Distributed power control for multiuser cognitive radio networks with quality of service and interference temperature constraints
One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while quality of service needs of both SUs and primary users (PUs) are guaranteed. Most power control algorithms only consider interference temper...
Saved in:
Published in | Wireless communications and mobile computing Vol. 15; no. 14; pp. 1773 - 1783 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
10.10.2015
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while quality of service needs of both SUs and primary users (PUs) are guaranteed. Most power control algorithms only consider interference temperature constraint in single user scenario while ignoring the interference from PUs to SUs and minimum signal to interference plus noise ratio (SINR) requirement of SUs. In this paper, a distributed power control algorithm without user cooperation is proposed for multiuser underlay CNRs. Specifically, we focus on maximizing total throughput of SUs subject to both maximum allowable transmission power constraint and SINR constraint, as well as interference temperature constraint. To reduce the burden of information exchange and computational complexity, an average interference constraint is proposed. Parameter range and convergence analysis are given for feasible solutions. The resource allocation is transformed into a convex optimization problem, which is solved by using Lagrange dual method. In computer simulations, the effectiveness of our proposed scheme is shown by comparing with distributed constrained power control algorithm and Nash bargaining power control game algorithm. Copyright © 2014 John Wiley & Sons, Ltd.
A distributed power control algorithm is proposed to maximize total throughput of secondary users with constrains on maximum allowable transmission power, signal to interference plus noise ratio of secondary users, and interference temperature of primary users. An average interference constrain is formulated to reduce burden of information exchange. Parameter range and convergence analysis are given. |
---|---|
AbstractList | One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while quality of service needs of both SUs and primary users (PUs) are guaranteed. Most power control algorithms only consider interference temperature constraint in single user scenario while ignoring the interference from PUs to SUs and minimum signal to interference plus noise ratio (SINR) requirement of SUs. In this paper, a distributed power control algorithm without user cooperation is proposed for multiuser underlay CNRs. Specifically, we focus on maximizing total throughput of SUs subject to both maximum allowable transmission power constraint and SINR constraint, as well as interference temperature constraint. To reduce the burden of information exchange and computational complexity, an average interference constraint is proposed. Parameter range and convergence analysis are given for feasible solutions. The resource allocation is transformed into a convex optimization problem, which is solved by using Lagrange dual method. In computer simulations, the effectiveness of our proposed scheme is shown by comparing with distributed constrained power control algorithm and Nash bargaining power control game algorithm. Copyright © 2014 John Wiley & Sons, Ltd. One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while quality of service needs of both SUs and primary users (PUs) are guaranteed. Most power control algorithms only consider interference temperature constraint in single user scenario while ignoring the interference from PUs to SUs and minimum signal to interference plus noise ratio (SINR) requirement of SUs. In this paper, a distributed power control algorithm without user cooperation is proposed for multiuser underlay CNRs. Specifically, we focus on maximizing total throughput of SUs subject to both maximum allowable transmission power constraint and SINR constraint, as well as interference temperature constraint. To reduce the burden of information exchange and computational complexity, an average interference constraint is proposed. Parameter range and convergence analysis are given for feasible solutions. The resource allocation is transformed into a convex optimization problem, which is solved by using Lagrange dual method. In computer simulations, the effectiveness of our proposed scheme is shown by comparing with distributed constrained power control algorithm and Nash bargaining power control game algorithm. A distributed power control algorithm is proposed to maximize total throughput of secondary users with constrains on maximum allowable transmission power, signal to interference plus noise ratio of secondary users, and interference temperature of primary users. An average interference constrain is formulated to reduce burden of information exchange. Parameter range and convergence analysis are given. One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while quality of service needs of both SUs and primary users (PUs) are guaranteed. Most power control algorithms only consider interference temperature constraint in single user scenario while ignoring the interference from PUs to SUs and minimum signal to interference plus noise ratio (SINR) requirement of SUs. In this paper, a distributed power control algorithm without user cooperation is proposed for multiuser underlay CNRs. Specifically, we focus on maximizing total throughput of SUs subject to both maximum allowable transmission power constraint and SINR constraint, as well as interference temperature constraint. To reduce the burden of information exchange and computational complexity, an average interference constraint is proposed. Parameter range and convergence analysis are given for feasible solutions. The resource allocation is transformed into a convex optimization problem, which is solved by using Lagrange dual method. In computer simulations, the effectiveness of our proposed scheme is shown by comparing with distributed constrained power control algorithm and Nash bargaining power control game algorithm. Copyright © 2014 John Wiley & Sons, Ltd. A distributed power control algorithm is proposed to maximize total throughput of secondary users with constrains on maximum allowable transmission power, signal to interference plus noise ratio of secondary users, and interference temperature of primary users. An average interference constrain is formulated to reduce burden of information exchange. Parameter range and convergence analysis are given. |
Author | Zhao, Xiaohui Xu, Yongjun |
Author_xml | – sequence: 1 givenname: Yongjun surname: Xu fullname: Xu, Yongjun organization: College of Communication Engineering, Jilin University, Changchun, China – sequence: 2 givenname: Xiaohui surname: Zhao fullname: Zhao, Xiaohui email: Correspondence: Xiaohui Zhao, College of Communication Engineering, Jilin University, Nanhu Road 5372, Changchun City, Jilin Province, China., xhzhao@jlu.edu.cn organization: College of Communication Engineering, Jilin University, Changchun, China |
BookMark | eNp10UFv0zAUB3ALDYmtIPERLHHhkmLHid0cUWFl0hgX0CQulpM8g7fE7p6dZT3yzedSVASCk63nn_2e_D8jJz54IOQlZ0vOWPlm7sZlWUn5hJzyWrBiJZU6Oe5l84ycxXjDGBOs5KfkxzsXE7p2StDTbZgBaRd8wjBQG5CO05DcFH9Wv3mX3D1QNL0L1EOaA95GOrv0nd5NZnBpR4OlGd-7DqjxPXU-AVpA8LmQYNwCmjQh7Hvktiafx-fkqTVDhBe_1gX5cv7-8_pDcflpc7F-e1l0lahk0ZRS8FK1pVB9y4wpG-CN6WpbcbsyzAqubFtz1gjGK7Cyr9tqJVret2Vr-0aKBXl9eHeL4W6CmPToYgfDYDyEKWqualFzxfILC_LqL3oTJvR5uqxYI5uK16uslgfVYYgRwerOJZPc_vuMGzRnep-IzonofSK_Jzhe2KIbDe7-RYsDnd0Au_86fb3--KfPacLD0Ru81VIJVevrq41mm68bLtSVPhePNMauXA |
CitedBy_id | crossref_primary_10_1109_COMST_2016_2631079 crossref_primary_10_1109_JIOT_2021_3071396 crossref_primary_10_1007_s11277_021_09123_6 crossref_primary_10_1007_s11276_018_1785_1 crossref_primary_10_1088_1755_1315_632_4_042015 crossref_primary_10_1049_iet_spr_2015_0022 |
Cites_doi | 10.1109/T-WC.2008.070890 10.1109/TWC.2012.020712.111502 10.1109/TVT.2009.2039502 10.1007/978-3-642-30493-4_34 10.1109/TCOMM.2010.03.080491 10.1017/CBO9780511804441 10.1109/JSAC.2006.872889 10.1049/iet-com.2011.0822 10.1109/JSAC.2004.839380 10.1016/j.comnet.2006.05.001 10.1002/wcm.732 10.1109/ICEICE.2011.5778318 10.1007/BF01098870 10.1007/s11036-012-0388-9 10.1002/wcm.961 10.1109/WCSP.2010.5633676 10.1109/JSAC.2006.879350 10.1109/ISWCS.2011.6125418 10.1109/VETECS.2009.5073504 10.1016/j.adhoc.2011.02.005 |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Ltd. – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D FR3 KR7 |
DOI | 10.1002/wcm.2466 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-8677 |
EndPage | 1783 |
ExternalDocumentID | 3799167801 10_1002_wcm_2466 WCM2466 ark_67375_WNG_0GZG137N_F |
Genre | article |
GroupedDBID | .3N .4S .DC .GA 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 52M 52O 52T 52U 52W 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AAONW AAZKR ABIJN ABPVW ACBWZ ACCFJ ACGFO ACXQS ADIZJ AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFZJQ AIAGR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARCSS ASPBG ATUGU AVWKF AZBYB AZVAB BAFTC BHBCM BNHUX BROTX BRXPI BSCLL CS3 D-E D-F DPXWK DR2 DU5 EBS EDO EJD F00 F01 F04 F21 G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HZ~ I-F ITG ITH IX1 JPC KQQ LAW LH4 LITHE LP6 LP7 LW6 MK4 MY~ N04 N05 NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ TUS UB1 W8V W99 WBKPD WIH WLBEL WYUIH XPP XV2 ~IA ~WT AANHP ACRPL ACYXJ ADNMO AAYXX AEUCX AGQPQ CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D FR3 KR7 |
ID | FETCH-LOGICAL-c4346-9263127b237db0aa29e19ac5f41f8a0f317fb51093014ef6d5b483b1db2bfd963 |
IEDL.DBID | DR2 |
ISSN | 1530-8669 |
IngestDate | Fri Jul 11 01:08:51 EDT 2025 Fri Jul 25 09:30:59 EDT 2025 Sun Jul 06 05:02:56 EDT 2025 Thu Apr 24 23:01:45 EDT 2025 Wed Jan 22 17:04:32 EST 2025 Wed Oct 30 09:55:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4346-9263127b237db0aa29e19ac5f41f8a0f317fb51093014ef6d5b483b1db2bfd963 |
Notes | ark:/67375/WNG-0GZG137N-F ArticleID:WCM2466 istex:F08459F6272CD6B8B3E0CC9E855B4F7A2FCDE115 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1709694158 |
PQPubID | 2034344 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1753517009 proquest_journals_1709694158 crossref_citationtrail_10_1002_wcm_2466 crossref_primary_10_1002_wcm_2466 wiley_primary_10_1002_wcm_2466_WCM2466 istex_primary_ark_67375_WNG_0GZG137N_F |
PublicationCentury | 2000 |
PublicationDate | 10 October 2015 |
PublicationDateYYYYMMDD | 2015-10-10 |
PublicationDate_xml | – month: 10 year: 2015 text: 10 October 2015 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Wireless communications and mobile computing |
PublicationTitleAlternate | Wirel. Commun. Mob. Comput |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Cavdar D, Yilmaz HB, Tugcu T, Alagoz F. Analytical modeling and resource planning for cognitive radio systems. Wireless Communications and Mobile Computing 2012; 12(3): 277-292. Mei YN, Lu YH, Mu XM, Liu X. Distributed fast converent power allocation algorihtm in underlay cogntiive radio networks. Wireless Internet 2012; 98: 345-358. Durowoju O, Arshad K, Moessner K. Distrbuted power control algorithm for cognitive radio with primary protection via spectrum sensing under user mobility. Ad Hoc Networks 2012; 10: 740-751. Huang JW, Berry RA, Honig ML. Distributed interference compensation for wireless networks. IEEE Journal on Selected Areas in Communication 2006; 24(5): 1074-1084. Khozeimeh F, Haykin S. Dynamic spectrum management for cognitive radio: an overview. Wireless Communications and Mobile Computing 2009; 9(11): 1447-1459. Wang YC, Ren PY, Du QH, Zhang C. Optimal resource allocation for spectrum sensing based cogntiive radio networks with statistical QoS guarantees. Mobile Networks and Applications 2012; 17(6): 711-720. Grandhi SA, Zander J, Yates R. Constrained power control. Wireless Personal Communications 1994; 1(4): 257-270. Palomar DP, Chiang M. A tutorial on decomposition methods for network utility maximization. IEEE Journal on Selected Areas in Communications 2006; 24(8): 1439-1451. Le LB, Ekram H. Resource allocation for spectrum underlay in cognitive networks. IEEE Transactions on Wireless Communications 2008; 7(12): 5306-5315. Gatsis N, Marques AG, Giannakis GB. Power control for cooperative dynamic spectrum access networks with diverse QoS constraints. IEEE Transactions on Communications 2010; 58(3): 933-944. Yang CG, Li JD, Tian Z. Optimal power control for cognitive radio networks under coupled interference constraints: a cooperative game-theoretic perspective. IEEE Transactions on Vehicular Technology 2010; 59(4): 1696-1706. Akyildiz IF, Yeol LW, Mehmet CV, Shantidev M. Next generation dynamic spectrum access cognitive radio wireless networks: a survey. Computer Networks 2006; 50(13): 2127-2159. Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press: Cambridge U.K., 2004. Haykin S. Cognitve radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 2005; 23(2): 201-220. Dashti M, Azmi P, Navaie K. Radio resource allocation for orthogonal frequency division multiple access-based underlay cognitive radio networks utilising weighted ergodic rates. IET Communications 2012; 6(16): 2543-2552. Nadkar T, Thumar V, Tej GPS, Merchant SN, Desai UB. Distributed power allocation for secondary users in a cogntive radio scenario. IEEE Transactions on Wireless Communications 2012; 11(4): 1576-1586. Bertsekas DP. Nonlinear Programming (2nd edn). Athena Scientific Press: Boston, MA, 1999. 2010; 59 2006; 50 2010; 58 2011 2006; 24 2010 2009 2009; 9 2008; 7 2012; 17 2004 2012; 6 1994; 1 2012; 12 2012; 11 2012; 10 2012; 98 2005; 23 1999 e_1_2_8_17_1 e_1_2_8_18_1 Bertsekas DP (e_1_2_8_23_1) 1999 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Akyildiz IF (e_1_2_8_4_1) 2006; 50 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_10_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 |
References_xml | – reference: Palomar DP, Chiang M. A tutorial on decomposition methods for network utility maximization. IEEE Journal on Selected Areas in Communications 2006; 24(8): 1439-1451. – reference: Nadkar T, Thumar V, Tej GPS, Merchant SN, Desai UB. Distributed power allocation for secondary users in a cogntive radio scenario. IEEE Transactions on Wireless Communications 2012; 11(4): 1576-1586. – reference: Dashti M, Azmi P, Navaie K. Radio resource allocation for orthogonal frequency division multiple access-based underlay cognitive radio networks utilising weighted ergodic rates. IET Communications 2012; 6(16): 2543-2552. – reference: Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press: Cambridge U.K., 2004. – reference: Khozeimeh F, Haykin S. Dynamic spectrum management for cognitive radio: an overview. Wireless Communications and Mobile Computing 2009; 9(11): 1447-1459. – reference: Le LB, Ekram H. Resource allocation for spectrum underlay in cognitive networks. IEEE Transactions on Wireless Communications 2008; 7(12): 5306-5315. – reference: Bertsekas DP. Nonlinear Programming (2nd edn). Athena Scientific Press: Boston, MA, 1999. – reference: Gatsis N, Marques AG, Giannakis GB. Power control for cooperative dynamic spectrum access networks with diverse QoS constraints. IEEE Transactions on Communications 2010; 58(3): 933-944. – reference: Durowoju O, Arshad K, Moessner K. Distrbuted power control algorithm for cognitive radio with primary protection via spectrum sensing under user mobility. Ad Hoc Networks 2012; 10: 740-751. – reference: Yang CG, Li JD, Tian Z. Optimal power control for cognitive radio networks under coupled interference constraints: a cooperative game-theoretic perspective. IEEE Transactions on Vehicular Technology 2010; 59(4): 1696-1706. – reference: Akyildiz IF, Yeol LW, Mehmet CV, Shantidev M. Next generation dynamic spectrum access cognitive radio wireless networks: a survey. Computer Networks 2006; 50(13): 2127-2159. – reference: Haykin S. Cognitve radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 2005; 23(2): 201-220. – reference: Mei YN, Lu YH, Mu XM, Liu X. Distributed fast converent power allocation algorihtm in underlay cogntiive radio networks. Wireless Internet 2012; 98: 345-358. – reference: Wang YC, Ren PY, Du QH, Zhang C. Optimal resource allocation for spectrum sensing based cogntiive radio networks with statistical QoS guarantees. Mobile Networks and Applications 2012; 17(6): 711-720. – reference: Grandhi SA, Zander J, Yates R. Constrained power control. Wireless Personal Communications 1994; 1(4): 257-270. – reference: Huang JW, Berry RA, Honig ML. Distributed interference compensation for wireless networks. IEEE Journal on Selected Areas in Communication 2006; 24(5): 1074-1084. – reference: Cavdar D, Yilmaz HB, Tugcu T, Alagoz F. Analytical modeling and resource planning for cognitive radio systems. Wireless Communications and Mobile Computing 2012; 12(3): 277-292. – start-page: 1 year: 2009 end-page: 5 – start-page: 1 year: 2010 end-page: 4 – start-page: 1 year: 2010 end-page: 6 – start-page: 2614 year: 2011 end-page: 2617 – volume: 59 start-page: 1696 issue: 4 year: 2010 end-page: 1706 article-title: Optimal power control for cognitive radio networks under coupled interference constraints: a cooperative game‐theoretic perspective publication-title: IEEE Transactions on Vehicular Technology – volume: 7 start-page: 5306 issue: 12 year: 2008 end-page: 5315 article-title: Resource allocation for spectrum underlay in cognitive networks publication-title: IEEE Transactions on Wireless Communications – year: 2004 – volume: 24 start-page: 1439 issue: 8 year: 2006 end-page: 1451 article-title: A tutorial on decomposition methods for network utility maximization publication-title: IEEE Journal on Selected Areas in Communications – volume: 24 start-page: 1074 issue: 5 year: 2006 end-page: 1084 article-title: Distributed interference compensation for wireless networks publication-title: IEEE Journal on Selected Areas in Communication – start-page: 552 year: 2011 end-page: 556 – volume: 17 start-page: 711 issue: 6 year: 2012 end-page: 720 article-title: Optimal resource allocation for spectrum sensing based cogntiive radio networks with statistical QoS guarantees publication-title: Mobile Networks and Applications – volume: 1 start-page: 257 issue: 4 year: 1994 end-page: 270 article-title: Constrained power control publication-title: Wireless Personal Communications – volume: 50 start-page: 2127 issue: 13 year: 2006 end-page: 2159 article-title: Next generation dynamic spectrum access cognitive radio wireless networks: a survey publication-title: Computer Networks – volume: 11 start-page: 1576 issue: 4 year: 2012 end-page: 1586 article-title: Distributed power allocation for secondary users in a cogntive radio scenario publication-title: IEEE Transactions on Wireless Communications – volume: 12 start-page: 277 issue: 3 year: 2012 end-page: 292 article-title: Analytical modeling and resource planning for cognitive radio systems publication-title: Wireless Communications and Mobile Computing – volume: 10 start-page: 740 year: 2012 end-page: 751 article-title: Distrbuted power control algorithm for cognitive radio with primary protection via spectrum sensing under user mobility publication-title: Ad Hoc Networks – volume: 98 start-page: 345 year: 2012 end-page: 358 article-title: Distributed fast converent power allocation algorihtm in underlay cogntiive radio networks publication-title: Wireless Internet – volume: 9 start-page: 1447 issue: 11 year: 2009 end-page: 1459 article-title: Dynamic spectrum management for cognitive radio: an overview publication-title: Wireless Communications and Mobile Computing – volume: 23 start-page: 201 issue: 2 year: 2005 end-page: 220 article-title: Cognitve radio: brain‐empowered wireless communications publication-title: IEEE Journal on Selected Areas in Communications – volume: 6 start-page: 2543 issue: 16 year: 2012 end-page: 2552 article-title: Radio resource allocation for orthogonal frequency division multiple access‐based underlay cognitive radio networks utilising weighted ergodic rates publication-title: IET Communications – volume: 58 start-page: 933 issue: 3 year: 2010 end-page: 944 article-title: Power control for cooperative dynamic spectrum access networks with diverse QoS constraints publication-title: IEEE Transactions on Communications – year: 1999 – ident: e_1_2_8_6_1 doi: 10.1109/T-WC.2008.070890 – ident: e_1_2_8_16_1 doi: 10.1109/TWC.2012.020712.111502 – ident: e_1_2_8_18_1 doi: 10.1109/TVT.2009.2039502 – ident: e_1_2_8_19_1 doi: 10.1007/978-3-642-30493-4_34 – ident: e_1_2_8_9_1 doi: 10.1109/TCOMM.2010.03.080491 – ident: e_1_2_8_11_1 – ident: e_1_2_8_21_1 doi: 10.1017/CBO9780511804441 – ident: e_1_2_8_20_1 doi: 10.1109/JSAC.2006.872889 – ident: e_1_2_8_8_1 doi: 10.1049/iet-com.2011.0822 – ident: e_1_2_8_2_1 doi: 10.1109/JSAC.2004.839380 – volume: 50 start-page: 2127 issue: 13 year: 2006 ident: e_1_2_8_4_1 article-title: Next generation dynamic spectrum access cognitive radio wireless networks: a survey publication-title: Computer Networks doi: 10.1016/j.comnet.2006.05.001 – ident: e_1_2_8_5_1 doi: 10.1002/wcm.732 – ident: e_1_2_8_7_1 doi: 10.1109/ICEICE.2011.5778318 – ident: e_1_2_8_13_1 doi: 10.1007/BF01098870 – ident: e_1_2_8_10_1 doi: 10.1007/s11036-012-0388-9 – ident: e_1_2_8_3_1 doi: 10.1002/wcm.961 – ident: e_1_2_8_14_1 doi: 10.1109/WCSP.2010.5633676 – ident: e_1_2_8_22_1 doi: 10.1109/JSAC.2006.879350 – ident: e_1_2_8_12_1 doi: 10.1109/ISWCS.2011.6125418 – volume-title: Nonlinear Programming year: 1999 ident: e_1_2_8_23_1 – ident: e_1_2_8_17_1 doi: 10.1109/VETECS.2009.5073504 – ident: e_1_2_8_15_1 doi: 10.1016/j.adhoc.2011.02.005 |
SSID | ssj0003021 |
Score | 2.1427217 |
Snippet | One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1773 |
SubjectTerms | Algorithms cognitive radio networks Computation distributed power control Electric power distribution Exchange Interference interference temperature Networks Noise Power control Quality of service architectures spectrum underlay |
Title | Distributed power control for multiuser cognitive radio networks with quality of service and interference temperature constraints |
URI | https://api.istex.fr/ark:/67375/WNG-0GZG137N-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcm.2466 https://www.proquest.com/docview/1709694158 https://www.proquest.com/docview/1753517009 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NT9wwEIatCi7toaWFqttC5UqonLIk_kpyRNBdVIk9oCIQPVi2E0uINos2u-rHrf-cGccJULVS1VMOmciO7bHfODOPCdktnXLKZy5BOZ4IUfKk8AocT3mZC1VJF7LeT2bq-Ex8vJAXMaoSc2E6PsSw4YaeEeZrdHBj2_07aOg393XMhELaNoZqoR46vSNH8ZRFVGoK5aqy586mbL9_8MFKtI6N-v2BzLwvVsNqM3lGPvf17IJMrserpR27n78hHP_vRTbI0yhC6UE3ap6TR3Xzgjy5hybcJL-OkKiLh2HVFb3Bo9RojGqnIHNpiEPEDQ46xB_Rhamu5rTp4spbiju8tMvZ_EHnnrbdrERNU1GEVCxipiFFOlZEO2MZbTi1YtlukbPJh0-Hx0k8riFxgguVlEzxjOWW8byyqTGsrLPSOOlF5guTelAq3krEV8FnWe1hHFhRcJtVlllfwUTwkqw186Z-Rajxysi8Yq4WRljPbWoNzDQgNwonmXIjstd3nXaRZY6V-6I7CjPT0KgaG3VE3g2WNx2_4w8270PvDwZmcY3xbrnU57OpTqeX04znMz0Zke1-eOjo6q3OcvgKLEEHFVDWcBucFP-8mKaer9BGcokkxBLKCmPhr5XR54cneH39r4ZvyGMQcQEnm6XbZG25WNU7IJSW9m1wiVu45xKk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHpT1AD7xRFwoYCcEp28SvJOoJFXYX6O4BtWqFkCzbiSXUNlttdsXjxn9ej_Noi0BCnHLIRHZsj_OzM_4G4GVupZUusRHK8YjznEWZk97xpBMpl4Ww4dT7dCYnh_zDsTheg93uLEzDh-g33NAzwnyNDo4b0juX1NBv9mxIuZQ3YAMTeof11KdLdhSLaQtLjX3JMu_IszHd6Z689i3awGb9fk1oXpWr4XszugNfupo2YSYnw9XSDO3P3yCO__kqd-F2q0PJm2bg3IO1sroPm1fohA_g11uE6mI-rLIg55hNjbSB7cQrXRJCEXGPg_QhSGShi69zUjWh5TXBTV7SHNv8QeaO1M3ERHRVEORULNrDhgQBWS3dGcuoQ-KKZf0QDkfvDvYmUZuxIbKccRnlVLKEpoaytDCx1jQvk1xb4XjiMh07L1acEUiw8iuz0vmhYHjGTFIYalzh54JHsF7Nq3ILiHZSi7SgtuSaG8dMbLSfbLziyKyg0g7gddd3yrY4c6zcqWpAzFT5RlXYqAN40VueNwiPP9i8Ct3fG-jFCYa8pUIdzcYqHn8eJyydqdEAtrvxoVpvr1WS-oVg7qVQ5svqb3s_xZ8vuirnK7QRTCAMMfdlhcHw18qoo70pXh__q-FzuDk5mO6r_fezj0_gltd0gS6bxNuwvlysyqdeNy3Ns-AfF8BdFr8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIctaCUEB96IhQJGQnDK1vEryRF12S2PrhCiagUHy49YQoXsarMrHjf-czyOk7YIJMQph0xkx56xf3HGnxF6Ullppc9tBnI847xiWellCDzpRcGlEzbuej-Yy_1D_upYHKesStgL0_EhhgU3iIw4XkOAL53fPYWGfrVfxpRLeRFtc0lK8OjJu1N0FCM0sVJJKFhWPXiW0N3-yXNT0Ta06rdzOvOsWo3TzfQa-thXtMsyORlv1mZsf_zGcPy_N7mOriYVip93bnMDXaibm-jKGTbhLfRzAkhdOA2rdngJZ6nhlNaOg87FMRERVjjwkICEV9p9WuCmSyxvMSzx4m7T5ne88LjthiWsG4eBUrFKWw0x4LES2xnKaOOxFev2Njqcvni_t5-l8xoyyxmXWUUly2lhKCucIVrTqs4rbYXnuS818UGqeCOAXxW-y2ofHMHwkpncGWq8CyPBHbTVLJr6LsLaSy0KR23NNTeeGWJ0GGqC3iitoNKO0LO-65RNMHOo3GfVYZipCo2qoFFH6PFguewAHn-weRp7fzDQqxNIeCuEOprPFJl9mOWsmKvpCO307qFSrLcqL8JnYBWEUBnKGm6HKIVfL7qpFxuwEUwACrEKZUVf-Gtl1NHeAVzv_avhI3Tp7WSq3rycv76PLgdBF9GyOdlBW-vVpn4QRNPaPIzR8QuWwhV3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+power+control+for+multiuser+cognitive+radio+networks+with+quality+of+service+and+interference+temperature+constraints&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Xu%2C+Yongjun&rft.au=Zhao%2C+Xiaohui&rft.date=2015-10-10&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=15&rft.issue=14&rft.spage=1773&rft.epage=1783&rft_id=info:doi/10.1002%2Fwcm.2466&rft.externalDBID=10.1002%252Fwcm.2466&rft.externalDocID=WCM2466 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon |