Fe‐CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large‐Current‐Density Oxygen Evolution and Overall Water Splitting

Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non‐noble metal catalyst by direct...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 5; no. 10; pp. 1800949 - n/a
Main Authors Cao, Li‐Ming, Hu, Yu‐Wen, Tang, Shang‐Feng, Iljin, Andrey, Wang, Jia‐Wei, Zhang, Zhi‐Ming, Lu, Tong‐Bu
Format Journal Article
LanguageEnglish
Published Germany John Wiley and Sons Inc 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non‐noble metal catalyst by directly growing a Co‐Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe‐doped CoP (Fe‐CoP) electrocatalyst. The Fe‐CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm−2 current densities in 1.0 m KOH solution. In addition, the Fe‐CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm−2 current density in alkaline solution. Thus, the Fe‐CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm−2 current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO2‐Pt/C‐based electrolyzer. A gentle and practical pathway is reported to fabricate efficient, non‐noble metal catalyst by directly growing a bimetallic prussian blue analogue 3D conductive substrate, phosphorized into a 3D bifunctional hierarchical‐pore Fe‐CoP electrocatalyst. The as‐obtained Fe‐CoP can drive large‐current‐density oxygen evolution and efficiently catalyze overall water splitting.
AbstractList Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non‐noble metal catalyst by directly growing a Co‐Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe‐doped CoP (Fe‐CoP) electrocatalyst. The Fe‐CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm −2 current densities in 1.0 m KOH solution. In addition, the Fe‐CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm −2 current density in alkaline solution. Thus, the Fe‐CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm −2 current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO 2 ‐Pt/C‐based electrolyzer.
Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non-noble metal catalyst by directly growing a Co-Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe-doped CoP (Fe-CoP) electrocatalyst. The Fe-CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm current densities in 1.0 m KOH solution. In addition, the Fe-CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm current density in alkaline solution. Thus, the Fe-CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO -Pt/C-based electrolyzer.
Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non-noble metal catalyst by directly growing a Co-Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe-doped CoP (Fe-CoP) electrocatalyst. The Fe-CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm-2 current densities in 1.0 m KOH solution. In addition, the Fe-CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm-2 current density in alkaline solution. Thus, the Fe-CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm-2 current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO2-Pt/C-based electrolyzer.Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non-noble metal catalyst by directly growing a Co-Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe-doped CoP (Fe-CoP) electrocatalyst. The Fe-CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm-2 current densities in 1.0 m KOH solution. In addition, the Fe-CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm-2 current density in alkaline solution. Thus, the Fe-CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm-2 current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO2-Pt/C-based electrolyzer.
Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non‐noble metal catalyst by directly growing a Co‐Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe‐doped CoP (Fe‐CoP) electrocatalyst. The Fe‐CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm−2 current densities in 1.0 m KOH solution. In addition, the Fe‐CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm−2 current density in alkaline solution. Thus, the Fe‐CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm−2 current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO2‐Pt/C‐based electrolyzer. A gentle and practical pathway is reported to fabricate efficient, non‐noble metal catalyst by directly growing a bimetallic prussian blue analogue 3D conductive substrate, phosphorized into a 3D bifunctional hierarchical‐pore Fe‐CoP electrocatalyst. The as‐obtained Fe‐CoP can drive large‐current‐density oxygen evolution and efficiently catalyze overall water splitting.
Author Cao, Li‐Ming
Wang, Jia‐Wei
Hu, Yu‐Wen
Iljin, Andrey
Zhang, Zhi‐Ming
Tang, Shang‐Feng
Lu, Tong‐Bu
AuthorAffiliation 2 Institute for New Energy Materials & Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 China
1 MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University Guangzhou 510275 China
3 Institute of Physics National Academy of Sciences of Ukraine Prospect Nauki 46 Kyiv 03028 Ukraine
AuthorAffiliation_xml – name: 3 Institute of Physics National Academy of Sciences of Ukraine Prospect Nauki 46 Kyiv 03028 Ukraine
– name: 1 MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University Guangzhou 510275 China
– name: 2 Institute for New Energy Materials & Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 China
Author_xml – sequence: 1
  givenname: Li‐Ming
  surname: Cao
  fullname: Cao, Li‐Ming
  organization: Sun Yat‐Sen University
– sequence: 2
  givenname: Yu‐Wen
  surname: Hu
  fullname: Hu, Yu‐Wen
  organization: Sun Yat‐Sen University
– sequence: 3
  givenname: Shang‐Feng
  surname: Tang
  fullname: Tang, Shang‐Feng
  organization: Tianjin University of Technology
– sequence: 4
  givenname: Andrey
  surname: Iljin
  fullname: Iljin, Andrey
  organization: National Academy of Sciences of Ukraine
– sequence: 5
  givenname: Jia‐Wei
  surname: Wang
  fullname: Wang, Jia‐Wei
  organization: Sun Yat‐Sen University
– sequence: 6
  givenname: Zhi‐Ming
  orcidid: 0000-0003-3116-756X
  surname: Zhang
  fullname: Zhang, Zhi‐Ming
  email: zmzhang@email.tjut.edu.cn
  organization: Tianjin University of Technology
– sequence: 7
  givenname: Tong‐Bu
  surname: Lu
  fullname: Lu, Tong‐Bu
  email: lutongbu@mail.sysu.edu.cn
  organization: Tianjin University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30356966$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhUeoiJbSLUvkJZsEe-z58QYpTdKCFCmVys_S8njuDEaOHWzPQHY8Qhc8IU-CQ9qqICFWPtI957u2z9PsyDoLWfac4CnBOH8l2zFMc0xqjDnjj7KTnPB6QmvGjh7o4-wshM8YY1LQipH6SXZMMS1KXpYn2Y8L-Pn9Zu6u0NKAit4pGaXZhYgW4PUILeq82yCJzvUG0sRoha78EIKWFp2bAdDMSuP6JDrn0Ur6_jdw8B5sTGoBNui4Q-tvux4sWo7ODFE7i6Rt0XoEn5joo4zg0fXW6Bi17Z9ljztpApzdnqfZ-4vlu_mbyWp9-XY-W00Uo4xNVFe2qmOyAqqKjrUKeEPbEisCbdMo3vG85EVdQlGlx1MGDcF1rVQtcd3kBaen2esDdzs0G0h5G9N1xNbrjfQ74aQWf06s_iR6N4qScEpYlQAvbwHefRkgRLHRQYEx0oIbgshJXuS8YEWRrC8e7rpfcldFMrCDQXkXgodOKB3l_qvSam0EwWJfutiXLu5LT7HpX7E78j8D9BD4qg3s_uMWs8WH66pm9Bcvh8VS
CitedBy_id crossref_primary_10_1021_acsami_2c09725
crossref_primary_10_1039_C9NR08749D
crossref_primary_10_1016_j_ccr_2024_216238
crossref_primary_10_1016_j_mtchem_2023_101530
crossref_primary_10_1016_j_compositesb_2022_110189
crossref_primary_10_1002_aenm_202102134
crossref_primary_10_1016_j_cej_2022_135184
crossref_primary_10_1002_advs_202001987
crossref_primary_10_1002_smll_201905223
crossref_primary_10_1016_j_electacta_2022_141582
crossref_primary_10_1016_j_jcis_2020_02_073
crossref_primary_10_1002_adfm_202210473
crossref_primary_10_1016_j_jechem_2021_12_006
crossref_primary_10_1016_j_ijhydene_2024_01_264
crossref_primary_10_1016_j_jcis_2023_04_089
crossref_primary_10_1016_j_apcatb_2022_121571
crossref_primary_10_1016_j_jcis_2022_04_123
crossref_primary_10_1016_j_jclepro_2020_125172
crossref_primary_10_1002_cssc_201901153
crossref_primary_10_1016_j_ijhydene_2020_02_188
crossref_primary_10_1016_j_apsusc_2023_156429
crossref_primary_10_1016_j_jallcom_2021_159652
crossref_primary_10_1039_D0SE00402B
crossref_primary_10_1016_j_jcis_2022_01_132
crossref_primary_10_1088_1361_6528_acd3f6
crossref_primary_10_1016_j_jallcom_2022_164296
crossref_primary_10_1002_smll_202302906
crossref_primary_10_1007_s11164_021_04553_0
crossref_primary_10_1016_j_apcatb_2020_119375
crossref_primary_10_1016_j_cej_2022_139796
crossref_primary_10_1002_aenm_201903871
crossref_primary_10_1021_acssuschemeng_8b06627
crossref_primary_10_1039_C9TA04478G
crossref_primary_10_1002_smll_201902613
crossref_primary_10_1039_D2TA02374A
crossref_primary_10_1002_anie_202405438
crossref_primary_10_1002_asia_201900742
crossref_primary_10_1002_adma_202313156
crossref_primary_10_1021_acs_inorgchem_2c00727
crossref_primary_10_1016_j_apsusc_2021_150696
crossref_primary_10_1016_j_apcatb_2024_123749
crossref_primary_10_1039_C9EE02783A
crossref_primary_10_1016_j_nanoen_2023_108601
crossref_primary_10_1016_j_partic_2023_05_006
crossref_primary_10_1039_D1TA03686F
crossref_primary_10_1016_j_apcatb_2024_123741
crossref_primary_10_1186_s13036_023_00381_5
crossref_primary_10_1039_C8TA10378J
crossref_primary_10_1134_S1023193524700344
crossref_primary_10_1002_smtd_202000988
crossref_primary_10_1021_acs_energyfuels_2c00369
crossref_primary_10_1021_acsami_4c00798
crossref_primary_10_1016_j_diamond_2023_110360
crossref_primary_10_1039_D0TA04388E
crossref_primary_10_1016_j_cej_2021_128941
crossref_primary_10_1016_j_cej_2020_125831
crossref_primary_10_1021_acsami_2c01302
crossref_primary_10_1007_s11144_022_02294_8
crossref_primary_10_1016_j_jechem_2022_02_010
crossref_primary_10_1021_acsami_8b16425
crossref_primary_10_1039_C9NR05924E
crossref_primary_10_1002_smll_202000663
crossref_primary_10_1016_j_jallcom_2023_173146
crossref_primary_10_1016_j_apsusc_2019_05_254
crossref_primary_10_1016_j_electacta_2020_136527
crossref_primary_10_1021_acsami_0c22620
crossref_primary_10_1021_acsomega_1c01010
crossref_primary_10_1016_j_apsusc_2021_152402
crossref_primary_10_1360_SSC_2024_0077
crossref_primary_10_1016_j_jcis_2022_08_001
crossref_primary_10_1039_D0TA01966F
crossref_primary_10_1021_acssuschemeng_0c04322
crossref_primary_10_1039_D4GC05276E
crossref_primary_10_1002_adsu_202300130
crossref_primary_10_1016_j_ccr_2023_215538
crossref_primary_10_1016_j_esci_2024_100334
crossref_primary_10_1016_j_jiec_2024_05_050
crossref_primary_10_1039_D0NR05216G
crossref_primary_10_1039_D1NR03813C
crossref_primary_10_1039_D0TA03044A
crossref_primary_10_1039_D2SE01042A
crossref_primary_10_1002_asia_201901810
crossref_primary_10_1016_j_est_2024_112587
crossref_primary_10_1115_1_4052533
crossref_primary_10_31875_2410_4701_2023_10_05
crossref_primary_10_1021_acsaem_3c00326
crossref_primary_10_1039_C8TA11072G
crossref_primary_10_1016_j_jcis_2025_02_124
crossref_primary_10_1021_acsnano_0c08808
crossref_primary_10_1016_j_carbon_2024_119681
crossref_primary_10_1016_j_cej_2023_144380
crossref_primary_10_1039_D0CY01115K
crossref_primary_10_1016_j_est_2023_106964
crossref_primary_10_1021_acs_iecr_1c02411
crossref_primary_10_1039_D0CC07523J
crossref_primary_10_1002_adfm_202111501
crossref_primary_10_1038_s41467_021_21742_y
crossref_primary_10_1021_acssuschemeng_0c03263
crossref_primary_10_1007_s41918_022_00161_7
crossref_primary_10_1039_D0TA03895D
crossref_primary_10_1016_j_ijhydene_2022_11_227
crossref_primary_10_1007_s10008_021_04931_z
crossref_primary_10_1039_D2CC02451A
crossref_primary_10_5004_dwt_2020_26185
crossref_primary_10_1007_s12274_022_5369_0
crossref_primary_10_1002_ange_202405438
crossref_primary_10_1039_D3IM00081H
crossref_primary_10_1002_smtd_202201099
crossref_primary_10_1016_j_jechem_2020_05_012
crossref_primary_10_1002_adma_202008023
crossref_primary_10_1016_j_jenvman_2020_110677
crossref_primary_10_1039_D0CC05585A
crossref_primary_10_1021_acs_chemrev_9b00685
crossref_primary_10_1021_acssuschemeng_0c09377
crossref_primary_10_1016_j_ijhydene_2021_06_041
crossref_primary_10_1021_acs_langmuir_1c00524
crossref_primary_10_1360_SSC_2022_0125
crossref_primary_10_1039_D1TA08039C
crossref_primary_10_1016_j_electacta_2020_135653
crossref_primary_10_1039_D1QM00466B
crossref_primary_10_1021_acsanm_4c06868
crossref_primary_10_1039_D2TA04296G
crossref_primary_10_1002_aesr_202200178
crossref_primary_10_1002_smll_202204443
crossref_primary_10_1016_j_cej_2022_139475
crossref_primary_10_1002_tcr_202300088
crossref_primary_10_1016_j_ccr_2019_213156
crossref_primary_10_1021_acs_iecr_0c05365
crossref_primary_10_1016_j_ccr_2021_214144
crossref_primary_10_1002_celc_201900212
crossref_primary_10_1016_j_ijhydene_2020_10_150
crossref_primary_10_1016_j_scib_2020_09_037
crossref_primary_10_1021_acsaem_9b02075
crossref_primary_10_1016_j_ijhydene_2022_05_117
crossref_primary_10_1016_j_ijhydene_2025_03_069
crossref_primary_10_1016_j_cej_2022_140223
crossref_primary_10_1016_j_nanoen_2019_103855
crossref_primary_10_1002_smll_202306757
crossref_primary_10_1016_j_micromeso_2020_110760
crossref_primary_10_1021_acsanm_4c01607
crossref_primary_10_1002_adfm_201907791
crossref_primary_10_1016_j_cej_2020_128227
crossref_primary_10_1007_s12274_021_3359_2
crossref_primary_10_1088_1361_6528_ac8060
crossref_primary_10_1016_j_ensm_2019_09_024
crossref_primary_10_3390_nano13172459
crossref_primary_10_1016_j_cej_2024_157273
crossref_primary_10_1039_D0GC04127K
crossref_primary_10_1002_aenm_202201466
crossref_primary_10_1016_j_apsusc_2022_155480
crossref_primary_10_1039_C9SE00396G
crossref_primary_10_1039_D2DT00037G
crossref_primary_10_1002_asia_201901721
crossref_primary_10_1080_01411594_2022_2110098
crossref_primary_10_1016_j_apsusc_2020_146059
crossref_primary_10_1002_cey2_213
crossref_primary_10_1039_D3DT01338C
crossref_primary_10_1063_5_0041080
crossref_primary_10_1039_D1TA03362J
crossref_primary_10_1016_j_micromeso_2020_110299
crossref_primary_10_1002_cplu_202200422
crossref_primary_10_1016_j_chemosphere_2022_136132
crossref_primary_10_1016_j_nanoen_2020_105464
crossref_primary_10_1021_acsami_0c20886
crossref_primary_10_1021_acs_chemrev_1c00978
crossref_primary_10_1039_C9TA03201K
crossref_primary_10_1007_s10854_020_04155_3
crossref_primary_10_1021_acsami_4c17441
crossref_primary_10_1021_acssuschemeng_0c06782
crossref_primary_10_1002_adfm_202314172
crossref_primary_10_1039_D1NR05101F
crossref_primary_10_1021_acs_iecr_2c01745
crossref_primary_10_1016_j_mseb_2024_117451
crossref_primary_10_1016_j_jallcom_2022_168674
crossref_primary_10_1016_j_fuel_2024_131838
crossref_primary_10_1002_smll_202002412
crossref_primary_10_1016_j_ijhydene_2022_06_252
crossref_primary_10_1016_j_ijhydene_2024_04_101
crossref_primary_10_1039_D3NJ04696F
crossref_primary_10_1016_j_memsci_2025_123847
crossref_primary_10_1016_j_apsusc_2024_161264
crossref_primary_10_1007_s12274_022_4575_0
crossref_primary_10_1016_j_apcatb_2022_122039
crossref_primary_10_1016_j_jelechem_2019_113803
crossref_primary_10_1016_j_cej_2023_146754
crossref_primary_10_1039_D1TA10032G
crossref_primary_10_1039_D2TA05953C
crossref_primary_10_1016_j_jpowsour_2020_228015
crossref_primary_10_1016_j_gee_2022_04_006
crossref_primary_10_1016_j_mtphys_2022_100727
crossref_primary_10_1002_gch2_202000128
crossref_primary_10_1039_D0CY00315H
crossref_primary_10_1021_acssuschemeng_9b03166
crossref_primary_10_1002_ente_202000178
crossref_primary_10_1002_adfm_202414446
crossref_primary_10_1016_j_catcom_2022_106443
crossref_primary_10_1016_j_mtener_2019_04_007
crossref_primary_10_3390_ma13143119
crossref_primary_10_1016_j_jclepro_2022_131680
crossref_primary_10_1016_j_trechm_2022_09_008
crossref_primary_10_1002_eem2_12457
crossref_primary_10_1016_j_electacta_2019_134983
crossref_primary_10_1002_adma_202006042
crossref_primary_10_1039_D0CS01191F
crossref_primary_10_1039_D2TA05409D
crossref_primary_10_1002_smll_202310012
crossref_primary_10_1039_D0NR08108F
crossref_primary_10_1039_D1DT02183D
crossref_primary_10_1016_j_est_2022_105990
crossref_primary_10_1016_j_jcis_2025_137316
crossref_primary_10_1016_j_jece_2023_111373
crossref_primary_10_1021_acs_inorgchem_3c01538
crossref_primary_10_1016_j_apcatb_2019_118555
crossref_primary_10_1016_j_jcis_2020_10_116
crossref_primary_10_1016_j_ijhydene_2024_09_338
crossref_primary_10_1016_j_apsusc_2022_152857
crossref_primary_10_1016_j_jallcom_2020_154658
crossref_primary_10_1149_1945_7111_acbe6b
crossref_primary_10_1002_smll_202207474
crossref_primary_10_1016_j_apmt_2020_100913
crossref_primary_10_1016_j_ijhydene_2020_12_065
crossref_primary_10_1016_j_jallcom_2019_153086
crossref_primary_10_1016_j_apsusc_2023_156378
crossref_primary_10_1016_j_cej_2022_139162
crossref_primary_10_1021_acsaem_2c00190
crossref_primary_10_1021_acssuschemeng_0c02671
crossref_primary_10_1039_D4QI01574F
crossref_primary_10_3390_catal9090762
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1016_j_jpowsour_2024_235454
crossref_primary_10_1007_s40843_020_1590_x
crossref_primary_10_1021_acsorginorgau_3c00007
crossref_primary_10_1016_j_jece_2023_110139
crossref_primary_10_1016_j_electacta_2020_137211
crossref_primary_10_1016_j_nanoen_2020_105545
crossref_primary_10_1039_D3CS00717K
crossref_primary_10_1002_admi_202100065
crossref_primary_10_1016_j_jcis_2024_07_073
crossref_primary_10_1021_acs_energyfuels_4c04519
crossref_primary_10_3390_catal11020169
crossref_primary_10_1021_acsaem_2c02362
crossref_primary_10_1021_acs_iecr_9b01976
crossref_primary_10_1039_C9QI00554D
crossref_primary_10_1021_acs_energyfuels_1c03875
crossref_primary_10_1039_D0EE03635H
crossref_primary_10_1039_D1CE01736E
crossref_primary_10_1016_j_jcis_2022_08_088
crossref_primary_10_1039_C9NR01804B
crossref_primary_10_1039_D3QI00799E
crossref_primary_10_1039_D0QI01523G
crossref_primary_10_1016_j_ijhydene_2023_12_221
crossref_primary_10_1016_j_jpowsour_2019_05_076
crossref_primary_10_1016_j_matlet_2021_131166
crossref_primary_10_1002_advs_201900272
crossref_primary_10_1016_j_apmt_2020_100692
crossref_primary_10_1039_D0TA00870B
crossref_primary_10_1039_D1CS00323B
crossref_primary_10_1088_1361_6528_ac1c25
crossref_primary_10_1016_j_jssc_2022_123084
crossref_primary_10_1016_j_fuel_2022_123934
crossref_primary_10_1039_D1TA04713B
crossref_primary_10_1039_D3TA05522A
crossref_primary_10_1016_j_jallcom_2019_152332
crossref_primary_10_1039_C8TA08577C
crossref_primary_10_1016_j_mtener_2020_100404
crossref_primary_10_1021_acsami_4c00974
crossref_primary_10_1021_acssuschemeng_9b07284
crossref_primary_10_1021_acs_inorgchem_3c02537
crossref_primary_10_1016_j_solidstatesciences_2025_107887
crossref_primary_10_1039_D3NJ03794K
crossref_primary_10_1016_j_envres_2024_119883
crossref_primary_10_1016_j_apsusc_2019_144636
crossref_primary_10_1016_j_jcis_2022_02_039
crossref_primary_10_1016_j_cclet_2022_04_020
crossref_primary_10_1021_acssuschemeng_9b06514
crossref_primary_10_1039_D1NR02592A
crossref_primary_10_1002_cssc_202300310
crossref_primary_10_1002_adfm_202112164
crossref_primary_10_1021_acsaem_1c03940
crossref_primary_10_1039_D3RA01945D
crossref_primary_10_1002_cssc_202101873
crossref_primary_10_1016_j_electacta_2021_139218
crossref_primary_10_1016_j_seppur_2021_119481
crossref_primary_10_1016_j_cej_2023_142592
crossref_primary_10_1016_j_ijhydene_2020_12_037
crossref_primary_10_1016_j_nanoen_2023_108994
crossref_primary_10_1016_j_apsusc_2023_158789
crossref_primary_10_1016_j_jelechem_2022_116806
crossref_primary_10_1016_j_mseb_2022_115654
crossref_primary_10_1002_adfm_202300623
crossref_primary_10_1016_j_jece_2024_112242
crossref_primary_10_1039_D0EE03697H
crossref_primary_10_1002_aenm_202000814
crossref_primary_10_1021_acsaem_1c03282
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1039_D2NJ00335J
crossref_primary_10_1039_D3QI02017G
crossref_primary_10_1007_s40820_020_00442_0
crossref_primary_10_1002_cssc_202301078
crossref_primary_10_1002_aenm_202303451
crossref_primary_10_1016_j_cej_2021_133117
crossref_primary_10_1039_D1TA03452A
crossref_primary_10_1016_j_cej_2023_144081
crossref_primary_10_1016_j_electacta_2019_134897
crossref_primary_10_1021_acsami_0c22336
crossref_primary_10_1016_j_ica_2020_119440
crossref_primary_10_1039_D3TA07418H
crossref_primary_10_1016_j_cej_2019_123664
crossref_primary_10_1016_j_ijhydene_2020_06_272
crossref_primary_10_3390_ma14061473
crossref_primary_10_1016_j_jmst_2020_10_009
crossref_primary_10_1007_s13391_020_00260_x
crossref_primary_10_1039_D0QM00300J
crossref_primary_10_1039_D4CC06281G
crossref_primary_10_1039_D2TA08306J
crossref_primary_10_1007_s11051_020_4754_4
crossref_primary_10_1016_j_envres_2024_119420
crossref_primary_10_1039_D1CE01309B
crossref_primary_10_1016_j_apsusc_2019_144977
crossref_primary_10_1002_aenm_202102074
crossref_primary_10_1016_j_jtice_2024_105356
crossref_primary_10_1002_cssc_202001434
crossref_primary_10_1016_j_apcatb_2022_121353
crossref_primary_10_1021_acssuschemeng_0c01814
crossref_primary_10_1016_j_ijhydene_2024_06_340
crossref_primary_10_1002_adfm_202212160
crossref_primary_10_1016_j_scib_2023_06_001
crossref_primary_10_1016_j_jallcom_2020_156001
crossref_primary_10_1016_j_mseb_2020_114841
crossref_primary_10_1016_j_jallcom_2024_175048
crossref_primary_10_1039_C8TA09240K
crossref_primary_10_1039_D1TA08699E
crossref_primary_10_1002_adfm_202316296
crossref_primary_10_1021_acsanm_0c01942
crossref_primary_10_1016_j_cej_2020_126312
crossref_primary_10_1016_j_jallcom_2022_164479
crossref_primary_10_1039_D4NJ03610G
crossref_primary_10_1039_D2NR03411E
crossref_primary_10_1002_cctc_202100981
crossref_primary_10_1007_s40820_021_00607_5
crossref_primary_10_1039_D4TA05168H
crossref_primary_10_1016_j_mcat_2021_111835
crossref_primary_10_1016_j_apcatb_2023_123027
crossref_primary_10_1021_acsami_4c09663
crossref_primary_10_1016_j_electacta_2021_139345
crossref_primary_10_1016_j_ceramint_2021_09_064
crossref_primary_10_1016_j_ijhydene_2020_04_223
crossref_primary_10_1002_smtd_202200515
crossref_primary_10_1016_j_apcatb_2024_124530
crossref_primary_10_1016_j_ijhydene_2020_12_045
crossref_primary_10_1021_acs_inorgchem_2c03060
crossref_primary_10_1016_j_cej_2022_141056
crossref_primary_10_1016_j_electacta_2022_139882
crossref_primary_10_1039_D2DT02013K
crossref_primary_10_1039_D2DT03332A
crossref_primary_10_1002_adfm_202313233
crossref_primary_10_1002_tcr_202200176
crossref_primary_10_1007_s10853_019_03362_6
crossref_primary_10_1039_D0NR02642E
Cites_doi 10.1002/smll.201704227
10.1002/adfm.201505626
10.1002/advs.201600371
10.1002/adma.201600979
10.1002/adma.201700017
10.1002/adfm.201606635
10.1039/C7SC05452A
10.1002/adfm.201702513
10.1021/acscatal.6b02203
10.1039/C3CS60468C
10.1002/anie.201501419
10.1039/C5EE01290B
10.1038/nature19763
10.1073/pnas.1722034115
10.1039/C5EE01155H
10.1002/advs.201700084
10.1021/ja5119495
10.1038/35104599
10.1021/acsnano.7b05971
10.1021/acsenergylett.7b00638
10.1038/nmat1752
10.1002/adma.201700404
10.1002/anie.201803136
10.1021/acs.nanolett.6b03803
10.1002/adma.201801450
10.1002/anie.201502438
10.1002/anie.201501616
10.1021/acscatal.6b03497
10.1002/anie.201800817
10.1002/adma.201604437
10.1021/ja511572q
10.1038/ncomms5345
10.1126/science.aaa3145
10.1073/pnas.1722235115
10.1039/C7EE01571B
10.1002/smll.201602873
10.1002/advs.201600380
10.1002/aenm.201700518
10.1002/adma.201502696
10.1073/pnas.1701562114
10.1039/C6SC05687C
10.1002/aenm.201502585
10.1021/ja5082553
10.1021/ja407115p
10.1002/chem.201203138
10.1039/C6EE03145E
10.1039/C6EE00100A
10.1002/advs.201700226
10.1021/ar2003013
10.1038/s41467-018-04746-z
10.1126/science.1103197
10.1002/anie.201600687
10.1021/ja5084128
10.1002/aenm.201502313
10.1002/anie.201508715
10.1021/jacs.8b02225
10.1002/anie.201503407
10.1002/adma.201705538
10.1002/adfm.201801136
10.1002/smll.201704233
10.1039/C5CS00434A
10.1021/ja510442p
10.1002/adfm.201702546
10.1021/jacs.5b08186
10.1021/ja4027715
10.1021/acscatal.5b02193
10.1021/jz2016507
10.1039/C5SC04425A
10.1021/acsami.7b10893
10.1002/anie.201805520
10.1002/aenm.201700467
10.1039/C7SC04569G
10.1002/anie.201706426
10.1126/science.aaf1525
10.1002/advs.201500426
10.1002/advs.201600343
10.1021/jacs.5b07788
10.1021/acsnano.6b04252
10.1002/adma.201506315
10.1038/s41557-018-0035-6
10.1002/aenm.201703189
10.1002/adma.201503906
10.1039/C6SC03356C
10.1021/jacs.7b12968
10.1021/ja507269n
10.1038/ncomms9847
10.1016/j.chempr.2017.04.016
10.1038/ncomms8261
10.1002/anie.201505320
10.1002/ange.201612635
10.1021/jacs.6b12250
10.1038/ncomms7616
10.1126/science.1162018
10.1002/anie.201712549
ContentType Journal Article
Copyright 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1002/advs.201800949
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID PMC6193147
30356966
10_1002_advs_201800949
ADVS784
Genre article
Journal Article
GrantInformation_xml – fundername: 111 Project
  funderid: D17003
– fundername: NSFC
  funderid: 21401095; 21790052; 21331007; 2167103
– fundername: 973 program of China
  funderid: 2014CB845602
– fundername: NSF of Guangdong Province
  funderid: S2012030006240
– fundername: NSF of Guangdong Province
  grantid: S2012030006240
– fundername: 111 Project
  grantid: D17003
– fundername: 973 program of China
  grantid: 2014CB845602
– fundername: NSFC
  grantid: 21401095; 21790052; 21331007; 2167103
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
EJD
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7X8
5PM
ID FETCH-LOGICAL-c4344-cf6dcf4a7e3c5f4dce9b3d60c1edbbc9f9269586e5700134eb1088cc8a08b2593
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Thu Aug 21 17:40:01 EDT 2025
Thu Jul 10 23:23:11 EDT 2025
Mon Jul 21 06:00:21 EDT 2025
Tue Jul 01 04:05:06 EDT 2025
Thu Apr 24 23:08:35 EDT 2025
Wed Jan 22 16:27:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Prussian blue analogues
large current density
bifunctional electrocatalysts
oxygen evolution
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4344-cf6dcf4a7e3c5f4dce9b3d60c1edbbc9f9269586e5700134eb1088cc8a08b2593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3116-756X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201800949
PMID 30356966
PQID 2125295455
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6193147
proquest_miscellaneous_2125295455
pubmed_primary_30356966
crossref_citationtrail_10_1002_advs_201800949
crossref_primary_10_1002_advs_201800949
wiley_primary_10_1002_advs_201800949_ADVS784
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2018
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2018
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2017; 8
2016 2017; 26 2
2017; 2
2017 2018; 27 14
2017; 27
2018 2017 2018 2018; 57 4 28
2018 2016 2016; 9 6 7
2017 2014; 29 136
2015 2018 2012 2014 2018; 34 45 43 57
2015; 8
2016 2017 2017 2016; 9 114 7 10
2017; 9
2015 2015 2015 2015 2016 2018; 137 137 54 54 28 9
2013; 19
2016 2015 2018 2017 2016 2018 2018 2018 2018 2018; 28 137 10 10 55 115 30 9 8 57
2008 2018 2018; 321 140 115
2015 2017 2018 2015; 54 8 14 54
2016 2017 2018; 45 13 140
2015; 137
2012 2013 2006; 3 135 5
2015 2015 2015 2017; 8 54 54 7
2017; 10
2016 2016; 16 6
2004 2001; 305 414
2015 2017 2013 2014 2016 2017 2017 2017 2017 2016; 6 7 135 5 352 139 29 4 4 3
2016 2017 2017 2017; 28 129 27 7
2015 2016 2018; 137 6 12
2017 2015 2017 2017 2018; 29 6 4 4 30
2016 2014 2016 2015 2014 2018; 28 136 539 6 136 57
2018; 57
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_7_4
e_1_2_7_9_2
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_17_6
e_1_2_7_7_2
e_1_2_7_17_5
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_17_4
e_1_2_7_19_2
e_1_2_7_15_5
e_1_2_7_17_3
e_1_2_7_19_1
e_1_2_7_15_4
e_1_2_7_17_2
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_7_6
e_1_2_7_7_5
e_1_2_7_9_3
e_1_2_7_4_10
e_1_2_7_25_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_2_5
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
Raja D. S. (e_1_2_7_16_4) 2018
e_1_2_7_4_7
e_1_2_7_6_5
e_1_2_7_8_3
e_1_2_7_4_6
e_1_2_7_6_4
e_1_2_7_8_2
e_1_2_7_4_5
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_18_4
e_1_2_7_4_4
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_16_3
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_14_3
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_4
e_1_2_7_14_2
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_12_2
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
Ma Y. Y. (e_1_2_7_2_2) 2018
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_6_9
e_1_2_7_6_8
e_1_2_7_4_9
e_1_2_7_6_7
e_1_2_7_4_8
e_1_2_7_6_6
e_1_2_7_8_4
e_1_2_7_6_10
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 27
  start-page: 1702513
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 2769
  year: 2017
  publication-title: Chem. Sci.
– volume: 29 136
  start-page: 1604437 13925
  year: 2017 2014
  publication-title: Adv. Mater. J. Am. Chem. Soc.
– volume: 305 414
  start-page: 972 332
  year: 2004 2001
  publication-title: Science Nature
– volume: 28 129 27 7
  start-page: 4601 3955 1702546 1700518
  year: 2016 2017 2017 2017
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Funct. Mater. Adv. Energy Mater.
– volume: 29 6 4 4 30
  start-page: 1700404 6616 1600343 1700084 1801450
  year: 2017 2015 2017 2017 2018
  publication-title: Adv. Mater. Nat. Commun. Adv. Sci. Adv. Sci. Adv. Mater.
– volume: 2
  start-page: 2257
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 19
  start-page: 1882
  year: 2013
  publication-title: Chem. ‐ Eur. J.
– volume: 137 6 12
  start-page: 4119 1502585 245
  year: 2015 2016 2018
  publication-title: J. Am. Chem. Soc. Adv. Energy Mater. ACS Nano
– volume: 9 114 7 10
  start-page: 1246 5607 2535 8738
  year: 2016 2017 2017 2016
  publication-title: Energy Environ. Sci. Proc. Natl. Acad. Sci. USA ACS Catal. ACS Nano
– volume: 9 6 7
  start-page: 1375 1502313 1690
  year: 2018 2016 2016
  publication-title: Chem. Sci. Adv. Energy Mater. Chem. Sci.
– volume: 10
  start-page: 893
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 3 135 5
  start-page: 399 16977 909
  year: 2012 2013 2006
  publication-title: J. Phys. Chem. Lett. J. Am. Chem. Soc. Nat. Mater.
– volume: 54 8 14 54
  start-page: 15395 968 1704227 6325
  year: 2015 2017 2018 2015
  publication-title: Angew. Chem., Int. Ed. Chem. Sci. Small Angew. Chem., Int. Ed.
– volume: 57
  start-page: 2672
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 34 45 43 57
  start-page: 970 767 6555 626
  year: 2015 2018 2012 2014 2018
  publication-title: Science Energy Environ. Sci. Acc. Chem. Res. Chem. Soc. Rev. Angew. Chem., Int. Ed.
– volume: 27 14
  start-page: 1606635 1704233
  year: 2017 2018
  publication-title: Adv. Funct. Mater. Small
– volume: 137 137 54 54 28 9
  start-page: 14023 1587 11231 9351 77 2762
  year: 2015 2015 2015 2015 2016 2018
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Mater. Chem. Sci.
– volume: 6 7 135 5 352 139 29 4 4 3
  start-page: 7261 1700467 8452 4345 333 2070 1700017 1700226 1600380 1500426
  year: 2015 2017 2013 2014 2016 2017 2017 2017 2017 2016
  publication-title: Nat. Commun. Adv. Energy Mater. J. Am. Chem. Soc. Nat. Commun. Science J. Am. Chem. Soc. Adv. Mater. Adv. Sci. Adv. Sci. Adv. Sci.
– volume: 321 140 115
  start-page: 1072 6745 5872
  year: 2008 2018 2018
  publication-title: Science J. Am. Chem. Soc. Proc. Natl. Acad. Sci. USA
– volume: 45 13 140
  start-page: 1529 1602873 5118
  year: 2016 2017 2018
  publication-title: Chem. Soc. Rev. Small J. Am. Chem. Soc.
– volume: 28 137 10 10 55 115 30 9 8 57
  start-page: 215 4347 638 1820 5277 5261 1705538 2551 1703189 8691
  year: 2016 2015 2018 2017 2016 2018 2018 2018 2018 2018
  publication-title: Adv. Mater. J. Am. Chem. Soc. Nat. Chem. Energy Environ. Sci. Angew. Chem., Int. Ed. Proc. Natl. Acad. Sci. USA Adv. Mater. Nat. Commun. Adv. Energy Mater. Angew. Chem., Int. Ed.
– volume: 137
  start-page: 13031
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1719
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 57 4 28
  start-page: 8921 1600371 1801136
  year: 2018 2017 2018 2018
  publication-title: Angew. Chem., Int. Ed. Adv. Sci. Adv. Funct. Mater. Adv. Energy Mater.
– volume: 8 54 54 7
  start-page: 2347 12361 6251 229
  year: 2015 2015 2015 2017
  publication-title: Energy Environ. Sci. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. ACS Catal.
– volume: 26 2
  start-page: 3314 791
  year: 2016 2017
  publication-title: Adv. Funct. Mater. Chem
– volume: 9
  start-page: 32812
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16 6
  start-page: 7718 714
  year: 2016 2016
  publication-title: Nano Lett. ACS Catal.
– volume: 28 136 539 6 136 57
  start-page: 6391 13983 76 8847 14385 3493
  year: 2016 2014 2016 2015 2014 2018
  publication-title: Adv. Mater. J. Am. Chem. Soc. Nature Nat. Commun. J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– ident: e_1_2_7_10_3
  doi: 10.1002/smll.201704227
– ident: e_1_2_7_20_1
  doi: 10.1002/adfm.201505626
– ident: e_1_2_7_16_2
  doi: 10.1002/advs.201600371
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201600979
– ident: e_1_2_7_6_7
  doi: 10.1002/adma.201700017
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201606635
– year: 2018
  ident: e_1_2_7_2_2
  publication-title: Energy Environ. Sci.
– ident: e_1_2_7_7_6
  doi: 10.1039/C7SC05452A
– ident: e_1_2_7_25_1
  doi: 10.1002/adfm.201702513
– ident: e_1_2_7_8_4
  doi: 10.1021/acscatal.6b02203
– ident: e_1_2_7_2_4
  doi: 10.1039/C3CS60468C
– ident: e_1_2_7_10_4
  doi: 10.1002/anie.201501419
– ident: e_1_2_7_26_1
  doi: 10.1039/C5EE01290B
– ident: e_1_2_7_17_3
  doi: 10.1038/nature19763
– ident: e_1_2_7_3_3
  doi: 10.1073/pnas.1722034115
– ident: e_1_2_7_8_1
  doi: 10.1039/C5EE01155H
– ident: e_1_2_7_15_4
  doi: 10.1002/advs.201700084
– ident: e_1_2_7_9_1
  doi: 10.1021/ja5119495
– ident: e_1_2_7_1_2
  doi: 10.1038/35104599
– ident: e_1_2_7_9_3
  doi: 10.1021/acsnano.7b05971
– ident: e_1_2_7_30_1
  doi: 10.1021/acsenergylett.7b00638
– ident: e_1_2_7_5_3
  doi: 10.1038/nmat1752
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201700404
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201803136
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.nanolett.6b03803
– ident: e_1_2_7_15_5
  doi: 10.1002/adma.201801450
– ident: e_1_2_7_8_2
  doi: 10.1002/anie.201502438
– ident: e_1_2_7_8_3
  doi: 10.1002/anie.201501616
– ident: e_1_2_7_12_3
  doi: 10.1021/acscatal.6b03497
– ident: e_1_2_7_17_6
  doi: 10.1002/anie.201800817
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201604437
– ident: e_1_2_7_7_2
  doi: 10.1021/ja511572q
– ident: e_1_2_7_6_4
  doi: 10.1038/ncomms5345
– ident: e_1_2_7_2_1
  doi: 10.1126/science.aaa3145
– ident: e_1_2_7_4_6
  doi: 10.1073/pnas.1722235115
– ident: e_1_2_7_4_4
  doi: 10.1039/C7EE01571B
– ident: e_1_2_7_11_2
  doi: 10.1002/smll.201602873
– ident: e_1_2_7_6_9
  doi: 10.1002/advs.201600380
– ident: e_1_2_7_18_4
  doi: 10.1002/aenm.201700518
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201502696
– ident: e_1_2_7_12_2
  doi: 10.1073/pnas.1701562114
– ident: e_1_2_7_23_1
  doi: 10.1039/C6SC05687C
– ident: e_1_2_7_9_2
  doi: 10.1002/aenm.201502585
– ident: e_1_2_7_19_2
  doi: 10.1021/ja5082553
– ident: e_1_2_7_5_2
  doi: 10.1021/ja407115p
– ident: e_1_2_7_21_1
  doi: 10.1002/chem.201203138
– ident: e_1_2_7_24_1
  doi: 10.1039/C6EE03145E
– ident: e_1_2_7_12_1
  doi: 10.1039/C6EE00100A
– ident: e_1_2_7_6_8
  doi: 10.1002/advs.201700226
– ident: e_1_2_7_2_3
  doi: 10.1021/ar2003013
– ident: e_1_2_7_4_8
  doi: 10.1038/s41467-018-04746-z
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1103197
– ident: e_1_2_7_4_5
  doi: 10.1002/anie.201600687
– ident: e_1_2_7_17_5
  doi: 10.1021/ja5084128
– year: 2018
  ident: e_1_2_7_16_4
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_14_2
  doi: 10.1002/aenm.201502313
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.201508715
– ident: e_1_2_7_3_2
  doi: 10.1021/jacs.8b02225
– ident: e_1_2_7_7_4
  doi: 10.1002/anie.201503407
– ident: e_1_2_7_4_7
  doi: 10.1002/adma.201705538
– ident: e_1_2_7_16_3
  doi: 10.1002/adfm.201801136
– ident: e_1_2_7_27_2
  doi: 10.1002/smll.201704233
– ident: e_1_2_7_11_1
  doi: 10.1039/C5CS00434A
– ident: e_1_2_7_4_2
  doi: 10.1021/ja510442p
– ident: e_1_2_7_18_3
  doi: 10.1002/adfm.201702546
– ident: e_1_2_7_7_1
  doi: 10.1021/jacs.5b08186
– ident: e_1_2_7_6_3
  doi: 10.1021/ja4027715
– ident: e_1_2_7_13_2
  doi: 10.1021/acscatal.5b02193
– ident: e_1_2_7_5_1
  doi: 10.1021/jz2016507
– ident: e_1_2_7_14_3
  doi: 10.1039/C5SC04425A
– ident: e_1_2_7_29_1
  doi: 10.1021/acsami.7b10893
– ident: e_1_2_7_4_10
  doi: 10.1002/anie.201805520
– ident: e_1_2_7_6_2
  doi: 10.1002/aenm.201700467
– ident: e_1_2_7_14_1
  doi: 10.1039/C7SC04569G
– ident: e_1_2_7_2_5
  doi: 10.1002/anie.201706426
– ident: e_1_2_7_6_5
  doi: 10.1126/science.aaf1525
– ident: e_1_2_7_6_10
  doi: 10.1002/advs.201500426
– ident: e_1_2_7_15_3
  doi: 10.1002/advs.201600343
– ident: e_1_2_7_22_1
  doi: 10.1021/jacs.5b07788
– ident: e_1_2_7_12_4
  doi: 10.1021/acsnano.6b04252
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201506315
– ident: e_1_2_7_4_3
  doi: 10.1038/s41557-018-0035-6
– ident: e_1_2_7_4_9
  doi: 10.1002/aenm.201703189
– ident: e_1_2_7_7_5
  doi: 10.1002/adma.201503906
– ident: e_1_2_7_10_2
  doi: 10.1039/C6SC03356C
– ident: e_1_2_7_11_3
  doi: 10.1021/jacs.7b12968
– ident: e_1_2_7_17_2
  doi: 10.1021/ja507269n
– ident: e_1_2_7_17_4
  doi: 10.1038/ncomms9847
– ident: e_1_2_7_20_2
  doi: 10.1016/j.chempr.2017.04.016
– ident: e_1_2_7_6_1
  doi: 10.1038/ncomms8261
– ident: e_1_2_7_7_3
  doi: 10.1002/anie.201505320
– ident: e_1_2_7_18_2
  doi: 10.1002/ange.201612635
– ident: e_1_2_7_6_6
  doi: 10.1021/jacs.6b12250
– ident: e_1_2_7_15_2
  doi: 10.1038/ncomms7616
– ident: e_1_2_7_3_1
  doi: 10.1126/science.1162018
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.201712549
SSID ssj0001537418
Score 2.5801647
Snippet Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1800949
SubjectTerms bifunctional electrocatalysts
large current density
oxygen evolution
Prussian blue analogues
Title Fe‐CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large‐Current‐Density Oxygen Evolution and Overall Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201800949
https://www.ncbi.nlm.nih.gov/pubmed/30356966
https://www.proquest.com/docview/2125295455
https://pubmed.ncbi.nlm.nih.gov/PMC6193147
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZg98IFsTzDoxokJEAi2ji20_i43bZaoWW3oqzYW-TYjqhUUtSX6I2fwIFfyC9hJkmzW60Q4pQoHllWZsbzeTz-zNgrDDtW5ZyHcZ6noVRGhLqIfci5iZyQSYTzMlVbnCUnF_L9pbq8doq_5odoE27kGdV8TQ5u8sXhFWmocWui2-YpFcfp22yfztcSe34sR1dZFiWInoVumMPVdShSKbfMjVF8uNvFbmS6ATdvVk1eR7NVOBreY3cbHAlHteIP2C1f3mcHjacu4E1DJ_32Afs19L9__DyejWBQX3lTZWw2iyX00frW3gEdMQEDvclXjy3TiYXRfLWg05XQm648EHEJZXgAAS6cUuk4dVgTO-Fbn2rglxs4_75Ba4TBurFmMKWD8zUNYwqfEdPOYYyQtyq0fsguhoNPxydhcxdDaKWQMrRF4mwhTdcLqwqJP0HnwiWR5d7ludWFjhOt0sQTXz4XEkMAzl_WpiZKc1xiiUdsr5yV_gkDiQ3Opp5ro6TRUVo4xEmxMspzoZwOWLjVQ2YbonK6L2Oa1RTLcUZ6y1q9Bex1K_-tpuj4q-TLrVoz9CLaGjGln61QBHEe7XgqFbDHtZrbvjDIqwRXhQHr7hhAK0AM3bst5eRLxdSNq1PBZTdg7ypT-cfwMkQi424qn_6f-DN2h77VFYbP2d5yvvIvECkt807lDB22f9T_cDrGZ29wNvrYqfIOfwBm6Ba0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHOCCKK-G5yAhARJR49hOnCNtd7XA0q7UVnCLHNsRKy1ZtC-xN34CB34hv4SZJJuyqhDiFskjy8rMeD6Px98w9hzDjlUF52FcFDqUyogwK2Mfcm4iJ2QS4b5M1RbHyeBcvvukNtWE9Bam4YfoEm7kGfV-TQ5OCen9C9ZQ41bEt801VcdlV9k1mcQp-WYsRxdpFiWIn4VazOHxOhRayg11YxTvb0-xHZou4c3LZZN_wtk6HvVvsZstkIQ3jeZ32RVf3Wa7ravO4WXLJ_3qDvvZ97--_zicjqDX9LypUzbr-QKO0PxW3gG9MQEDB-MvHkcmYwuj2XJOzyvhYLL0QMwllOIBRLgwpNpxmrBhdsKvIyqCX6zh5NsazRF6q9acwVQOTla0jAl8RFA7g1PEvHWl9V123u-dHQ7CthlDaKWQMrRl4mwpTeqFVaXEn5AVwiWR5d4Vhc3KLE4ypRNPhPlcSIwBuIFZq02kCzxjiXtsp5pWfo-BxAFnteeZUdJkkS4dAqVYGeW5UC4LWLjRQ25bpnJqmDHJG47lOCe95Z3eAvaik__acHT8VfLZRq05uhHdjZjKT5cogkCPrjyVCtj9Rs3dXBjlVYLHwoClWwbQCRBF9_ZINf5cU3Xj8VRwmQbsdW0q_1hejlDkNNXywf-JP2XXB2cfhvnw7fH7h-wGjTflho_YzmK29I8RNi2KJ7Vj_AZl0hX9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA_agvgi1s_1cwRBBZduNsne5rHt3VG1tAf1tPiyZJMsHpx75b7w3vwTfPAv9C9xZndv26OI-LaQIYSdmcxvJpNfGHuJYceqnPMwzvM0lMqIUBexDzk3kRMyiXBfpm6L4-RwKN-fqbNLt_hrfoi24EaeUe3X5ODnrti9IA01bkl02zyl5jh9nW0TVR7a9fbep-GX4UWdRQkiaKE35jC_DkUq5Zq7MYp3NyfZjE1XAOfVvsnLeLYKSP3b7FaDJGGvVv0Ou-bLO2yn8dUZvG4Ipd_cZb_6_vePnweTAfTqR2-qms1qNocu2t_SO6BLJmBgf_TN48h4ZGEwXczofiXsjxceiLqEajyAEBeOqHmcJqypnfCrS13w8xWcfF-hPUJv2dgzmNLByZKWMYbPiGqncIqgt2q1vseG_d7Hg8OweY0htFJIGdoicbaQpuOFVYXEn6Bz4ZLIcu_y3OpCx4lWaeKJMZ8LiUEAdzBrUxOlOSZZ4j7bKielf8hA4oCzqefaKGl0lBYOkVKsjPJcKKcDFq71kNmGqpxezBhnNclynJHeslZvAXvVyp_XJB1_lXyxVmuGfkSHI6b0kwWKINKjM0-lAvagVnM7F4Z5lWBeGLDOhgG0AsTRvTlSjr5WXN2YnwouOwF7W5nKP5aXIRY57aTy0f-JP2c3Bt1-dvTu-MNjdpOG63bDJ2xrPl34pwib5vmzxjP-AOLWFvU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fe%E2%80%90CoP+Electrocatalyst+Derived+from+a+Bimetallic+Prussian+Blue+Analogue+for+Large%E2%80%90Current%E2%80%90Density+Oxygen+Evolution+and+Overall+Water+Splitting&rft.jtitle=Advanced+science&rft.au=Cao%2C+Li%E2%80%90Ming&rft.au=Hu%2C+Yu%E2%80%90Wen&rft.au=Tang%2C+Shang%E2%80%90Feng&rft.au=Iljin%2C+Andrey&rft.date=2018-10-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=5&rft.issue=10&rft_id=info:doi/10.1002%2Fadvs.201800949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_201800949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon