A computational approach for robust nondestructive test design maximizing characterization capabilities for solids and structures subject to uncertainty
Summary A robust approach to nondestructive test (NDT) design for material characterization and damage identification in solids and structures is presented and numerically evaluated. The generally applicable approach combines maximization of test sensitivity with minimization of test information red...
Saved in:
Published in | International journal for numerical methods in engineering Vol. 104; no. 4; pp. 297 - 311 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
26.10.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
A robust approach to nondestructive test (NDT) design for material characterization and damage identification in solids and structures is presented and numerically evaluated. The generally applicable approach combines maximization of test sensitivity with minimization of test information redundancy, while simultaneously minimizing the effects of uncertain system parameters to determine optimal NDT parameters for robust nondestructive evaluation. In addition, to maintain reasonable computational expense while also allowing for general applicability, a stochastic collocation technique is presented for the quantification of uncertainty in the robust design metrics. The robust NDT design approach was tested through simulated case studies based on the characterization of localized variations in Young's modulus distributions in aluminum structural components utilizing steady‐state dynamic surface excitation and localized measurements of displacement and compared with a purely deterministic NDT design approach. The robust design approach is shown to produce substantially different NDT designs than the analogous deterministic strategy. More importantly, the robust NDT designs are shown to provide significant improvements in the ability to accurately nondestructively evaluate structural properties for the cases considered, when there is significant uncertainty in system parameters and/or aspects of the NDT implementation. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Summary A robust approach to nondestructive test (NDT) design for material characterization and damage identification in solids and structures is presented and numerically evaluated. The generally applicable approach combines maximization of test sensitivity with minimization of test information redundancy, while simultaneously minimizing the effects of uncertain system parameters to determine optimal NDT parameters for robust nondestructive evaluation. In addition, to maintain reasonable computational expense while also allowing for general applicability, a stochastic collocation technique is presented for the quantification of uncertainty in the robust design metrics. The robust NDT design approach was tested through simulated case studies based on the characterization of localized variations in Young's modulus distributions in aluminum structural components utilizing steady-state dynamic surface excitation and localized measurements of displacement and compared with a purely deterministic NDT design approach. The robust design approach is shown to produce substantially different NDT designs than the analogous deterministic strategy. More importantly, the robust NDT designs are shown to provide significant improvements in the ability to accurately nondestructively evaluate structural properties for the cases considered, when there is significant uncertainty in system parameters and/or aspects of the NDT implementation. Copyright © 2015John Wiley & Sons, Ltd. Summary A robust approach to nondestructive test (NDT) design for material characterization and damage identification in solids and structures is presented and numerically evaluated. The generally applicable approach combines maximization of test sensitivity with minimization of test information redundancy, while simultaneously minimizing the effects of uncertain system parameters to determine optimal NDT parameters for robust nondestructive evaluation. In addition, to maintain reasonable computational expense while also allowing for general applicability, a stochastic collocation technique is presented for the quantification of uncertainty in the robust design metrics. The robust NDT design approach was tested through simulated case studies based on the characterization of localized variations in Young's modulus distributions in aluminum structural components utilizing steady‐state dynamic surface excitation and localized measurements of displacement and compared with a purely deterministic NDT design approach. The robust design approach is shown to produce substantially different NDT designs than the analogous deterministic strategy. More importantly, the robust NDT designs are shown to provide significant improvements in the ability to accurately nondestructively evaluate structural properties for the cases considered, when there is significant uncertainty in system parameters and/or aspects of the NDT implementation. Copyright © 2015 John Wiley & Sons, Ltd. A robust approach to nondestructive test (NDT) design for material characterization and damage identification in solids and structures is presented and numerically evaluated. The generally applicable approach combines maximization of test sensitivity with minimization of test information redundancy, while simultaneously minimizing the effects of uncertain system parameters to determine optimal NDT parameters for robust nondestructive evaluation. In addition, to maintain reasonable computational expense while also allowing for general applicability, a stochastic collocation technique is presented for the quantification of uncertainty in the robust design metrics. The robust NDT design approach was tested through simulated case studies based on the characterization of localized variations in Young's modulus distributions in aluminum structural components utilizing steady-state dynamic surface excitation and localized measurements of displacement and compared with a purely deterministic NDT design approach. The robust design approach is shown to produce substantially different NDT designs than the analogous deterministic strategy. More importantly, the robust NDT designs are shown to provide significant improvements in the ability to accurately nondestructively evaluate structural properties for the cases considered, when there is significant uncertainty in system parameters and/or aspects of the NDT implementation. A robust approach to nondestructive test (NDT) design for material characterization and damage identification in solids and structures is presented and numerically evaluated. The generally applicable approach combines maximization of test sensitivity with minimization of test information redundancy, while simultaneously minimizing the effects of uncertain system parameters to determine optimal NDT parameters for robust nondestructive evaluation. In addition, to maintain reasonable computational expense while also allowing for general applicability, a stochastic collocation technique is presented for the quantification of uncertainty in the robust design metrics. The robust NDT design approach was tested through simulated case studies based on the characterization of localized variations in Young's modulus distributions in aluminum structural components utilizing steady‐state dynamic surface excitation and localized measurements of displacement and compared with a purely deterministic NDT design approach. The robust design approach is shown to produce substantially different NDT designs than the analogous deterministic strategy. More importantly, the robust NDT designs are shown to provide significant improvements in the ability to accurately nondestructively evaluate structural properties for the cases considered, when there is significant uncertainty in system parameters and/or aspects of the NDT implementation. Copyright © 2015 John Wiley & Sons, Ltd. |
Author | Brigham, John C. Notghi, Bahram |
Author_xml | – sequence: 1 givenname: Bahram surname: Notghi fullname: Notghi, Bahram organization: Department of Civil and Environmental Engineering, University of Pittsburgh, PA, 15261, Pittsburgh, USA – sequence: 2 givenname: John C. surname: Brigham fullname: Brigham, John C. email: Correspondence to: John C. Brigham, Department of Civil and Environmental Engineering, University of Pittsburgh, PA, USA 15261., brigham@pitt.edu organization: Department of Civil and Environmental Engineering, University of Pittsburgh, PA, 15261, Pittsburgh, USA |
BookMark | eNp1kc9u1DAQxi1UJLZLJR7BEhcu2dpJHCfHqipb-o9LoUdr4titl8QOtlO6fRIeF2-DikDlNNbMb77xzLeP9qyzCqF3lKwoIfmhHdSqbEr2Ci0oaXhGcsL30CKVmow1NX2D9kPYEEIpI8UC_TzC0g3jFCEaZ6HHMI7egbzD2nnsXTuFiNOIToXoJxnNvcIxvXFKmFuLB3gwg3k09hbLO_Ago_Lm8UkMSxihNb2JRoUnueB60wUMtsOz2uRTJUztRsmIo8OTlcpHMDZu36LXGvqgDn7HJfry8eT6-DS7-Lz-dHx0kcmyKFkGeaFYJaHiDZN52zCleaU1UCjrmqiUASgq3pW6zFmpedl2QNqWtprqFqQulujDrJvW_j6lzcRgglR9D1a5KQjKWcEop0WT0Pf_oBs3-XS0HUXzKmc7eIlWMyW9C8ErLaSZrxs9mF5QInZGiWSU2Bn15wfPDaM3A_jtS2g2oz9Mr7b_5cTV5cnfvAlRPTzz4L-JiheciZurtVh_PT2rzy_PRV38AsNuuMU |
CODEN | IJNMBH |
CitedBy_id | crossref_primary_10_1016_j_cma_2016_06_024 crossref_primary_10_3233_JAE_160073 |
Cites_doi | 10.1002/(SICI)1096-9845(199804)27:4<343::AID-EQE726>3.0.CO;2-F 10.1137/100786356 10.1023/A:1018977404843 10.1016/j.jsv.2003.10.041 10.1088/0964-1726/13/3/011 10.1088/0964-1726/17/5/055019 10.1177/1045389X13494933 10.1121/1.1512700 10.1016/j.ymssp.2013.06.022 10.1016/S0041-624X(02)00203-2 10.1088/0964-1726/21/10/105016 10.1016/j.compositesb.2013.09.036 10.1088/0964-1726/22/12/125036 10.1137/040615201 10.1016/j.ymssp.2011.07.022 10.1177/1045389X03034686 10.1155/2012/390873 10.1121/1.418040 10.1137/S0036142902418680 10.1080/13588261003696458 10.1016/j.cma.2007.05.013 10.1115/1.538917 10.1088/0266-5611/18/6/330 10.1115/1.3424225 10.1016/j.cma.2004.04.008 10.1137/060663660 10.1515/9781400835348 10.1016/j.jsv.2003.10.063 10.1016/j.ijheatmasstransfer.2006.01.031 10.1088/0964-1726/9/3/308 10.1177/107754630000600508 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/nme.4945 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1097-0207 |
EndPage | 311 |
ExternalDocumentID | 3808337041 10_1002_nme_4945 NME4945 ark_67375_WNG_GVHJ8KMK_8 |
Genre | article |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c4345-a23e56ca6795c2b95ef76ffa1a4880e2b9aa367d4f4254f74bda0bb1bf1fbacf3 |
IEDL.DBID | DR2 |
ISSN | 0029-5981 |
IngestDate | Fri Jul 11 07:06:31 EDT 2025 Fri Jul 25 12:06:45 EDT 2025 Tue Jul 01 04:32:01 EDT 2025 Thu Apr 24 22:53:07 EDT 2025 Wed Jan 22 16:35:25 EST 2025 Wed Oct 30 09:51:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4345-a23e56ca6795c2b95ef76ffa1a4880e2b9aa367d4f4254f74bda0bb1bf1fbacf3 |
Notes | ark:/67375/WNG-GVHJ8KMK-8 istex:1EAD4BB79CBBB48398758EB29D745F172CCBB4C6 ArticleID:NME4945 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1712625175 |
PQPubID | 996376 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1753517139 proquest_journals_1712625175 crossref_citationtrail_10_1002_nme_4945 crossref_primary_10_1002_nme_4945 wiley_primary_10_1002_nme_4945_NME4945 istex_primary_ark_67375_WNG_GVHJ8KMK_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 26 October 2015 |
PublicationDateYYYYMMDD | 2015-10-26 |
PublicationDate_xml | – month: 10 year: 2015 text: 26 October 2015 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal for numerical methods in engineering |
PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Wang S, Brigham JC, A computational framework for the optimal design of morphing processes in locally activated smart material structures, Smart Materials and Structures2012;21(10): 105016-105029. Sheu GJ, Yang SM, Huang WL, Simulating displacement and velocity signals by piezoelectric sensor in vibration control applications, Smart Materials Research2012;2012. doi: 10.1155/2012/390873. Khakhali A, Nariman-zadeh N, Darvizeh A, Masoumi A, Notghi B, Reliability-based robust multi-objective crashworthiness optimisation of s-shaped box beams with parametric uncertainties, International Journal of Crashworthiness2010;15(4): 443-456. Staszewski WJ, Worden K, Wardle R, Tomlinson GR, Fail-safe sensor distributions for impact detection in composite materials, Smart Materials and Structures2000;9(3): 298-303. Xiu D, Hesthaven J, High-order collocation methods for differential equations with random inputs, SIAM Journal on Scientific Computing2005;27(3): 1118-1139. Shah PC, Udwadia FE, A methodology for optimal sensor locations for identification of dynamic systems, Journal of Applied Mechanics1978;45(1): 188-196. Babuška I, Nobile F, Tempone R, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM Review2010;52(2): 317-355. Azarbayejani M, El-Osery AI, Choi KK, Taha MMR, A probabilistic approach for optimal sensor allocation in structural health monitoring, Smart Materials and Structures2008;17(5): 055019-055029. Ogi H, Sato K, Asada T, Hirao M, Complete mode identification for resonance ultrasound spectroscopy, The Journal of the Acoustical Society of America2002;112: 2553-2557. Teughels A, De Roeck G, Structural damage identification of the highway bridge z24 by Fe model updating, Journal of Sound and Vibration2004278(3): 589-610. Barthelmann V, Novak E, Ritter K, High dimensional polynomial interpolation on sparse grids, Advances in Computational Mathematics2000;12(4): 273-288. Wang M, Brigham JC, Assessment of multi-objective optimization for nondestructive evaluation of damage in structural components, Journal of Intelligent Material Systems and Structures2013;25(9): 1082-10961045389X13494933. Notghi B, Brigham JC, Optimal nondestructive test design for maximum sensitivity and minimal redundancy for applications in material characterization, Smart Materials and Structures2013;22(12): 125036-125048. Maierhofer C, Myrach P, Reischel M, Steinfurth H, Röllig M, Kunert M, Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations, Composites Part B: Engineering2014;57: 35-46. Khajavi MN, Notghi B, Paygane G, A multi objective optimization approach to optimize vehicle ride and handling characteristics, World Academy of Science, Engineering and Technology201062: 580-584. Aquino W, Brigham JC, Self-learning finite elements for inverse estimation of thermal constitutive models, International Journal of Heat and Mass Transfer2006;49(15): 2466-2478. Albanese RA, Banks HT, Raye JK, Nondestructive evaluation of materials using pulsed microwave interrogating signals and acoustic wave induced reflections, Inverse Problems2002;18(6):1935-1958. Khan A, Ceglarek D, Sensor optimization for fault diagnosis in multi-fixture assembly systems with distributed sensing, Transactions-American Society of Mechanical Engineers Journal of Manufacturing Science and Engineering2000;122(1): 215-226. Babuska I, Tempone R, Zouraris GE, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM Journal on Numerical Analysis2004;42(2), 800-825. Brigham JC, Aquino W, Surrogate-model accelerated random search algorithm for global optimization with applications to inverse material identification, Computer Methods in Applied Mechanics and Engineering2007;196(45): 4561-4576. Stephan C, Sensor placement for modal identification, Mechanical Systems and Signal Processing2012;27(0): 461-470. Aristégui C, Baste S, Optimal recovery of the elasticity tensor of general anisotropic materials from ultrasonic velocity data, The Journal of the Acoustical Society of America1997;101 :813-833. Papadimitriou C, Beck JL, Au SK, Entropy-based optimal sensor location for structural model updating, Journal of Vibration and Control2000;6(5): 781-800. Heredia-Zavoni E, Esteva L, Optimal instrumentation of uncertain structural systems subject to earthquake ground motions, Earthquake Engineering & Structural Dynamics27 (1998), 4, 343-362. Ghanem RR, Spanos P (2003), Stochastic Finite Elements: A Spectral Approach Revised edition 2003, Dover Publications, Mineola, New York. Audoin B, Non-destructive evaluation of composite materials with ultrasonic waves generated and detected by lasers, Ultrasonics2002;40(1):735-740. Frauenfelder P, Schwab C, Todor RA, Finite elements for elliptic problems with stochastic coefficients, Computer Methods in Applied Mechanics and Engineering194 (2005), 2, 205-228. Nobile F, Tempone R, Webster CG, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM Journal on Numerical Analysis2008;46(5): 2309-2345. Papadimitriou C, Optimal sensor placement methodology for parametric identification of structural systems, Journal of Sound and Vibration2004;278(4): 923-947. Guo HY, Zhang L, Zhang LL, Zhou JX, Optimal placement of sensors for structural health monitoring using improved genetic algorithms, Smart Materials and Structures2004;13(3): 528-534. Castro-Triguero R, Murugan S, Gallego R, Friswell MI, Robustness of optimal sensor placement under parametric uncertainty, Mechanical Systems and Signal Processing2013;41(1): 268-287. Quek ST, Wang SY, Ang KK, Vibration control of composite plates via optimal placement of piezoelectric patches, Journal of Intelligent Material Systems and Structures2003;14(4-5): 229-245. 1998; 27 2004; 42 2005; 194 2013; 25 2012; 2012 2010; 15 2002; 18 2000; 6 2013; 22 2000; 9 2002; 112 2008; 17 2013; 41 2009 2003; 14 2006 1994 2003 2005; 27 2010; 62 2004; 278 1978; 45 2000; 12 2002; 40 2006; 49 2007; 196 1997; 101 2004; 13 2014; 57 2008; 46 2000; 122 2012; 27 2012; 21 2010; 52 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Khajavi MN (e_1_2_6_35_1) 2010; 62 Ghanem RR (e_1_2_6_25_1) 2003 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Aquino W, Brigham JC, Self-learning finite elements for inverse estimation of thermal constitutive models, International Journal of Heat and Mass Transfer2006;49(15): 2466-2478. – reference: Papadimitriou C, Optimal sensor placement methodology for parametric identification of structural systems, Journal of Sound and Vibration2004;278(4): 923-947. – reference: Sheu GJ, Yang SM, Huang WL, Simulating displacement and velocity signals by piezoelectric sensor in vibration control applications, Smart Materials Research2012;2012. doi: 10.1155/2012/390873. – reference: Albanese RA, Banks HT, Raye JK, Nondestructive evaluation of materials using pulsed microwave interrogating signals and acoustic wave induced reflections, Inverse Problems2002;18(6):1935-1958. – reference: Babuska I, Tempone R, Zouraris GE, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM Journal on Numerical Analysis2004;42(2), 800-825. – reference: Guo HY, Zhang L, Zhang LL, Zhou JX, Optimal placement of sensors for structural health monitoring using improved genetic algorithms, Smart Materials and Structures2004;13(3): 528-534. – reference: Babuška I, Nobile F, Tempone R, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM Review2010;52(2): 317-355. – reference: Shah PC, Udwadia FE, A methodology for optimal sensor locations for identification of dynamic systems, Journal of Applied Mechanics1978;45(1): 188-196. – reference: Ogi H, Sato K, Asada T, Hirao M, Complete mode identification for resonance ultrasound spectroscopy, The Journal of the Acoustical Society of America2002;112: 2553-2557. – reference: Wang M, Brigham JC, Assessment of multi-objective optimization for nondestructive evaluation of damage in structural components, Journal of Intelligent Material Systems and Structures2013;25(9): 1082-10961045389X13494933. – reference: Maierhofer C, Myrach P, Reischel M, Steinfurth H, Röllig M, Kunert M, Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations, Composites Part B: Engineering2014;57: 35-46. – reference: Ghanem RR, Spanos P (2003), Stochastic Finite Elements: A Spectral Approach Revised edition 2003, Dover Publications, Mineola, New York. – reference: Quek ST, Wang SY, Ang KK, Vibration control of composite plates via optimal placement of piezoelectric patches, Journal of Intelligent Material Systems and Structures2003;14(4-5): 229-245. – reference: Notghi B, Brigham JC, Optimal nondestructive test design for maximum sensitivity and minimal redundancy for applications in material characterization, Smart Materials and Structures2013;22(12): 125036-125048. – reference: Stephan C, Sensor placement for modal identification, Mechanical Systems and Signal Processing2012;27(0): 461-470. – reference: Castro-Triguero R, Murugan S, Gallego R, Friswell MI, Robustness of optimal sensor placement under parametric uncertainty, Mechanical Systems and Signal Processing2013;41(1): 268-287. – reference: Xiu D, Hesthaven J, High-order collocation methods for differential equations with random inputs, SIAM Journal on Scientific Computing2005;27(3): 1118-1139. – reference: Papadimitriou C, Beck JL, Au SK, Entropy-based optimal sensor location for structural model updating, Journal of Vibration and Control2000;6(5): 781-800. – reference: Teughels A, De Roeck G, Structural damage identification of the highway bridge z24 by Fe model updating, Journal of Sound and Vibration2004278(3): 589-610. – reference: Azarbayejani M, El-Osery AI, Choi KK, Taha MMR, A probabilistic approach for optimal sensor allocation in structural health monitoring, Smart Materials and Structures2008;17(5): 055019-055029. – reference: Nobile F, Tempone R, Webster CG, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM Journal on Numerical Analysis2008;46(5): 2309-2345. – reference: Brigham JC, Aquino W, Surrogate-model accelerated random search algorithm for global optimization with applications to inverse material identification, Computer Methods in Applied Mechanics and Engineering2007;196(45): 4561-4576. – reference: Audoin B, Non-destructive evaluation of composite materials with ultrasonic waves generated and detected by lasers, Ultrasonics2002;40(1):735-740. – reference: Aristégui C, Baste S, Optimal recovery of the elasticity tensor of general anisotropic materials from ultrasonic velocity data, The Journal of the Acoustical Society of America1997;101 :813-833. – reference: Frauenfelder P, Schwab C, Todor RA, Finite elements for elliptic problems with stochastic coefficients, Computer Methods in Applied Mechanics and Engineering194 (2005), 2, 205-228. – reference: Khakhali A, Nariman-zadeh N, Darvizeh A, Masoumi A, Notghi B, Reliability-based robust multi-objective crashworthiness optimisation of s-shaped box beams with parametric uncertainties, International Journal of Crashworthiness2010;15(4): 443-456. – reference: Khan A, Ceglarek D, Sensor optimization for fault diagnosis in multi-fixture assembly systems with distributed sensing, Transactions-American Society of Mechanical Engineers Journal of Manufacturing Science and Engineering2000;122(1): 215-226. – reference: Staszewski WJ, Worden K, Wardle R, Tomlinson GR, Fail-safe sensor distributions for impact detection in composite materials, Smart Materials and Structures2000;9(3): 298-303. – reference: Heredia-Zavoni E, Esteva L, Optimal instrumentation of uncertain structural systems subject to earthquake ground motions, Earthquake Engineering & Structural Dynamics27 (1998), 4, 343-362. – reference: Wang S, Brigham JC, A computational framework for the optimal design of morphing processes in locally activated smart material structures, Smart Materials and Structures2012;21(10): 105016-105029. – reference: Khajavi MN, Notghi B, Paygane G, A multi objective optimization approach to optimize vehicle ride and handling characteristics, World Academy of Science, Engineering and Technology201062: 580-584. – reference: Barthelmann V, Novak E, Ritter K, High dimensional polynomial interpolation on sparse grids, Advances in Computational Mathematics2000;12(4): 273-288. – volume: 12 start-page: 273 issue: 4 year: 2000 end-page: 288 article-title: High dimensional polynomial interpolation on sparse grids publication-title: Advances in Computational Mathematics – volume: 22 start-page: 125036 issue: 12 year: 2013 end-page: 125048 article-title: Optimal nondestructive test design for maximum sensitivity and minimal redundancy for applications in material characterization publication-title: Smart Materials and Structures – volume: 57 start-page: 35 year: 2014 end-page: 46 article-title: Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations publication-title: Composites Part B: Engineering – volume: 278 start-page: 589 issue: 3 year: 2004 end-page: 610 article-title: Structural damage identification of the highway bridge z24 by Fe model updating publication-title: Journal of Sound and Vibration – volume: 41 start-page: 268 issue: 1 year: 2013 end-page: 287 article-title: Robustness of optimal sensor placement under parametric uncertainty publication-title: Mechanical Systems and Signal Processing – year: 1994 article-title: Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems – volume: 2012 year: 2012 article-title: Simulating displacement and velocity signals by piezoelectric sensor in vibration control applications publication-title: Smart Materials Research – volume: 17 start-page: 055019 issue: 5 year: 2008 end-page: 055029 article-title: A probabilistic approach for optimal sensor allocation in structural health monitoring publication-title: Smart Materials and Structures – volume: 278 start-page: 923 issue: 4 year: 2004 end-page: 947 article-title: Optimal sensor placement methodology for parametric identification of structural systems publication-title: Journal of Sound and Vibration – year: 2003 – volume: 18 start-page: 1935 issue: 6 year: 2002 end-page: 1958 article-title: Nondestructive evaluation of materials using pulsed microwave interrogating signals and acoustic wave induced reflections publication-title: Inverse Problems – volume: 9 start-page: 298 issue: 3 year: 2000 end-page: 303 article-title: Fail‐safe sensor distributions for impact detection in composite materials publication-title: Smart Materials and Structures – volume: 21 start-page: 105016 issue: 10 year: 2012 end-page: 105029 article-title: A computational framework for the optimal design of morphing processes in locally activated smart material structures publication-title: Smart Materials and Structures – volume: 52 start-page: 317 issue: 2 year: 2010 end-page: 355 article-title: A stochastic collocation method for elliptic partial differential equations with random input data publication-title: SIAM Review – start-page: 1 year: 2006 end-page: 6 – volume: 101 start-page: 813 year: 1997 end-page: 833 article-title: Optimal recovery of the elasticity tensor of general anisotropic materials from ultrasonic velocity data publication-title: The Journal of the Acoustical Society of America – volume: 25 start-page: 1082 issue: 9 year: 2013 end-page: 1096 article-title: Assessment of multi‐objective optimization for nondestructive evaluation of damage in structural components publication-title: Journal of Intelligent Material Systems and Structures – volume: 14 start-page: 229 issue: 4–5 year: 2003 end-page: 245 article-title: Vibration control of composite plates via optimal placement of piezoelectric patches publication-title: Journal of Intelligent Material Systems and Structures – volume: 196 start-page: 4561 issue: 45 year: 2007 end-page: 4576 article-title: Surrogate‐model accelerated random search algorithm for global optimization with applications to inverse material identification publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 46 start-page: 2309 issue: 5 year: 2008 end-page: 2345 article-title: A sparse grid stochastic collocation method for partial differential equations with random input data publication-title: SIAM Journal on Numerical Analysis – volume: 27 start-page: 343 issue: 4 year: 1998 end-page: 362 article-title: Optimal instrumentation of uncertain structural systems subject to earthquake ground motions publication-title: Earthquake Engineering & Structural Dynamics – year: 2009 article-title: Fast Numerical Methods for Stochastic Computations: A Review – volume: 42 start-page: 800 issue: 2 year: 2004 end-page: 825 article-title: Galerkin finite element approximations of stochastic elliptic partial differential equations publication-title: SIAM Journal on Numerical Analysis – volume: 27 start-page: 1118 issue: 3 year: 2005 end-page: 1139 article-title: High‐order collocation methods for differential equations with random inputs publication-title: SIAM Journal on Scientific Computing – volume: 122 start-page: 215 issue: 1 year: 2000 end-page: 226 article-title: Sensor optimization for fault diagnosis in multi‐fixture assembly systems with distributed sensing publication-title: Transactions‐American Society of Mechanical Engineers Journal of Manufacturing Science and Engineering – volume: 6 start-page: 781 issue: 5 year: 2000 end-page: 800 article-title: Entropy‐based optimal sensor location for structural model updating publication-title: Journal of Vibration and Control – volume: 194 start-page: 205 issue: 2 year: 2005 end-page: 228 article-title: Finite elements for elliptic problems with stochastic coefficients publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 45 start-page: 188 issue: 1 year: 1978 end-page: 196 article-title: A methodology for optimal sensor locations for identification of dynamic systems publication-title: Journal of Applied Mechanics – volume: 49 start-page: 2466 issue: 15 year: 2006 end-page: 2478 article-title: Self‐learning finite elements for inverse estimation of thermal constitutive models publication-title: International Journal of Heat and Mass Transfer – volume: 40 start-page: 735 issue: 1 year: 2002 end-page: 740 article-title: Non‐destructive evaluation of composite materials with ultrasonic waves generated and detected by lasers publication-title: Ultrasonics – volume: 27 start-page: 461 issue: 0 year: 2012 end-page: 470 article-title: Sensor placement for modal identification publication-title: Mechanical Systems and Signal Processing – volume: 112 start-page: 2553 year: 2002 end-page: 2557 article-title: Complete mode identification for resonance ultrasound spectroscopy publication-title: The Journal of the Acoustical Society of America – volume: 62 start-page: 580 year: 2010 end-page: 584 article-title: A multi objective optimization approach to optimize vehicle ride and handling characteristics publication-title: World Academy of Science, Engineering and Technology – volume: 13 start-page: 528 issue: 3 year: 2004 end-page: 534 article-title: Optimal placement of sensors for structural health monitoring using improved genetic algorithms publication-title: Smart Materials and Structures – volume: 15 start-page: 443 issue: 4 year: 2010 end-page: 456 article-title: Reliability‐based robust multi‐objective crashworthiness optimisation of s‐shaped box beams with parametric uncertainties publication-title: International Journal of Crashworthiness – ident: e_1_2_6_21_1 doi: 10.1002/(SICI)1096-9845(199804)27:4<343::AID-EQE726>3.0.CO;2-F – ident: e_1_2_6_23_1 doi: 10.1137/100786356 – ident: e_1_2_6_29_1 doi: 10.1023/A:1018977404843 – ident: e_1_2_6_11_1 doi: 10.1016/j.jsv.2003.10.041 – ident: e_1_2_6_13_1 doi: 10.1088/0964-1726/13/3/011 – ident: e_1_2_6_12_1 doi: 10.1088/0964-1726/17/5/055019 – ident: e_1_2_6_8_1 doi: 10.1177/1045389X13494933 – ident: e_1_2_6_7_1 doi: 10.1121/1.1512700 – ident: e_1_2_6_20_1 doi: 10.1016/j.ymssp.2013.06.022 – volume: 62 start-page: 580 year: 2010 ident: e_1_2_6_35_1 article-title: A multi objective optimization approach to optimize vehicle ride and handling characteristics publication-title: World Academy of Science, Engineering and Technology – ident: e_1_2_6_6_1 doi: 10.1016/S0041-624X(02)00203-2 – ident: e_1_2_6_2_1 doi: 10.1088/0964-1726/21/10/105016 – ident: e_1_2_6_9_1 doi: 10.1016/j.compositesb.2013.09.036 – ident: e_1_2_6_19_1 doi: 10.1088/0964-1726/22/12/125036 – ident: e_1_2_6_27_1 doi: 10.1137/040615201 – ident: e_1_2_6_32_1 doi: 10.1016/j.ymssp.2011.07.022 – ident: e_1_2_6_17_1 doi: 10.1177/1045389X03034686 – ident: e_1_2_6_33_1 doi: 10.1155/2012/390873 – ident: e_1_2_6_5_1 doi: 10.1121/1.418040 – ident: e_1_2_6_30_1 – ident: e_1_2_6_10_1 – ident: e_1_2_6_24_1 doi: 10.1137/S0036142902418680 – volume-title: Stochastic Finite Elements: A Spectral Approach year: 2003 ident: e_1_2_6_25_1 – ident: e_1_2_6_34_1 doi: 10.1080/13588261003696458 – ident: e_1_2_6_36_1 doi: 10.1016/j.cma.2007.05.013 – ident: e_1_2_6_14_1 doi: 10.1115/1.538917 – ident: e_1_2_6_3_1 doi: 10.1088/0266-5611/18/6/330 – ident: e_1_2_6_22_1 doi: 10.1115/1.3424225 – ident: e_1_2_6_26_1 doi: 10.1016/j.cma.2004.04.008 – ident: e_1_2_6_28_1 doi: 10.1137/060663660 – ident: e_1_2_6_31_1 doi: 10.1515/9781400835348 – ident: e_1_2_6_16_1 doi: 10.1016/j.jsv.2003.10.063 – ident: e_1_2_6_4_1 doi: 10.1016/j.ijheatmasstransfer.2006.01.031 – ident: e_1_2_6_18_1 doi: 10.1088/0964-1726/9/3/308 – ident: e_1_2_6_15_1 doi: 10.1177/107754630000600508 |
SSID | ssj0011503 |
Score | 2.168165 |
Snippet | Summary
A robust approach to nondestructive test (NDT) design for material characterization and damage identification in solids and structures is presented and... A robust approach to nondestructive test (NDT) design for material characterization and damage identification in solids and structures is presented and... Summary A robust approach to nondestructive test (NDT) design for material characterization and damage identification in solids and structures is presented and... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 297 |
SubjectTerms | collocation Computation Design engineering material characterization Mathematical models Maximization Nondestructive testing Nondestructive tests Optimization probabilistic methods Redundancy solids Uncertainty |
Title | A computational approach for robust nondestructive test design maximizing characterization capabilities for solids and structures subject to uncertainty |
URI | https://api.istex.fr/ark:/67375/WNG-GVHJ8KMK-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4945 https://www.proquest.com/docview/1712625175 https://www.proquest.com/docview/1753517139 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucCBQgGxtCAjIThlu47tPI4VartqtXtAFCpxsPyUVmV30SZBbX8JP5cZ56EtAglxihJP_Mh4PF_s8WdC3gbOWbBSJLkQLhGBZUmZSp5oIQtms8Jxjyu6s3k2vRBnl_Kyi6rEvTAtP8Qw4YaWEcdrNHBtqsMt0tClH4tS4P5yDNVCPPRxYI5CnMP76A5ZFqznnZ2kh_2LdzzRffyo13dg5jZYjd7mZJd87evZBplcjZvajO3tbxSO_9eQx-RRB0LpUdtrnpB7frVHdjtASjtzr_bIwy22QribDRSv1VPy84jaeCJEN5tIe3ZyCjCYbtamqWq6Wq-c7yhqf3gKsLamLsaM0KW-XiwXt5AztQNpdLsnlFrw4DFoF37jY3ZgIAtXUb1ytM2t2UBK1RicRaL1moJ3bmMb6ptn5OLk-NOHadId85BYwYVMdMq9zKzO8lLa1JTShzwLQTONg4uHJ1rzLHciwPgiQi6M0xNjmAksGG0Df052oDn-BaFaW6l9ObHMpCJoW5jgbFkgAY63TooRed-rXNmOAx2P4vimWvbmVIEyFCpjRN4Mkt9b3o8_yLyLvWYQ0JsrjJPLpfoyP1Wnn6dnxfnsXBUjctB3K9UNEZViOUszJIzDsoZkMG5csdErv25QRnKQAJQOZcU-9NfKqPnsGK8v_1VwnzwA8BdpaNPsgOyA9vwrAFi1eR1N6Rc-jiiC |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAOFAqILQWMhOCU7Tq28xCnCrVdut09oBZ6QLL8lFZls9UmQaW_hJ_L2Hloi0BCnKLEEz8yM_Zne_IZoTeOUuI0Z1HKmImYI0mUx5xGkvGM6CQz1Pod3eksGZ-zkwt-sYHed__CNPwQ_YKb94zQX3sH9wvS-2usoQs7ZDnjd9CWP9A7zKc-9dxRHunQLr6D5xnpmGdH8X735q2xaMt_1utbQHMdrobx5mgbfe1q2oSZXA7rSg31zW8kjv_ZlIfoQYtD8UFjOI_Qhi120HaLSXHr8eUOur9GWAh3057ltXyMfh5gHQ6FaBcUcUdQjgEJ49VS1WWFi2VhbMtS-91iQLYVNiFsBC_k9Xwxv4Gcse55o5vfQrGGQTzE7cJMPmQHPjI3JZaFwU1u9QpSylr5hSRcLTEM0E14Q_XjCTo_Ojz7MI7akx4izSjjkYyp5YmWSZpzHaucW5cmzkkiff9i4YmUNEkNc9DFMJcyZeRIKaIccUpqR5-iTWiOfYawlJpLm480UTFzUmfKGZ1nngPHasPZAL3rdC50S4PuT-P4JhoC51iAMoRXxgC97iWvGuqPP8i8DWbTC8jVpQ-VS7n4MjsWx5_HJ9lkOhHZAO11diXaXqIUJCVx4jnjfFl9Mvi337SRhV3WXoZTkACgDmUFI_prZcRseuivu_8q-ArdHZ9NT8Xpx9nkOboHWDCw0sbJHtoETdoXgLcq9TL41S-PHiyd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgkxA8MBggCgOMhOApXR3buTxObF1ZaYUQg0k8WL5K1Wg6NQka-yX8XI6dizoEEuIpSnziS3yOzxf7-DNCrxylxGnOopQxEzFHkiiPOY0k4xnRSWao9Su6s3kyOWUnZ_ysjar0e2Eafoh-ws1bRhivvYFfGLe_QRq6tEOWM34TbbNklHmNPvzYU0d5oEO78A6eZ6Qjnh3F-92b11zRtv-ql9dw5iZaDe5mvIO-dhVtokzOh3WlhvrqNw7H_2vJPXS3RaH4oFGb--iGLXbRTotIcWvv5S66s0FXCHeznuO1fIB-HmAdjoRopxNxR0-OAQfj9UrVZYWLVWFsy1H73WLAtRU2IWgEL-XlYrm4gpyx7lmjm02hWIMLD1G78B8fsgMLWZgSy8LgJrd6DSllrfw0Eq5WGNxzE9xQ_XiITsdHn95Oovach0gzyngkY2p5omWS5lzHKufWpYlzkkg_ulh4IiVNUsMcDDDMpUwZOVKKKEecktrRR2gLmmMfIyyl5tLmI01UzJzUmXJG55lnwLHacDZAb7ouF7olQfdncXwTDX1zLKAzhO-MAXrZS140xB9_kHkdtKYXkOtzHyiXcvFlfiyOP09OsulsKrIB2uvUSrRjRClISuLEM8b5svpksG6_ZCMLu6q9DKcgATAdygo69NfKiPnsyF-f_KvgC3Trw-FYvH83nz5FtwEIBkraONlDW9CR9hmArUo9D1b1CxviK1U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+approach+for+robust+nondestructive+test+design+maximizing+characterization+capabilities+for+solids+and+structures+subject+to+uncertainty&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Notghi%2C+Bahram&rft.au=Brigham%2C+John+C&rft.date=2015-10-26&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=104&rft.issue=4&rft.spage=297&rft.epage=311&rft_id=info:doi/10.1002%2Fnme.4945&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |