D-patches: effective traffic sign detection with occlusion handling
In advanced driver assistance systems, accurate detection of traffic signs plays an important role in extracting information about the road ahead. However, traffic signs are persistently occluded by vehicles, trees, and other structures on road. Performance of a detector decreases drastically when o...
Saved in:
Published in | IET computer vision Vol. 11; no. 5; pp. 368 - 377 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
01.08.2017
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In advanced driver assistance systems, accurate detection of traffic signs plays an important role in extracting information about the road ahead. However, traffic signs are persistently occluded by vehicles, trees, and other structures on road. Performance of a detector decreases drastically when occlusions are encountered especially when it is trained using full object templates. Therefore, we propose a new method called discriminative patches (d-patches), which is a traffic sign detection (TSD) framework with occlusion handling capability. D-patches are those regions of an object that possess the most discriminative features than their surroundings. They are mined during training and are used for classification instead of the full object templates. Furthermore, we observe that the distribution of redundant-detections around a true-positive is different from that around a false-positive. Based on this observation, we propose a novel hypothesis generation scheme that uses a voting and penalisation mechanism to accurately select a true-positive candidate. We also introduce a new Korean TSD (KTSD) dataset with several evaluation settings to facilitate detector's evaluation under different conditions. The proposed method achieves 100% detection accuracy on German TSD benchmark and achieves 4.0% better detection accuracy, when compared with other well-known methods (under partially occluded settings), on KTSD dataset. |
---|---|
AbstractList | In advanced driver assistance systems, accurate detection of traffic signs plays an important role in extracting information about the road ahead. However, traffic signs are persistently occluded by vehicles, trees, and other structures on road. Performance of a detector decreases drastically when occlusions are encountered especially when it is trained using full object templates. Therefore, we propose a new method called discriminative patches (d-patches), which is a traffic sign detection (TSD) framework with occlusion handling capability. D-patches are those regions of an object that possess the most discriminative features than their surroundings. They are mined during training and are used for classification instead of the full object templates. Furthermore, we observe that the distribution of redundant-detections around a true-positive is different from that around a false-positive. Based on this observation, we propose a novel hypothesis generation scheme that uses a voting and penalisation mechanism to accurately select a true-positive candidate. We also introduce a new Korean TSD (KTSD) dataset with several evaluation settings to facilitate detector's evaluation under different conditions. The proposed method achieves 100% detection accuracy on German TSD benchmark and achieves 4.0% better detection accuracy, when compared with other well-known methods (under partially occluded settings), on KTSD dataset. |
Author | Shin, Hyunchul Riaz, Irfan Rehman, Yawar Fan, Xue |
Author_xml | – sequence: 1 givenname: Yawar surname: Rehman fullname: Rehman, Yawar organization: Department of Electronics and Communication Engineering, Hanyang University, Ansan 426-791, Korea – sequence: 2 givenname: Irfan surname: Riaz fullname: Riaz, Irfan organization: Department of Electronics and Communication Engineering, Hanyang University, Ansan 426-791, Korea – sequence: 3 givenname: Xue surname: Fan fullname: Fan, Xue organization: Department of Electronics and Communication Engineering, Hanyang University, Ansan 426-791, Korea – sequence: 4 givenname: Hyunchul surname: Shin fullname: Shin, Hyunchul email: shin@hanyang.ac.kr organization: Department of Electronics and Communication Engineering, Hanyang University, Ansan 426-791, Korea |
BookMark | eNqFkEFPwyAUx4mZiXP6Abz16qETChTYTeemTZZ4WbwSCnRjqe3Ssi379lJrFmPMDAd4L-_3f-F3DQZVXVkA7hAcI0jEg7M-1ns3TiBKxxBDfAGGiFEUi5TAwemNkytw3bYbCGkqBBmC6XO8VV6vbTuJbFFY7d3eRr5RReF01LpVFRnru3ZdRQfn11Gtdblru3KtKlO6anUDLgtVtvb2-x6B5Xy2nL7Gi7eXbPq4iDXBhMRGCC4YogVlmGNFtYWMpymjXGPECDYpzSlKGOE2EcwkyPLEqJwhnXBmKB6BrI81tdrIbeM-VHOUtXLyq1E3K6ka73RpJQushnluoUFEqHDCZwUVBkNDNechC_VZuqnbtrHFKQ9B2QmVQagMQmUnVHZCA8N-Mdp51YkJulx5lpz05MGV9vj_Kjl9z5KnOYSYkgDHPdyNbepdUwXHZ5fd_zGfzZZd6o8dW1PgT9EUq8E |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2947069 crossref_primary_10_3390_s23135919 crossref_primary_10_1109_ACCESS_2022_3150882 crossref_primary_10_3233_JIFS_181082 crossref_primary_10_3390_s18113776 crossref_primary_10_1007_s11042_019_08239_z crossref_primary_10_1007_s11042_023_16168_1 crossref_primary_10_1049_iet_ipr_2018_5424 crossref_primary_10_1016_j_geits_2023_100092 crossref_primary_10_1007_s11042_020_08848_z crossref_primary_10_1109_OJITS_2021_3053337 |
Cites_doi | 10.1109/IJCNN.2013.6706810 10.1109/ICCV.2009.5459207 10.1007/978-3-319-20855-8_6 10.1049/iet-cvi.2013.0334 10.1109/IJCNN.2013.6706812 10.1007/978-3-642-21227-7_23 10.1109/TPAMI.2002.1017623 10.1109/TVT.2015.2500275 10.1109/TPAMI.2009.167 10.1007/s11042-016-3321-6 10.1109/TPAMI.2011.153 10.1016/j.neucom.2016.07.009 10.1109/TPAMI.2014.2300479 10.1016/j.isprsjprs.2016.01.005 |
ContentType | Journal Article |
Copyright | The Institution of Engineering and Technology 2017 The Institution of Engineering and Technology |
Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2017 The Institution of Engineering and Technology |
DBID | AAYXX CITATION DOA |
DOI | 10.1049/iet-cvi.2016.0303 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ : directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1751-9640 |
EndPage | 377 |
ExternalDocumentID | oai_doaj_org_article_71e8c0bbe0d149a9a9994959d30d5c88 10_1049_iet_cvi_2016_0303 CVI2BF00354 |
Genre | article |
GrantInformation_xml | – fundername: ‘Higher Education Commission’ (HEC) of the Government of Pakistan |
GroupedDBID | 0R 24P 29I 3V. 5GY 6IK 8AL 8FE 8FG 8VB AAJGR ABJCF ABPTK ABUWG ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BFFAM BGLVJ BPHCQ CS3 DU5 DWQXO EBS EJD ESX GNUQQ HCIFZ HZ IFIPE IPLJI J9A JAVBF K6V K7- L6V LAI LOTEE LXI LXU M0N M43 M7S MS NADUK NXXTH O9- OCL P62 PQEST PQQKQ PQUKI PROAC PTHSS QWB RIE RNS RUI S0W UNMZH UNR ZL0 ZZ .DC 0R~ 0ZK 1OC AAHHS AAHJG ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO ITC K1G MCNEO MS~ OK1 ~ZZ AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT WIN |
ID | FETCH-LOGICAL-c4344-d9989715f57383a5ce07866758c31743d65b512748e297d21e82dab71c287d53 |
IEDL.DBID | IDLOA |
ISSN | 1751-9632 1751-9640 |
IngestDate | Wed Aug 27 01:31:26 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Sun Jul 06 05:07:29 EDT 2025 Wed Jan 22 16:31:59 EST 2025 Thu May 09 18:04:54 EDT 2019 Tue Jan 05 21:45:55 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | hypothesis generation scheme true positive candidate advanced driver assistance systems discriminative patches Korean TSD dataset object detection German TSD benchmark redundant-detections d-patches KTSD dataset traffic sign detection framework TSD framework driver information systems occlusion handling capability confidence-score traffic signs full object templates |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4344-d9989715f57383a5ce07866758c31743d65b512748e297d21e82dab71c287d53 |
OpenAccessLink | https://doaj.org/article/71e8c0bbe0d149a9a9994959d30d5c88 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1049_iet_cvi_2016_0303 crossref_primary_10_1049_iet_cvi_2016_0303 iet_journals_10_1049_iet_cvi_2016_0303 wiley_primary_10_1049_iet_cvi_2016_0303_CVI2BF00354 doaj_primary_oai_doaj_org_article_71e8c0bbe0d149a9a9994959d30d5c88 |
ProviderPackageCode | RUI |
PublicationCentury | 2000 |
PublicationDate | 20170800 August 2017 2017-08-00 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 8 year: 2017 text: 20170800 |
PublicationDecade | 2010 |
PublicationTitle | IET computer vision |
PublicationYear | 2017 |
Publisher | The Institution of Engineering and Technology Wiley |
Publisher_xml | – name: The Institution of Engineering and Technology – name: Wiley |
References | Greenhalgh, J.; Mirmehdi, M. (C3) 2012; 13 Zhu, Y.; Zhang, C.; Zhou, D. (C9) 2016; 214 Andrea, V.; Zisserman, A. (C26) 2012; 34 Liu, C.; Chang, F.; Chen, Z. (C2) 2016; 17 Hyunchul, S.; Teng, Y.; Ismail, Y. (C22) 2011; 50 Dollár, P.; Appel, R.; Belongie, S. (C7) 2014; 36 Ellahyani, A.; Ansari, M.; Jaafari, I. (C13) 2016; 46 Soilán, M.; Riveiro, B.; Martinez-Sánchez, J. (C16) 2016; 114 Teng, Y.; Hyunchul, S. (C20) 2015; 9 Liu, C.; Chang, F.; Liu, C. (C8) 2016; 10 Mogelmose, A.; Liu, D.; Trivedi, M. (C21) 2015; 16 Mogelmose, A.; Trivedi, M.; Moeslund, T. (C1) 2012; 13 Aghdam, H.; Heravi, E.; Puig, D. (C10) 2016; 84 Yu, Y.; Li, J.; Wen, C. (C15) 2016; 113 Felzenszwalb, P.; Girshick, R.; McAllester, D. (C18) 2010; 32 Chen, T.; Lu, S. (C28) 2016; 65 Boumediene, M.; Lauffenburger, J.; Daniel, J. (C17) 2014; 15 Ojala, T.; Pietikainen, M.; Maenpaa, T. (C24) 2002; 24 Berkaya, S.; Gunduz, H.; Ozsen, O. (C11) 2016; 48 2010; 32 2015; 16 2011 2016; 10 2009 2006 2005 2012; 13 2016; 17 2015; 9 2012; 34 2002; 24 2011; 50 2016; 113 2016; 65 2014; 15 2014; 36 2016; 84 2016 2015 2016; 214 2013 2016; 114 2016; 48 2016; 46 Greenhalgh J. (e_1_2_9_4_2) 2012; 13 Boumediene M. (e_1_2_9_18_2) 2014; 15 e_1_2_9_30_2 Aghdam H. (e_1_2_9_11_2) 2016; 84 e_1_2_9_10_2 Rosipal R. (e_1_2_9_26_2) 2006 Berkaya S. (e_1_2_9_12_2) 2016; 48 Liu C. (e_1_2_9_9_2) 2016; 10 Soilán M. (e_1_2_9_17_2) 2016; 114 Liu C. (e_1_2_9_3_2) 2016; 17 e_1_2_9_13_2 e_1_2_9_16_2 e_1_2_9_15_2 e_1_2_9_19_2 e_1_2_9_21_2 e_1_2_9_20_2 e_1_2_9_7_2 e_1_2_9_6_2 Mogelmose A. (e_1_2_9_2_2) 2012; 13 e_1_2_9_5_2 Mogelmose A. (e_1_2_9_22_2) 2015; 16 Hyunchul S. (e_1_2_9_23_2) 2011; 50 e_1_2_9_8_2 e_1_2_9_25_2 e_1_2_9_24_2 e_1_2_9_27_2 e_1_2_9_29_2 e_1_2_9_28_2 Ellahyani A. (e_1_2_9_14_2) 2016; 46 |
References_xml | – volume: 34 start-page: 480 issue: 3 year: 2012 end-page: 492 ident: C26 article-title: Efficient additive kernels via explicit feature maps publication-title: IEEE TPAMI – volume: 13 start-page: 1498 issue: 4 year: 2012 end-page: 1506 ident: C3 article-title: Real-time detection and recognition of road traffic signs publication-title: IEEE TITS – volume: 15 start-page: 2470 issue: 6 year: 2014 end-page: 2479 ident: C17 article-title: Multi-ROI association and tracking with belief functions: application to traffic sign recognition publication-title: IEEE TITS – volume: 114 start-page: 92 year: 2016 end-page: 101 ident: C16 article-title: Traffic sign detection in MLS acquired point clouds for geometric and image-based semantic inventory publication-title: ISPRS-JPRS – volume: 17 start-page: 79 issue: 1 year: 2016 end-page: 92 ident: C2 article-title: Fast traffic sign recognition via high-contrast region extraction and extended sparse representation publication-title: iIEEE TITS – volume: 113 start-page: 106 year: 2016 end-page: 123 ident: C15 article-title: Bag-of-visual-phrases and hierarchical deep models for traffic sign detection and recognition in mobile laser scanning data publication-title: ISPRS-JPRS – volume: 32 start-page: 1627 issue: 9 year: 2010 end-page: 1645 ident: C18 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE TPAMI – volume: 9 start-page: 174 issue: 2 year: 2015 end-page: 183 ident: C20 article-title: Detecting partially occluded vehicles with geometric and likelihood reasoning publication-title: IET CV – volume: 48 start-page: 67 year: 2016 end-page: 75 ident: C11 article-title: On circular traffic sign detection and recognition publication-title: ESA – volume: 36 start-page: 1532 issue: 8 year: 2014 end-page: 1545 ident: C7 article-title: Fast feature pyramids for object detection publication-title: IEEE TPAMI – volume: 13 start-page: 1484 issue: 4 year: 2012 end-page: 1497 ident: C1 article-title: Vision-based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey publication-title: IEEE TITS – volume: 24 start-page: 971 issue: 7 year: 2002 end-page: 987 ident: C24 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE TPAMI – volume: 16 start-page: 3116 issue: 6 year: 2015 end-page: 3125 ident: C21 article-title: Detection of U.S. traffic signs publication-title: IEEE TITS – volume: 214 start-page: 758 year: 2016 end-page: 766 ident: C9 article-title: Traffic sign detection and recognition using fully convolutional network guided proposals publication-title: Neurocomputing – volume: 50 start-page: 1170021 issue: 11 year: 2011 end-page: 11700211 ident: C22 article-title: Rendering high dynamic range images by using integrated global and local processing publication-title: Opt. Eng. – volume: 10 start-page: 354 issue: 5 year: 2016 end-page: 360 ident: C8 article-title: Occlusion-robust traffic sign detection via cascaded colour cubic feature publication-title: IET ITS – volume: 46 start-page: 805 year: 2016 end-page: 815 ident: C13 article-title: Traffic sign detection and recognition based on random forests publication-title: ASC – volume: 84 start-page: 97 year: 2016 end-page: 112 ident: C10 article-title: A practical approach for detection and classification of traffic signs using convolutional neural networks publication-title: RAS – volume: 65 start-page: 4006 issue: 6 year: 2016 end-page: 4015 ident: C28 article-title: Accurate and efficient traffic sign detection using discriminative adaboost and support vector regression publication-title: IEEE TVT – start-page: 32 year: 2009 end-page: 39 article-title: An HOG‐LBP human detector with partial occlusion handling – volume: 113 start-page: 106 year: 2016 end-page: 123 article-title: Bag‐of‐visual‐phrases and hierarchical deep models for traffic sign detection and recognition in mobile laser scanning data publication-title: ISPRS‐JPRS – volume: 24 start-page: 971 issue: 7 year: 2002 end-page: 987 article-title: Multiresolution gray‐scale and rotation invariant texture classification with local binary patterns publication-title: IEEE TPAMI – start-page: 1 year: 2015 end-page: 13 article-title: Fast detection of multiple objects in traffic scenes with a common detection framework – start-page: 1 year: 2016 end-page: 19 article-title: Multiple thresholding and subspace based approach for detection and recognition of traffic sign – start-page: 754 year: 2013 end-page: 758 article-title: A robust, coarse‐to‐fine traffic sign detection method – volume: 17 start-page: 79 issue: 1 year: 2016 end-page: 92 article-title: Fast traffic sign recognition via high‐contrast region extraction and extended sparse representation publication-title: iIEEE TITS – volume: 46 start-page: 805 year: 2016 end-page: 815 article-title: Traffic sign detection and recognition based on random forests publication-title: ASC – volume: 32 start-page: 1627 issue: 9 year: 2010 end-page: 1645 article-title: Object detection with discriminatively trained part‐based models publication-title: IEEE TPAMI – volume: 9 start-page: 174 issue: 2 year: 2015 end-page: 183 article-title: Detecting partially occluded vehicles with geometric and likelihood reasoning publication-title: IET CV – start-page: 69 year: 2015 end-page: 77 article-title: Future computer vision algorithms for traffic sign recognition systems – volume: 13 start-page: 1484 issue: 4 year: 2012 end-page: 1497 article-title: Vision‐based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey publication-title: IEEE TITS – year: 2016 – volume: 13 start-page: 1498 issue: 4 year: 2012 end-page: 1506 article-title: Real‐time detection and recognition of road traffic signs publication-title: IEEE TITS – volume: 214 start-page: 758 year: 2016 end-page: 766 article-title: Traffic sign detection and recognition using fully convolutional network guided proposals publication-title: Neurocomputing – start-page: 1 year: 2013 end-page: 8 article-title: Traffic sign detection by ROI extraction and histogram features‐based recognition – year: 2005 article-title: Histograms of oriented gradients for human detection – volume: 16 start-page: 3116 issue: 6 year: 2015 end-page: 3125 article-title: Detection of U.S. traffic signs publication-title: IEEE TITS – volume: 65 start-page: 4006 issue: 6 year: 2016 end-page: 4015 article-title: Accurate and efficient traffic sign detection using discriminative adaboost and support vector regression publication-title: IEEE TVT – year: 2006 – volume: 48 start-page: 67 year: 2016 end-page: 75 article-title: On circular traffic sign detection and recognition publication-title: ESA – volume: 36 start-page: 1532 issue: 8 year: 2014 end-page: 1545 article-title: Fast feature pyramids for object detection publication-title: IEEE TPAMI – volume: 114 start-page: 92 year: 2016 end-page: 101 article-title: Traffic sign detection in MLS acquired point clouds for geometric and image‐based semantic inventory publication-title: ISPRS‐JPRS – volume: 84 start-page: 97 year: 2016 end-page: 112 article-title: A practical approach for detection and classification of traffic signs using convolutional neural networks publication-title: RAS – volume: 15 start-page: 2470 issue: 6 year: 2014 end-page: 2479 article-title: Multi‐ROI association and tracking with belief functions: application to traffic sign recognition publication-title: IEEE TITS – volume: 50 start-page: 1170021 issue: 11 year: 2011 end-page: 11700211 article-title: Rendering high dynamic range images by using integrated global and local processing publication-title: Opt. Eng. – volume: 34 start-page: 480 issue: 3 year: 2012 end-page: 492 article-title: Efficient additive kernels via explicit feature maps publication-title: IEEE TPAMI – volume: 10 start-page: 354 issue: 5 year: 2016 end-page: 360 article-title: Occlusion‐robust traffic sign detection via cascaded colour cubic feature publication-title: IET ITS – start-page: 238 year: 2011 end-page: 249 article-title: Using Fourier descriptors and spatial models for traffic sign recognition – ident: e_1_2_9_24_2 – volume-title: Overview and recent advances in partial least squares in latent structures feature selection year: 2006 ident: e_1_2_9_26_2 – ident: e_1_2_9_5_2 doi: 10.1109/IJCNN.2013.6706810 – volume: 10 start-page: 354 issue: 5 year: 2016 ident: e_1_2_9_9_2 article-title: Occlusion‐robust traffic sign detection via cascaded colour cubic feature publication-title: IET ITS – volume: 84 start-page: 97 year: 2016 ident: e_1_2_9_11_2 article-title: A practical approach for detection and classification of traffic signs using convolutional neural networks publication-title: RAS – ident: e_1_2_9_20_2 doi: 10.1109/ICCV.2009.5459207 – volume: 16 start-page: 3116 issue: 6 year: 2015 ident: e_1_2_9_22_2 article-title: Detection of U.S. traffic signs publication-title: IEEE TITS – ident: e_1_2_9_30_2 – ident: e_1_2_9_13_2 doi: 10.1007/978-3-319-20855-8_6 – ident: e_1_2_9_21_2 doi: 10.1049/iet-cvi.2013.0334 – ident: e_1_2_9_6_2 doi: 10.1109/IJCNN.2013.6706812 – volume: 15 start-page: 2470 issue: 6 year: 2014 ident: e_1_2_9_18_2 article-title: Multi‐ROI association and tracking with belief functions: application to traffic sign recognition publication-title: IEEE TITS – ident: e_1_2_9_28_2 doi: 10.1007/978-3-642-21227-7_23 – ident: e_1_2_9_25_2 doi: 10.1109/TPAMI.2002.1017623 – ident: e_1_2_9_29_2 doi: 10.1109/TVT.2015.2500275 – volume: 17 start-page: 79 issue: 1 year: 2016 ident: e_1_2_9_3_2 article-title: Fast traffic sign recognition via high‐contrast region extraction and extended sparse representation publication-title: iIEEE TITS – volume: 13 start-page: 1498 issue: 4 year: 2012 ident: e_1_2_9_4_2 article-title: Real‐time detection and recognition of road traffic signs publication-title: IEEE TITS – volume: 13 start-page: 1484 issue: 4 year: 2012 ident: e_1_2_9_2_2 article-title: Vision‐based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey publication-title: IEEE TITS – ident: e_1_2_9_19_2 doi: 10.1109/TPAMI.2009.167 – ident: e_1_2_9_7_2 – volume: 46 start-page: 805 year: 2016 ident: e_1_2_9_14_2 article-title: Traffic sign detection and recognition based on random forests publication-title: ASC – ident: e_1_2_9_15_2 doi: 10.1007/s11042-016-3321-6 – volume: 50 start-page: 1170021 issue: 11 year: 2011 ident: e_1_2_9_23_2 article-title: Rendering high dynamic range images by using integrated global and local processing publication-title: Opt. Eng. – ident: e_1_2_9_27_2 doi: 10.1109/TPAMI.2011.153 – ident: e_1_2_9_10_2 doi: 10.1016/j.neucom.2016.07.009 – volume: 114 start-page: 92 year: 2016 ident: e_1_2_9_17_2 article-title: Traffic sign detection in MLS acquired point clouds for geometric and image‐based semantic inventory publication-title: ISPRS‐JPRS – ident: e_1_2_9_8_2 doi: 10.1109/TPAMI.2014.2300479 – volume: 48 start-page: 67 year: 2016 ident: e_1_2_9_12_2 article-title: On circular traffic sign detection and recognition publication-title: ESA – ident: e_1_2_9_16_2 doi: 10.1016/j.isprsjprs.2016.01.005 |
SSID | ssj0056994 |
Score | 2.168608 |
Snippet | In advanced driver assistance systems, accurate detection of traffic signs plays an important role in extracting information about the road ahead. However,... |
SourceID | doaj crossref wiley iet |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 368 |
SubjectTerms | advanced driver assistance systems confidence-score d-patches discriminative patches driver information systems full object templates German TSD benchmark hypothesis generation scheme Korean TSD dataset KTSD dataset object detection occlusion handling capability redundant-detections Research Article traffic sign detection framework traffic signs true positive candidate TSD framework |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwtvRHnJQogBKZCHHcdsUFoVJJgKYrP8ioSE2qoNzPwEfiO_hDsnLXShC8oSRefE-XLOfWef7wg5SUzCEsYdDCRwUZg2cFZqGenCCWBJ2pQF7ka-f8h7j-zumT__KvWFMWF1euAauAuR-MLGxvjYAZnXcEgJpF66LHbcFmGbL9i8qTNV_4N5LkMJRLCNSQQqls7WM-XFi68i-_6CUV35Oah4NmeRQuJ-sDMgNU9Xg73prpPVhijSq7qDG2TJDzbJWkMaaTMkJ1ukc_P18TnSCP7kktbhGfAHo9VYY3YIigEa1PkqhFwNKM670qG1r284TUZDkgWwXtuk3-30272oqY0QWZYxFjlwk6RIeMkF-JiaWw-2Pkf2bzN0MlzODdhywQqfSuFSQDF12ojEgovkeLZDlgfDgd8l1ANjKYUxwFM0c3msUyNkWsrceOm9iVsknsKjbJM3HMtXvKqwfs2kAqwUIKoQUYWItsjZrMmoTprxl_A1Yj4TxHzX4QJogWq0QC3SghY5xRs342_y19OO5wRvO33Vfrr9EVAjV7ZIFr784s5j2_S6i-uxbO8_XmSfrKRIHEKI4QFZrsZv_hBoT2WOgoZ_Ax70-q8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB4S95JL-kqp-0KUkkNgk31Iq1VuiWuTFBp6cEJuQq8NgWAbe91zf0J_Y39JZ7RrBxNIIOxlWUZaMaPRfCONZgC-ZTbjGRceFQldFG4svtVGJabyElGSsXVFt5F_XpRnl_zHtbjegsHqLkybH2K94UaaEddrUnBj2yokCGpRiLehSdzvW4rOKg9xqhbb8IKu2FJcX85_rZZjUapYDRHNZJaokt8fbaqjB11sGKeYwx9NDlJtItdoekavYLfDjOykFfJr2AqTN_Cyw4-s087FWxh-__fn78yQHBbHrI3UwMWMNXNDiSIYxWowH5oYfTVhtAXLps7dLWnHjMV8C2jI9mA8Go4HZ0lXJiFxvOA88egxKZmJWkh0N41wAc1-SY6AK8jf8KWwaNYlr0KupM-zUOXeWJk59Ja8KN5BbzKdhPfAAoKXWlqLkMVwX6Ymt1LltSptUCHYtA_pij3adSnEqZLFnY5H2Vxp5JVGjmriqCaO9uFg3WTW5s94jPiUeL4mpNTX8cN0fqM7TdISx-9Sa0Pq0bsz-KCAlVC-SL1wVdWHfeq4U8XFY3_7ukF4PhzrwdX5PYGe-boPRZT804OntvnpiI5m-YdntfoIOzmBhhhe-Al6zXwZPiPkaeyXOKX_A-ld9_Q priority: 102 providerName: Wiley-Blackwell |
Title | D-patches: effective traffic sign detection with occlusion handling |
URI | http://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2016.0303 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cvi.2016.0303 https://doaj.org/article/71e8c0bbe0d149a9a9994959d30d5c88 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9B-7KXscGmlW2VNSEeJmUkjh3He4NCRdE27aFFaC-Wv4KQUKmg7O_fnZMWVZrYlJcoOifO-ez73fl8B3BQuEIUQgacSGiiCOvwrrE6s3VQiJKsa2o6jfz9R3U-ExdX8urpeHS4uaZaGdnK40be8tiePKDQbVyHjzoetwVJEN8eIUHmf99QmFb1BWW23IY-V6qQPehPTr-RidWuzLLSqTAiaswiQ8Hj613Ov7xkQ0-ldP6ofZBqE8QmLTR-BS87-MiO2_F-DVtxvgs7HZRk3UR92IPRabawNCAPX1kbsoGrGlveW8oYwShog4W4TGFYc0a-WHbn_e0juc5YSryAGu0NTMdn09F51tVLyLwohcgCmk4a_7uRCu1OK31E_V-RReBLMjxCJR3qdyXqyLUKvIg1D9apwqPZFGT5Fnrzu3l8BywiimmUc4hdrAhVbrlTmje6clHH6PIB5CvmGN_lEqeSFrcm7WkLbZBTBvlpiJ-G-DmAz-smizaRxnPEJ8TxNSHlwE4PUBBMN6WMwv773LmYBzTzLF44vFrqUOZB-roewCG9eCUvz33t0wbh5GxqRpeTJwKzCM0AyjTu_-48teUnY9qjFfv_24f38IITYEihhR-gt7x_jB8R7izdELa5-DmE_vHl7NdsmJwGw06y_wBdT_us |
linkProvider | Institution of Engineering and Technology |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7QEuvBGBAisEHJAMtrPr9SJx6CNRQh-npKq4rPZlVKlKosQt4sZP4L_wj_glzKydVBFSkZAqXyxr1l7N7Ox8MzueAXid2YxnXHhUJHRRuLF4VxmVmNJLREnGViX9jXx0XAzG_POpON2AX8t_YZr6EKuAG2lG3K9JwSkg3TicnIpknoU6cZdnlJ5VvMe1umxhfRC-f0PHbfFpuI9SfpPn_d5ob5C0vQUSx7ucJx7dDCUzUQmJPpoRLqCtLAg9uy6BdF8Ii7ZQ8jLkSvo8C2XujZWZQxfDU6sI3Pe3CEyhKm3tnIy_jJcGQBQq9l9Ew5wlquBXh6nqw19zXjOHsWsAGjmkWsfK0dj178GdFqWynWZZ3YeNMHkAd1vEytr9YPEQevu_f_ycGZL84iNrckNw-2T13FBpCkbZIcyHOuZ7TRgFfdnUufMLitGxWOEBTecjGN0E8x7D5mQ6CU-ABYRLlbQWQZLhvkhNbqXKK1XYoEKwaQfSJXu0a4uWU--Mcx0Pz7nSyCuNHNXEUU0c7cC71ZBZU7HjOuJd4vmKkIptxwfT-Vfd6q6WOH-XWhtSj_6kwQsFrITy3dQLV5YdeEsvbpV_cd3XXq0RDnsjvXcyvCLQM191oBsl_-_J09h8t0-Hwfzpf416CbcGo6NDfTg8PngGt3OCLDG5cRs26_lFeI6Aq7Yv2gXOQN-wSv0Bw7gzfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NattAEB6CA6WX_pe6v0tpeyioleRdrbbQQxLbxE0berBD6GXZP4VAsI2ttPTWR-iz9JH6JJ1ZyQ6mkEIh6CLErLTM7Mx8szuaAXiR2YxnXHhUJAxRuLF4VxmVmNJLREnGViX9jfzpsNif8A_H4ngLfq3-hWnqQ6w33Egzor0mBZ_7qok3OdXIPA114r6eUnZW8QaX6qqD9UH4_g3jtuX7UR-F_DLPh4Px3n7SthZIHO9xnniMMpTMRCUkhmhGuICusiDw7HqE0X0hLLpCycuQK-nzLJS5N1ZmDiMMT50i0OxvC3SGaQe2d44mXyYr-y8KFdsvol_OElXwi7NU9favOW94w9g0AH0cUm1C5ejrhrfgRgtS2U6zqm7DVpjegZstYGWtOVjehUH_94-fc0OCX75jTWoIWk9WLwxVpmCUHMJ8qGO615TRni-bOXd2Tlt0LBZ4QM95D8ZXwbz70JnOpuEBsIBoqZLWIkYy3Bepya1UeaUKG1QINu1CumKPdm3Ncmqdcabj2TlXGnmlkaOaOKqJo114vR4ybwp2XEa8SzxfE1Kt7fhgtjjRrepqifN3qbUh9RhOGrxQwEoo30u9cGXZhVf04lb3l5d97fkG4Wgw1ntHowsCjSu8C70o-X9Pnsbmu0M6C-YP_2vUM7j2uT_UH0eHB4_gek6AJaY2PoZOvTgPTxBu1fZpu74Z6CvWqD9qHjKe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D%E2%80%90patches%3A+effective+traffic+sign+detection+with+occlusion+handling&rft.jtitle=IET+computer+vision&rft.au=Rehman%2C+Yawar&rft.au=Riaz%2C+Irfan&rft.au=Fan%2C+Xue&rft.au=Shin%2C+Hyunchul&rft.date=2017-08-01&rft.issn=1751-9632&rft.eissn=1751-9640&rft.volume=11&rft.issue=5&rft.spage=368&rft.epage=377&rft_id=info:doi/10.1049%2Fiet-cvi.2016.0303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_cvi_2016_0303 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9632&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9632&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9632&client=summon |