Rapid Ice‐Wedge Collapse and Permafrost Carbon Loss Triggered by Increased Snow Depth and Surface Runoff

Thicker snow cover in permafrost areas causes deeper active layers and thaw subsidence, which alter local hydrology and may amplify the loss of soil carbon. However, the potential for changes in snow cover and surface runoff to mobilize permafrost carbon remains poorly quantified. In this study, we...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 51; no. 11
Main Authors Parmentier, Frans‐Jan W., Nilsen, Lennart, Tømmervik, Hans, Meisel, Ove H., Bröder, Lisa, Vonk, Jorien E., Westermann, Sebastian, Semenchuk, Philipp R., Cooper, Elisabeth J.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.06.2024
Wiley
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
1944-8007
DOI10.1029/2023GL108020

Cover

Abstract Thicker snow cover in permafrost areas causes deeper active layers and thaw subsidence, which alter local hydrology and may amplify the loss of soil carbon. However, the potential for changes in snow cover and surface runoff to mobilize permafrost carbon remains poorly quantified. In this study, we show that a snow fence experiment on High‐Arctic Svalbard inadvertently led to surface subsidence through warming, and extensive downstream erosion due to increased surface runoff. Within a decade of artificially raised snow depths, several ice wedges collapsed, forming a 50 m long and 1.5 m deep thermo‐erosion gully in the landscape. We estimate that 1.1–3.3 tons C may have eroded, and that the gully is a hotspot for processing of mobilized aquatic carbon. Our results show that interactions among snow, runoff and permafrost thaw form an important driver of soil carbon loss, highlighting the need for improved model representation. Plain Language Summary Snow cover is steadily disappearing as a result of climate change, but in areas that remain below 0°C we can still expect an increase in snow depth in the middle of winter. Since snow acts akin to a blanket, this warms the soil and accelerates the thaw of permafrost—thereby potentially contributing to carbon release from these frozen soils. Ice wedges, which are typical for permafrost landscapes, are particularly vulnerable to thaw because they hold a large amount of ice. When this ice melts, the surface sinks down, and soil carbon may be lost. In this study, we show how experimentally raised snow cover triggered the collapse of several ice wedges, not only through a warming effect of the snow but also due to an increase in the flow of water through the ice wedge network. As a result, we estimate that 1.1–3.3 tons of carbon were removed from this location, of which a portion could have entered the atmosphere as CO2. We emphasize the importance of studying the interactions among snow, runoff, and permafrost thaw to better understand how this may affect the release of greenhouse gases to the atmosphere. Key Points A decade of raised snow depths led to strong local thaw subsidence, while increased runoff triggered the downstream collapse of ice wedges The abrupt thaw process mobilized about 1.1–3.3 tons of soil organic carbon in total, and dissolved organic carbon was degraded in the thermo‐erosion gully Feedbacks linking changes in snow cover, surface drainage, and permafrost thaw are important drivers of thermokarst and soil carbon loss
AbstractList Thicker snow cover in permafrost areas causes deeper active layers and thaw subsidence, which alter local hydrology and may amplify the loss of soil carbon. However, the potential for changes in snow cover and surface runoff to mobilize permafrost carbon remains poorly quantified. In this study, we show that a snow fence experiment on High‐Arctic Svalbard inadvertently led to surface subsidence through warming, and extensive downstream erosion due to increased surface runoff. Within a decade of artificially raised snow depths, several ice wedges collapsed, forming a 50 m long and 1.5 m deep thermo‐erosion gully in the landscape. We estimate that 1.1–3.3 tons C may have eroded, and that the gully is a hotspot for processing of mobilized aquatic carbon. Our results show that interactions among snow, runoff and permafrost thaw form an important driver of soil carbon loss, highlighting the need for improved model representation. Snow cover is steadily disappearing as a result of climate change, but in areas that remain below 0°C we can still expect an increase in snow depth in the middle of winter. Since snow acts akin to a blanket, this warms the soil and accelerates the thaw of permafrost—thereby potentially contributing to carbon release from these frozen soils. Ice wedges, which are typical for permafrost landscapes, are particularly vulnerable to thaw because they hold a large amount of ice. When this ice melts, the surface sinks down, and soil carbon may be lost. In this study, we show how experimentally raised snow cover triggered the collapse of several ice wedges, not only through a warming effect of the snow but also due to an increase in the flow of water through the ice wedge network. As a result, we estimate that 1.1–3.3 tons of carbon were removed from this location, of which a portion could have entered the atmosphere as CO2. We emphasize the importance of studying the interactions among snow, runoff, and permafrost thaw to better understand how this may affect the release of greenhouse gases to the atmosphere.
Abstract Thicker snow cover in permafrost areas causes deeper active layers and thaw subsidence, which alter local hydrology and may amplify the loss of soil carbon. However, the potential for changes in snow cover and surface runoff to mobilize permafrost carbon remains poorly quantified. In this study, we show that a snow fence experiment on High‐Arctic Svalbard inadvertently led to surface subsidence through warming, and extensive downstream erosion due to increased surface runoff. Within a decade of artificially raised snow depths, several ice wedges collapsed, forming a 50 m long and 1.5 m deep thermo‐erosion gully in the landscape. We estimate that 1.1–3.3 tons C may have eroded, and that the gully is a hotspot for processing of mobilized aquatic carbon. Our results show that interactions among snow, runoff and permafrost thaw form an important driver of soil carbon loss, highlighting the need for improved model representation.
Thicker snow cover in permafrost areas causes deeper active layers and thaw subsidence, which alter local hydrology and may amplify the loss of soil carbon. However, the potential for changes in snow cover and surface runoff to mobilize permafrost carbon remains poorly quantified. In this study, we show that a snow fence experiment on High‐Arctic Svalbard inadvertently led to surface subsidence through warming, and extensive downstream erosion due to increased surface runoff. Within a decade of artificially raised snow depths, several ice wedges collapsed, forming a 50 m long and 1.5 m deep thermo‐erosion gully in the landscape. We estimate that 1.1–3.3 tons C may have eroded, and that the gully is a hotspot for processing of mobilized aquatic carbon. Our results show that interactions among snow, runoff and permafrost thaw form an important driver of soil carbon loss, highlighting the need for improved model representation.
Thicker snow cover in permafrost areas causes deeper active layers and thaw subsidence, which alter local hydrology and may amplify the loss of soil carbon. However, the potential for changes in snow cover and surface runoff to mobilize permafrost carbon remains poorly quantified. In this study, we show that a snow fence experiment on High‐Arctic Svalbard inadvertently led to surface subsidence through warming, and extensive downstream erosion due to increased surface runoff. Within a decade of artificially raised snow depths, several ice wedges collapsed, forming a 50 m long and 1.5 m deep thermo‐erosion gully in the landscape. We estimate that 1.1–3.3 tons C may have eroded, and that the gully is a hotspot for processing of mobilized aquatic carbon. Our results show that interactions among snow, runoff and permafrost thaw form an important driver of soil carbon loss, highlighting the need for improved model representation. Snow cover is steadily disappearing as a result of climate change, but in areas that remain below 0°C we can still expect an increase in snow depth in the middle of winter. Since snow acts akin to a blanket, this warms the soil and accelerates the thaw of permafrost—thereby potentially contributing to carbon release from these frozen soils. Ice wedges, which are typical for permafrost landscapes, are particularly vulnerable to thaw because they hold a large amount of ice. When this ice melts, the surface sinks down, and soil carbon may be lost. In this study, we show how experimentally raised snow cover triggered the collapse of several ice wedges, not only through a warming effect of the snow but also due to an increase in the flow of water through the ice wedge network. As a result, we estimate that 1.1–3.3 tons of carbon were removed from this location, of which a portion could have entered the atmosphere as CO 2 . We emphasize the importance of studying the interactions among snow, runoff, and permafrost thaw to better understand how this may affect the release of greenhouse gases to the atmosphere. A decade of raised snow depths led to strong local thaw subsidence, while increased runoff triggered the downstream collapse of ice wedges The abrupt thaw process mobilized about 1.1–3.3 tons of soil organic carbon in total, and dissolved organic carbon was degraded in the thermo‐erosion gully Feedbacks linking changes in snow cover, surface drainage, and permafrost thaw are important drivers of thermokarst and soil carbon loss
Thicker snow cover in permafrost areas causes deeper active layers and thaw subsidence, which alter local hydrology and may amplify the loss of soil carbon. However, the potential for changes in snow cover and surface runoff to mobilize permafrost carbon remains poorly quantified. In this study, we show that a snow fence experiment on High‐Arctic Svalbard inadvertently led to surface subsidence through warming, and extensive downstream erosion due to increased surface runoff. Within a decade of artificially raised snow depths, several ice wedges collapsed, forming a 50 m long and 1.5 m deep thermo‐erosion gully in the landscape. We estimate that 1.1–3.3 tons C may have eroded, and that the gully is a hotspot for processing of mobilized aquatic carbon. Our results show that interactions among snow, runoff and permafrost thaw form an important driver of soil carbon loss, highlighting the need for improved model representation. Plain Language Summary Snow cover is steadily disappearing as a result of climate change, but in areas that remain below 0°C we can still expect an increase in snow depth in the middle of winter. Since snow acts akin to a blanket, this warms the soil and accelerates the thaw of permafrost—thereby potentially contributing to carbon release from these frozen soils. Ice wedges, which are typical for permafrost landscapes, are particularly vulnerable to thaw because they hold a large amount of ice. When this ice melts, the surface sinks down, and soil carbon may be lost. In this study, we show how experimentally raised snow cover triggered the collapse of several ice wedges, not only through a warming effect of the snow but also due to an increase in the flow of water through the ice wedge network. As a result, we estimate that 1.1–3.3 tons of carbon were removed from this location, of which a portion could have entered the atmosphere as CO2. We emphasize the importance of studying the interactions among snow, runoff, and permafrost thaw to better understand how this may affect the release of greenhouse gases to the atmosphere. Key Points A decade of raised snow depths led to strong local thaw subsidence, while increased runoff triggered the downstream collapse of ice wedges The abrupt thaw process mobilized about 1.1–3.3 tons of soil organic carbon in total, and dissolved organic carbon was degraded in the thermo‐erosion gully Feedbacks linking changes in snow cover, surface drainage, and permafrost thaw are important drivers of thermokarst and soil carbon loss
Author Bröder, Lisa
Westermann, Sebastian
Cooper, Elisabeth J.
Vonk, Jorien E.
Meisel, Ove H.
Parmentier, Frans‐Jan W.
Nilsen, Lennart
Tømmervik, Hans
Semenchuk, Philipp R.
Author_xml – sequence: 1
  givenname: Frans‐Jan W.
  orcidid: 0000-0003-2952-7706
  surname: Parmentier
  fullname: Parmentier, Frans‐Jan W.
  email: frans-jan@thissideofthearctic.org
  organization: University of Oslo
– sequence: 2
  givenname: Lennart
  surname: Nilsen
  fullname: Nilsen, Lennart
  organization: UiT–The Arctic University of Norway
– sequence: 3
  givenname: Hans
  orcidid: 0000-0001-7273-1695
  surname: Tømmervik
  fullname: Tømmervik, Hans
  organization: FRAM ‐ High North Research Centre for Climate and the Environment
– sequence: 4
  givenname: Ove H.
  surname: Meisel
  fullname: Meisel, Ove H.
  organization: Vrije Universiteit Amsterdam
– sequence: 5
  givenname: Lisa
  orcidid: 0000-0002-5454-7883
  surname: Bröder
  fullname: Bröder, Lisa
  organization: ETH Zürich
– sequence: 6
  givenname: Jorien E.
  surname: Vonk
  fullname: Vonk, Jorien E.
  organization: Vrije Universiteit Amsterdam
– sequence: 7
  givenname: Sebastian
  orcidid: 0000-0003-0514-4321
  surname: Westermann
  fullname: Westermann, Sebastian
  organization: University of Oslo
– sequence: 8
  givenname: Philipp R.
  orcidid: 0000-0002-1119-9612
  surname: Semenchuk
  fullname: Semenchuk, Philipp R.
  organization: UNIS–The University Centre in Svalbard
– sequence: 9
  givenname: Elisabeth J.
  orcidid: 0000-0002-0634-1282
  surname: Cooper
  fullname: Cooper, Elisabeth J.
  organization: UiT–The Arctic University of Norway
BookMark eNqFkc1uEzEQx1eoSKSFG3cscSVgr-2194gChEgrgdIijtb4Kzja2ou9UZUbj8Az9klqGkCIA5zGM_7Nf77Om7OYomuapwS_JLjtX7W4peuBYIlb_KBZkJ6xpcRYnDULjPv6bkX3qDkvZY8xppiSRbPfwhQs2hh3--37Z2d3Dq3SOMJUHIJo0UeXr8HnVGa0gqxTREMqBV3lsNu57CzSR7SJJjso1bmM6Qa9cdP85T758pA9GIe2h5i8f9w89DAW9-SnvWg-vXt7tXq_HD6sN6vXw9IwyvhSCIKtth46KbSTIGQvDYMaoy1xwDXnrO9bYRjpOss77wmTTHrJMRdYanrRbE66NsFeTTlcQz6qBEHdB1LeKchzMKNTXmvNnTNguWHWyt54bGstLnRbf2zVenbSMjmUOUQVUwZF6vaEolQIWonnJ2LK6evBlVnt0yHHOqCiuOuY6LjklXrxS6euLzv_uy-C1Y_bqT9vV_H2L9yEGeaQ4pwhjP9JugmjO_6zgFpvh04wwekda0qq-Q
CitedBy_id crossref_primary_10_1002_ppp_2269
crossref_primary_10_1371_journal_pclm_0000570
crossref_primary_10_1080_1747423X_2025_2476948
crossref_primary_10_1016_j_earscirev_2024_105020
crossref_primary_10_1038_s43247_024_01838_1
crossref_primary_10_1111_gcb_70024
Cites_doi 10.1016/j.scitotenv.2018.07.150
10.5194/tc‐9‐737‐2015
10.1130/SPE70-p1
10.3389/fmicb.2015.00399
10.1016/j.geomorph.2006.07.040
10.1038/s41561‐019‐0387‐6
10.5194/tc‐11‐635‐2017
10.1088/1748‐9326/9/10/105010
10.1029/2003GL017337
10.1088/1748‐9326/8/3/035025
10.5281/zenodo.10991228
10.1038/s41561‐019‐0526‐0
10.1111/jvs.12793
10.1111/j.1365‐2486.2010.02303.x
10.1111/bor.12286
10.1002/ppp.595
10.1038/nclimate2446
10.5194/essd‐13‐3593‐2021
10.1002/2015JG003251
10.1002/2014JG002678
10.5194/bg‐12‐7129‐2015
10.1002/ppp.2088
10.1038/nclimate1631
10.3402/polar.v33.21349
10.1002/grl.50348
10.1038/s41467‐020‐15725‐8
10.1088/1748‐9326/9/11/114021
10.1016/j.plantsci.2010.09.005
10.1139/x05‐153
10.17043/palmtag‐2022‐pedon‐1
10.1016/j.gloplacha.2022.103921
10.5194/bg‐12‐4953‐2015
10.5194/tc‐13‐591‐2019
10.1038/s41467‐023‐40795‐9
10.1088/1748‐9326/8/3/035023
10.1038/ncomms13043
10.1111/sed.12476
10.1002/hyp.7327
10.1038/s41467‐018‐08240‐4
10.1002/ppp.1810
10.1038/ngeo2674
10.1038/s41586‐020‐2258‐0
10.1016/j.geomorph.2017.09.001
10.5194/tc‐15‐3059‐2021
10.1038/s41561‐022‐00952‐z
10.1038/nature13259
10.1088/1748‐9326/abac36
ContentType Journal Article
Copyright 2024. The Author(s).
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2024. The Author(s).
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
3HK
DOA
DOI 10.1029/2023GL108020
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
NORA - Norwegian Open Research Archives
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList

Aerospace Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_fbbb5eecad5c4dd89cf0d4a057b2bb5d
10037_33773
10_1029_2023GL108020
GRL67475
Genre article
GrantInformation_xml – fundername: Norges Forskningsråd
  funderid: 230970; 323945
– fundername: DigitalGlobe Foundation
– fundername: Framsenteret
  funderid: 362255; 642018
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
88I
8G5
8R4
8R5
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABJCF
ABPPZ
ABUWG
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ATCPS
AVUZU
AZFZN
AZQEC
AZVAB
BENPR
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
F5P
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PATMY
PCBAR
PHGZM
PHGZT
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7TG
7TN
8FD
AFPKN
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
PQGLB
31~
3HK
3V.
6TJ
7XC
8FE
8FG
8FH
A00
AASGY
ABJNI
ACBEA
ACBWZ
AEFZC
AEUQT
AFPWT
AFZJQ
AI.
ASPBG
AVWKF
BDRZF
BFHJK
BPHCQ
D1K
DDYGU
EJD
FEDTE
HVGLF
K6-
L6V
LK5
M7R
MVM
OHT
P62
PALCI
PQQKQ
PROAC
RIWAO
RJQFR
SAMSI
UQL
VH1
VOH
WIH
WYJ
ZCG
PUEGO
ID FETCH-LOGICAL-c4345-7710dbdfa687be8a7898c4a0db321ea5b5549927c4166d56ff14848f8505708b3
IEDL.DBID 24P
ISSN 0094-8276
1944-8007
IngestDate Wed Aug 27 00:20:02 EDT 2025
Tue Jun 25 16:51:00 EDT 2024
Fri Jul 25 09:14:01 EDT 2025
Thu Apr 24 23:05:35 EDT 2025
Tue Jul 01 01:05:31 EDT 2025
Sun Jul 06 04:45:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4345-7710dbdfa687be8a7898c4a0db321ea5b5549927c4166d56ff14848f8505708b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Geophysical Research Letters
ORCID 0000-0002-1119-9612
0000-0001-7273-1695
0000-0003-0514-4321
0000-0003-2952-7706
0000-0002-5454-7883
0000-0002-0634-1282
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL108020
PQID 3066476585
PQPubID 54723
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_fbbb5eecad5c4dd89cf0d4a057b2bb5d
cristin_nora_10037_33773
proquest_journals_3066476585
crossref_primary_10_1029_2023GL108020
crossref_citationtrail_10_1029_2023GL108020
wiley_primary_10_1029_2023GL108020_GRL67475
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 June 2024
PublicationDateYYYYMMDD 2024-06-16
PublicationDate_xml – month: 06
  year: 2024
  text: 16 June 2024
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_8_1_11_1
e_1_2_8_1_36_1
e_1_2_8_1_13_1
e_1_2_8_1_34_1
e_1_2_8_1_32_1
e_1_2_8_1_30_1
e_1_2_8_1_9_1
e_1_2_8_1_27_1
e_1_2_8_1_29_1
e_1_2_8_1_48_1
e_1_2_8_1_22_1
e_1_2_8_1_47_1
e_1_2_8_1_24_1
e_1_2_8_1_45_1
e_1_2_8_1_43_1
e_1_2_8_1_20_1
e_1_2_8_1_41_1
AMAP (e_1_2_8_1_4_1) 2017
e_1_2_8_1_3_1
e_1_2_8_1_7_1
e_1_2_8_1_5_1
e_1_2_8_1_19_1
e_1_2_8_1_15_1
e_1_2_8_1_17_1
e_1_2_8_1_38_1
e_1_2_8_1_12_1
e_1_2_8_1_35_1
e_1_2_8_1_14_1
e_1_2_8_1_33_1
e_1_2_8_1_31_1
e_1_2_8_1_10_1
e_1_2_8_1_50_1
e_1_2_8_1_8_1
e_1_2_8_1_26_1
e_1_2_8_1_28_1
e_1_2_8_1_49_1
e_1_2_8_1_23_1
e_1_2_8_1_46_1
e_1_2_8_1_25_1
e_1_2_8_1_44_1
e_1_2_8_2_2_1
e_1_2_8_1_42_1
e_1_2_8_1_21_1
e_1_2_8_1_40_1
e_1_2_8_1_2_1
e_1_2_8_1_6_1
e_1_2_8_1_16_1
e_1_2_8_1_39_1
e_1_2_8_1_18_1
e_1_2_8_1_37_1
References_xml – ident: e_1_2_8_1_41_1
  doi: 10.1016/j.scitotenv.2018.07.150
– ident: e_1_2_8_1_13_1
  doi: 10.5194/tc‐9‐737‐2015
– ident: e_1_2_8_1_22_1
  doi: 10.1130/SPE70-p1
– ident: e_1_2_8_1_38_1
  doi: 10.3389/fmicb.2015.00399
– ident: e_1_2_8_1_23_1
  doi: 10.1016/j.geomorph.2006.07.040
– ident: e_1_2_8_1_35_1
  doi: 10.1038/s41561‐019‐0387‐6
– ident: e_1_2_8_1_39_1
  doi: 10.5194/tc‐11‐635‐2017
– ident: e_1_2_8_1_15_1
  doi: 10.1088/1748‐9326/9/10/105010
– ident: e_1_2_8_1_43_1
  doi: 10.1029/2003GL017337
– ident: e_1_2_8_1_17_1
  doi: 10.1088/1748‐9326/8/3/035025
– ident: e_1_2_8_1_34_1
  doi: 10.5281/zenodo.10991228
– ident: e_1_2_8_1_45_1
  doi: 10.1038/s41561‐019‐0526‐0
– ident: e_1_2_8_1_10_1
  doi: 10.1111/jvs.12793
– ident: e_1_2_8_1_26_1
  doi: 10.1111/j.1365‐2486.2010.02303.x
– ident: e_1_2_8_1_7_1
  doi: 10.1111/bor.12286
– ident: e_1_2_8_1_12_1
  doi: 10.1002/ppp.595
– ident: e_1_2_8_1_27_1
  doi: 10.1038/nclimate2446
– ident: e_1_2_8_1_33_1
  doi: 10.5194/essd‐13‐3593‐2021
– ident: e_1_2_8_1_40_1
  doi: 10.1002/2015JG003251
– ident: e_1_2_8_1_3_1
  doi: 10.1002/2014JG002678
– ident: e_1_2_8_1_49_1
  doi: 10.5194/bg‐12‐7129‐2015
– ident: e_1_2_8_1_44_1
  doi: 10.1002/ppp.2088
– ident: e_1_2_8_1_50_1
  doi: 10.1038/nclimate1631
– ident: e_1_2_8_1_29_1
  doi: 10.3402/polar.v33.21349
– ident: e_1_2_8_1_47_1
  doi: 10.1002/grl.50348
– ident: e_1_2_8_1_28_1
  doi: 10.1038/s41467‐020‐15725‐8
– ident: e_1_2_8_1_16_1
  doi: 10.1088/1748‐9326/9/11/114021
– ident: e_1_2_8_1_9_1
  doi: 10.1016/j.plantsci.2010.09.005
– ident: e_1_2_8_1_19_1
  doi: 10.1139/x05‐153
– ident: e_1_2_8_1_32_1
  doi: 10.17043/palmtag‐2022‐pedon‐1
– ident: e_1_2_8_1_18_1
  doi: 10.1016/j.gloplacha.2022.103921
– ident: e_1_2_8_2_2_1
  doi: 10.5194/bg‐12‐4953‐2015
– ident: e_1_2_8_1_2_1
  doi: 10.5194/tc‐13‐591‐2019
– ident: e_1_2_8_1_8_1
  doi: 10.1038/s41467‐023‐40795‐9
– ident: e_1_2_8_1_48_1
  doi: 10.1088/1748‐9326/8/3/035023
– ident: e_1_2_8_1_31_1
  doi: 10.1038/ncomms13043
– ident: e_1_2_8_1_14_1
  doi: 10.1111/sed.12476
– ident: e_1_2_8_1_25_1
– ident: e_1_2_8_1_37_1
  doi: 10.1002/hyp.7327
– ident: e_1_2_8_1_6_1
  doi: 10.1038/s41467‐018‐08240‐4
– ident: e_1_2_8_1_46_1
  doi: 10.1002/ppp.1810
– ident: e_1_2_8_1_24_1
  doi: 10.1038/ngeo2674
– ident: e_1_2_8_1_36_1
  doi: 10.1038/s41586‐020‐2258‐0
– ident: e_1_2_8_1_20_1
  doi: 10.1016/j.geomorph.2017.09.001
– ident: e_1_2_8_1_21_1
  doi: 10.5194/tc‐15‐3059‐2021
– ident: e_1_2_8_1_11_1
  doi: 10.1038/s41561‐022‐00952‐z
– ident: e_1_2_8_1_5_1
  doi: 10.1038/nature13259
– volume-title: Arctic monitoring and assessment programme (AMAP
  year: 2017
  ident: e_1_2_8_1_4_1
– ident: e_1_2_8_1_42_1
  doi: 10.1088/1748‐9326/abac36
– ident: e_1_2_8_1_30_1
SSID ssj0003031
Score 2.4892213
Snippet Thicker snow cover in permafrost areas causes deeper active layers and thaw subsidence, which alter local hydrology and may amplify the loss of soil carbon....
Thicker snow cover in permafrost areas causes deeper active layers and thaw subsidence, which alter local hydrology and may amplify the loss of soil carbon....
Abstract Thicker snow cover in permafrost areas causes deeper active layers and thaw subsidence, which alter local hydrology and may amplify the loss of soil...
SourceID doaj
cristin
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atmosphere
Atmospheric entry
Basale biofag: 470
Basic biosciences: 470
Carbon
Carbon dioxide
Climate change
Depth
dissolved organic carbon
Frozen ground
Greenhouse effect
Greenhouse gases
Gullies
Gully erosion
Hydrology
Ice
Ice formation
Ice wedges
Matematikk og naturvitenskap: 400
Mathematics and natural scienses: 400
Permafrost
Permafrost thaws
Runoff
Snow
Snow accumulation
Snow cover
Snow depth
Soil
soil carbon
Soil erosion
Soil loss
Soils
Subsidence
Surface runoff
thermokarst
VDP
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kEPAixgdZjdIHPcngzPRzjjGajbKKbBLMremnUaR32QeSmz_B3-gvsapnNmwO6sXbPHqGoqq65vt6qqsIeeasT95ZWXnBZMXbmCrXJFfVMskgJVe2w93I7z_Ik3P-7kJcbLX6wpywvjxwr7iXyTknYvQ2CM9D0J1PdeAWYIZr4U7A6Ft39YZMDTEYAnPfK6_jlW6VHFLe67ZDts_GE0ytwx7fu77MpXzjs1Sq99-AnNvAtXx5ju-SOwNkpIe9qHvkVsz3yO64tOS9gqOSxOmX98nXqZ1_CfStj79-_PyEC2UU1wXsfBmpzYF-xCiccJsHPbILN8t0ArLQMyDon7FlJ3VXFOIFpqnDyWmefaev43x1WR4-XS-S9ZFO13mW0gNyfvzm7OikGnopVJ4zLgBEN3VwIVmplYvaKt1pD2oMjrVNtMIJJIqt8gDQZBAyJeBJXCeNBKbWjj0kO3mW4z6hWPIOcBeYIDY8NI1TnYtMeS0c4B0ZRmR_UKrJ4MZYFZkpw5hSbERebLRs_FCDHFthfDPlX3jbmW3rjMjz69HzvvbGH8a9QoNdj8GK2eUC-JEZ_Mj8y49G5GBjbjNM46UBPgXuCiBNgOTFBf4qiBlPJxL4mXj0PyR6TG7DyznmpTXygOysFuv4BBDQyj0tzv4b_1H_3A
  priority: 102
  providerName: Directory of Open Access Journals
Title Rapid Ice‐Wedge Collapse and Permafrost Carbon Loss Triggered by Increased Snow Depth and Surface Runoff
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL108020
https://www.proquest.com/docview/3066476585
http://hdl.handle.net/10037/33773
https://doaj.org/article/fbbb5eecad5c4dd89cf0d4a057b2bb5d
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEG4kQfAiPslqXPoQTzI4j37NMYnJJrKGZZPV4KXpZ0yQmWUfSG7-BH-jv8Sq3smyOSh4mpmebii6u2q-qqn-ipA9a1x01ojM8UpkrAwxs0W0WS6i8EIwaWo8jfzpTJxM2MdLftkF3PAszIofYh1wQ81I9hoV3Nh5RzaAHJlY93swxBS5Elz2bTxdi6UbSjZaW2Iwz6uKeTXLVClFl_gO499vjgbo65JGNfc-TonD_x7w3ISv6ftz_IQ87oAj3V-t9FPyIDTPyMNBKsx7C3cpldPNn5ObsZlee3rqwu-fv75guIxidMBM54GaxtMR2uKIhz3ooZnZtqFDkIVegJt-hYU7qb2lYDUwWR0ezpv2B_0QpotvafD5chaNC3S8bNoYX5DJ8dHF4UnWVVTIHKsYByhd5N76aISSNigjVa0cM9BWlUUw3HJ0F0vpAKYJz0WM4C0xFRW6Mbmy1Uuy1bRN2CEUie8AfZmch4L5orCytqGSTnELqEf4HtnpJlU3sJmRG7mSuqqkrHrk3d0sa9cxkWNBjO86_REva725Oj3ydt17umLg-Eu_A1ywdR_kzU4N7exKd2qoo7WWh-CM5455r2oXcw8TwKUt4Q1IvXu33LpT5rkGrwo2LUA1DpKnLfBPQfRgPBTgpfFX_9X7NXkE7QzT0AqxS7YWs2V4A4BnYftpV_fJ9v7nydcJXA-Ozkbjfgof_AH6KPjS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYIL4qkutOADnFBEHn7lCIXuFtKq2m5Fb5afhapKVvsQ6o2fwG_sL2HGm662B5C4Jc5YsmzP-JvJ-BtC3ljjorNGZI5XImNliJktos1yEYUXgklT423kwyMxOmVfzvhZX-cU78Ks-CHWATfUjGSvUcExIN2zDSBJJhb-HjaYI1eCz36XATTHnL6SHa9NMdjnVcm8mmWqlKLPfIf-7zd7A_Z1SaXaW6dTIvG_hTw38Ws6gPYfkYc9cqQfVkv9mNwJ7RNyb5gq817BU8rldPOn5GJspj88PXDh-tfvbxgvoxgeMNN5oKb19BiNccTbHnTPzGzX0gbGQifgp59j5U5qryiYDcxWh5eTtvtJP4Xp4nvqfLKcReMCHS_bLsZn5HT_82RvlPUlFTLHKsYBSxe5tz4aoaQNykhVK8cMtFVlEQy3HP3FUjrAacJzESO4S0xFhX5Mrmz1nGy1XRu2CUXmO4BfJuehYL4orKxtqKRT3ALsEX5AtvtJ1S3sZiRHrqSuKimrAXl3M8va9VTkWBHjUqdf4mWtN1dnQN6upacrCo6_yH3EBVvLIHF2auhm57rXQx2ttTwEZzx3zHtVu5h7mAAubQlfYNQ7N8ute22ea3CrYNcCVuMw8rQF_jkQPRw3Atw0_uK_pF-T-6PJYaObg6OvL8kDkGGYk1aIHbK1mC3DLqCfhX2VdvgfGmL3-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbhQxELVQIhAXxKoMBPABTqhFL976GBJmEhiiaJKBiIvlNYBQd2sWodz4BL6RL6GqxxlNDiBx66Xcsuyq8it3-RUhL6xx0VkjMscrkbEyxMwW0Wa5iMILwaSp8TTyh2NxOGXvzvl52nDDszArfoj1hhtaRu-v0cA7HxPZAHJkYt3v0RhT5EoI2beRKA_0fHvv4_TzdO2LwUGvaubVLFOlFCn1Hb7werM9gF_X21RzbXnqWfyvQc9NANuvQMO75E6CjnRvNdf3yI3Q3Cc3R31p3ku46pM53fwB-TYx3VdPj1z4_fPXJ9wwo7g_YLp5oKbx9AS9ccTjHnTfzGzb0DH0hZ5BoH6BpTupvaTgNzBdHW5Om_YHPQjd4kvf-HQ5i8YFOlk2bYwPyXT49mz_MEs1FTLHKsYBTBe5tz4aoaQNykhVK8cMPKvKIhhuOQaMpXQA1ITnIkaIl5iKCgOZXNnqEdlq2ibsEIrUd4C_TM5DwXxRWFnbUEmnuAXcI_yA7KRB1Q2oM7IjV1JXlZTVgLy6GmXtEhc5lsT4rvt_4mWtN2dnQF6upbsVB8df5N7ghK1lkDm7f9DOLnQyRB2ttTwEZzx3zHtVu5h7GAAubQlvoNe7V9OtkznPNcRVoLYA1jj0vFeBf3ZEjyZjAXEaf_xf0s_JrZODoR4fHb9_Qm6DCMOctELskq3FbBmeAvpZ2GdJxf8AR4T45w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Ice%E2%80%90Wedge+Collapse+and+Permafrost+Carbon+Loss+Triggered+by+Increased+Snow+Depth+and+Surface+Runoff&rft.jtitle=Geophysical+research+letters&rft.au=Frans%E2%80%90Jan+W+Parmentier&rft.au=Nilsen%2C+Lennart&rft.au=T%C3%B8mmervik%2C+Hans&rft.au=Meisel%2C+Ove+H&rft.date=2024-06-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=11&rft_id=info:doi/10.1029%2F2023GL108020&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon