Jointly Optimized Regressors for Image Super-resolution
Learning regressors from low‐resolution patches to high‐resolution patches has shown promising results for image super‐resolution. We observe that some regressors are better at dealing with certain cases, and others with different cases. In this paper, we jointly learn a collection of regressors, wh...
Saved in:
Published in | Computer graphics forum Vol. 34; no. 2; pp. 95 - 104 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Learning regressors from low‐resolution patches to high‐resolution patches has shown promising results for image super‐resolution. We observe that some regressors are better at dealing with certain cases, and others with different cases. In this paper, we jointly learn a collection of regressors, which collectively yield the smallest super‐resolving error for all training data. After training, each training sample is associated with a label to indicate its ‘best’ regressor, the one yielding the smallest error. During testing, our method bases on the concept of ‘adaptive selection’ to select the most appropriate regressor for each input patch. We assume that similar patches can be super‐resolved by the same regressor and use a fast, approximate kNN approach to transfer the labels of training patches to test patches. The method is conceptually simple and computationally efficient, yet very effective. Experiments on four datasets show that our method outperforms competing methods. |
---|---|
AbstractList | Learning regressors from low‐resolution patches to high‐resolution patches has shown promising results for image super‐resolution. We observe that some regressors are better at dealing with certain cases, and others with different cases. In this paper, we jointly learn a collection of regressors, which collectively yield the smallest super‐resolving error for all training data. After training, each training sample is associated with a label to indicate its ‘best’ regressor, the one yielding the smallest error. During testing, our method bases on the concept of ‘adaptive selection’ to select the most appropriate regressor for each input patch. We assume that similar patches can be super‐resolved by the same regressor and use a fast, approximate kNN approach to transfer the labels of training patches to test patches. The method is conceptually simple and computationally efficient, yet very effective. Experiments on four datasets show that our method outperforms competing methods. |
Author | Timofte, R. Van Gool, L. Dai, D. |
Author_xml | – sequence: 1 givenname: D. surname: Dai fullname: Dai, D. organization: Computer Vision Lab, ETH Zürich, Switzerland – sequence: 2 givenname: R. surname: Timofte fullname: Timofte, R. organization: Computer Vision Lab, ETH Zürich, Switzerland – sequence: 3 givenname: L. surname: Van Gool fullname: Van Gool, L. organization: Computer Vision Lab, ETH Zürich, Switzerland |
BookMark | eNp9kE1PAjEQhhuDiYAe_AebeNHDQrttt7tHg4IQAokf0Xhpym5LirtbbHej-Ostoh5IdA4zk8nzTmbeDmhVppIAnCLYQz762VL1UEQJOQBtRGIWJjFNW6ANke8ZpPQIdJxbQQgJi2kbsInRVV1sgvm61qX-kHlwK5dWOmesC5SxwbgUSxncNWtpQz83RVNrUx2DQyUKJ0--axc8DK_vBzfhdD4aDy6nYUYwIWHOUsJQtFCZoGlOSRJLTDOyoD5FeboQDAvlARlnUAmIE4GUIgxKhfw8yXEXnO_2rq15baSrealdJotCVNI0jiPGEgjTJI48eraHrkxjK38dR3EKUUIjjD11saMya5yzUvG11aWwG44g31rIvYX8y0LP9vfYTNdi-35thS7-U7zpQm7-Xs0Ho-GPItwptKvl-69C2BceM8wof5yNeMqeps9sNuFX-BNY2JJx |
CitedBy_id | crossref_primary_10_1016_j_jvcir_2018_12_036 crossref_primary_10_1007_s10489_018_1234_y crossref_primary_10_1007_s10851_017_0755_z crossref_primary_10_1109_TGRS_2021_3138078 crossref_primary_10_1002_cpe_5084 crossref_primary_10_1016_j_image_2016_01_007 crossref_primary_10_1145_3272127_3275099 crossref_primary_10_3390_app9030543 crossref_primary_10_1007_s11042_017_5084_0 crossref_primary_10_1109_TMM_2018_2863602 crossref_primary_10_1109_ACCESS_2018_2871626 crossref_primary_10_1186_s12938_018_0556_7 crossref_primary_10_3390_electronics11050757 crossref_primary_10_1016_j_neucom_2016_02_079 crossref_primary_10_1016_j_nima_2019_02_042 crossref_primary_10_3390_s19020316 crossref_primary_10_1186_s12880_016_0176_2 crossref_primary_10_1109_ACCESS_2018_2831791 crossref_primary_10_1016_j_dsp_2018_07_005 crossref_primary_10_1007_s44336_024_00003_8 crossref_primary_10_35414_akufemubid_829644 crossref_primary_10_1007_s12652_020_02739_9 crossref_primary_10_1109_TPAMI_2015_2439281 crossref_primary_10_1109_TSMC_2017_2705480 crossref_primary_10_3233_JCM_170727 crossref_primary_10_1109_ACCESS_2020_2972300 crossref_primary_10_1109_TIP_2018_2877483 crossref_primary_10_1109_TIP_2019_2938347 crossref_primary_10_1016_j_scs_2018_05_028 crossref_primary_10_1109_TMM_2017_2688920 crossref_primary_10_3390_a11100144 crossref_primary_10_1007_s11554_019_00925_3 crossref_primary_10_1109_TIP_2018_2837865 crossref_primary_10_1007_s12559_017_9512_2 crossref_primary_10_1007_s00371_019_01729_z crossref_primary_10_1109_TIP_2019_2902794 crossref_primary_10_1016_j_heliyon_2019_e02570 crossref_primary_10_1109_TSMC_2021_3069265 crossref_primary_10_1109_ACCESS_2020_2980266 crossref_primary_10_1109_TCSVT_2015_2513661 crossref_primary_10_1007_s11220_019_0241_3 crossref_primary_10_1134_S1054661820040045 crossref_primary_10_1134_S1054661822010059 crossref_primary_10_1016_j_patrec_2017_10_020 crossref_primary_10_1109_TIP_2016_2542442 crossref_primary_10_1109_TIP_2017_2768185 crossref_primary_10_1109_TIP_2016_2619265 crossref_primary_10_1007_s10489_021_02904_3 crossref_primary_10_1007_s41095_016_0043_7 crossref_primary_10_1109_TIP_2016_2521180 crossref_primary_10_1109_TCI_2016_2629284 crossref_primary_10_1109_TIP_2016_2627812 crossref_primary_10_1007_s00371_018_1550_6 crossref_primary_10_1007_s00371_018_1554_2 crossref_primary_10_1109_TIP_2015_2507402 crossref_primary_10_1109_TIP_2018_2812081 crossref_primary_10_3390_s22093198 crossref_primary_10_1109_TIP_2017_2651411 crossref_primary_10_1088_1757_899X_612_3_032041 crossref_primary_10_1016_j_jvcir_2018_06_012 crossref_primary_10_1109_TIP_2018_2803341 crossref_primary_10_55525_tjst_1381587 crossref_primary_10_1109_ACCESS_2018_2790482 crossref_primary_10_1016_j_compag_2019_05_015 crossref_primary_10_1109_LSP_2015_2504121 crossref_primary_10_1016_j_neucom_2017_11_015 crossref_primary_10_1016_j_comnet_2022_109392 crossref_primary_10_1016_j_sigpro_2015_11_025 crossref_primary_10_1364_AOP_11_000135 |
Cites_doi | 10.1109/83.951537 10.1016/B978-012077790-7/50030-8 10.1109/ICCV.2013.121 10.1109/TPAMI.2005.87 10.1109/ICCV.2013.241 10.1109/38.988747 10.1049/ip-vis:19971342 10.1109/ICCV.2013.352 10.1109/CVPR.2014.221 10.1109/TIP.2007.896644 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 10.1109/ICCV.2009.5459271 10.1109/CVPR.2014.387 10.1145/1964921.1964994 10.1109/CVPR.2008.4587751 10.1109/CVPR.2007.383028 10.1109/TIP.2010.2050625 10.1109/ICCV.2013.75 10.1007/978-3-642-27413-8_47 10.1145/1276377.1276496 10.1109/TPAMI.2010.25 10.1145/1944846.1944852 |
ContentType | Journal Article |
Copyright | 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2015 The Eurographics Association and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2015 The Eurographics Association and John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1111/cgf.12544 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
EndPage | 104 |
ExternalDocumentID | 3721827511 10_1111_cgf_12544 CGF12544 ark_67375_WNG_97XLZ7NJ_D |
Genre | article Feature |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ AHQJS ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c4344-d794712bfca59d5486e35c4b55c42d9ba73af712e6c0fa038a1ff470ef1af78d3 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 |
IngestDate | Fri Jul 11 07:17:36 EDT 2025 Fri Jul 25 23:45:49 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Tue Jul 01 02:23:05 EDT 2025 Wed Jan 22 16:24:47 EST 2025 Wed Oct 30 10:00:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4344-d794712bfca59d5486e35c4b55c42d9ba73af712e6c0fa038a1ff470ef1af78d3 |
Notes | ArticleID:CGF12544 ark:/67375/WNG-97XLZ7NJ-D istex:97791FCC7065BE3918BDB64FB6F198ECF175BA05 Supporting Information SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1690185233 |
PQPubID | 30877 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1778009862 proquest_journals_1690185233 crossref_primary_10_1111_cgf_12544 crossref_citationtrail_10_1111_cgf_12544 wiley_primary_10_1111_cgf_12544_CGF12544 istex_primary_ark_67375_WNG_97XLZ7NJ_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05 May 2015 2015-05-00 20150501 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationTitleAlternate | Computer Graphics Forum |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Li X., Orchard M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 10 (2001), 1521-1527. 2 Tschumperle D., Deriche R.: Vector-valued image regularization with pdes: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27, 4 (2005), 506-517. 2 Yang J., Wright J., Huang T., Ma Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 11 (2010), 2861-2873. 2 Kim K.I., Kwon Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32, 6 (2010), 1127-1133. 1, 3, 4 Duchon C.E.: Lanczos Filtering in One and Two Dimensions. J. Appl. Meteorology 18 (1979), 1016-1022. 2 Fattal R.: Image upsampling via imposed edge statistics. ACM Trans. Graph. 26, 3 (2007). 2 Freedman G., Fattal R.: Image and video upscaling from local self-examples. ACM Trans. Graph. 30, 2 (2011), 12:1-12:11. 2 Freeman W.T., Jones T.R., Pasztor E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications 22, 2 (2002), 56-65. 2 Ni K., Nguyen T.: Image superresolution using support vector regression. IEEE Trans. Image Process. 16, 6 (2007), 1596-1610. 1, 3 2010; 32 1979; 18 2001 2012 2011 2000 2010; 19 2002; 22 1998 2009 2011; 30 2008 1996 2007 2004 2014 2003 2013 2005; 27 2007; 26 2001; 10 2007; 16 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 e_1_2_6_20_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – reference: Freedman G., Fattal R.: Image and video upscaling from local self-examples. ACM Trans. Graph. 30, 2 (2011), 12:1-12:11. 2 – reference: Freeman W.T., Jones T.R., Pasztor E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications 22, 2 (2002), 56-65. 2 – reference: Kim K.I., Kwon Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32, 6 (2010), 1127-1133. 1, 3, 4 – reference: Li X., Orchard M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 10 (2001), 1521-1527. 2 – reference: Tschumperle D., Deriche R.: Vector-valued image regularization with pdes: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27, 4 (2005), 506-517. 2 – reference: Duchon C.E.: Lanczos Filtering in One and Two Dimensions. J. Appl. Meteorology 18 (1979), 1016-1022. 2 – reference: Fattal R.: Image upsampling via imposed edge statistics. ACM Trans. Graph. 26, 3 (2007). 2 – reference: Yang J., Wright J., Huang T., Ma Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 11 (2010), 2861-2873. 2 – reference: Ni K., Nguyen T.: Image superresolution using support vector regression. IEEE Trans. Image Process. 16, 6 (2007), 1596-1610. 1, 3 – year: 2011 – start-page: 131 year: 1996 end-page: 144 – volume: 22 start-page: 56 issue: 2 year: 2002 end-page: 65 article-title: Example‐based super‐resolution publication-title: IEEE Computer Graphics and Applications – year: 2009 – volume: 26 issue: 3 year: 2007 article-title: Image upsampling via imposed edge statistics publication-title: ACM Trans. Graph – year: 2007 – year: 2008 – year: 2001 – volume: 30 start-page: 12:1 issue: 2 year: 2011 end-page: 12:11 article-title: Image and video upscaling from local self‐examples publication-title: ACM Trans. Graph – volume: 10 start-page: 1521 issue: 10 year: 2001 end-page: 1527 article-title: New edge‐directed interpolation publication-title: IEEE Trans. Image Process – year: 2004 – year: 2003 – volume: 18 start-page: 1016 year: 1979 end-page: 1022 article-title: Lanczos Filtering in One and Two Dimensions publication-title: J. Appl. Meteorology – volume: 16 start-page: 1596 issue: 6 year: 2007 end-page: 1610 article-title: Image superresolution using support vector regression publication-title: IEEE Trans. Image Process – year: 2000 – volume: 27 start-page: 506 issue: 4 year: 2005 end-page: 517 article-title: Vector‐valued image regularization with pdes: a common framework for different applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell – start-page: 711 year: 2012 end-page: 730 – volume: 32 start-page: 1127 issue: 6 year: 2010 end-page: 1133 article-title: Single‐image super‐resolution using sparse regression and natural image prior publication-title: IEEE Trans. Pattern Anal. Mach. Intell – year: 2014 – volume: 19 start-page: 2861 issue: 11 year: 2010 end-page: 2873 article-title: Image super‐resolution via sparse representation publication-title: IEEE Trans. Image Process – year: 1998 – year: 2013 – ident: e_1_2_6_19_2 – ident: e_1_2_6_17_2 doi: 10.1109/83.951537 – ident: e_1_2_6_2_2 – ident: e_1_2_6_23_2 doi: 10.1016/B978-012077790-7/50030-8 – ident: e_1_2_6_20_2 doi: 10.1109/ICCV.2013.121 – ident: e_1_2_6_24_2 doi: 10.1109/TPAMI.2005.87 – ident: e_1_2_6_27_2 – ident: e_1_2_6_26_2 doi: 10.1109/ICCV.2013.241 – ident: e_1_2_6_3_2 – ident: e_1_2_6_12_2 doi: 10.1109/38.988747 – ident: e_1_2_6_6_2 – ident: e_1_2_6_4_2 doi: 10.1049/ip-vis:19971342 – ident: e_1_2_6_9_2 doi: 10.1109/ICCV.2013.352 – ident: e_1_2_6_13_2 doi: 10.1109/CVPR.2014.221 – ident: e_1_2_6_21_2 doi: 10.1109/TIP.2007.896644 – ident: e_1_2_6_8_2 doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 – ident: e_1_2_6_14_2 doi: 10.1109/ICCV.2009.5459271 – ident: e_1_2_6_7_2 doi: 10.1109/CVPR.2014.387 – ident: e_1_2_6_16_2 doi: 10.1145/1964921.1964994 – ident: e_1_2_6_18_2 doi: 10.1109/CVPR.2008.4587751 – ident: e_1_2_6_29_2 – ident: e_1_2_6_5_2 doi: 10.1109/CVPR.2007.383028 – ident: e_1_2_6_28_2 – ident: e_1_2_6_30_2 doi: 10.1109/TIP.2010.2050625 – ident: e_1_2_6_22_2 – ident: e_1_2_6_31_2 doi: 10.1109/ICCV.2013.75 – ident: e_1_2_6_32_2 doi: 10.1007/978-3-642-27413-8_47 – ident: e_1_2_6_10_2 doi: 10.1145/1276377.1276496 – ident: e_1_2_6_15_2 doi: 10.1109/TPAMI.2010.25 – ident: e_1_2_6_11_2 doi: 10.1145/1944846.1944852 – ident: e_1_2_6_25_2 |
SSID | ssj0004765 |
Score | 2.48526 |
Snippet | Learning regressors from low‐resolution patches to high‐resolution patches has shown promising results for image super‐resolution. We observe that some... Learning regressors from low-resolution patches to high-resolution patches has shown promising results for image super-resolution. We observe that some... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 95 |
SubjectTerms | Analysis Approximation Categories and Subject Descriptors (according to ACM CCS) Computational efficiency Computer graphics Dealing Errors I.3.3 [Computer Graphics]: Image Generation-Display algorithms I.4.3 [Image Processing and Computer Vision]: Enhancement-Sharpening and deblurring Image processing systems Image resolution Labels Learning Optimization Regression analysis Studies Training |
Title | Jointly Optimized Regressors for Image Super-resolution |
URI | https://api.istex.fr/ark:/67375/WNG-97XLZ7NJ-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12544 https://www.proquest.com/docview/1690185233 https://www.proquest.com/docview/1778009862 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huJRDaQsVSykKCCEuWW1iO96opwq60BUsEg-xqpAsx7ERArJoHxLl1J_Q39hf0pm8WFCRUG9RPImcGc_kG3v8GWATEaqLedv5kUlptgpz1tgw6QshjLA2tCKgzcmHvWj_jHf7oj8DX6q9MAU_RD3hRp6Rx2tycJ2MppzcXLpmQARbGH-pVosA0fEjdRSXkah4vYkxpmQVoiqe-skn_6I5Uuv9E6A5DVfz_01nAS6qnhZlJtfNyThpmodnJI7_-Snv4G2JQ72vxcB5DzM2-wDzU-yEixB3B1fZ-Oand4Rh5fbqwabesc3T88Fw5CHY9b7fYjTyTiZ3dvjn129sKcfxEpx1vp3u7PvlSQu-4YxzP0WvlEGYOKNFnGISE1kmDE_QYDxM40RLph0K2Mi0nG6xtg6c47JlXYD32yn7CLPZILPL4NHeIQQhwjKNL4hDbNTGGqKdj5hMZQO2K50rU9KQ02kYN6pKR1AbKtdGAzZq0buCe-NfQlu54WoJPbymYjUp1HlvT8Wyf_BD9rpqtwGrlWVV6acjRYuEtH2csQas183oYbRsojM7mKCMlG2iXY1C7Htuxpd7o3b2OvnFyutFP8EbRGGiqKJchdnxcGI_I9IZJ2v5kP4LT4n43A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-N7QF44D-isI2AEOIlVRPbcSPtBW3ruq4r0thEhYQsx7HRtC2dulZie-Ij8Bn5JNw5f-gQSBNvUXyJnDuf8zv77meAN4hQXcq7LkxMTqtVGLOmhslQCGGEtbEVERUn74-S_hEfjMV4CTbqWpiSH6JZcCPP8PM1OTgtSC94ufnq2hExbN2CFTrR2wdUB7_Jo7hMRM3sTZwxFa8Q5fE0j177G62QYr9dg5qLgNX_cXr34Uvd1zLR5KQ9n2Vtc_UHjeP_fswDuFdB0eB9OXYewpItHsHdBYLCx5AOJsfF7PQy-IAzy9nxlc2DA-sj9Mn0IkC8G-ye4YQUfJyf2-nP7z-wpRrKT-Cot3242Q-rwxZCwxnnYY6OKaM4c0aLNMc4JrFMGJ6hzXicp5mWTDsUsInpON1hXR05x2XHugjvd3P2FJaLSWGfQUDlQ4hDhGUaX5DG2KiNNcQ8nzCZyxa8q5WuTMVETgdinKo6IkFtKK-NFrxuRM9L-o2_Cb31lmsk9PSE8tWkUJ9GOyqV4-FnORqorRas1qZVlateKNonpApyxlrwqmlGJ6OdE13YyRxlpOwS82oSY9-9Hf_dG7W50_MXz28u-hJu9w_3h2q4O9p7AXcQlIkyqXIVlmfTuV1D4DPL1v34_gXXLPz3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am4TggXEVZRsLCCFeUjWxHSfaE1rptm4UNJioEJLlODaatqVV10rbnvYT-I37JZyT2zrEJMRbFJ9Ezrk437GPPwO8QYTqEh47PzIZzVZhzpoYJn0hhBHWhlYEtDn54yDaPuD9oRguwEa9F6bkh2gm3CgyivGaAnycubkgNz9dOyCCrTuwxKNOTC7d3b_mjuIyEjWxN1HGVLRCVMbTPHrjZ7REej27gTTn8Wrxw-ktw4-6q2WdyVF7Nk3b5uIPFsf__JaH8KACot770nMewYLNH8P9OXrCJ5D0R4f59Pjc-4Tjysnhhc28fVvk56PJqYdo19s5weHI-zIb28nV5S9sqRz5KRz0Pnzd3ParoxZ8wxnnfoZhKYMwdUaLJMMsJrJMGJ6ixXiYJamWTDsUsJHpON1hsQ6c47JjXYD344w9g8V8lNvn4NHmIUQhwjKNL0hCbNTGGuKdj5jMZAve1TpXpuIhp-MwjlWdj6A2VKGNFrxuRMcl-cbfhN4Whmsk9OSIqtWkUN8GWyqRw73vctBX3Ras1pZVVaCeKlolpP3jjLXgVdOMIUbrJjq3oxnKSBkT72oUYt8LM97eG7W51SsuXvy76Drc_dztqb2dwe4K3ENEJsqKylVYnE5mdg1RzzR9WXj3bwFq-68 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jointly+Optimized+Regressors+for+Image+Super%E2%80%90resolution&rft.jtitle=Computer+graphics+forum&rft.au=Dai%2C+D.&rft.au=Timofte%2C+R.&rft.au=Van+Gool%2C+L.&rft.date=2015-05-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=2&rft.spage=95&rft.epage=104&rft_id=info:doi/10.1111%2Fcgf.12544&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12544 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |