Distributed power control for multiuser cognitive radio networks with quality of service and interference temperature constraints

One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while quality of service needs of both SUs and primary users (PUs) are guaranteed. Most power control algorithms only consider interference temper...

Full description

Saved in:
Bibliographic Details
Published inWireless communications and mobile computing Vol. 15; no. 14; pp. 1773 - 1783
Main Authors Xu, Yongjun, Zhao, Xiaohui
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 10.10.2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while quality of service needs of both SUs and primary users (PUs) are guaranteed. Most power control algorithms only consider interference temperature constraint in single user scenario while ignoring the interference from PUs to SUs and minimum signal to interference plus noise ratio (SINR) requirement of SUs. In this paper, a distributed power control algorithm without user cooperation is proposed for multiuser underlay CNRs. Specifically, we focus on maximizing total throughput of SUs subject to both maximum allowable transmission power constraint and SINR constraint, as well as interference temperature constraint. To reduce the burden of information exchange and computational complexity, an average interference constraint is proposed. Parameter range and convergence analysis are given for feasible solutions. The resource allocation is transformed into a convex optimization problem, which is solved by using Lagrange dual method. In computer simulations, the effectiveness of our proposed scheme is shown by comparing with distributed constrained power control algorithm and Nash bargaining power control game algorithm. Copyright © 2014 John Wiley & Sons, Ltd. A distributed power control algorithm is proposed to maximize total throughput of secondary users with constrains on maximum allowable transmission power, signal to interference plus noise ratio of secondary users, and interference temperature of primary users. An average interference constrain is formulated to reduce burden of information exchange. Parameter range and convergence analysis are given.
AbstractList One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while quality of service needs of both SUs and primary users (PUs) are guaranteed. Most power control algorithms only consider interference temperature constraint in single user scenario while ignoring the interference from PUs to SUs and minimum signal to interference plus noise ratio (SINR) requirement of SUs. In this paper, a distributed power control algorithm without user cooperation is proposed for multiuser underlay CNRs. Specifically, we focus on maximizing total throughput of SUs subject to both maximum allowable transmission power constraint and SINR constraint, as well as interference temperature constraint. To reduce the burden of information exchange and computational complexity, an average interference constraint is proposed. Parameter range and convergence analysis are given for feasible solutions. The resource allocation is transformed into a convex optimization problem, which is solved by using Lagrange dual method. In computer simulations, the effectiveness of our proposed scheme is shown by comparing with distributed constrained power control algorithm and Nash bargaining power control game algorithm. Copyright © 2014 John Wiley & Sons, Ltd.
One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while quality of service needs of both SUs and primary users (PUs) are guaranteed. Most power control algorithms only consider interference temperature constraint in single user scenario while ignoring the interference from PUs to SUs and minimum signal to interference plus noise ratio (SINR) requirement of SUs. In this paper, a distributed power control algorithm without user cooperation is proposed for multiuser underlay CNRs. Specifically, we focus on maximizing total throughput of SUs subject to both maximum allowable transmission power constraint and SINR constraint, as well as interference temperature constraint. To reduce the burden of information exchange and computational complexity, an average interference constraint is proposed. Parameter range and convergence analysis are given for feasible solutions. The resource allocation is transformed into a convex optimization problem, which is solved by using Lagrange dual method. In computer simulations, the effectiveness of our proposed scheme is shown by comparing with distributed constrained power control algorithm and Nash bargaining power control game algorithm. A distributed power control algorithm is proposed to maximize total throughput of secondary users with constrains on maximum allowable transmission power, signal to interference plus noise ratio of secondary users, and interference temperature of primary users. An average interference constrain is formulated to reduce burden of information exchange. Parameter range and convergence analysis are given.
One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while quality of service needs of both SUs and primary users (PUs) are guaranteed. Most power control algorithms only consider interference temperature constraint in single user scenario while ignoring the interference from PUs to SUs and minimum signal to interference plus noise ratio (SINR) requirement of SUs. In this paper, a distributed power control algorithm without user cooperation is proposed for multiuser underlay CNRs. Specifically, we focus on maximizing total throughput of SUs subject to both maximum allowable transmission power constraint and SINR constraint, as well as interference temperature constraint. To reduce the burden of information exchange and computational complexity, an average interference constraint is proposed. Parameter range and convergence analysis are given for feasible solutions. The resource allocation is transformed into a convex optimization problem, which is solved by using Lagrange dual method. In computer simulations, the effectiveness of our proposed scheme is shown by comparing with distributed constrained power control algorithm and Nash bargaining power control game algorithm. Copyright © 2014 John Wiley & Sons, Ltd. A distributed power control algorithm is proposed to maximize total throughput of secondary users with constrains on maximum allowable transmission power, signal to interference plus noise ratio of secondary users, and interference temperature of primary users. An average interference constrain is formulated to reduce burden of information exchange. Parameter range and convergence analysis are given.
Author Zhao, Xiaohui
Xu, Yongjun
Author_xml – sequence: 1
  givenname: Yongjun
  surname: Xu
  fullname: Xu, Yongjun
  organization: College of Communication Engineering, Jilin University, Changchun, China
– sequence: 2
  givenname: Xiaohui
  surname: Zhao
  fullname: Zhao, Xiaohui
  email: Correspondence: Xiaohui Zhao, College of Communication Engineering, Jilin University, Nanhu Road 5372, Changchun City, Jilin Province, China., xhzhao@jlu.edu.cn
  organization: College of Communication Engineering, Jilin University, Changchun, China
BookMark eNp10UFv0zAUB3ALDYmtIPERLHHhkmLHid0cUWFl0hgX0CQulpM8g7fE7p6dZT3yzedSVASCk63nn_2e_D8jJz54IOQlZ0vOWPlm7sZlWUn5hJzyWrBiJZU6Oe5l84ycxXjDGBOs5KfkxzsXE7p2StDTbZgBaRd8wjBQG5CO05DcFH9Wv3mX3D1QNL0L1EOaA95GOrv0nd5NZnBpR4OlGd-7DqjxPXU-AVpA8LmQYNwCmjQh7Hvktiafx-fkqTVDhBe_1gX5cv7-8_pDcflpc7F-e1l0lahk0ZRS8FK1pVB9y4wpG-CN6WpbcbsyzAqubFtz1gjGK7Cyr9tqJVret2Vr-0aKBXl9eHeL4W6CmPToYgfDYDyEKWqualFzxfILC_LqL3oTJvR5uqxYI5uK16uslgfVYYgRwerOJZPc_vuMGzRnep-IzonofSK_Jzhe2KIbDe7-RYsDnd0Au_86fb3--KfPacLD0Ru81VIJVevrq41mm68bLtSVPhePNMauXA
CitedBy_id crossref_primary_10_1109_COMST_2016_2631079
crossref_primary_10_1109_JIOT_2021_3071396
crossref_primary_10_1007_s11277_021_09123_6
crossref_primary_10_1007_s11276_018_1785_1
crossref_primary_10_1088_1755_1315_632_4_042015
crossref_primary_10_1049_iet_spr_2015_0022
Cites_doi 10.1109/T-WC.2008.070890
10.1109/TWC.2012.020712.111502
10.1109/TVT.2009.2039502
10.1007/978-3-642-30493-4_34
10.1109/TCOMM.2010.03.080491
10.1017/CBO9780511804441
10.1109/JSAC.2006.872889
10.1049/iet-com.2011.0822
10.1109/JSAC.2004.839380
10.1016/j.comnet.2006.05.001
10.1002/wcm.732
10.1109/ICEICE.2011.5778318
10.1007/BF01098870
10.1007/s11036-012-0388-9
10.1002/wcm.961
10.1109/WCSP.2010.5633676
10.1109/JSAC.2006.879350
10.1109/ISWCS.2011.6125418
10.1109/VETECS.2009.5073504
10.1016/j.adhoc.2011.02.005
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
FR3
KR7
DOI 10.1002/wcm.2466
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database
Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
EndPage 1783
ExternalDocumentID 3799167801
10_1002_wcm_2466
WCM2466
ark_67375_WNG_0GZG137N_F
Genre article
GroupedDBID .3N
.4S
.DC
.GA
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAONW
AAZKR
ABIJN
ABPVW
ACBWZ
ACCFJ
ACGFO
ACXQS
ADIZJ
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFZJQ
AIAGR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARCSS
ASPBG
ATUGU
AVWKF
AZBYB
AZVAB
BAFTC
BHBCM
BNHUX
BROTX
BRXPI
BSCLL
CS3
D-E
D-F
DPXWK
DR2
DU5
EBS
EDO
EJD
F00
F01
F04
F21
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HZ~
I-F
ITG
ITH
IX1
JPC
KQQ
LAW
LH4
LITHE
LP6
LP7
LW6
MK4
MY~
N04
N05
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WLBEL
WYUIH
XPP
XV2
~IA
~WT
AANHP
ACRPL
ACYXJ
ADNMO
AAYXX
AEUCX
AGQPQ
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
FR3
KR7
ID FETCH-LOGICAL-c4346-9263127b237db0aa29e19ac5f41f8a0f317fb51093014ef6d5b483b1db2bfd963
IEDL.DBID DR2
ISSN 1530-8669
IngestDate Fri Jul 11 01:08:51 EDT 2025
Fri Jul 25 09:30:59 EDT 2025
Sun Jul 06 05:02:56 EDT 2025
Thu Apr 24 23:01:45 EDT 2025
Wed Jan 22 17:04:32 EST 2025
Wed Oct 30 09:55:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4346-9263127b237db0aa29e19ac5f41f8a0f317fb51093014ef6d5b483b1db2bfd963
Notes ark:/67375/WNG-0GZG137N-F
ArticleID:WCM2466
istex:F08459F6272CD6B8B3E0CC9E855B4F7A2FCDE115
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1709694158
PQPubID 2034344
PageCount 11
ParticipantIDs proquest_miscellaneous_1753517009
proquest_journals_1709694158
crossref_citationtrail_10_1002_wcm_2466
crossref_primary_10_1002_wcm_2466
wiley_primary_10_1002_wcm_2466_WCM2466
istex_primary_ark_67375_WNG_0GZG137N_F
PublicationCentury 2000
PublicationDate 10 October 2015
PublicationDateYYYYMMDD 2015-10-10
PublicationDate_xml – month: 10
  year: 2015
  text: 10 October 2015
  day: 10
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationTitleAlternate Wirel. Commun. Mob. Comput
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Cavdar D, Yilmaz HB, Tugcu T, Alagoz F. Analytical modeling and resource planning for cognitive radio systems. Wireless Communications and Mobile Computing 2012; 12(3): 277-292.
Mei YN, Lu YH, Mu XM, Liu X. Distributed fast converent power allocation algorihtm in underlay cogntiive radio networks. Wireless Internet 2012; 98: 345-358.
Durowoju O, Arshad K, Moessner K. Distrbuted power control algorithm for cognitive radio with primary protection via spectrum sensing under user mobility. Ad Hoc Networks 2012; 10: 740-751.
Huang JW, Berry RA, Honig ML. Distributed interference compensation for wireless networks. IEEE Journal on Selected Areas in Communication 2006; 24(5): 1074-1084.
Khozeimeh F, Haykin S. Dynamic spectrum management for cognitive radio: an overview. Wireless Communications and Mobile Computing 2009; 9(11): 1447-1459.
Wang YC, Ren PY, Du QH, Zhang C. Optimal resource allocation for spectrum sensing based cogntiive radio networks with statistical QoS guarantees. Mobile Networks and Applications 2012; 17(6): 711-720.
Grandhi SA, Zander J, Yates R. Constrained power control. Wireless Personal Communications 1994; 1(4): 257-270.
Palomar DP, Chiang M. A tutorial on decomposition methods for network utility maximization. IEEE Journal on Selected Areas in Communications 2006; 24(8): 1439-1451.
Le LB, Ekram H. Resource allocation for spectrum underlay in cognitive networks. IEEE Transactions on Wireless Communications 2008; 7(12): 5306-5315.
Gatsis N, Marques AG, Giannakis GB. Power control for cooperative dynamic spectrum access networks with diverse QoS constraints. IEEE Transactions on Communications 2010; 58(3): 933-944.
Yang CG, Li JD, Tian Z. Optimal power control for cognitive radio networks under coupled interference constraints: a cooperative game-theoretic perspective. IEEE Transactions on Vehicular Technology 2010; 59(4): 1696-1706.
Akyildiz IF, Yeol LW, Mehmet CV, Shantidev M. Next generation dynamic spectrum access cognitive radio wireless networks: a survey. Computer Networks 2006; 50(13): 2127-2159.
Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press: Cambridge U.K., 2004.
Haykin S. Cognitve radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 2005; 23(2): 201-220.
Dashti M, Azmi P, Navaie K. Radio resource allocation for orthogonal frequency division multiple access-based underlay cognitive radio networks utilising weighted ergodic rates. IET Communications 2012; 6(16): 2543-2552.
Nadkar T, Thumar V, Tej GPS, Merchant SN, Desai UB. Distributed power allocation for secondary users in a cogntive radio scenario. IEEE Transactions on Wireless Communications 2012; 11(4): 1576-1586.
Bertsekas DP. Nonlinear Programming (2nd edn). Athena Scientific Press: Boston, MA, 1999.
2010; 59
2006; 50
2010; 58
2011
2006; 24
2010
2009
2009; 9
2008; 7
2012; 17
2004
2012; 6
1994; 1
2012; 12
2012; 11
2012; 10
2012; 98
2005; 23
1999
e_1_2_8_17_1
e_1_2_8_18_1
Bertsekas DP (e_1_2_8_23_1) 1999
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Akyildiz IF (e_1_2_8_4_1) 2006; 50
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_10_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_12_1
References_xml – reference: Palomar DP, Chiang M. A tutorial on decomposition methods for network utility maximization. IEEE Journal on Selected Areas in Communications 2006; 24(8): 1439-1451.
– reference: Nadkar T, Thumar V, Tej GPS, Merchant SN, Desai UB. Distributed power allocation for secondary users in a cogntive radio scenario. IEEE Transactions on Wireless Communications 2012; 11(4): 1576-1586.
– reference: Dashti M, Azmi P, Navaie K. Radio resource allocation for orthogonal frequency division multiple access-based underlay cognitive radio networks utilising weighted ergodic rates. IET Communications 2012; 6(16): 2543-2552.
– reference: Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press: Cambridge U.K., 2004.
– reference: Khozeimeh F, Haykin S. Dynamic spectrum management for cognitive radio: an overview. Wireless Communications and Mobile Computing 2009; 9(11): 1447-1459.
– reference: Le LB, Ekram H. Resource allocation for spectrum underlay in cognitive networks. IEEE Transactions on Wireless Communications 2008; 7(12): 5306-5315.
– reference: Bertsekas DP. Nonlinear Programming (2nd edn). Athena Scientific Press: Boston, MA, 1999.
– reference: Gatsis N, Marques AG, Giannakis GB. Power control for cooperative dynamic spectrum access networks with diverse QoS constraints. IEEE Transactions on Communications 2010; 58(3): 933-944.
– reference: Durowoju O, Arshad K, Moessner K. Distrbuted power control algorithm for cognitive radio with primary protection via spectrum sensing under user mobility. Ad Hoc Networks 2012; 10: 740-751.
– reference: Yang CG, Li JD, Tian Z. Optimal power control for cognitive radio networks under coupled interference constraints: a cooperative game-theoretic perspective. IEEE Transactions on Vehicular Technology 2010; 59(4): 1696-1706.
– reference: Akyildiz IF, Yeol LW, Mehmet CV, Shantidev M. Next generation dynamic spectrum access cognitive radio wireless networks: a survey. Computer Networks 2006; 50(13): 2127-2159.
– reference: Haykin S. Cognitve radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 2005; 23(2): 201-220.
– reference: Mei YN, Lu YH, Mu XM, Liu X. Distributed fast converent power allocation algorihtm in underlay cogntiive radio networks. Wireless Internet 2012; 98: 345-358.
– reference: Wang YC, Ren PY, Du QH, Zhang C. Optimal resource allocation for spectrum sensing based cogntiive radio networks with statistical QoS guarantees. Mobile Networks and Applications 2012; 17(6): 711-720.
– reference: Grandhi SA, Zander J, Yates R. Constrained power control. Wireless Personal Communications 1994; 1(4): 257-270.
– reference: Huang JW, Berry RA, Honig ML. Distributed interference compensation for wireless networks. IEEE Journal on Selected Areas in Communication 2006; 24(5): 1074-1084.
– reference: Cavdar D, Yilmaz HB, Tugcu T, Alagoz F. Analytical modeling and resource planning for cognitive radio systems. Wireless Communications and Mobile Computing 2012; 12(3): 277-292.
– start-page: 1
  year: 2009
  end-page: 5
– start-page: 1
  year: 2010
  end-page: 4
– start-page: 1
  year: 2010
  end-page: 6
– start-page: 2614
  year: 2011
  end-page: 2617
– volume: 59
  start-page: 1696
  issue: 4
  year: 2010
  end-page: 1706
  article-title: Optimal power control for cognitive radio networks under coupled interference constraints: a cooperative game‐theoretic perspective
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 7
  start-page: 5306
  issue: 12
  year: 2008
  end-page: 5315
  article-title: Resource allocation for spectrum underlay in cognitive networks
  publication-title: IEEE Transactions on Wireless Communications
– year: 2004
– volume: 24
  start-page: 1439
  issue: 8
  year: 2006
  end-page: 1451
  article-title: A tutorial on decomposition methods for network utility maximization
  publication-title: IEEE Journal on Selected Areas in Communications
– volume: 24
  start-page: 1074
  issue: 5
  year: 2006
  end-page: 1084
  article-title: Distributed interference compensation for wireless networks
  publication-title: IEEE Journal on Selected Areas in Communication
– start-page: 552
  year: 2011
  end-page: 556
– volume: 17
  start-page: 711
  issue: 6
  year: 2012
  end-page: 720
  article-title: Optimal resource allocation for spectrum sensing based cogntiive radio networks with statistical QoS guarantees
  publication-title: Mobile Networks and Applications
– volume: 1
  start-page: 257
  issue: 4
  year: 1994
  end-page: 270
  article-title: Constrained power control
  publication-title: Wireless Personal Communications
– volume: 50
  start-page: 2127
  issue: 13
  year: 2006
  end-page: 2159
  article-title: Next generation dynamic spectrum access cognitive radio wireless networks: a survey
  publication-title: Computer Networks
– volume: 11
  start-page: 1576
  issue: 4
  year: 2012
  end-page: 1586
  article-title: Distributed power allocation for secondary users in a cogntive radio scenario
  publication-title: IEEE Transactions on Wireless Communications
– volume: 12
  start-page: 277
  issue: 3
  year: 2012
  end-page: 292
  article-title: Analytical modeling and resource planning for cognitive radio systems
  publication-title: Wireless Communications and Mobile Computing
– volume: 10
  start-page: 740
  year: 2012
  end-page: 751
  article-title: Distrbuted power control algorithm for cognitive radio with primary protection via spectrum sensing under user mobility
  publication-title: Ad Hoc Networks
– volume: 98
  start-page: 345
  year: 2012
  end-page: 358
  article-title: Distributed fast converent power allocation algorihtm in underlay cogntiive radio networks
  publication-title: Wireless Internet
– volume: 9
  start-page: 1447
  issue: 11
  year: 2009
  end-page: 1459
  article-title: Dynamic spectrum management for cognitive radio: an overview
  publication-title: Wireless Communications and Mobile Computing
– volume: 23
  start-page: 201
  issue: 2
  year: 2005
  end-page: 220
  article-title: Cognitve radio: brain‐empowered wireless communications
  publication-title: IEEE Journal on Selected Areas in Communications
– volume: 6
  start-page: 2543
  issue: 16
  year: 2012
  end-page: 2552
  article-title: Radio resource allocation for orthogonal frequency division multiple access‐based underlay cognitive radio networks utilising weighted ergodic rates
  publication-title: IET Communications
– volume: 58
  start-page: 933
  issue: 3
  year: 2010
  end-page: 944
  article-title: Power control for cooperative dynamic spectrum access networks with diverse QoS constraints
  publication-title: IEEE Transactions on Communications
– year: 1999
– ident: e_1_2_8_6_1
  doi: 10.1109/T-WC.2008.070890
– ident: e_1_2_8_16_1
  doi: 10.1109/TWC.2012.020712.111502
– ident: e_1_2_8_18_1
  doi: 10.1109/TVT.2009.2039502
– ident: e_1_2_8_19_1
  doi: 10.1007/978-3-642-30493-4_34
– ident: e_1_2_8_9_1
  doi: 10.1109/TCOMM.2010.03.080491
– ident: e_1_2_8_11_1
– ident: e_1_2_8_21_1
  doi: 10.1017/CBO9780511804441
– ident: e_1_2_8_20_1
  doi: 10.1109/JSAC.2006.872889
– ident: e_1_2_8_8_1
  doi: 10.1049/iet-com.2011.0822
– ident: e_1_2_8_2_1
  doi: 10.1109/JSAC.2004.839380
– volume: 50
  start-page: 2127
  issue: 13
  year: 2006
  ident: e_1_2_8_4_1
  article-title: Next generation dynamic spectrum access cognitive radio wireless networks: a survey
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2006.05.001
– ident: e_1_2_8_5_1
  doi: 10.1002/wcm.732
– ident: e_1_2_8_7_1
  doi: 10.1109/ICEICE.2011.5778318
– ident: e_1_2_8_13_1
  doi: 10.1007/BF01098870
– ident: e_1_2_8_10_1
  doi: 10.1007/s11036-012-0388-9
– ident: e_1_2_8_3_1
  doi: 10.1002/wcm.961
– ident: e_1_2_8_14_1
  doi: 10.1109/WCSP.2010.5633676
– ident: e_1_2_8_22_1
  doi: 10.1109/JSAC.2006.879350
– ident: e_1_2_8_12_1
  doi: 10.1109/ISWCS.2011.6125418
– volume-title: Nonlinear Programming
  year: 1999
  ident: e_1_2_8_23_1
– ident: e_1_2_8_17_1
  doi: 10.1109/VETECS.2009.5073504
– ident: e_1_2_8_15_1
  doi: 10.1016/j.adhoc.2011.02.005
SSID ssj0003021
Score 2.1427217
Snippet One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1773
SubjectTerms Algorithms
cognitive radio networks
Computation
distributed power control
Electric power distribution
Exchange
Interference
interference temperature
Networks
Noise
Power control
Quality of service architectures
spectrum underlay
Title Distributed power control for multiuser cognitive radio networks with quality of service and interference temperature constraints
URI https://api.istex.fr/ark:/67375/WNG-0GZG137N-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcm.2466
https://www.proquest.com/docview/1709694158
https://www.proquest.com/docview/1753517009
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NT9wwEIatCi7toaWFqttC5UqonLIk_kpyRNBdVIk9oCIQPVi2E0uINos2u-rHrf-cGccJULVS1VMOmciO7bHfODOPCdktnXLKZy5BOZ4IUfKk8AocT3mZC1VJF7LeT2bq-Ex8vJAXMaoSc2E6PsSw4YaeEeZrdHBj2_07aOg393XMhELaNoZqoR46vSNH8ZRFVGoK5aqy586mbL9_8MFKtI6N-v2BzLwvVsNqM3lGPvf17IJMrserpR27n78hHP_vRTbI0yhC6UE3ap6TR3Xzgjy5hybcJL-OkKiLh2HVFb3Bo9RojGqnIHNpiEPEDQ46xB_Rhamu5rTp4spbiju8tMvZ_EHnnrbdrERNU1GEVCxipiFFOlZEO2MZbTi1YtlukbPJh0-Hx0k8riFxgguVlEzxjOWW8byyqTGsrLPSOOlF5guTelAq3krEV8FnWe1hHFhRcJtVlllfwUTwkqw186Z-Rajxysi8Yq4WRljPbWoNzDQgNwonmXIjstd3nXaRZY6V-6I7CjPT0KgaG3VE3g2WNx2_4w8270PvDwZmcY3xbrnU57OpTqeX04znMz0Zke1-eOjo6q3OcvgKLEEHFVDWcBucFP-8mKaer9BGcokkxBLKCmPhr5XR54cneH39r4ZvyGMQcQEnm6XbZG25WNU7IJSW9m1wiVu45xKk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHpT1AD7xRFwoYCcEp28SvJOoJFXYX6O4BtWqFkCzbiSXUNlttdsXjxn9ej_Noi0BCnHLIRHZsj_OzM_4G4GVupZUusRHK8YjznEWZk97xpBMpl4Ww4dT7dCYnh_zDsTheg93uLEzDh-g33NAzwnyNDo4b0juX1NBv9mxIuZQ3YAMTeof11KdLdhSLaQtLjX3JMu_IszHd6Z689i3awGb9fk1oXpWr4XszugNfupo2YSYnw9XSDO3P3yCO__kqd-F2q0PJm2bg3IO1sroPm1fohA_g11uE6mI-rLIg55hNjbSB7cQrXRJCEXGPg_QhSGShi69zUjWh5TXBTV7SHNv8QeaO1M3ERHRVEORULNrDhgQBWS3dGcuoQ-KKZf0QDkfvDvYmUZuxIbKccRnlVLKEpoaytDCx1jQvk1xb4XjiMh07L1acEUiw8iuz0vmhYHjGTFIYalzh54JHsF7Nq3ILiHZSi7SgtuSaG8dMbLSfbLziyKyg0g7gddd3yrY4c6zcqWpAzFT5RlXYqAN40VueNwiPP9i8Ct3fG-jFCYa8pUIdzcYqHn8eJyydqdEAtrvxoVpvr1WS-oVg7qVQ5svqb3s_xZ8vuirnK7QRTCAMMfdlhcHw18qoo70pXh__q-FzuDk5mO6r_fezj0_gltd0gS6bxNuwvlysyqdeNy3Ns-AfF8BdFr8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIctaCUEB96IhQJGQnDK1vEryRF12S2PrhCiagUHy49YQoXsarMrHjf-czyOk7YIJMQph0xkx56xf3HGnxF6Ullppc9tBnI847xiWellCDzpRcGlEzbuej-Yy_1D_upYHKesStgL0_EhhgU3iIw4XkOAL53fPYWGfrVfxpRLeRFtc0lK8OjJu1N0FCM0sVJJKFhWPXiW0N3-yXNT0Ta06rdzOvOsWo3TzfQa-thXtMsyORlv1mZsf_zGcPy_N7mOriYVip93bnMDXaibm-jKGTbhLfRzAkhdOA2rdngJZ6nhlNaOg87FMRERVjjwkICEV9p9WuCmSyxvMSzx4m7T5ne88LjthiWsG4eBUrFKWw0x4LES2xnKaOOxFev2Njqcvni_t5-l8xoyyxmXWUUly2lhKCucIVrTqs4rbYXnuS818UGqeCOAXxW-y2ofHMHwkpncGWq8CyPBHbTVLJr6LsLaSy0KR23NNTeeGWJ0GGqC3iitoNKO0LO-65RNMHOo3GfVYZipCo2qoFFH6PFguewAHn-weRp7fzDQqxNIeCuEOprPFJl9mOWsmKvpCO307qFSrLcqL8JnYBWEUBnKGm6HKIVfL7qpFxuwEUwACrEKZUVf-Gtl1NHeAVzv_avhI3Tp7WSq3rycv76PLgdBF9GyOdlBW-vVpn4QRNPaPIzR8QuWwhV3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+power+control+for+multiuser+cognitive+radio+networks+with+quality+of+service+and+interference+temperature+constraints&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Xu%2C+Yongjun&rft.au=Zhao%2C+Xiaohui&rft.date=2015-10-10&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=15&rft.issue=14&rft.spage=1773&rft.epage=1783&rft_id=info:doi/10.1002%2Fwcm.2466&rft.externalDBID=10.1002%252Fwcm.2466&rft.externalDocID=WCM2466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon