Jointly Optimized Regressors for Image Super-resolution

Learning regressors from low‐resolution patches to high‐resolution patches has shown promising results for image super‐resolution. We observe that some regressors are better at dealing with certain cases, and others with different cases. In this paper, we jointly learn a collection of regressors, wh...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 34; no. 2; pp. 95 - 104
Main Authors Dai, D., Timofte, R., Van Gool, L.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Learning regressors from low‐resolution patches to high‐resolution patches has shown promising results for image super‐resolution. We observe that some regressors are better at dealing with certain cases, and others with different cases. In this paper, we jointly learn a collection of regressors, which collectively yield the smallest super‐resolving error for all training data. After training, each training sample is associated with a label to indicate its ‘best’ regressor, the one yielding the smallest error. During testing, our method bases on the concept of ‘adaptive selection’ to select the most appropriate regressor for each input patch. We assume that similar patches can be super‐resolved by the same regressor and use a fast, approximate kNN approach to transfer the labels of training patches to test patches. The method is conceptually simple and computationally efficient, yet very effective. Experiments on four datasets show that our method outperforms competing methods.
AbstractList Learning regressors from low‐resolution patches to high‐resolution patches has shown promising results for image super‐resolution. We observe that some regressors are better at dealing with certain cases, and others with different cases. In this paper, we jointly learn a collection of regressors, which collectively yield the smallest super‐resolving error for all training data. After training, each training sample is associated with a label to indicate its ‘best’ regressor, the one yielding the smallest error. During testing, our method bases on the concept of ‘adaptive selection’ to select the most appropriate regressor for each input patch. We assume that similar patches can be super‐resolved by the same regressor and use a fast, approximate kNN approach to transfer the labels of training patches to test patches. The method is conceptually simple and computationally efficient, yet very effective. Experiments on four datasets show that our method outperforms competing methods.
Author Timofte, R.
Van Gool, L.
Dai, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Dai
  fullname: Dai, D.
  organization: Computer Vision Lab, ETH Zürich, Switzerland
– sequence: 2
  givenname: R.
  surname: Timofte
  fullname: Timofte, R.
  organization: Computer Vision Lab, ETH Zürich, Switzerland
– sequence: 3
  givenname: L.
  surname: Van Gool
  fullname: Van Gool, L.
  organization: Computer Vision Lab, ETH Zürich, Switzerland
BookMark eNp9kE1PAjEQhhuDiYAe_AebeNHDQrttt7tHg4IQAokf0Xhpym5LirtbbHej-Ostoh5IdA4zk8nzTmbeDmhVppIAnCLYQz762VL1UEQJOQBtRGIWJjFNW6ANke8ZpPQIdJxbQQgJi2kbsInRVV1sgvm61qX-kHlwK5dWOmesC5SxwbgUSxncNWtpQz83RVNrUx2DQyUKJ0--axc8DK_vBzfhdD4aDy6nYUYwIWHOUsJQtFCZoGlOSRJLTDOyoD5FeboQDAvlARlnUAmIE4GUIgxKhfw8yXEXnO_2rq15baSrealdJotCVNI0jiPGEgjTJI48eraHrkxjK38dR3EKUUIjjD11saMya5yzUvG11aWwG44g31rIvYX8y0LP9vfYTNdi-35thS7-U7zpQm7-Xs0Ho-GPItwptKvl-69C2BceM8wof5yNeMqeps9sNuFX-BNY2JJx
CitedBy_id crossref_primary_10_1016_j_jvcir_2018_12_036
crossref_primary_10_1007_s10489_018_1234_y
crossref_primary_10_1007_s10851_017_0755_z
crossref_primary_10_1109_TGRS_2021_3138078
crossref_primary_10_1002_cpe_5084
crossref_primary_10_1016_j_image_2016_01_007
crossref_primary_10_1145_3272127_3275099
crossref_primary_10_3390_app9030543
crossref_primary_10_1007_s11042_017_5084_0
crossref_primary_10_1109_TMM_2018_2863602
crossref_primary_10_1109_ACCESS_2018_2871626
crossref_primary_10_1186_s12938_018_0556_7
crossref_primary_10_3390_electronics11050757
crossref_primary_10_1016_j_neucom_2016_02_079
crossref_primary_10_1016_j_nima_2019_02_042
crossref_primary_10_3390_s19020316
crossref_primary_10_1186_s12880_016_0176_2
crossref_primary_10_1109_ACCESS_2018_2831791
crossref_primary_10_1016_j_dsp_2018_07_005
crossref_primary_10_1007_s44336_024_00003_8
crossref_primary_10_35414_akufemubid_829644
crossref_primary_10_1007_s12652_020_02739_9
crossref_primary_10_1109_TPAMI_2015_2439281
crossref_primary_10_1109_TSMC_2017_2705480
crossref_primary_10_3233_JCM_170727
crossref_primary_10_1109_ACCESS_2020_2972300
crossref_primary_10_1109_TIP_2018_2877483
crossref_primary_10_1109_TIP_2019_2938347
crossref_primary_10_1016_j_scs_2018_05_028
crossref_primary_10_1109_TMM_2017_2688920
crossref_primary_10_3390_a11100144
crossref_primary_10_1007_s11554_019_00925_3
crossref_primary_10_1109_TIP_2018_2837865
crossref_primary_10_1007_s12559_017_9512_2
crossref_primary_10_1007_s00371_019_01729_z
crossref_primary_10_1109_TIP_2019_2902794
crossref_primary_10_1016_j_heliyon_2019_e02570
crossref_primary_10_1109_TSMC_2021_3069265
crossref_primary_10_1109_ACCESS_2020_2980266
crossref_primary_10_1109_TCSVT_2015_2513661
crossref_primary_10_1007_s11220_019_0241_3
crossref_primary_10_1134_S1054661820040045
crossref_primary_10_1134_S1054661822010059
crossref_primary_10_1016_j_patrec_2017_10_020
crossref_primary_10_1109_TIP_2016_2542442
crossref_primary_10_1109_TIP_2017_2768185
crossref_primary_10_1109_TIP_2016_2619265
crossref_primary_10_1007_s10489_021_02904_3
crossref_primary_10_1007_s41095_016_0043_7
crossref_primary_10_1109_TIP_2016_2521180
crossref_primary_10_1109_TCI_2016_2629284
crossref_primary_10_1109_TIP_2016_2627812
crossref_primary_10_1007_s00371_018_1550_6
crossref_primary_10_1007_s00371_018_1554_2
crossref_primary_10_1109_TIP_2015_2507402
crossref_primary_10_1109_TIP_2018_2812081
crossref_primary_10_3390_s22093198
crossref_primary_10_1109_TIP_2017_2651411
crossref_primary_10_1088_1757_899X_612_3_032041
crossref_primary_10_1016_j_jvcir_2018_06_012
crossref_primary_10_1109_TIP_2018_2803341
crossref_primary_10_55525_tjst_1381587
crossref_primary_10_1109_ACCESS_2018_2790482
crossref_primary_10_1016_j_compag_2019_05_015
crossref_primary_10_1109_LSP_2015_2504121
crossref_primary_10_1016_j_neucom_2017_11_015
crossref_primary_10_1016_j_comnet_2022_109392
crossref_primary_10_1016_j_sigpro_2015_11_025
crossref_primary_10_1364_AOP_11_000135
Cites_doi 10.1109/83.951537
10.1016/B978-012077790-7/50030-8
10.1109/ICCV.2013.121
10.1109/TPAMI.2005.87
10.1109/ICCV.2013.241
10.1109/38.988747
10.1049/ip-vis:19971342
10.1109/ICCV.2013.352
10.1109/CVPR.2014.221
10.1109/TIP.2007.896644
10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
10.1109/ICCV.2009.5459271
10.1109/CVPR.2014.387
10.1145/1964921.1964994
10.1109/CVPR.2008.4587751
10.1109/CVPR.2007.383028
10.1109/TIP.2010.2050625
10.1109/ICCV.2013.75
10.1007/978-3-642-27413-8_47
10.1145/1276377.1276496
10.1109/TPAMI.2010.25
10.1145/1944846.1944852
ContentType Journal Article
Copyright 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2015 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2015 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12544
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 104
ExternalDocumentID 3721827511
10_1111_cgf_12544
CGF12544
ark_67375_WNG_97XLZ7NJ_D
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
AHQJS
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4344-d794712bfca59d5486e35c4b55c42d9ba73af712e6c0fa038a1ff470ef1af78d3
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Fri Jul 11 07:17:36 EDT 2025
Fri Jul 25 23:45:49 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
Tue Jul 01 02:23:05 EDT 2025
Wed Jan 22 16:24:47 EST 2025
Wed Oct 30 10:00:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4344-d794712bfca59d5486e35c4b55c42d9ba73af712e6c0fa038a1ff470ef1af78d3
Notes ArticleID:CGF12544
ark:/67375/WNG-97XLZ7NJ-D
istex:97791FCC7065BE3918BDB64FB6F198ECF175BA05
Supporting Information
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1690185233
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1778009862
proquest_journals_1690185233
crossref_primary_10_1111_cgf_12544
crossref_citationtrail_10_1111_cgf_12544
wiley_primary_10_1111_cgf_12544_CGF12544
istex_primary_ark_67375_WNG_97XLZ7NJ_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05
May 2015
2015-05-00
20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Li X., Orchard M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 10 (2001), 1521-1527. 2
Tschumperle D., Deriche R.: Vector-valued image regularization with pdes: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27, 4 (2005), 506-517. 2
Yang J., Wright J., Huang T., Ma Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 11 (2010), 2861-2873. 2
Kim K.I., Kwon Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32, 6 (2010), 1127-1133. 1, 3, 4
Duchon C.E.: Lanczos Filtering in One and Two Dimensions. J. Appl. Meteorology 18 (1979), 1016-1022. 2
Fattal R.: Image upsampling via imposed edge statistics. ACM Trans. Graph. 26, 3 (2007). 2
Freedman G., Fattal R.: Image and video upscaling from local self-examples. ACM Trans. Graph. 30, 2 (2011), 12:1-12:11. 2
Freeman W.T., Jones T.R., Pasztor E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications 22, 2 (2002), 56-65. 2
Ni K., Nguyen T.: Image superresolution using support vector regression. IEEE Trans. Image Process. 16, 6 (2007), 1596-1610. 1, 3
2010; 32
1979; 18
2001
2012
2011
2000
2010; 19
2002; 22
1998
2009
2011; 30
2008
1996
2007
2004
2014
2003
2013
2005; 27
2007; 26
2001; 10
2007; 16
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Freedman G., Fattal R.: Image and video upscaling from local self-examples. ACM Trans. Graph. 30, 2 (2011), 12:1-12:11. 2
– reference: Freeman W.T., Jones T.R., Pasztor E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications 22, 2 (2002), 56-65. 2
– reference: Kim K.I., Kwon Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32, 6 (2010), 1127-1133. 1, 3, 4
– reference: Li X., Orchard M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 10 (2001), 1521-1527. 2
– reference: Tschumperle D., Deriche R.: Vector-valued image regularization with pdes: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27, 4 (2005), 506-517. 2
– reference: Duchon C.E.: Lanczos Filtering in One and Two Dimensions. J. Appl. Meteorology 18 (1979), 1016-1022. 2
– reference: Fattal R.: Image upsampling via imposed edge statistics. ACM Trans. Graph. 26, 3 (2007). 2
– reference: Yang J., Wright J., Huang T., Ma Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 11 (2010), 2861-2873. 2
– reference: Ni K., Nguyen T.: Image superresolution using support vector regression. IEEE Trans. Image Process. 16, 6 (2007), 1596-1610. 1, 3
– year: 2011
– start-page: 131
  year: 1996
  end-page: 144
– volume: 22
  start-page: 56
  issue: 2
  year: 2002
  end-page: 65
  article-title: Example‐based super‐resolution
  publication-title: IEEE Computer Graphics and Applications
– year: 2009
– volume: 26
  issue: 3
  year: 2007
  article-title: Image upsampling via imposed edge statistics
  publication-title: ACM Trans. Graph
– year: 2007
– year: 2008
– year: 2001
– volume: 30
  start-page: 12:1
  issue: 2
  year: 2011
  end-page: 12:11
  article-title: Image and video upscaling from local self‐examples
  publication-title: ACM Trans. Graph
– volume: 10
  start-page: 1521
  issue: 10
  year: 2001
  end-page: 1527
  article-title: New edge‐directed interpolation
  publication-title: IEEE Trans. Image Process
– year: 2004
– year: 2003
– volume: 18
  start-page: 1016
  year: 1979
  end-page: 1022
  article-title: Lanczos Filtering in One and Two Dimensions
  publication-title: J. Appl. Meteorology
– volume: 16
  start-page: 1596
  issue: 6
  year: 2007
  end-page: 1610
  article-title: Image superresolution using support vector regression
  publication-title: IEEE Trans. Image Process
– year: 2000
– volume: 27
  start-page: 506
  issue: 4
  year: 2005
  end-page: 517
  article-title: Vector‐valued image regularization with pdes: a common framework for different applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– start-page: 711
  year: 2012
  end-page: 730
– volume: 32
  start-page: 1127
  issue: 6
  year: 2010
  end-page: 1133
  article-title: Single‐image super‐resolution using sparse regression and natural image prior
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– year: 2014
– volume: 19
  start-page: 2861
  issue: 11
  year: 2010
  end-page: 2873
  article-title: Image super‐resolution via sparse representation
  publication-title: IEEE Trans. Image Process
– year: 1998
– year: 2013
– ident: e_1_2_6_19_2
– ident: e_1_2_6_17_2
  doi: 10.1109/83.951537
– ident: e_1_2_6_2_2
– ident: e_1_2_6_23_2
  doi: 10.1016/B978-012077790-7/50030-8
– ident: e_1_2_6_20_2
  doi: 10.1109/ICCV.2013.121
– ident: e_1_2_6_24_2
  doi: 10.1109/TPAMI.2005.87
– ident: e_1_2_6_27_2
– ident: e_1_2_6_26_2
  doi: 10.1109/ICCV.2013.241
– ident: e_1_2_6_3_2
– ident: e_1_2_6_12_2
  doi: 10.1109/38.988747
– ident: e_1_2_6_6_2
– ident: e_1_2_6_4_2
  doi: 10.1049/ip-vis:19971342
– ident: e_1_2_6_9_2
  doi: 10.1109/ICCV.2013.352
– ident: e_1_2_6_13_2
  doi: 10.1109/CVPR.2014.221
– ident: e_1_2_6_21_2
  doi: 10.1109/TIP.2007.896644
– ident: e_1_2_6_8_2
  doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
– ident: e_1_2_6_14_2
  doi: 10.1109/ICCV.2009.5459271
– ident: e_1_2_6_7_2
  doi: 10.1109/CVPR.2014.387
– ident: e_1_2_6_16_2
  doi: 10.1145/1964921.1964994
– ident: e_1_2_6_18_2
  doi: 10.1109/CVPR.2008.4587751
– ident: e_1_2_6_29_2
– ident: e_1_2_6_5_2
  doi: 10.1109/CVPR.2007.383028
– ident: e_1_2_6_28_2
– ident: e_1_2_6_30_2
  doi: 10.1109/TIP.2010.2050625
– ident: e_1_2_6_22_2
– ident: e_1_2_6_31_2
  doi: 10.1109/ICCV.2013.75
– ident: e_1_2_6_32_2
  doi: 10.1007/978-3-642-27413-8_47
– ident: e_1_2_6_10_2
  doi: 10.1145/1276377.1276496
– ident: e_1_2_6_15_2
  doi: 10.1109/TPAMI.2010.25
– ident: e_1_2_6_11_2
  doi: 10.1145/1944846.1944852
– ident: e_1_2_6_25_2
SSID ssj0004765
Score 2.48526
Snippet Learning regressors from low‐resolution patches to high‐resolution patches has shown promising results for image super‐resolution. We observe that some...
Learning regressors from low-resolution patches to high-resolution patches has shown promising results for image super-resolution. We observe that some...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 95
SubjectTerms Analysis
Approximation
Categories and Subject Descriptors (according to ACM CCS)
Computational efficiency
Computer graphics
Dealing
Errors
I.3.3 [Computer Graphics]: Image Generation-Display algorithms
I.4.3 [Image Processing and Computer Vision]: Enhancement-Sharpening and deblurring
Image processing systems
Image resolution
Labels
Learning
Optimization
Regression analysis
Studies
Training
Title Jointly Optimized Regressors for Image Super-resolution
URI https://api.istex.fr/ark:/67375/WNG-97XLZ7NJ-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12544
https://www.proquest.com/docview/1690185233
https://www.proquest.com/docview/1778009862
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huJRDaQsVSykKCCEuWW1iO96opwq60BUsEg-xqpAsx7ERArJoHxLl1J_Q39hf0pm8WFCRUG9RPImcGc_kG3v8GWATEaqLedv5kUlptgpz1tgw6QshjLA2tCKgzcmHvWj_jHf7oj8DX6q9MAU_RD3hRp6Rx2tycJ2MppzcXLpmQARbGH-pVosA0fEjdRSXkah4vYkxpmQVoiqe-skn_6I5Uuv9E6A5DVfz_01nAS6qnhZlJtfNyThpmodnJI7_-Snv4G2JQ72vxcB5DzM2-wDzU-yEixB3B1fZ-Oand4Rh5fbqwabesc3T88Fw5CHY9b7fYjTyTiZ3dvjn129sKcfxEpx1vp3u7PvlSQu-4YxzP0WvlEGYOKNFnGISE1kmDE_QYDxM40RLph0K2Mi0nG6xtg6c47JlXYD32yn7CLPZILPL4NHeIQQhwjKNL4hDbNTGGqKdj5hMZQO2K50rU9KQ02kYN6pKR1AbKtdGAzZq0buCe-NfQlu54WoJPbymYjUp1HlvT8Wyf_BD9rpqtwGrlWVV6acjRYuEtH2csQas183oYbRsojM7mKCMlG2iXY1C7Htuxpd7o3b2OvnFyutFP8EbRGGiqKJchdnxcGI_I9IZJ2v5kP4LT4n43A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-N7QF44D-isI2AEOIlVRPbcSPtBW3ruq4r0thEhYQsx7HRtC2dulZie-Ij8Bn5JNw5f-gQSBNvUXyJnDuf8zv77meAN4hQXcq7LkxMTqtVGLOmhslQCGGEtbEVERUn74-S_hEfjMV4CTbqWpiSH6JZcCPP8PM1OTgtSC94ufnq2hExbN2CFTrR2wdUB7_Jo7hMRM3sTZwxFa8Q5fE0j177G62QYr9dg5qLgNX_cXr34Uvd1zLR5KQ9n2Vtc_UHjeP_fswDuFdB0eB9OXYewpItHsHdBYLCx5AOJsfF7PQy-IAzy9nxlc2DA-sj9Mn0IkC8G-ye4YQUfJyf2-nP7z-wpRrKT-Cot3242Q-rwxZCwxnnYY6OKaM4c0aLNMc4JrFMGJ6hzXicp5mWTDsUsInpON1hXR05x2XHugjvd3P2FJaLSWGfQUDlQ4hDhGUaX5DG2KiNNcQ8nzCZyxa8q5WuTMVETgdinKo6IkFtKK-NFrxuRM9L-o2_Cb31lmsk9PSE8tWkUJ9GOyqV4-FnORqorRas1qZVlateKNonpApyxlrwqmlGJ6OdE13YyRxlpOwS82oSY9-9Hf_dG7W50_MXz28u-hJu9w_3h2q4O9p7AXcQlIkyqXIVlmfTuV1D4DPL1v34_gXXLPz3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am4TggXEVZRsLCCFeUjWxHSfaE1rptm4UNJioEJLlODaatqVV10rbnvYT-I37JZyT2zrEJMRbFJ9Ezrk437GPPwO8QYTqEh47PzIZzVZhzpoYJn0hhBHWhlYEtDn54yDaPuD9oRguwEa9F6bkh2gm3CgyivGaAnycubkgNz9dOyCCrTuwxKNOTC7d3b_mjuIyEjWxN1HGVLRCVMbTPHrjZ7REej27gTTn8Wrxw-ktw4-6q2WdyVF7Nk3b5uIPFsf__JaH8KACot770nMewYLNH8P9OXrCJ5D0R4f59Pjc-4Tjysnhhc28fVvk56PJqYdo19s5weHI-zIb28nV5S9sqRz5KRz0Pnzd3ParoxZ8wxnnfoZhKYMwdUaLJMMsJrJMGJ6ixXiYJamWTDsUsJHpON1hsQ6c47JjXYD344w9g8V8lNvn4NHmIUQhwjKNL0hCbNTGGuKdj5jMZAve1TpXpuIhp-MwjlWdj6A2VKGNFrxuRMcl-cbfhN4Whmsk9OSIqtWkUN8GWyqRw73vctBX3Ras1pZVVaCeKlolpP3jjLXgVdOMIUbrJjq3oxnKSBkT72oUYt8LM97eG7W51SsuXvy76Drc_dztqb2dwe4K3ENEJsqKylVYnE5mdg1RzzR9WXj3bwFq-68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jointly+Optimized+Regressors+for+Image+Super%E2%80%90resolution&rft.jtitle=Computer+graphics+forum&rft.au=Dai%2C+D.&rft.au=Timofte%2C+R.&rft.au=Van+Gool%2C+L.&rft.date=2015-05-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=2&rft.spage=95&rft.epage=104&rft_id=info:doi/10.1111%2Fcgf.12544&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon