Boron-doped hydrogenated silicon carbide alloys containing silicon nanocrystallites for highly efficient nanocrystalline silicon thin-film solar cells

Boron‐doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p‐nc‐SiC:H) were prepared using a plasma‐enhanced chemical vapor deposition system with a mixture of CH4, SiH4, B2H6 and H2 gases. The influence of hydrogen dilution on the material properties of the p‐nc‐SiC:H film...

Full description

Saved in:
Bibliographic Details
Published inProgress in photovoltaics Vol. 23; no. 12; pp. 1715 - 1723
Main Authors Lee, Ji Eun, Ahn, Seung Kyu, Park, Joo Hyung, Yoo, Jinsu, Yoon, Kyung Hoon, Kim, Donghwan, Cho, Jun-Sik
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 01.12.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Boron‐doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p‐nc‐SiC:H) were prepared using a plasma‐enhanced chemical vapor deposition system with a mixture of CH4, SiH4, B2H6 and H2 gases. The influence of hydrogen dilution on the material properties of the p‐nc‐SiC:H films was investigated, and their roles as window layers in hydrogenated nanocrystalline silicon (nc‐Si:H) solar cells were examined. By increasing the RH (H2/SiH4) ratio from 90 to 220, the Si―C bond density in the p‐nc‐SiC:H films increased from 5.20 × 1019 to 7.07 × 1019/cm3, resulting in a significant increase of the bandgap from 2.09 to 2.23 eV in comparison with the bandgap of 1.95 eV for p‐nc‐Si:H films. For the films deposited at a high RH ratio, the Si nanocrystallites with a size of 3–15 nm were formed in the amorphous SiC:H matrix. The Si nanocrystallites played an important role in the enhancement of vertical charge transport in the p‐nc‐SiC:H films, which was verified by conductive atomic force microscopy measurements. When the p‐nc‐SiC:H films deposited at RH = 220 were applied in the nc‐Si:H solar cells, a high conversion efficiency of 8.26% (Voc = 0.53 V, Jsc = 23.98 mA/cm2 and FF = 0.65) was obtained compared to 6.36% (Voc = 0.44 V, Jsc = 21.90 mA/cm2 and FF = 0.66) of the solar cells with reference p‐nc‐Si:H films. Further enhancement in the cell performance was achieved using p‐nc‐SiC:H bilayers consisting of highly doped upper layers and low‐level doped bottom layers, which led to the increased conversion efficiency of 9.03%. Copyright © 2015 John Wiley & Sons, Ltd. Wide bandgap (E04 = 2.23 eV) p‐nc‐SiC:H window layers with enhanced vertical charge transport were successfully prepared using plasma‐enhanced chemical vapor deposition under a high hydrogen dilution condition, which led to the formation of Si nanocrystallites in the amorphous SiC:H matrix. When applied to n‐i‐p nc‐Si:H solar cells, these films significantly enhanced cell performance due to low recombination at the p/i interfaces, decrease of the series resistance and low absorption loss at the short wavelengths.
AbstractList Abstract Boron‐doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p‐nc‐SiC:H) were prepared using a plasma‐enhanced chemical vapor deposition system with a mixture of CH 4 , SiH 4 , B 2 H 6 and H 2 gases. The influence of hydrogen dilution on the material properties of the p‐nc‐SiC:H films was investigated, and their roles as window layers in hydrogenated nanocrystalline silicon (nc‐Si:H) solar cells were examined. By increasing the R H (H 2 /SiH 4 ) ratio from 90 to 220, the Si―C bond density in the p‐nc‐SiC:H films increased from 5.20 × 10 19 to 7.07 × 10 19 /cm 3 , resulting in a significant increase of the bandgap from 2.09 to 2.23 eV in comparison with the bandgap of 1.95 eV for p‐nc‐Si:H films. For the films deposited at a high R H ratio, the Si nanocrystallites with a size of 3–15 nm were formed in the amorphous SiC:H matrix. The Si nanocrystallites played an important role in the enhancement of vertical charge transport in the p‐nc‐SiC:H films, which was verified by conductive atomic force microscopy measurements. When the p‐nc‐SiC:H films deposited at R H  = 220 were applied in the nc‐Si:H solar cells, a high conversion efficiency of 8.26% (V oc  = 0.53 V, J sc  = 23.98 mA/cm 2 and FF = 0.65) was obtained compared to 6.36% (V oc  = 0.44 V, J sc  = 21.90 mA/cm 2 and FF = 0.66) of the solar cells with reference p‐nc‐Si:H films. Further enhancement in the cell performance was achieved using p‐nc‐SiC:H bilayers consisting of highly doped upper layers and low‐level doped bottom layers, which led to the increased conversion efficiency of 9.03%. Copyright © 2015 John Wiley & Sons, Ltd.
Boron‐doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p‐nc‐SiC:H) were prepared using a plasma‐enhanced chemical vapor deposition system with a mixture of CH4, SiH4, B2H6 and H2 gases. The influence of hydrogen dilution on the material properties of the p‐nc‐SiC:H films was investigated, and their roles as window layers in hydrogenated nanocrystalline silicon (nc‐Si:H) solar cells were examined. By increasing the RH (H2/SiH4) ratio from 90 to 220, the Si―C bond density in the p‐nc‐SiC:H films increased from 5.20 × 1019 to 7.07 × 1019/cm3, resulting in a significant increase of the bandgap from 2.09 to 2.23 eV in comparison with the bandgap of 1.95 eV for p‐nc‐Si:H films. For the films deposited at a high RH ratio, the Si nanocrystallites with a size of 3–15 nm were formed in the amorphous SiC:H matrix. The Si nanocrystallites played an important role in the enhancement of vertical charge transport in the p‐nc‐SiC:H films, which was verified by conductive atomic force microscopy measurements. When the p‐nc‐SiC:H films deposited at RH = 220 were applied in the nc‐Si:H solar cells, a high conversion efficiency of 8.26% (Voc = 0.53 V, Jsc = 23.98 mA/cm2 and FF = 0.65) was obtained compared to 6.36% (Voc = 0.44 V, Jsc = 21.90 mA/cm2 and FF = 0.66) of the solar cells with reference p‐nc‐Si:H films. Further enhancement in the cell performance was achieved using p‐nc‐SiC:H bilayers consisting of highly doped upper layers and low‐level doped bottom layers, which led to the increased conversion efficiency of 9.03%. Copyright © 2015 John Wiley & Sons, Ltd. Wide bandgap (E04 = 2.23 eV) p‐nc‐SiC:H window layers with enhanced vertical charge transport were successfully prepared using plasma‐enhanced chemical vapor deposition under a high hydrogen dilution condition, which led to the formation of Si nanocrystallites in the amorphous SiC:H matrix. When applied to n‐i‐p nc‐Si:H solar cells, these films significantly enhanced cell performance due to low recombination at the p/i interfaces, decrease of the series resistance and low absorption loss at the short wavelengths.
Boron-doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p-nc-SiC:H) were prepared using a plasma-enhanced chemical vapor deposition system with a mixture of CH4, SiH4, B2H6 and H2 gases. The influence of hydrogen dilution on the material properties of the p-nc-SiC:H films was investigated, and their roles as window layers in hydrogenated nanocrystalline silicon (nc-Si:H) solar cells were examined. By increasing the RH (H2/SiH4) ratio from 90 to 220, the Si--C bond density in the p-nc-SiC:H films increased from 5.20×1019 to 7.07×1019/cm3, resulting in a significant increase of the bandgap from 2.09 to 2.23eV in comparison with the bandgap of 1.95eV for p-nc-Si:H films. For the films deposited at a high RH ratio, the Si nanocrystallites with a size of 3-15nm were formed in the amorphous SiC:H matrix. The Si nanocrystallites played an important role in the enhancement of vertical charge transport in the p-nc-SiC:H films, which was verified by conductive atomic force microscopy measurements. When the p-nc-SiC:H films deposited at RH=220 were applied in the nc-Si:H solar cells, a high conversion efficiency of 8.26% (Voc=0.53V, Jsc=23.98mA/cm2 and FF=0.65) was obtained compared to 6.36% (Voc=0.44V, Jsc=21.90mA/cm2 and FF=0.66) of the solar cells with reference p-nc-Si:H films. Further enhancement in the cell performance was achieved using p-nc-SiC:H bilayers consisting of highly doped upper layers and low-level doped bottom layers, which led to the increased conversion efficiency of 9.03%. Copyright © 2015 John Wiley & Sons, Ltd.
Boron-doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p-nc-SiC:H) were prepared using a plasma-enhanced chemical vapor deposition system with a mixture of CH sub(4), SiH sub(4), B sub(2)H sub(6) and H sub(2) gases. The influence of hydrogen dilution on the material properties of the p-nc-SiC:H films was investigated, and their roles as window layers in hydrogenated nanocrystalline silicon (nc-Si:H) solar cells were examined. By increasing the R sub(H) (H sub(2)/SiH sub(4)) ratio from 90 to 220, the Si-C bond density in the p-nc-SiC:H films increased from 5.2010 super(19) to 7.0710 super(19)/cm super(3), resulting in a significant increase of the bandgap from 2.09 to 2.23eV in comparison with the bandgap of 1.95eV for p-nc-Si:H films. For the films deposited at a high R sub(H) ratio, the Si nanocrystallites with a size of 3-15nm were formed in the amorphous SiC:H matrix. The Si nanocrystallites played an important role in the enhancement of vertical charge transport in the p-nc-SiC:H films, which was verified by conductive atomic force microscopy measurements. When the p-nc-SiC:H films deposited at R sub(H)=220 were applied in the nc-Si:H solar cells, a high conversion efficiency of 8.26% (V sub(oc)=0.53V, J sub(sc)=23.98mA/cm super(2) and FF=0.65) was obtained compared to 6.36% (V sub(oc)=0.44V, J sub(sc)=21.90mA/cm super(2) and FF=0.66) of the solar cells with reference p-nc-Si:H films. Further enhancement in the cell performance was achieved using p-nc-SiC:H bilayers consisting of highly doped upper layers and low-level doped bottom layers, which led to the increased conversion efficiency of 9.03%. Wide bandgap (E sub(04)=2.23eV) p-nc-SiC:H window layers with enhanced vertical charge transport were successfully prepared using plasma-enhanced chemical vapor deposition under a high hydrogen dilution condition, which led to the formation of Si nanocrystallites in the amorphous SiC:H matrix. When applied to n-i-p nc-Si:H solar cells, these films significantly enhanced cell performance due to low recombination at the p/i interfaces, decrease of the series resistance and low absorption loss at the short wavelengths.
Author Park, Joo Hyung
Kim, Donghwan
Cho, Jun-Sik
Ahn, Seung Kyu
Yoon, Kyung Hoon
Lee, Ji Eun
Yoo, Jinsu
Author_xml – sequence: 1
  givenname: Ji Eun
  surname: Lee
  fullname: Lee, Ji Eun
  organization: Photovoltaic Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, 305-343, Daejeon, Republic of Korea
– sequence: 2
  givenname: Seung Kyu
  surname: Ahn
  fullname: Ahn, Seung Kyu
  organization: Photovoltaic Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, 305-343, Daejeon, Republic of Korea
– sequence: 3
  givenname: Joo Hyung
  surname: Park
  fullname: Park, Joo Hyung
  organization: Photovoltaic Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, 305-343, Daejeon, Republic of Korea
– sequence: 4
  givenname: Jinsu
  surname: Yoo
  fullname: Yoo, Jinsu
  organization: Photovoltaic Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, 305-343, Daejeon, Republic of Korea
– sequence: 5
  givenname: Kyung Hoon
  surname: Yoon
  fullname: Yoon, Kyung Hoon
  organization: Photovoltaic Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, 305-343, Daejeon, Republic of Korea
– sequence: 6
  givenname: Donghwan
  surname: Kim
  fullname: Kim, Donghwan
  email: Correspondence: Jun-Sik Cho, Photovoltaic Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea. Correspondence: Donghwan Kim, Department of Material Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea., jscho@kier.re.krdonghwan@korea.ac.kr
  organization: Department of Material Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, 136-701, Seoul, Republic of Korea
– sequence: 7
  givenname: Jun-Sik
  surname: Cho
  fullname: Cho, Jun-Sik
  email: Correspondence: Jun-Sik Cho, Photovoltaic Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea. Correspondence: Donghwan Kim, Department of Material Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea., jscho@kier.re.krdonghwan@korea.ac.kr
  organization: Photovoltaic Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, 305-343, Daejeon, Republic of Korea
BookMark eNp10d1q2zAUB3AxOliaFfYIgt7sxqlkW5Z1uXVdWlbaUPrFboQiHyfKFMmTHFq_SJ93Ci0pLexKH_zO4XD--2jPeQcIfaFkQgnJjzrTTfKKsA9oRIkQGWXifm97r_KMC8E-of0YV4RQXotqhJ6---Bd1vgOGrwcmuAX4FSfHtFYo73DWoW5aQAra_0QcfrqlXHGLXbCKed1GGKfiOkh4tYHvDSLpR0wtK3RBlz_VjnYVfdL47LW2DWO3qqANVgbP6OPrbIRDl7OMbr5eXJ9fJqdX07Pjr-dZ7osSpbVXKsmL7UoqopzJpRmGkA1ZTPnkFPWkLxtgYmyVkSDYHNRpx1pRTktBde0GKOvz3274P9uIPZybeJ2AuXAb6KkyTNSsKpO9PAdXflNcGk6STnjrOY8Z68NdfAxBmhlF8xahUFSIrcByRSQ3AaUaPZMH4yF4b9Ozs5mb72JPTzuvAp_ZMULzuTdxVTy29mV-PH7l6yLf9c1ptM
CODEN PPHOED
CitedBy_id crossref_primary_10_1016_j_physe_2020_114048
crossref_primary_10_1002_admt_202100302
crossref_primary_10_1016_j_jpcs_2017_07_026
crossref_primary_10_1016_j_jnoncrysol_2017_08_032
crossref_primary_10_1021_acsami_0c04067
crossref_primary_10_1016_j_carbpol_2020_117084
crossref_primary_10_1016_j_mssp_2019_06_007
crossref_primary_10_1016_j_solmat_2019_110078
crossref_primary_10_1039_C5RA20770C
crossref_primary_10_1088_1361_6528_ab8421
Cites_doi 10.1002/pip.1003
10.1016/j.solmat.2013.04.016
10.1016/j.cap.2010.02.016
10.1016/j.solmat.2013.05.053
10.1016/j.solmat.2014.03.054
10.1002/jrs.3094
10.1063/1.3638068
10.1016/j.jnoncrysol.2012.01.058
10.1016/j.solmat.2013.02.013
10.1016/j.jnoncrysol.2011.04.001
10.1016/j.solmat.2014.08.011
10.1016/j.solmat.2011.02.021
10.1016/j.solmat.2014.05.003
10.1021/jp1007363
10.1016/j.solmat.2014.01.031
10.1002/pip.2389
10.1063/1.365400
10.1016/j.solmat.2012.03.031
10.1201/b16327
10.1039/c3ta12878d
10.1002/aenm.201100514
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1002/pip.2605
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef

Engineering Research Database
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-159X
EndPage 1723
ExternalDocumentID 3923742341
10_1002_pip_2605
PIP2605
ark_67375_WNG_7VPR9DZK_8
Genre article
GrantInformation_xml – fundername: National Research Foundation under the Ministry of Science, ICT & Future, Korea
  funderid: 2011‐0031578
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TWZ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c4345-87cad24c93667759ac5ceead4db7e215d02ffe5948a0ce95b98002ca171497c13
IEDL.DBID DR2
ISSN 1062-7995
IngestDate Fri Aug 16 08:10:49 EDT 2024
Fri Sep 13 02:51:28 EDT 2024
Fri Aug 23 01:04:27 EDT 2024
Sat Aug 24 00:51:04 EDT 2024
Wed Jan 17 05:06:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4345-87cad24c93667759ac5ceead4db7e215d02ffe5948a0ce95b98002ca171497c13
Notes ArticleID:PIP2605
istex:DA66B2853B4A5EAE0709BF49044CE1B16302229F
National Research Foundation under the Ministry of Science, ICT & Future, Korea - No. 2011-0031578
ark:/67375/WNG-7VPR9DZK-8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1757587725
PQPubID 1016445
PageCount 9
ParticipantIDs proquest_miscellaneous_1800503568
proquest_journals_1757587725
crossref_primary_10_1002_pip_2605
wiley_primary_10_1002_pip_2605_PIP2605
istex_primary_ark_67375_WNG_7VPR9DZK_8
PublicationCentury 2000
PublicationDate December 2015
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: December 2015
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Progress in photovoltaics
PublicationTitleAlternate Prog. Photovolt: Res. Appl
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Desalvo A, Giorgis F, Pirri CF, Tresso E, Rava P, Galloni R, Rizzoli R, Summonte C. Optoelectronic properties, structure and composition of a-SiC:H films grown in undiluted and H2 diluted silane-methane plasma. Journal of Applied Physics 1997; 81(12): 7973-7980.
Kim SH, You DJ, Hwang ST, Lee HS, Lee S, Lee HM, Kim D. Investigation on growth behavior of multiphase silicon carbon film for front contact layer in a Si thin film solar cell. Solar Energy Materials & Solar Cells 2014; 127: 98-103.
Ni J, Zhang J, Cao Y, Wang X, Chen X, Geng X, Zhao Y. Low temperature deposition of high open-circuit voltage (>1.0 V) p-i-n type amorphous silicon solar cells. Solar Energy Materials & Solar Cells 2011; 95: 1922-1926.
Hsu CM, Battaglia C, Pahud C, Ruan Z, Haug FJ, Fan S, Ballif C, Cui Y. High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector. Advanced Energy Materials 2012; 2: 628-633.
Summonte C, Allegrezza M, Bellettato M, Liscio F, Canino M, Desalvo A, López-Vidrier J, Hernández S, López-Conesa L, Estradé S, Peiró F, Garrido B, Löper P, Schnabel M, Janz S, Guerra R, Ossicini S. Silicon nanocrystals in carbide matrix. Solar Energy Materials & Solar Cells 2014; 128: 138-149.
Kar D, Das D. Conducting wide bandgap nc-Si/a-SiC:H films for window layers in nc-Si solar cells. Journal of Materials Chemistry A 2013; 1: 14744-14753.
Krajangsan T, Yunaz IA, Miyajima S, Konagai M. Effect of p-µc-Si1-xOx:H layer on performance of hetero-junction microcrystalline silicon solar cells. Current Applied Physics 2010; 10: S357-S360.
Duan Y, Kong JF, Shen WZ. Raman investigation of silicon nanocrystals: quantum confinement and laser-induced thermal effect. Journal of Raman Spectroscopy 2012; 43: 756-760.
Ahn SJ, Kim CW, Yun JH, Gwak JH, Jeong SH, Ryu BH, Yoon KH. CuInSe2(CIS) thin film solar cells by direct coating and selenization of solution precursors. The Journal of Physical Chemistry C 2010; 114(17): 8108-8113.
Ma J, Ni J, Zhang J, Huang Z, Hou G, Chen X, Zhang X, Geng X, Zhao Y. Improvement of solar cells performance by boron doped amorphous silicon carbide/nanocrystalline silicon hybrid window layers. Solar Energy Materials & Solar Cells 2013; 114: 9-14.
Ma J, Ni J, Zhang J, Liu Q, Chen X, Zhang D, Zhang X, Zhao Y. High open-circuit voltage (1.04 V) n-i-p type thin film silicon solar cell by two-phase silicon carbide intrinsic material. Solar Energy Materials & Solar Cells 2014; 130: 561-566.
Lambertz A, Smirnov V, Merdzhanova T, Ding K, Haas S, Jost G, Schropp REI, Finger F, Rau U. Microcrystalline silicon-oxygen alloys for application in silicon solar cells and modules. Solar Energy Materials & Solar Cells 2013; 119: 134-143.
Neubert S, Wimmer M, Ruske F, Calnan S, Gabriel O, Stannowski B, Schlatmann R, Rech B. Improved conversion efficiency of a-Si:H/µc-Si:H thin-film solar cells by using annealed Al-doped zinc oxide as front electrode material. Progress in Photovoltaics: Research and Application 2014; 22: 1285-1291.
Söderström K, Escarré J, Cubero O, Haug FJ, Perregaux S, Ballif C. UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells. Progress in Photovoltaics: Research and Application 2011; 19(2): 202-210.
Cho JS, Baek S, Park SH, Park JH, Yoo J, Yoon KH. Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells. Solar Energy Materials & Solar Cells 2012; 102: 50-57.
Yan B, Yue G, Laura S, Yang J, Guha S, Jiang CS. Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell. Applied Physics Letters 2011; 99: 113512.
Biron R, Pahud C, Haug FJ, Ballif C. Origin of the Voc enhancement with a p-doped nc-SiOx:H window layer in n-i-p solar cells. Journal of Non-Crystalline Solids 2012; 358: 1958-1961.
Shah A. Thin-Film Silicon Solar Cells. EPFL Press: Lausanne, 2010. 5-15.
Ma J, Ni J, Zhang J, Liu Q, Hou G, Chen X, Zhang XD, Zhao Y. In situ grown size-controlled silicon nanocrystals: a p type nanocrystalline-Si:H/a-SiCx:H superlattice (p-nc-Si:H/a-SiCx:H) approach. Solar Energy Materials & Solar Cells 2014; 123: 228-232.
King SW, French M, Bielefeld J, Lanford WA. Fourier transform infrared spectroscopy investigation of chemical bonding in low-k a-SiC:H thin films. Journal of Non-Crystalline Solids 2011; 357: 2970-2983.
Kim S, Chung JW, Lee H, Park J, Heo Y, Lee HM. Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology. Solar Energy Materials & Solar Cells 2013; 119: 26-35.
2011; 357
2014; 127
2010; 10
2014; 128
2012; 2
2013; 1
2012; 102
1997; 81
2013; 119
2010
2010; 114
2011; 95
2013; 114
2011; 99
2011; 19
2014; 130
2012; 358
2012; 43
2014; 22
2014; 123
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – start-page: 5
  year: 2010
  end-page: 15
– volume: 358
  start-page: 1958
  year: 2012
  end-page: 1961
  article-title: Origin of the V enhancement with a p‐doped nc‐SiO :H window layer in n‐i‐p solar cells
  publication-title: Journal of Non‐Crystalline Solids
– volume: 19
  start-page: 202
  issue: 2
  year: 2011
  end-page: 210
  article-title: UV‐nano‐imprint lithography technique for the replication of back reflectors for n‐i‐p thin film silicon solar cells
  publication-title: Progress in Photovoltaics: Research and Application
– volume: 119
  start-page: 134
  year: 2013
  end-page: 143
  article-title: Microcrystalline silicon–oxygen alloys for application in silicon solar cells and modules
  publication-title: Solar Energy Materials & Solar Cells
– volume: 2
  start-page: 628
  year: 2012
  end-page: 633
  article-title: High‐efficiency amorphous silicon solar cell on a periodic nanocone back reflector
  publication-title: Advanced Energy Materials
– volume: 95
  start-page: 1922
  year: 2011
  end-page: 1926
  article-title: Low temperature deposition of high open‐circuit voltage (>1.0 V) p‐i‐n type amorphous silicon solar cells
  publication-title: Solar Energy Materials & Solar Cells
– volume: 123
  start-page: 228
  year: 2014
  end-page: 232
  article-title: In situ grown size‐controlled silicon nanocrystals: a p type nanocrystalline‐Si:H/a‐SiC :H superlattice (p‐nc‐Si:H/a‐SiC :H) approach
  publication-title: Solar Energy Materials & Solar Cells
– volume: 114
  start-page: 9
  year: 2013
  end-page: 14
  article-title: Improvement of solar cells performance by boron doped amorphous silicon carbide/nanocrystalline silicon hybrid window layers
  publication-title: Solar Energy Materials & Solar Cells
– volume: 43
  start-page: 756
  year: 2012
  end-page: 760
  article-title: Raman investigation of silicon nanocrystals: quantum confinement and laser‐induced thermal effect
  publication-title: Journal of Raman Spectroscopy
– volume: 99
  start-page: 113512
  year: 2011
  article-title: Innovative dual function nc‐SiOx:H layer leading to a >16% efficient multi‐junction thin‐film silicon solar cell
  publication-title: Applied Physics Letters
– volume: 22
  start-page: 1285
  year: 2014
  end-page: 1291
  article-title: Improved conversion efficiency of a‐Si:H/µc‐Si:H thin‐film solar cells by using annealed Al‐doped zinc oxide as front electrode material
  publication-title: Progress in Photovoltaics: Research and Application
– volume: 130
  start-page: 561
  year: 2014
  end-page: 566
  article-title: High open‐circuit voltage (1.04 V) n‐i‐p type thin film silicon solar cell by two‐phase silicon carbide intrinsic material
  publication-title: Solar Energy Materials & Solar Cells
– volume: 128
  start-page: 138
  year: 2014
  end-page: 149
  article-title: Silicon nanocrystals in carbide matrix
  publication-title: Solar Energy Materials & Solar Cells
– volume: 102
  start-page: 50
  year: 2012
  end-page: 57
  article-title: Effect of nanotextured back reflectors on light trapping in flexible silicon thin‐film solar cells
  publication-title: Solar Energy Materials & Solar Cells
– volume: 10
  start-page: S357
  year: 2010
  end-page: S360
  article-title: Effect of p‐µc‐Si1‐ O :H layer on performance of hetero‐junction microcrystalline silicon solar cells
  publication-title: Current Applied Physics
– volume: 81
  start-page: 7973
  issue: 12
  year: 1997
  end-page: 7980
  article-title: Optoelectronic properties, structure and composition of a‐SiC:H films grown in undiluted and H diluted silane‐methane plasma
  publication-title: Journal of Applied Physics
– volume: 1
  start-page: 14744
  year: 2013
  end-page: 14753
  article-title: Conducting wide bandgap nc‐Si/a‐SiC:H films for window layers in nc‐Si solar cells
  publication-title: Journal of Materials Chemistry A
– volume: 357
  start-page: 2970
  year: 2011
  end-page: 2983
  article-title: Fourier transform infrared spectroscopy investigation of chemical bonding in low‐k a‐SiC:H thin films
  publication-title: Journal of Non‐Crystalline Solids
– volume: 127
  start-page: 98
  year: 2014
  end-page: 103
  article-title: Investigation on growth behavior of multiphase silicon carbon film for front contact layer in a Si thin film solar cell
  publication-title: Solar Energy Materials & Solar Cells
– volume: 119
  start-page: 26
  year: 2013
  end-page: 35
  article-title: Remarkable progress in thin‐film silicon solar cells using high‐efficiency triple‐junction technology
  publication-title: Solar Energy Materials & Solar Cells
– volume: 114
  start-page: 8108
  issue: 17
  year: 2010
  end-page: 8113
  article-title: CuInSe (CIS) thin film solar cells by direct coating and selenization of solution precursors
  publication-title: The Journal of Physical Chemistry C
– ident: e_1_2_6_4_1
  doi: 10.1002/pip.1003
– ident: e_1_2_6_7_1
  doi: 10.1016/j.solmat.2013.04.016
– ident: e_1_2_6_22_1
  doi: 10.1016/j.cap.2010.02.016
– ident: e_1_2_6_17_1
  doi: 10.1016/j.solmat.2013.05.053
– ident: e_1_2_6_18_1
  doi: 10.1016/j.solmat.2014.03.054
– ident: e_1_2_6_16_1
  doi: 10.1002/jrs.3094
– ident: e_1_2_6_19_1
  doi: 10.1063/1.3638068
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jnoncrysol.2012.01.058
– ident: e_1_2_6_8_1
  doi: 10.1016/j.solmat.2013.02.013
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jnoncrysol.2011.04.001
– ident: e_1_2_6_15_1
  doi: 10.1016/j.solmat.2014.08.011
– ident: e_1_2_6_13_1
  doi: 10.1016/j.solmat.2011.02.021
– ident: e_1_2_6_10_1
  doi: 10.1016/j.solmat.2014.05.003
– ident: e_1_2_6_20_1
  doi: 10.1021/jp1007363
– ident: e_1_2_6_6_1
  doi: 10.1016/j.solmat.2014.01.031
– ident: e_1_2_6_3_1
  doi: 10.1002/pip.2389
– ident: e_1_2_6_14_1
  doi: 10.1063/1.365400
– ident: e_1_2_6_11_1
  doi: 10.1016/j.solmat.2012.03.031
– ident: e_1_2_6_5_1
  doi: 10.1201/b16327
– ident: e_1_2_6_9_1
  doi: 10.1039/c3ta12878d
– ident: e_1_2_6_2_1
  doi: 10.1002/aenm.201100514
SSID ssj0017896
Score 2.2465203
Snippet Boron‐doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p‐nc‐SiC:H) were prepared using a plasma‐enhanced chemical vapor...
Abstract Boron‐doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p‐nc‐SiC:H) were prepared using a plasma‐enhanced chemical vapor...
Boron-doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p-nc-SiC:H) were prepared using a plasma-enhanced chemical vapor...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1715
SubjectTerms Alloys
Chemical vapor deposition
conversion efficiency
Deposition
nanocrystallites
Nanocrystals
Photovoltaic cells
Silicon
Silicon carbide
silicon thin-film
solar cell
Solar cells
Thin films
Title Boron-doped hydrogenated silicon carbide alloys containing silicon nanocrystallites for highly efficient nanocrystalline silicon thin-film solar cells
URI https://api.istex.fr/ark:/67375/WNG-7VPR9DZK-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.2605
https://www.proquest.com/docview/1757587725/abstract/
https://search.proquest.com/docview/1800503568
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pb9MwFMctNC5wAMZAFAbyJLRbuja1nfgIg_0AbaqmDSY4WP4VLVpJqqSVKKf9CZz58_hLeM9pshUJCe2SHPIcObaf_XX8_DEhr22aaq1FHMVDYyKW8SwyQ2ejxCUj4zIxsAGSdHQsDs7Yh3N-voyqxL0wDR-i--GGnhH6a3Rwbeqda2joNJ_2UYxD94scPdRDJx05apik4WgumPCAgJSSt9zZQbzTJlwZie5ioX5fkZk3xWoYbfYekq9tPpsgk8v-fGb69sdfCMfbfcgj8mApQumbptWskzu-eEzu30ATbpBfbxFt8Pvqpyun3tGLhatKaGugTB2t8wm0n4JaXZnceYpr94uaYtR7c95EZ1HoorTVAhToBPc61xQkMkVC8mRBfYBXwJi3alX4LvXsIsccZPnkG61xCk5xmaF-Qs723p_uHkTLcxwiy0aMQ4drtYuZlSMhkoRLbTkMzdoxRDuD5HCDOMs8cmP0wHrJjUQVazWezS4TOxw9JWtFWfhnhDpuNPKrrLCcGSukYE4wuIo4syD1emSrrVM1bXAdqgEzxwrKWWE598h2qOzOQFeXGN6WcPX5eF8ln8Yn8t2Xjyrtkc22NailZ9cK5BZMsWBOAu_Z6h6DT2IJ6MKXc7BJA2aHC3jFdqj6f2ZGjQ_HeH_-v4YvyD3QbLyJqNkka7Nq7l-CLpqZV8ED_gCKdhDs
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAO5S22FHAl1Fu2u9nYicWJV9nSdrWqWqgQkuVX1KhLskp2JZYTP4EzP49fwoyzCV0kJMQlOWRsObbH8409_oaQZyZJlFI8DMK-1kGUsjTQfWuC2MYDbVPeM54k6XjEh2fRu3N2vkaeN3dhan6IdsMNNcOv16jguCG995s1dJpNu4jGr5EN0Hbm_amTljuqHyc-ORe4PAAhhWAN82wv3GtKrtiiDezWLytA8ypc9fZm_xb51LS0DjO57M5numu-_kHi-J-_cptsLnEofVFPnDtkzeV3yc0r7IT3yI-XyG7w89t3W0ydpRcLWxYw3QCcWlplE5hCOTWq1Jl1FI_vFxXFwPc65UQrkau8MOUCQOgErztXFFAyRZLkyYI6z18BZm9VKndt6dlFhi1Is8lnWqEXTvGkobpPzvbfnL4aBstUDoGJBhGDNdcoG0ZGDDiPYyaUYWCdlY2Q3RlQh-2FaeqQOkb1jBNMCwSyRmF6dhGb_uABWc-L3D0k1DKtkMLKcMMibbjgkeURPHmYGkB7HbLTDKqc1owdsuZmDiX0s8R-7pBdP9qtgCovMcItZvLD6K2M349PxOuPhzLpkO1mOsilclcSEBd4WeCWQD077WdQS-wBlbtiDjKJZ9phHKrY9WP_18bI8cEY31v_KviUXB-eHh_Jo4PR4SNyAyAcqwNstsn6rJy7xwCTZvqJV4dfgqUVDg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5BKyE48F8RKLCVUG9OE3t3bR-BEFoKUVRRqOhhtX9WrAbbshOJcOIROPN4PAkzdmwaJCTExT541lrPzux-4539hpBnJoqUUsL3_KHWHkt44umhNV5ow0DbRAxMTZL0biIOT9mbM362zqrEszANP0T3ww09o56v0cELmxz8Jg0t0qKPYPwq2WYi8NGiRycdddQwjOraXBDxAIKMY94Szw78g7blxlK0jVr9soEzL6PVerkZ3yLnbUebLJOL_nKh--brHxyO__clt8nNNQqlzxuzuUOuuOwuuXGJm_Ae-fECuQ1-fvtu88JZOlvZMgdjA2hqaZXOwYAyalSpU-sobt6vKopp703BiU4iU1luyhVA0Dkedq4oYGSKFMnzFXU1ewUseptSmetaL2Yp9iBJ559phTE4xX2G6j45Hb96__LQWxdy8AwLGIcZ1yjrMxMHQoQhj5XhsDYry5DbGTCHHfhJ4pA4Rg2Mi7mOEcYahcXZ49AMgx2yleWZe0Co5VohgZURhjNtRCyYFQyuwk8MYL0e2WvHVBYNX4dsmJl9CXqWqOce2a8HuxNQ5QXmt4Vcfpy8luGH6Uk8-nQsox7Zba1Brl27koC3IMaCoATes9c9BqdEDajM5UuQiWqeHS7gFfv10P-1M3J6NMX7w38VfEquTUdj-fZocvyIXAf8xpvsml2ytSiX7jFgpIV-UjvDL0vnE70
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boron-doped+hydrogenated+silicon+carbide+alloys+containing+silicon+nanocrystallites+for+highly+efficient+nanocrystalline+silicon+thin-film+solar+cells&rft.jtitle=Progress+in+photovoltaics&rft.au=Lee%2C+Ji+Eun&rft.au=Ahn%2C+Seung+Kyu&rft.au=Park%2C+Joo+Hyung&rft.au=Yoo%2C+Jinsu&rft.date=2015-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=23&rft.issue=12&rft.spage=1715&rft_id=info:doi/10.1002%2Fpip.2605&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3923742341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon