Fe‐CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large‐Current‐Density Oxygen Evolution and Overall Water Splitting
Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non‐noble metal catalyst by direct...
Saved in:
Published in | Advanced science Vol. 5; no. 10; pp. 1800949 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley and Sons Inc
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non‐noble metal catalyst by directly growing a Co‐Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe‐doped CoP (Fe‐CoP) electrocatalyst. The Fe‐CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm−2 current densities in 1.0 m KOH solution. In addition, the Fe‐CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm−2 current density in alkaline solution. Thus, the Fe‐CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm−2 current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO2‐Pt/C‐based electrolyzer.
A gentle and practical pathway is reported to fabricate efficient, non‐noble metal catalyst by directly growing a bimetallic prussian blue analogue 3D conductive substrate, phosphorized into a 3D bifunctional hierarchical‐pore Fe‐CoP electrocatalyst. The as‐obtained Fe‐CoP can drive large‐current‐density oxygen evolution and efficiently catalyze overall water splitting. |
---|---|
AbstractList | Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non‐noble metal catalyst by directly growing a Co‐Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe‐doped CoP (Fe‐CoP) electrocatalyst. The Fe‐CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm
−2
current densities in 1.0
m
KOH solution. In addition, the Fe‐CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm
−2
current density in alkaline solution. Thus, the Fe‐CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm
−2
current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO
2
‐Pt/C‐based electrolyzer. Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non-noble metal catalyst by directly growing a Co-Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe-doped CoP (Fe-CoP) electrocatalyst. The Fe-CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm current densities in 1.0 m KOH solution. In addition, the Fe-CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm current density in alkaline solution. Thus, the Fe-CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO -Pt/C-based electrolyzer. Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non-noble metal catalyst by directly growing a Co-Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe-doped CoP (Fe-CoP) electrocatalyst. The Fe-CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm-2 current densities in 1.0 m KOH solution. In addition, the Fe-CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm-2 current density in alkaline solution. Thus, the Fe-CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm-2 current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO2-Pt/C-based electrolyzer.Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non-noble metal catalyst by directly growing a Co-Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe-doped CoP (Fe-CoP) electrocatalyst. The Fe-CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm-2 current densities in 1.0 m KOH solution. In addition, the Fe-CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm-2 current density in alkaline solution. Thus, the Fe-CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm-2 current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO2-Pt/C-based electrolyzer. Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non‐noble metal catalyst by directly growing a Co‐Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe‐doped CoP (Fe‐CoP) electrocatalyst. The Fe‐CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm−2 current densities in 1.0 m KOH solution. In addition, the Fe‐CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm−2 current density in alkaline solution. Thus, the Fe‐CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm−2 current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO2‐Pt/C‐based electrolyzer. A gentle and practical pathway is reported to fabricate efficient, non‐noble metal catalyst by directly growing a bimetallic prussian blue analogue 3D conductive substrate, phosphorized into a 3D bifunctional hierarchical‐pore Fe‐CoP electrocatalyst. The as‐obtained Fe‐CoP can drive large‐current‐density oxygen evolution and efficiently catalyze overall water splitting. |
Author | Cao, Li‐Ming Wang, Jia‐Wei Hu, Yu‐Wen Iljin, Andrey Zhang, Zhi‐Ming Tang, Shang‐Feng Lu, Tong‐Bu |
AuthorAffiliation | 2 Institute for New Energy Materials & Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 China 1 MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University Guangzhou 510275 China 3 Institute of Physics National Academy of Sciences of Ukraine Prospect Nauki 46 Kyiv 03028 Ukraine |
AuthorAffiliation_xml | – name: 3 Institute of Physics National Academy of Sciences of Ukraine Prospect Nauki 46 Kyiv 03028 Ukraine – name: 1 MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University Guangzhou 510275 China – name: 2 Institute for New Energy Materials & Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 China |
Author_xml | – sequence: 1 givenname: Li‐Ming surname: Cao fullname: Cao, Li‐Ming organization: Sun Yat‐Sen University – sequence: 2 givenname: Yu‐Wen surname: Hu fullname: Hu, Yu‐Wen organization: Sun Yat‐Sen University – sequence: 3 givenname: Shang‐Feng surname: Tang fullname: Tang, Shang‐Feng organization: Tianjin University of Technology – sequence: 4 givenname: Andrey surname: Iljin fullname: Iljin, Andrey organization: National Academy of Sciences of Ukraine – sequence: 5 givenname: Jia‐Wei surname: Wang fullname: Wang, Jia‐Wei organization: Sun Yat‐Sen University – sequence: 6 givenname: Zhi‐Ming orcidid: 0000-0003-3116-756X surname: Zhang fullname: Zhang, Zhi‐Ming email: zmzhang@email.tjut.edu.cn organization: Tianjin University of Technology – sequence: 7 givenname: Tong‐Bu surname: Lu fullname: Lu, Tong‐Bu email: lutongbu@mail.sysu.edu.cn organization: Tianjin University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30356966$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhUeoiJbSLUvkJZsEe-z58QYpTdKCFCmVys_S8njuDEaOHWzPQHY8Qhc8IU-CQ9qqICFWPtI957u2z9PsyDoLWfac4CnBOH8l2zFMc0xqjDnjj7KTnPB6QmvGjh7o4-wshM8YY1LQipH6SXZMMS1KXpYn2Y8L-Pn9Zu6u0NKAit4pGaXZhYgW4PUILeq82yCJzvUG0sRoha78EIKWFp2bAdDMSuP6JDrn0Ur6_jdw8B5sTGoBNui4Q-tvux4sWo7ODFE7i6Rt0XoEn5joo4zg0fXW6Bi17Z9ljztpApzdnqfZ-4vlu_mbyWp9-XY-W00Uo4xNVFe2qmOyAqqKjrUKeEPbEisCbdMo3vG85EVdQlGlx1MGDcF1rVQtcd3kBaen2esDdzs0G0h5G9N1xNbrjfQ74aQWf06s_iR6N4qScEpYlQAvbwHefRkgRLHRQYEx0oIbgshJXuS8YEWRrC8e7rpfcldFMrCDQXkXgodOKB3l_qvSam0EwWJfutiXLu5LT7HpX7E78j8D9BD4qg3s_uMWs8WH66pm9Bcvh8VS |
CitedBy_id | crossref_primary_10_1021_acsami_2c09725 crossref_primary_10_1039_C9NR08749D crossref_primary_10_1016_j_ccr_2024_216238 crossref_primary_10_1016_j_mtchem_2023_101530 crossref_primary_10_1016_j_compositesb_2022_110189 crossref_primary_10_1002_aenm_202102134 crossref_primary_10_1016_j_cej_2022_135184 crossref_primary_10_1002_advs_202001987 crossref_primary_10_1002_smll_201905223 crossref_primary_10_1016_j_electacta_2022_141582 crossref_primary_10_1016_j_jcis_2020_02_073 crossref_primary_10_1002_adfm_202210473 crossref_primary_10_1016_j_jechem_2021_12_006 crossref_primary_10_1016_j_ijhydene_2024_01_264 crossref_primary_10_1016_j_jcis_2023_04_089 crossref_primary_10_1016_j_apcatb_2022_121571 crossref_primary_10_1016_j_jcis_2022_04_123 crossref_primary_10_1016_j_jclepro_2020_125172 crossref_primary_10_1002_cssc_201901153 crossref_primary_10_1016_j_ijhydene_2020_02_188 crossref_primary_10_1016_j_apsusc_2023_156429 crossref_primary_10_1016_j_jallcom_2021_159652 crossref_primary_10_1039_D0SE00402B crossref_primary_10_1016_j_jcis_2022_01_132 crossref_primary_10_1088_1361_6528_acd3f6 crossref_primary_10_1016_j_jallcom_2022_164296 crossref_primary_10_1002_smll_202302906 crossref_primary_10_1007_s11164_021_04553_0 crossref_primary_10_1016_j_apcatb_2020_119375 crossref_primary_10_1016_j_cej_2022_139796 crossref_primary_10_1002_aenm_201903871 crossref_primary_10_1021_acssuschemeng_8b06627 crossref_primary_10_1039_C9TA04478G crossref_primary_10_1002_smll_201902613 crossref_primary_10_1039_D2TA02374A crossref_primary_10_1002_anie_202405438 crossref_primary_10_1002_asia_201900742 crossref_primary_10_1002_adma_202313156 crossref_primary_10_1021_acs_inorgchem_2c00727 crossref_primary_10_1016_j_apsusc_2021_150696 crossref_primary_10_1016_j_apcatb_2024_123749 crossref_primary_10_1039_C9EE02783A crossref_primary_10_1016_j_nanoen_2023_108601 crossref_primary_10_1016_j_partic_2023_05_006 crossref_primary_10_1039_D1TA03686F crossref_primary_10_1016_j_apcatb_2024_123741 crossref_primary_10_1186_s13036_023_00381_5 crossref_primary_10_1039_C8TA10378J crossref_primary_10_1134_S1023193524700344 crossref_primary_10_1002_smtd_202000988 crossref_primary_10_1021_acs_energyfuels_2c00369 crossref_primary_10_1021_acsami_4c00798 crossref_primary_10_1016_j_diamond_2023_110360 crossref_primary_10_1039_D0TA04388E crossref_primary_10_1016_j_cej_2021_128941 crossref_primary_10_1016_j_cej_2020_125831 crossref_primary_10_1021_acsami_2c01302 crossref_primary_10_1007_s11144_022_02294_8 crossref_primary_10_1016_j_jechem_2022_02_010 crossref_primary_10_1021_acsami_8b16425 crossref_primary_10_1039_C9NR05924E crossref_primary_10_1002_smll_202000663 crossref_primary_10_1016_j_jallcom_2023_173146 crossref_primary_10_1016_j_apsusc_2019_05_254 crossref_primary_10_1016_j_electacta_2020_136527 crossref_primary_10_1021_acsami_0c22620 crossref_primary_10_1021_acsomega_1c01010 crossref_primary_10_1016_j_apsusc_2021_152402 crossref_primary_10_1360_SSC_2024_0077 crossref_primary_10_1016_j_jcis_2022_08_001 crossref_primary_10_1039_D0TA01966F crossref_primary_10_1021_acssuschemeng_0c04322 crossref_primary_10_1039_D4GC05276E crossref_primary_10_1002_adsu_202300130 crossref_primary_10_1016_j_ccr_2023_215538 crossref_primary_10_1016_j_esci_2024_100334 crossref_primary_10_1016_j_jiec_2024_05_050 crossref_primary_10_1039_D0NR05216G crossref_primary_10_1039_D1NR03813C crossref_primary_10_1039_D0TA03044A crossref_primary_10_1039_D2SE01042A crossref_primary_10_1002_asia_201901810 crossref_primary_10_1016_j_est_2024_112587 crossref_primary_10_1115_1_4052533 crossref_primary_10_31875_2410_4701_2023_10_05 crossref_primary_10_1021_acsaem_3c00326 crossref_primary_10_1039_C8TA11072G crossref_primary_10_1016_j_jcis_2025_02_124 crossref_primary_10_1021_acsnano_0c08808 crossref_primary_10_1016_j_carbon_2024_119681 crossref_primary_10_1016_j_cej_2023_144380 crossref_primary_10_1039_D0CY01115K crossref_primary_10_1016_j_est_2023_106964 crossref_primary_10_1021_acs_iecr_1c02411 crossref_primary_10_1039_D0CC07523J crossref_primary_10_1002_adfm_202111501 crossref_primary_10_1038_s41467_021_21742_y crossref_primary_10_1021_acssuschemeng_0c03263 crossref_primary_10_1007_s41918_022_00161_7 crossref_primary_10_1039_D0TA03895D crossref_primary_10_1016_j_ijhydene_2022_11_227 crossref_primary_10_1007_s10008_021_04931_z crossref_primary_10_1039_D2CC02451A crossref_primary_10_5004_dwt_2020_26185 crossref_primary_10_1007_s12274_022_5369_0 crossref_primary_10_1002_ange_202405438 crossref_primary_10_1039_D3IM00081H crossref_primary_10_1002_smtd_202201099 crossref_primary_10_1016_j_jechem_2020_05_012 crossref_primary_10_1002_adma_202008023 crossref_primary_10_1016_j_jenvman_2020_110677 crossref_primary_10_1039_D0CC05585A crossref_primary_10_1021_acs_chemrev_9b00685 crossref_primary_10_1021_acssuschemeng_0c09377 crossref_primary_10_1016_j_ijhydene_2021_06_041 crossref_primary_10_1021_acs_langmuir_1c00524 crossref_primary_10_1360_SSC_2022_0125 crossref_primary_10_1039_D1TA08039C crossref_primary_10_1016_j_electacta_2020_135653 crossref_primary_10_1039_D1QM00466B crossref_primary_10_1021_acsanm_4c06868 crossref_primary_10_1039_D2TA04296G crossref_primary_10_1002_aesr_202200178 crossref_primary_10_1002_smll_202204443 crossref_primary_10_1016_j_cej_2022_139475 crossref_primary_10_1002_tcr_202300088 crossref_primary_10_1016_j_ccr_2019_213156 crossref_primary_10_1021_acs_iecr_0c05365 crossref_primary_10_1016_j_ccr_2021_214144 crossref_primary_10_1002_celc_201900212 crossref_primary_10_1016_j_ijhydene_2020_10_150 crossref_primary_10_1016_j_scib_2020_09_037 crossref_primary_10_1021_acsaem_9b02075 crossref_primary_10_1016_j_ijhydene_2022_05_117 crossref_primary_10_1016_j_ijhydene_2025_03_069 crossref_primary_10_1016_j_cej_2022_140223 crossref_primary_10_1016_j_nanoen_2019_103855 crossref_primary_10_1002_smll_202306757 crossref_primary_10_1016_j_micromeso_2020_110760 crossref_primary_10_1021_acsanm_4c01607 crossref_primary_10_1002_adfm_201907791 crossref_primary_10_1016_j_cej_2020_128227 crossref_primary_10_1007_s12274_021_3359_2 crossref_primary_10_1088_1361_6528_ac8060 crossref_primary_10_1016_j_ensm_2019_09_024 crossref_primary_10_3390_nano13172459 crossref_primary_10_1016_j_cej_2024_157273 crossref_primary_10_1039_D0GC04127K crossref_primary_10_1002_aenm_202201466 crossref_primary_10_1016_j_apsusc_2022_155480 crossref_primary_10_1039_C9SE00396G crossref_primary_10_1039_D2DT00037G crossref_primary_10_1002_asia_201901721 crossref_primary_10_1080_01411594_2022_2110098 crossref_primary_10_1016_j_apsusc_2020_146059 crossref_primary_10_1002_cey2_213 crossref_primary_10_1039_D3DT01338C crossref_primary_10_1063_5_0041080 crossref_primary_10_1039_D1TA03362J crossref_primary_10_1016_j_micromeso_2020_110299 crossref_primary_10_1002_cplu_202200422 crossref_primary_10_1016_j_chemosphere_2022_136132 crossref_primary_10_1016_j_nanoen_2020_105464 crossref_primary_10_1021_acsami_0c20886 crossref_primary_10_1021_acs_chemrev_1c00978 crossref_primary_10_1039_C9TA03201K crossref_primary_10_1007_s10854_020_04155_3 crossref_primary_10_1021_acsami_4c17441 crossref_primary_10_1021_acssuschemeng_0c06782 crossref_primary_10_1002_adfm_202314172 crossref_primary_10_1039_D1NR05101F crossref_primary_10_1021_acs_iecr_2c01745 crossref_primary_10_1016_j_mseb_2024_117451 crossref_primary_10_1016_j_jallcom_2022_168674 crossref_primary_10_1016_j_fuel_2024_131838 crossref_primary_10_1002_smll_202002412 crossref_primary_10_1016_j_ijhydene_2022_06_252 crossref_primary_10_1016_j_ijhydene_2024_04_101 crossref_primary_10_1039_D3NJ04696F crossref_primary_10_1016_j_memsci_2025_123847 crossref_primary_10_1016_j_apsusc_2024_161264 crossref_primary_10_1007_s12274_022_4575_0 crossref_primary_10_1016_j_apcatb_2022_122039 crossref_primary_10_1016_j_jelechem_2019_113803 crossref_primary_10_1016_j_cej_2023_146754 crossref_primary_10_1039_D1TA10032G crossref_primary_10_1039_D2TA05953C crossref_primary_10_1016_j_jpowsour_2020_228015 crossref_primary_10_1016_j_gee_2022_04_006 crossref_primary_10_1016_j_mtphys_2022_100727 crossref_primary_10_1002_gch2_202000128 crossref_primary_10_1039_D0CY00315H crossref_primary_10_1021_acssuschemeng_9b03166 crossref_primary_10_1002_ente_202000178 crossref_primary_10_1002_adfm_202414446 crossref_primary_10_1016_j_catcom_2022_106443 crossref_primary_10_1016_j_mtener_2019_04_007 crossref_primary_10_3390_ma13143119 crossref_primary_10_1016_j_jclepro_2022_131680 crossref_primary_10_1016_j_trechm_2022_09_008 crossref_primary_10_1002_eem2_12457 crossref_primary_10_1016_j_electacta_2019_134983 crossref_primary_10_1002_adma_202006042 crossref_primary_10_1039_D0CS01191F crossref_primary_10_1039_D2TA05409D crossref_primary_10_1002_smll_202310012 crossref_primary_10_1039_D0NR08108F crossref_primary_10_1039_D1DT02183D crossref_primary_10_1016_j_est_2022_105990 crossref_primary_10_1016_j_jcis_2025_137316 crossref_primary_10_1016_j_jece_2023_111373 crossref_primary_10_1021_acs_inorgchem_3c01538 crossref_primary_10_1016_j_apcatb_2019_118555 crossref_primary_10_1016_j_jcis_2020_10_116 crossref_primary_10_1016_j_ijhydene_2024_09_338 crossref_primary_10_1016_j_apsusc_2022_152857 crossref_primary_10_1016_j_jallcom_2020_154658 crossref_primary_10_1149_1945_7111_acbe6b crossref_primary_10_1002_smll_202207474 crossref_primary_10_1016_j_apmt_2020_100913 crossref_primary_10_1016_j_ijhydene_2020_12_065 crossref_primary_10_1016_j_jallcom_2019_153086 crossref_primary_10_1016_j_apsusc_2023_156378 crossref_primary_10_1016_j_cej_2022_139162 crossref_primary_10_1021_acsaem_2c00190 crossref_primary_10_1021_acssuschemeng_0c02671 crossref_primary_10_1039_D4QI01574F crossref_primary_10_3390_catal9090762 crossref_primary_10_1016_j_jiec_2024_11_050 crossref_primary_10_1016_j_jpowsour_2024_235454 crossref_primary_10_1007_s40843_020_1590_x crossref_primary_10_1021_acsorginorgau_3c00007 crossref_primary_10_1016_j_jece_2023_110139 crossref_primary_10_1016_j_electacta_2020_137211 crossref_primary_10_1016_j_nanoen_2020_105545 crossref_primary_10_1039_D3CS00717K crossref_primary_10_1002_admi_202100065 crossref_primary_10_1016_j_jcis_2024_07_073 crossref_primary_10_1021_acs_energyfuels_4c04519 crossref_primary_10_3390_catal11020169 crossref_primary_10_1021_acsaem_2c02362 crossref_primary_10_1021_acs_iecr_9b01976 crossref_primary_10_1039_C9QI00554D crossref_primary_10_1021_acs_energyfuels_1c03875 crossref_primary_10_1039_D0EE03635H crossref_primary_10_1039_D1CE01736E crossref_primary_10_1016_j_jcis_2022_08_088 crossref_primary_10_1039_C9NR01804B crossref_primary_10_1039_D3QI00799E crossref_primary_10_1039_D0QI01523G crossref_primary_10_1016_j_ijhydene_2023_12_221 crossref_primary_10_1016_j_jpowsour_2019_05_076 crossref_primary_10_1016_j_matlet_2021_131166 crossref_primary_10_1002_advs_201900272 crossref_primary_10_1016_j_apmt_2020_100692 crossref_primary_10_1039_D0TA00870B crossref_primary_10_1039_D1CS00323B crossref_primary_10_1088_1361_6528_ac1c25 crossref_primary_10_1016_j_jssc_2022_123084 crossref_primary_10_1016_j_fuel_2022_123934 crossref_primary_10_1039_D1TA04713B crossref_primary_10_1039_D3TA05522A crossref_primary_10_1016_j_jallcom_2019_152332 crossref_primary_10_1039_C8TA08577C crossref_primary_10_1016_j_mtener_2020_100404 crossref_primary_10_1021_acsami_4c00974 crossref_primary_10_1021_acssuschemeng_9b07284 crossref_primary_10_1021_acs_inorgchem_3c02537 crossref_primary_10_1016_j_solidstatesciences_2025_107887 crossref_primary_10_1039_D3NJ03794K crossref_primary_10_1016_j_envres_2024_119883 crossref_primary_10_1016_j_apsusc_2019_144636 crossref_primary_10_1016_j_jcis_2022_02_039 crossref_primary_10_1016_j_cclet_2022_04_020 crossref_primary_10_1021_acssuschemeng_9b06514 crossref_primary_10_1039_D1NR02592A crossref_primary_10_1002_cssc_202300310 crossref_primary_10_1002_adfm_202112164 crossref_primary_10_1021_acsaem_1c03940 crossref_primary_10_1039_D3RA01945D crossref_primary_10_1002_cssc_202101873 crossref_primary_10_1016_j_electacta_2021_139218 crossref_primary_10_1016_j_seppur_2021_119481 crossref_primary_10_1016_j_cej_2023_142592 crossref_primary_10_1016_j_ijhydene_2020_12_037 crossref_primary_10_1016_j_nanoen_2023_108994 crossref_primary_10_1016_j_apsusc_2023_158789 crossref_primary_10_1016_j_jelechem_2022_116806 crossref_primary_10_1016_j_mseb_2022_115654 crossref_primary_10_1002_adfm_202300623 crossref_primary_10_1016_j_jece_2024_112242 crossref_primary_10_1039_D0EE03697H crossref_primary_10_1002_aenm_202000814 crossref_primary_10_1021_acsaem_1c03282 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1039_D2NJ00335J crossref_primary_10_1039_D3QI02017G crossref_primary_10_1007_s40820_020_00442_0 crossref_primary_10_1002_cssc_202301078 crossref_primary_10_1002_aenm_202303451 crossref_primary_10_1016_j_cej_2021_133117 crossref_primary_10_1039_D1TA03452A crossref_primary_10_1016_j_cej_2023_144081 crossref_primary_10_1016_j_electacta_2019_134897 crossref_primary_10_1021_acsami_0c22336 crossref_primary_10_1016_j_ica_2020_119440 crossref_primary_10_1039_D3TA07418H crossref_primary_10_1016_j_cej_2019_123664 crossref_primary_10_1016_j_ijhydene_2020_06_272 crossref_primary_10_3390_ma14061473 crossref_primary_10_1016_j_jmst_2020_10_009 crossref_primary_10_1007_s13391_020_00260_x crossref_primary_10_1039_D0QM00300J crossref_primary_10_1039_D4CC06281G crossref_primary_10_1039_D2TA08306J crossref_primary_10_1007_s11051_020_4754_4 crossref_primary_10_1016_j_envres_2024_119420 crossref_primary_10_1039_D1CE01309B crossref_primary_10_1016_j_apsusc_2019_144977 crossref_primary_10_1002_aenm_202102074 crossref_primary_10_1016_j_jtice_2024_105356 crossref_primary_10_1002_cssc_202001434 crossref_primary_10_1016_j_apcatb_2022_121353 crossref_primary_10_1021_acssuschemeng_0c01814 crossref_primary_10_1016_j_ijhydene_2024_06_340 crossref_primary_10_1002_adfm_202212160 crossref_primary_10_1016_j_scib_2023_06_001 crossref_primary_10_1016_j_jallcom_2020_156001 crossref_primary_10_1016_j_mseb_2020_114841 crossref_primary_10_1016_j_jallcom_2024_175048 crossref_primary_10_1039_C8TA09240K crossref_primary_10_1039_D1TA08699E crossref_primary_10_1002_adfm_202316296 crossref_primary_10_1021_acsanm_0c01942 crossref_primary_10_1016_j_cej_2020_126312 crossref_primary_10_1016_j_jallcom_2022_164479 crossref_primary_10_1039_D4NJ03610G crossref_primary_10_1039_D2NR03411E crossref_primary_10_1002_cctc_202100981 crossref_primary_10_1007_s40820_021_00607_5 crossref_primary_10_1039_D4TA05168H crossref_primary_10_1016_j_mcat_2021_111835 crossref_primary_10_1016_j_apcatb_2023_123027 crossref_primary_10_1021_acsami_4c09663 crossref_primary_10_1016_j_electacta_2021_139345 crossref_primary_10_1016_j_ceramint_2021_09_064 crossref_primary_10_1016_j_ijhydene_2020_04_223 crossref_primary_10_1002_smtd_202200515 crossref_primary_10_1016_j_apcatb_2024_124530 crossref_primary_10_1016_j_ijhydene_2020_12_045 crossref_primary_10_1021_acs_inorgchem_2c03060 crossref_primary_10_1016_j_cej_2022_141056 crossref_primary_10_1016_j_electacta_2022_139882 crossref_primary_10_1039_D2DT02013K crossref_primary_10_1039_D2DT03332A crossref_primary_10_1002_adfm_202313233 crossref_primary_10_1002_tcr_202200176 crossref_primary_10_1007_s10853_019_03362_6 crossref_primary_10_1039_D0NR02642E |
Cites_doi | 10.1002/smll.201704227 10.1002/adfm.201505626 10.1002/advs.201600371 10.1002/adma.201600979 10.1002/adma.201700017 10.1002/adfm.201606635 10.1039/C7SC05452A 10.1002/adfm.201702513 10.1021/acscatal.6b02203 10.1039/C3CS60468C 10.1002/anie.201501419 10.1039/C5EE01290B 10.1038/nature19763 10.1073/pnas.1722034115 10.1039/C5EE01155H 10.1002/advs.201700084 10.1021/ja5119495 10.1038/35104599 10.1021/acsnano.7b05971 10.1021/acsenergylett.7b00638 10.1038/nmat1752 10.1002/adma.201700404 10.1002/anie.201803136 10.1021/acs.nanolett.6b03803 10.1002/adma.201801450 10.1002/anie.201502438 10.1002/anie.201501616 10.1021/acscatal.6b03497 10.1002/anie.201800817 10.1002/adma.201604437 10.1021/ja511572q 10.1038/ncomms5345 10.1126/science.aaa3145 10.1073/pnas.1722235115 10.1039/C7EE01571B 10.1002/smll.201602873 10.1002/advs.201600380 10.1002/aenm.201700518 10.1002/adma.201502696 10.1073/pnas.1701562114 10.1039/C6SC05687C 10.1002/aenm.201502585 10.1021/ja5082553 10.1021/ja407115p 10.1002/chem.201203138 10.1039/C6EE03145E 10.1039/C6EE00100A 10.1002/advs.201700226 10.1021/ar2003013 10.1038/s41467-018-04746-z 10.1126/science.1103197 10.1002/anie.201600687 10.1021/ja5084128 10.1002/aenm.201502313 10.1002/anie.201508715 10.1021/jacs.8b02225 10.1002/anie.201503407 10.1002/adma.201705538 10.1002/adfm.201801136 10.1002/smll.201704233 10.1039/C5CS00434A 10.1021/ja510442p 10.1002/adfm.201702546 10.1021/jacs.5b08186 10.1021/ja4027715 10.1021/acscatal.5b02193 10.1021/jz2016507 10.1039/C5SC04425A 10.1021/acsami.7b10893 10.1002/anie.201805520 10.1002/aenm.201700467 10.1039/C7SC04569G 10.1002/anie.201706426 10.1126/science.aaf1525 10.1002/advs.201500426 10.1002/advs.201600343 10.1021/jacs.5b07788 10.1021/acsnano.6b04252 10.1002/adma.201506315 10.1038/s41557-018-0035-6 10.1002/aenm.201703189 10.1002/adma.201503906 10.1039/C6SC03356C 10.1021/jacs.7b12968 10.1021/ja507269n 10.1038/ncomms9847 10.1016/j.chempr.2017.04.016 10.1038/ncomms8261 10.1002/anie.201505320 10.1002/ange.201612635 10.1021/jacs.6b12250 10.1038/ncomms7616 10.1126/science.1162018 10.1002/anie.201712549 |
ContentType | Journal Article |
Copyright | 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1002/advs.201800949 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | PMC6193147 30356966 10_1002_advs_201800949 ADVS784 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: 111 Project funderid: D17003 – fundername: NSFC funderid: 21401095; 21790052; 21331007; 2167103 – fundername: 973 program of China funderid: 2014CB845602 – fundername: NSF of Guangdong Province funderid: S2012030006240 – fundername: NSF of Guangdong Province grantid: S2012030006240 – fundername: 111 Project grantid: D17003 – fundername: 973 program of China grantid: 2014CB845602 – fundername: NSFC grantid: 21401095; 21790052; 21331007; 2167103 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS EJD GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4344-cf6dcf4a7e3c5f4dce9b3d60c1edbbc9f9269586e5700134eb1088cc8a08b2593 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Thu Aug 21 17:40:01 EDT 2025 Thu Jul 10 23:23:11 EDT 2025 Mon Jul 21 06:00:21 EDT 2025 Tue Jul 01 04:05:06 EDT 2025 Thu Apr 24 23:08:35 EDT 2025 Wed Jan 22 16:27:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Prussian blue analogues large current density bifunctional electrocatalysts oxygen evolution |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4344-cf6dcf4a7e3c5f4dce9b3d60c1edbbc9f9269586e5700134eb1088cc8a08b2593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3116-756X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201800949 |
PMID | 30356966 |
PQID | 2125295455 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6193147 proquest_miscellaneous_2125295455 pubmed_primary_30356966 crossref_citationtrail_10_1002_advs_201800949 crossref_primary_10_1002_advs_201800949 wiley_primary_10_1002_advs_201800949_ADVS784 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2018 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2018 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
References | 2017; 8 2016 2017; 26 2 2017; 2 2017 2018; 27 14 2017; 27 2018 2017 2018 2018; 57 4 28 2018 2016 2016; 9 6 7 2017 2014; 29 136 2015 2018 2012 2014 2018; 34 45 43 57 2015; 8 2016 2017 2017 2016; 9 114 7 10 2017; 9 2015 2015 2015 2015 2016 2018; 137 137 54 54 28 9 2013; 19 2016 2015 2018 2017 2016 2018 2018 2018 2018 2018; 28 137 10 10 55 115 30 9 8 57 2008 2018 2018; 321 140 115 2015 2017 2018 2015; 54 8 14 54 2016 2017 2018; 45 13 140 2015; 137 2012 2013 2006; 3 135 5 2015 2015 2015 2017; 8 54 54 7 2017; 10 2016 2016; 16 6 2004 2001; 305 414 2015 2017 2013 2014 2016 2017 2017 2017 2017 2016; 6 7 135 5 352 139 29 4 4 3 2016 2017 2017 2017; 28 129 27 7 2015 2016 2018; 137 6 12 2017 2015 2017 2017 2018; 29 6 4 4 30 2016 2014 2016 2015 2014 2018; 28 136 539 6 136 57 2018; 57 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_7_4 e_1_2_7_9_2 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_17_6 e_1_2_7_7_2 e_1_2_7_17_5 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_17_4 e_1_2_7_19_2 e_1_2_7_15_5 e_1_2_7_17_3 e_1_2_7_19_1 e_1_2_7_15_4 e_1_2_7_17_2 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_7_6 e_1_2_7_7_5 e_1_2_7_9_3 e_1_2_7_4_10 e_1_2_7_25_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_2_5 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 Raja D. S. (e_1_2_7_16_4) 2018 e_1_2_7_4_7 e_1_2_7_6_5 e_1_2_7_8_3 e_1_2_7_4_6 e_1_2_7_6_4 e_1_2_7_8_2 e_1_2_7_4_5 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_18_4 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_14_3 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_14_2 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_12_2 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 Ma Y. Y. (e_1_2_7_2_2) 2018 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_29_1 e_1_2_7_6_9 e_1_2_7_6_8 e_1_2_7_4_9 e_1_2_7_6_7 e_1_2_7_4_8 e_1_2_7_6_6 e_1_2_7_8_4 e_1_2_7_6_10 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 27 start-page: 1702513 year: 2017 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 2769 year: 2017 publication-title: Chem. Sci. – volume: 29 136 start-page: 1604437 13925 year: 2017 2014 publication-title: Adv. Mater. J. Am. Chem. Soc. – volume: 305 414 start-page: 972 332 year: 2004 2001 publication-title: Science Nature – volume: 28 129 27 7 start-page: 4601 3955 1702546 1700518 year: 2016 2017 2017 2017 publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Funct. Mater. Adv. Energy Mater. – volume: 29 6 4 4 30 start-page: 1700404 6616 1600343 1700084 1801450 year: 2017 2015 2017 2017 2018 publication-title: Adv. Mater. Nat. Commun. Adv. Sci. Adv. Sci. Adv. Mater. – volume: 2 start-page: 2257 year: 2017 publication-title: ACS Energy Lett. – volume: 19 start-page: 1882 year: 2013 publication-title: Chem. ‐ Eur. J. – volume: 137 6 12 start-page: 4119 1502585 245 year: 2015 2016 2018 publication-title: J. Am. Chem. Soc. Adv. Energy Mater. ACS Nano – volume: 9 114 7 10 start-page: 1246 5607 2535 8738 year: 2016 2017 2017 2016 publication-title: Energy Environ. Sci. Proc. Natl. Acad. Sci. USA ACS Catal. ACS Nano – volume: 9 6 7 start-page: 1375 1502313 1690 year: 2018 2016 2016 publication-title: Chem. Sci. Adv. Energy Mater. Chem. Sci. – volume: 10 start-page: 893 year: 2017 publication-title: Energy Environ. Sci. – volume: 3 135 5 start-page: 399 16977 909 year: 2012 2013 2006 publication-title: J. Phys. Chem. Lett. J. Am. Chem. Soc. Nat. Mater. – volume: 54 8 14 54 start-page: 15395 968 1704227 6325 year: 2015 2017 2018 2015 publication-title: Angew. Chem., Int. Ed. Chem. Sci. Small Angew. Chem., Int. Ed. – volume: 57 start-page: 2672 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 34 45 43 57 start-page: 970 767 6555 626 year: 2015 2018 2012 2014 2018 publication-title: Science Energy Environ. Sci. Acc. Chem. Res. Chem. Soc. Rev. Angew. Chem., Int. Ed. – volume: 27 14 start-page: 1606635 1704233 year: 2017 2018 publication-title: Adv. Funct. Mater. Small – volume: 137 137 54 54 28 9 start-page: 14023 1587 11231 9351 77 2762 year: 2015 2015 2015 2015 2016 2018 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Mater. Chem. Sci. – volume: 6 7 135 5 352 139 29 4 4 3 start-page: 7261 1700467 8452 4345 333 2070 1700017 1700226 1600380 1500426 year: 2015 2017 2013 2014 2016 2017 2017 2017 2017 2016 publication-title: Nat. Commun. Adv. Energy Mater. J. Am. Chem. Soc. Nat. Commun. Science J. Am. Chem. Soc. Adv. Mater. Adv. Sci. Adv. Sci. Adv. Sci. – volume: 321 140 115 start-page: 1072 6745 5872 year: 2008 2018 2018 publication-title: Science J. Am. Chem. Soc. Proc. Natl. Acad. Sci. USA – volume: 45 13 140 start-page: 1529 1602873 5118 year: 2016 2017 2018 publication-title: Chem. Soc. Rev. Small J. Am. Chem. Soc. – volume: 28 137 10 10 55 115 30 9 8 57 start-page: 215 4347 638 1820 5277 5261 1705538 2551 1703189 8691 year: 2016 2015 2018 2017 2016 2018 2018 2018 2018 2018 publication-title: Adv. Mater. J. Am. Chem. Soc. Nat. Chem. Energy Environ. Sci. Angew. Chem., Int. Ed. Proc. Natl. Acad. Sci. USA Adv. Mater. Nat. Commun. Adv. Energy Mater. Angew. Chem., Int. Ed. – volume: 137 start-page: 13031 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1719 year: 2015 publication-title: Energy Environ. Sci. – volume: 57 4 28 start-page: 8921 1600371 1801136 year: 2018 2017 2018 2018 publication-title: Angew. Chem., Int. Ed. Adv. Sci. Adv. Funct. Mater. Adv. Energy Mater. – volume: 8 54 54 7 start-page: 2347 12361 6251 229 year: 2015 2015 2015 2017 publication-title: Energy Environ. Sci. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. ACS Catal. – volume: 26 2 start-page: 3314 791 year: 2016 2017 publication-title: Adv. Funct. Mater. Chem – volume: 9 start-page: 32812 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 16 6 start-page: 7718 714 year: 2016 2016 publication-title: Nano Lett. ACS Catal. – volume: 28 136 539 6 136 57 start-page: 6391 13983 76 8847 14385 3493 year: 2016 2014 2016 2015 2014 2018 publication-title: Adv. Mater. J. Am. Chem. Soc. Nature Nat. Commun. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – ident: e_1_2_7_10_3 doi: 10.1002/smll.201704227 – ident: e_1_2_7_20_1 doi: 10.1002/adfm.201505626 – ident: e_1_2_7_16_2 doi: 10.1002/advs.201600371 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201600979 – ident: e_1_2_7_6_7 doi: 10.1002/adma.201700017 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201606635 – year: 2018 ident: e_1_2_7_2_2 publication-title: Energy Environ. Sci. – ident: e_1_2_7_7_6 doi: 10.1039/C7SC05452A – ident: e_1_2_7_25_1 doi: 10.1002/adfm.201702513 – ident: e_1_2_7_8_4 doi: 10.1021/acscatal.6b02203 – ident: e_1_2_7_2_4 doi: 10.1039/C3CS60468C – ident: e_1_2_7_10_4 doi: 10.1002/anie.201501419 – ident: e_1_2_7_26_1 doi: 10.1039/C5EE01290B – ident: e_1_2_7_17_3 doi: 10.1038/nature19763 – ident: e_1_2_7_3_3 doi: 10.1073/pnas.1722034115 – ident: e_1_2_7_8_1 doi: 10.1039/C5EE01155H – ident: e_1_2_7_15_4 doi: 10.1002/advs.201700084 – ident: e_1_2_7_9_1 doi: 10.1021/ja5119495 – ident: e_1_2_7_1_2 doi: 10.1038/35104599 – ident: e_1_2_7_9_3 doi: 10.1021/acsnano.7b05971 – ident: e_1_2_7_30_1 doi: 10.1021/acsenergylett.7b00638 – ident: e_1_2_7_5_3 doi: 10.1038/nmat1752 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201700404 – ident: e_1_2_7_16_1 doi: 10.1002/anie.201803136 – ident: e_1_2_7_13_1 doi: 10.1021/acs.nanolett.6b03803 – ident: e_1_2_7_15_5 doi: 10.1002/adma.201801450 – ident: e_1_2_7_8_2 doi: 10.1002/anie.201502438 – ident: e_1_2_7_8_3 doi: 10.1002/anie.201501616 – ident: e_1_2_7_12_3 doi: 10.1021/acscatal.6b03497 – ident: e_1_2_7_17_6 doi: 10.1002/anie.201800817 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201604437 – ident: e_1_2_7_7_2 doi: 10.1021/ja511572q – ident: e_1_2_7_6_4 doi: 10.1038/ncomms5345 – ident: e_1_2_7_2_1 doi: 10.1126/science.aaa3145 – ident: e_1_2_7_4_6 doi: 10.1073/pnas.1722235115 – ident: e_1_2_7_4_4 doi: 10.1039/C7EE01571B – ident: e_1_2_7_11_2 doi: 10.1002/smll.201602873 – ident: e_1_2_7_6_9 doi: 10.1002/advs.201600380 – ident: e_1_2_7_18_4 doi: 10.1002/aenm.201700518 – ident: e_1_2_7_4_1 doi: 10.1002/adma.201502696 – ident: e_1_2_7_12_2 doi: 10.1073/pnas.1701562114 – ident: e_1_2_7_23_1 doi: 10.1039/C6SC05687C – ident: e_1_2_7_9_2 doi: 10.1002/aenm.201502585 – ident: e_1_2_7_19_2 doi: 10.1021/ja5082553 – ident: e_1_2_7_5_2 doi: 10.1021/ja407115p – ident: e_1_2_7_21_1 doi: 10.1002/chem.201203138 – ident: e_1_2_7_24_1 doi: 10.1039/C6EE03145E – ident: e_1_2_7_12_1 doi: 10.1039/C6EE00100A – ident: e_1_2_7_6_8 doi: 10.1002/advs.201700226 – ident: e_1_2_7_2_3 doi: 10.1021/ar2003013 – ident: e_1_2_7_4_8 doi: 10.1038/s41467-018-04746-z – ident: e_1_2_7_1_1 doi: 10.1126/science.1103197 – ident: e_1_2_7_4_5 doi: 10.1002/anie.201600687 – ident: e_1_2_7_17_5 doi: 10.1021/ja5084128 – year: 2018 ident: e_1_2_7_16_4 publication-title: Adv. Energy Mater. – ident: e_1_2_7_14_2 doi: 10.1002/aenm.201502313 – ident: e_1_2_7_10_1 doi: 10.1002/anie.201508715 – ident: e_1_2_7_3_2 doi: 10.1021/jacs.8b02225 – ident: e_1_2_7_7_4 doi: 10.1002/anie.201503407 – ident: e_1_2_7_4_7 doi: 10.1002/adma.201705538 – ident: e_1_2_7_16_3 doi: 10.1002/adfm.201801136 – ident: e_1_2_7_27_2 doi: 10.1002/smll.201704233 – ident: e_1_2_7_11_1 doi: 10.1039/C5CS00434A – ident: e_1_2_7_4_2 doi: 10.1021/ja510442p – ident: e_1_2_7_18_3 doi: 10.1002/adfm.201702546 – ident: e_1_2_7_7_1 doi: 10.1021/jacs.5b08186 – ident: e_1_2_7_6_3 doi: 10.1021/ja4027715 – ident: e_1_2_7_13_2 doi: 10.1021/acscatal.5b02193 – ident: e_1_2_7_5_1 doi: 10.1021/jz2016507 – ident: e_1_2_7_14_3 doi: 10.1039/C5SC04425A – ident: e_1_2_7_29_1 doi: 10.1021/acsami.7b10893 – ident: e_1_2_7_4_10 doi: 10.1002/anie.201805520 – ident: e_1_2_7_6_2 doi: 10.1002/aenm.201700467 – ident: e_1_2_7_14_1 doi: 10.1039/C7SC04569G – ident: e_1_2_7_2_5 doi: 10.1002/anie.201706426 – ident: e_1_2_7_6_5 doi: 10.1126/science.aaf1525 – ident: e_1_2_7_6_10 doi: 10.1002/advs.201500426 – ident: e_1_2_7_15_3 doi: 10.1002/advs.201600343 – ident: e_1_2_7_22_1 doi: 10.1021/jacs.5b07788 – ident: e_1_2_7_12_4 doi: 10.1021/acsnano.6b04252 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201506315 – ident: e_1_2_7_4_3 doi: 10.1038/s41557-018-0035-6 – ident: e_1_2_7_4_9 doi: 10.1002/aenm.201703189 – ident: e_1_2_7_7_5 doi: 10.1002/adma.201503906 – ident: e_1_2_7_10_2 doi: 10.1039/C6SC03356C – ident: e_1_2_7_11_3 doi: 10.1021/jacs.7b12968 – ident: e_1_2_7_17_2 doi: 10.1021/ja507269n – ident: e_1_2_7_17_4 doi: 10.1038/ncomms9847 – ident: e_1_2_7_20_2 doi: 10.1016/j.chempr.2017.04.016 – ident: e_1_2_7_6_1 doi: 10.1038/ncomms8261 – ident: e_1_2_7_7_3 doi: 10.1002/anie.201505320 – ident: e_1_2_7_18_2 doi: 10.1002/ange.201612635 – ident: e_1_2_7_6_6 doi: 10.1021/jacs.6b12250 – ident: e_1_2_7_15_2 doi: 10.1038/ncomms7616 – ident: e_1_2_7_3_1 doi: 10.1126/science.1162018 – ident: e_1_2_7_28_1 doi: 10.1002/anie.201712549 |
SSID | ssj0001537418 |
Score | 2.5801647 |
Snippet | Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1800949 |
SubjectTerms | bifunctional electrocatalysts large current density oxygen evolution Prussian blue analogues |
Title | Fe‐CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large‐Current‐Density Oxygen Evolution and Overall Water Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201800949 https://www.ncbi.nlm.nih.gov/pubmed/30356966 https://www.proquest.com/docview/2125295455 https://pubmed.ncbi.nlm.nih.gov/PMC6193147 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZg98IFsTzDoxokJEAi2ji20_i43bZaoWW3oqzYW-TYjqhUUtSX6I2fwIFfyC9hJkmzW60Q4pQoHllWZsbzeTz-zNgrDDtW5ZyHcZ6noVRGhLqIfci5iZyQSYTzMlVbnCUnF_L9pbq8doq_5odoE27kGdV8TQ5u8sXhFWmocWui2-YpFcfp22yfztcSe34sR1dZFiWInoVumMPVdShSKbfMjVF8uNvFbmS6ATdvVk1eR7NVOBreY3cbHAlHteIP2C1f3mcHjacu4E1DJ_32Afs19L9__DyejWBQX3lTZWw2iyX00frW3gEdMQEDvclXjy3TiYXRfLWg05XQm648EHEJZXgAAS6cUuk4dVgTO-Fbn2rglxs4_75Ba4TBurFmMKWD8zUNYwqfEdPOYYyQtyq0fsguhoNPxydhcxdDaKWQMrRF4mwhTdcLqwqJP0HnwiWR5d7ludWFjhOt0sQTXz4XEkMAzl_WpiZKc1xiiUdsr5yV_gkDiQ3Opp5ro6TRUVo4xEmxMspzoZwOWLjVQ2YbonK6L2Oa1RTLcUZ6y1q9Bex1K_-tpuj4q-TLrVoz9CLaGjGln61QBHEe7XgqFbDHtZrbvjDIqwRXhQHr7hhAK0AM3bst5eRLxdSNq1PBZTdg7ypT-cfwMkQi424qn_6f-DN2h77VFYbP2d5yvvIvECkt807lDB22f9T_cDrGZ29wNvrYqfIOfwBm6Ba0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHOCCKK-G5yAhARJR49hOnCNtd7XA0q7UVnCLHNsRKy1ZtC-xN34CB34hv4SZJJuyqhDiFskjy8rMeD6Px98w9hzDjlUF52FcFDqUyogwK2Mfcm4iJ2QS4b5M1RbHyeBcvvukNtWE9Bam4YfoEm7kGfV-TQ5OCen9C9ZQ41bEt801VcdlV9k1mcQp-WYsRxdpFiWIn4VazOHxOhRayg11YxTvb0-xHZou4c3LZZN_wtk6HvVvsZstkIQ3jeZ32RVf3Wa7ravO4WXLJ_3qDvvZ97--_zicjqDX9LypUzbr-QKO0PxW3gG9MQEDB-MvHkcmYwuj2XJOzyvhYLL0QMwllOIBRLgwpNpxmrBhdsKvIyqCX6zh5NsazRF6q9acwVQOTla0jAl8RFA7g1PEvHWl9V123u-dHQ7CthlDaKWQMrRl4mwpTeqFVaXEn5AVwiWR5d4Vhc3KLE4ypRNPhPlcSIwBuIFZq02kCzxjiXtsp5pWfo-BxAFnteeZUdJkkS4dAqVYGeW5UC4LWLjRQ25bpnJqmDHJG47lOCe95Z3eAvaik__acHT8VfLZRq05uhHdjZjKT5cogkCPrjyVCtj9Rs3dXBjlVYLHwoClWwbQCRBF9_ZINf5cU3Xj8VRwmQbsdW0q_1hejlDkNNXywf-JP2XXB2cfhvnw7fH7h-wGjTflho_YzmK29I8RNi2KJ7Vj_AZl0hX9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA_agvgi1s_1cwRBBZduNsne5rHt3VG1tAf1tPiyZJMsHpx75b7w3vwTfPAv9C9xZndv26OI-LaQIYSdmcxvJpNfGHuJYceqnPMwzvM0lMqIUBexDzk3kRMyiXBfpm6L4-RwKN-fqbNLt_hrfoi24EaeUe3X5ODnrti9IA01bkl02zyl5jh9nW0TVR7a9fbep-GX4UWdRQkiaKE35jC_DkUq5Zq7MYp3NyfZjE1XAOfVvsnLeLYKSP3b7FaDJGGvVv0Ou-bLO2yn8dUZvG4Ipd_cZb_6_vePnweTAfTqR2-qms1qNocu2t_SO6BLJmBgf_TN48h4ZGEwXczofiXsjxceiLqEajyAEBeOqHmcJqypnfCrS13w8xWcfF-hPUJv2dgzmNLByZKWMYbPiGqncIqgt2q1vseG_d7Hg8OweY0htFJIGdoicbaQpuOFVYXEn6Bz4ZLIcu_y3OpCx4lWaeKJMZ8LiUEAdzBrUxOlOSZZ4j7bKielf8hA4oCzqefaKGl0lBYOkVKsjPJcKKcDFq71kNmGqpxezBhnNclynJHeslZvAXvVyp_XJB1_lXyxVmuGfkSHI6b0kwWKINKjM0-lAvagVnM7F4Z5lWBeGLDOhgG0AsTRvTlSjr5WXN2YnwouOwF7W5nKP5aXIRY57aTy0f-JP2c3Bt1-dvTu-MNjdpOG63bDJ2xrPl34pwib5vmzxjP-AOLWFvU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fe%E2%80%90CoP+Electrocatalyst+Derived+from+a+Bimetallic+Prussian+Blue+Analogue+for+Large%E2%80%90Current%E2%80%90Density+Oxygen+Evolution+and+Overall+Water+Splitting&rft.jtitle=Advanced+science&rft.au=Cao%2C+Li%E2%80%90Ming&rft.au=Hu%2C+Yu%E2%80%90Wen&rft.au=Tang%2C+Shang%E2%80%90Feng&rft.au=Iljin%2C+Andrey&rft.date=2018-10-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=5&rft.issue=10&rft_id=info:doi/10.1002%2Fadvs.201800949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_201800949 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |