326 – volume: 39 start-page: 1036 year: 2003 end-page: 1045 article-title: Extensions and applications of the Cox‐Aalen survival model publication-title: Biometrics – volume: 5 start-page: 143 year: 2004 end-page: 151 article-title: Lossless online Bayesian bagging publication-title: J. Mach. Learn. Res. – year: 1993 – year: 1999 – volume: 5 start-page: 141 year: 1978 ident: e_1_2_10_3_1 article-title: An empirical transition matrix for non‐homogeneous Markov chains based on censored observations publication-title: Scand. J. Statist. – ident: e_1_2_10_2_1 doi: 10.1007/978-0-387-68560-1 – ident: e_1_2_10_14_1 doi: 10.1093/biomet/asr052 – ident: e_1_2_10_13_1 doi: 10.1007/s10985-009-9129-1 – volume-title: Dynamic regression models for survival data year: 2006 ident: e_1_2_10_25_1 – ident: e_1_2_10_26_1 doi: 10.1016/j.reprotox.2008.06.006 – ident: e_1_2_10_9_1 doi: 10.1002/9780470316962 – ident: e_1_2_10_22_1 doi: 10.1093/biomet/80.3.557 – ident: e_1_2_10_24_1 doi: 10.1214/aos/1176349025 – ident: e_1_2_10_20_1 doi: 10.1002/(SICI)1097-0258(19970430)16:8<901::AID-SIM543>3.0.CO;2-M – ident: e_1_2_10_23_1 doi: 10.1007/978-1-4612-2950-6 – ident: e_1_2_10_28_1 doi: 10.1214/11-EJS596 – ident: e_1_2_10_6_1 doi: 10.1016/j.csda.2006.05.011 – ident: e_1_2_10_21_1 doi: 10.2307/2337051 – volume: 1 start-page: 105 year: 2001 ident: e_1_2_10_27_1 article-title: Online bagging and boosting publication-title: Artif. Intell. Statist. – ident: e_1_2_10_10_1 doi: 10.1093/biomet/asq012 – ident: e_1_2_10_12_1 doi: 10.1016/j.jhin.2011.02.003 – ident: e_1_2_10_29_1 doi: 10.1111/j.0006-341X.2003.00119.x – year: 2012 ident: e_1_2_10_15_1 article-title: Initially fewer bloodstream infections for allogeneic versus autologous stem‐cell transplants in neutropenic patients publication-title: Epidemiol. Infect. – ident: e_1_2_10_7_1 doi: 10.1214/aos/1176350143 – ident: e_1_2_10_11_1 doi: 10.1016/j.jeconom.2008.08.003 – ident: e_1_2_10_16_1 doi: 10.1214/aos/1056562462 – ident: e_1_2_10_8_1 doi: 10.1007/978-1-4614-2035-4 – ident: e_1_2_10_4_1 doi: 10.1002/bimj.200900039 – ident: e_1_2_10_30_1 doi: 10.1214/aos/1176350142 – volume-title: Statistical models based on counting processes, Springer Series in Statistics year: 1993 ident: e_1_2_10_5_1 – start-page: 309 volume-title: Survival analysis: state of the art year: 1992 ident: e_1_2_10_17_1 doi: 10.1007/978-94-015-7983-4_18 – volume: 5 start-page: 143 year: 2004 ident: e_1_2_10_19_1 article-title: Lossless online Bayesian bagging publication-title: J. Mach. Learn. Res. – ident: e_1_2_10_18_1 doi: 10.1214/aos/1176347617 |
SSID | ssj0016418 |
Score | 2.2271392 |
Snippet | We give a rigorous study of weak convergence of the wild bootstrap for non-parametric estimation of the cumulative event probability of a competing risk. The... . We give a rigorous study of weak convergence of the wild bootstrap for non‐parametric estimation of the cumulative event probability of a competing risk. The... We give a rigorous study of weak convergence of the wild bootstrap for non‐parametric estimation of the cumulative event probability of a competing risk. The... |
SourceID | proquest crossref wiley jstor istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 387 |
SubjectTerms | abortion Approximation Bootstrap method Clinical outcomes Convergence Estimating techniques Estimators Inclusions left-truncation Pregnancy Probability Public health right-censoring Risk Simulation simultaneous confidence bands Statistical analysis Statistical methods Statistics Studies |
Title | Weak Convergence of the Wild Bootstrap for the Aalen-Johansen Estimator of the Cumulative Incidence Function of a Competing Risk |
URI | https://api.istex.fr/ark:/67375/WNG-VDD8GCHF-K/fulltext.pdf https://www.jstor.org/stable/24586677 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-9469.2012.00817.x https://www.proquest.com/docview/1418324683 https://www.proquest.com/docview/1671483240 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLfQdhkHBoOJsDEZCXFL1caJ7RzbbKEq2pA2xnazXNsRKCyZ1hZNnBBfgW_IJ-E9548ocJgQp1SpX9o478_vvTz_TMjLwulCD20cGgHmFuvUhFpIExaWw3kuODe43vn4hE_P49llctn2P-FamIYfoi-4oWV4f40GrueLP408hfwOO7SQd1OOxADx5IhxpNE_PO2ZpCAp8KU-UGkWcpnK9aaev15oLVJt4qTfdk2La3D0V1Dro1K-TcrufppmlHKwWs4H5stvVI__54YfkgcteKXjRtsekXuu2iH3j3vm18UO2UL02pA_PybfLpwuaYaN7X6Np6N1QWEwBV9k6aSul1houaYAnP3pMUSr6sfX77P6g8aaNz2CC11hWaATzFZXfr-xz46CZ2s2RKU5xGbULxykaeYzAYjI9PTjonxCzvOjd9k0bDd9CE3MYnB4uuCQsTsHqVhhtLSRkbFxGnCNhSPkQ2w-ZMYB8kKwwqJCihQUsQBgFjnB2C7ZqOrKPSWUsRTyB-t4AUmmTaUWfOSYlJbzJLFDGxDRPWBlWkZ03Jjjk1rLjITCKVc45cpPuboNyKiXvG5YQe4g88rrUC-gb0rsqhOJujh5rd7jm51smqs3Adn1StYPjOJEci5EQPY7rVOtp1nAj6FTjrlkAXnRfw0-Al_86MrVKxjDBWS9SL0YEO5V7M7_Wp3N3p7Bp2f_KrhHtiK_gwi25e2TjeXNyj0HHLecH5DN8eRwkh94S_0JH2I6Lg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6h9kA58ChUNRRYJMTNUeJ1dtfHYhpC2gSpD9rbarNeC5TWrpoEVZwQf4F_yC9hZv0QAQ4V4uTI2XHi9ezM941nZwBe5s7kppvFoZW43GKT2NBIZcM8E3heSCEs7XceT8TwJB6d9c_qdkC0F6aqD9EG3GhleHtNC5wC0n-u8gQJHqVoUeFN1ZMdBJTrMeIOYmJvDttaUkgLfLAPlZqHQiVqNa3nr1da8VXrNO3XTdriCiD9FdZ6vzS4B-fNHVXpKLPOcjHt2C-_FXv8T7d8H-7W-JXtVgr3AG65YhPujNvir_NN2CAAW9V_fgjfTp2ZsZRy2_02T8fKnOFghuYoY6_LckGxlkuG2Nmf3kWHVfz4-n1UfjQU9mZ7eKELigw0gunywrcc--wYGreqJyoboHsmFaNBhqWeDKBTZoef5rNHcDLYO06HYd33IbQxj9HmmVwgaXcO2Vhujcoiq2LrDEKbDI9Iifi0y61D8EV4hUe5kgnqYo7YLHKS8y1YK8rCbQPjPEEKkTmRI8_MEmWk6DmuVCZEv591swBk84S1rYuiU2-Oc71CjqSmKdc05dpPub4OoNdKXlaFQW4g88orUStgrmaUWCf7-nTyVn-glzvpcKD3A9jyWtYOjOK-EkLKAHYatdO1sZnjj5FdjoXiAbxov0YzQe9-TOHKJY4REokvVV8MQHgdu_G_1kej90f46fG_Cj6H28Pj8YE-eDfZfwIbkW8oQll6O7C2uFq6pwjrFtNnfrn-BOjfPNs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLbQJqFxwc9gWrYBRkLcpWrjxHYuR1goHStoY2x3lms7AoUl1dqiiSvEK_CGPAnnOE1EgYsJcZUq9Ukb5_x838nxMSFPC6cL3bdxaASYW6xTE2ohTVhYDue54NzgeuejMR-exqPz5HxZ_4RrYZr-EF3CDS3D-2s08Kkt_jTyFPgdVmhh3005ED3Ak-sxB2CBAOm4ayUFrMDn-kCnWchlKlerev56pZVQtY6zftVWLa7g0V9RrQ9L-R1StjfUVKOUvcV80jNffuv1-H_u-C65vUSvdL9Rt3vkhqs2ya2jrvXrbJNsIHxtuj_fJ9_OnC5phpXtfpGno3VBYTAFZ2Tp87qeY6ZlSgE5-9P7EK6qH1-_j-oPGpPe9AAudIF5gVYwW1z4Dcc-OwqurdkRleYQnFHBcJCmmacCEJLp8cdZ-YCc5gfvsmG43PUhNDGLwePpggNldw64WGG0tJGRsXEagI2FIxAiNukz4wB6IVphUSFFCppYADKLnGBsi6xVdeW2CWUsBQJhHS-AZdpUasEHjklpOU8S27cBEe0DVmbZEh135vikVqiRUDjlCqdc-SlXVwEZdJLTpi3INWSeeR3qBPRliWV1IlFn45fqPb7ayYa5OgzIlleybmAUJ5JzIQKy12qdWrqaGfwYeuWYSxaQJ93X4CTwzY-uXL2AMVwA7cXeiwHhXsWu_a_VyejNCXza-VfBx-Tm2xe5ev1qfLhLNiK_mwiW6O2Rtfnlwj0ETDefPPLG-hPsNjuK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+Convergence+of+the+Wild+Bootstrap+for+the+Aalen%E2%80%93Johansen+Estimator+of+the+Cumulative+Incidence+Function+of+a+Competing+Risk&rft.jtitle=Scandinavian+journal+of+statistics&rft.au=BEYERSMANN%2C+JAN&rft.au=TERMINI%2C+SUSANNA+DI&rft.au=PAULY%2C+MARKUS&rft.date=2013-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0303-6898&rft.eissn=1467-9469&rft.volume=40&rft.issue=3&rft.spage=387&rft.epage=402&rft_id=info:doi/10.1111%2Fj.1467-9469.2012.00817.x&rft.externalDBID=10.1111%252Fj.1467-9469.2012.00817.x&rft.externalDocID=SJOS817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6898&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6898&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6898&client=summon |