Osmotic Engine: Translating Osmotic Pressure into Macroscopic Mechanical Force via Poly(Acrylic Acid) Based Hydrogels
Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be u...
Saved in:
Published in | Advanced science Vol. 4; no. 9; pp. 1700112 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley and Sons Inc
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg−1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic.
Poly(acrylic acid) based hydrogels can convert the chemical potential of salt gradients into mechanical forces. Polyelectrolyte hydrogels swell to a much lower extend in salt water than in fresh water. This feature is used for the cyclical movement of a piston in an osmotic motor. Chemical parameters of the network structure are varied to get higher energy production. |
---|---|
AbstractList | Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg
−1
dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg−1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. Poly(acrylic acid) based hydrogels can convert the chemical potential of salt gradients into mechanical forces. Polyelectrolyte hydrogels swell to a much lower extend in salt water than in fresh water. This feature is used for the cyclical movement of a piston in an osmotic motor. Chemical parameters of the network structure are varied to get higher energy production. Poly(acrylic acid)-based hydrogels can swell up to 100-1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2-12 lower in seawater-like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370-670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. |
Author | Arens, Lukas Wilhelm, Manfred Klein, Christopher O. Schlag, Karin Weißenfeld, Felix |
AuthorAffiliation | 1 Institute for Technical Chemistry and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany |
AuthorAffiliation_xml | – name: 1 Institute for Technical Chemistry and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany |
Author_xml | – sequence: 1 givenname: Lukas surname: Arens fullname: Arens, Lukas organization: Karlsruhe Institute of Technology (KIT) – sequence: 2 givenname: Felix surname: Weißenfeld fullname: Weißenfeld, Felix organization: Karlsruhe Institute of Technology (KIT) – sequence: 3 givenname: Christopher O. surname: Klein fullname: Klein, Christopher O. organization: Karlsruhe Institute of Technology (KIT) – sequence: 4 givenname: Karin surname: Schlag fullname: Schlag, Karin organization: Karlsruhe Institute of Technology (KIT) – sequence: 5 givenname: Manfred surname: Wilhelm fullname: Wilhelm, Manfred email: manfred.wilhelm@kit.edu organization: Karlsruhe Institute of Technology (KIT) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28932675$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1PGzEQxa2KqlDKtcfKR3pI6q_NrnuolFIoSCCQgF6tWe9scOXYwd5Ntf99Nw1EcOppRnq_eTOa957shRiQkI-cTTlj4gs06zwVjJeMcS7ekAPBdTWRlVJ7L_p9cpTzbzYyhSwVr96RfVFpKWZlcUD667yMnbP0NCxcwK_0LkHIHjoXFvRZu0mYc5-QutBFegU2xWzjalSu0D5AcBY8PYvJIl07oDfRD8dzmwY_EnPrms_0O2Rs6PnQpLhAnz-Qty34jEdP9ZDcn53enZxPLq9_XpzMLydWSaUmgMi5VEXLFGNS1xa0aFDzFkGwulJ1CbxEWVdcciisBt2WrJJMMIlC8koekm9b31VfL7GxGLoE3qySW0IaTARnXivBPZhFXJtixpTUbDQ4fjJI8bHH3Jmlyxa9h4Cxz4ZrxWUpin_odItuvpMTtrs1nJlNXGYTl9nFNQ58enncDn8OZwTkFvjjPA7_sTPzH79u5UzJv5Olo4g |
CitedBy_id | crossref_primary_10_1021_acs_macromol_9b01216 crossref_primary_10_1149_2_0031816jes crossref_primary_10_1016_j_jcis_2024_05_142 crossref_primary_10_1002_mame_202000383 crossref_primary_10_1016_j_rser_2022_112283 crossref_primary_10_1680_jgrma_20_00069 crossref_primary_10_3389_fchem_2022_891519 crossref_primary_10_3390_polym13040645 crossref_primary_10_1209_0295_5075_120_46002 crossref_primary_10_1088_1361_665X_aaab29 crossref_primary_10_3390_mi13091395 crossref_primary_10_1016_j_desal_2021_114995 crossref_primary_10_1063_5_0174530 crossref_primary_10_1016_j_energy_2022_124843 crossref_primary_10_1002_macp_201900093 crossref_primary_10_1016_j_energy_2021_121055 crossref_primary_10_1021_acs_iecr_1c00409 crossref_primary_10_1002_app_53366 crossref_primary_10_1063_5_0013357 crossref_primary_10_3390_polym15173568 crossref_primary_10_1039_C9TB02880C crossref_primary_10_1016_j_cej_2023_145036 crossref_primary_10_1002_mame_202000174 crossref_primary_10_1021_acsami_3c06999 crossref_primary_10_1016_j_cej_2023_142569 crossref_primary_10_1021_acsnano_0c04899 crossref_primary_10_1021_acssuschemeng_2c04784 crossref_primary_10_3390_gels7040232 crossref_primary_10_1002_macp_201900387 crossref_primary_10_1021_acsami_2c00645 crossref_primary_10_1039_C9SM01468C crossref_primary_10_1089_3dp_2017_0054 crossref_primary_10_1002_admt_202202136 crossref_primary_10_1021_acs_macromol_0c00260 crossref_primary_10_1016_j_electacta_2023_142807 crossref_primary_10_1021_acs_langmuir_8b01645 crossref_primary_10_1103_PhysRevLett_132_208201 crossref_primary_10_1021_acs_est_8b06377 crossref_primary_10_1002_macp_201800525 crossref_primary_10_1007_s40843_023_2688_y |
Cites_doi | 10.1016/j.desal.2007.02.080 10.1021/ie061077k 10.1021/ma00178a020 10.1002/marc.201100342 10.1021/es500909q 10.1007/BF01499739 10.1002/anie.200462226 10.1002/pol.1955.120157906 10.1021/ma500558v 10.1021/bm0056153 10.1021/ed073p512 10.1002/marc.201000058 10.1038/210568a0 10.1002/(SICI)1099-0488(199806)36:8<1313::AID-POLB6>3.0.CO;2-S 10.1021/bm9905031 |
ContentType | Journal Article |
Copyright | 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P WIN NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1002/advs.201700112 |
DatabaseName | Wiley Open Access Wiley Free Archive PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | 10_1002_advs_201700112 28932675 ADVS364 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: DFG funderid: WI 1911/24‐1 – fundername: DFG grantid: WI 1911/24‐1 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACGFS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS EJD GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN ITC NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c4344-aee11345f040039bca92de91fea20b84b7a17e3b8131a5c9a9f70830203e23183 |
IEDL.DBID | RPM |
ISSN | 2198-3844 |
IngestDate | Tue Sep 17 21:13:46 EDT 2024 Fri Oct 25 22:56:42 EDT 2024 Thu Sep 26 16:47:28 EDT 2024 Wed Oct 16 00:45:45 EDT 2024 Sat Aug 24 00:57:43 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | hydrogels energy recovery osmotic engine polyelectrolytes poly(acrylic acid) |
Language | English |
License | Attribution This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4344-aee11345f040039bca92de91fea20b84b7a17e3b8131a5c9a9f70830203e23183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5604390/ |
PMID | 28932675 |
PQID | 1941372590 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5604390 proquest_miscellaneous_1941372590 crossref_primary_10_1002_advs_201700112 pubmed_primary_28932675 wiley_primary_10_1002_advs_201700112_ADVS364 |
PublicationCentury | 2000 |
PublicationDate | September 2017 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2017 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
References | 2010; 31 1966; 210 2013; 28 1962; 182 1998 1975 2014; 48 1953 2014; 47 1996 1996; 73 2011; 32 2013; 140 2004 2000; 1 2008; 224 1992 2005; 44 1955; 15 1987; 20 1990 2001; 2 2013 2007; 46 1998; 36 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_12_1 Yin Y.‐L. (e_1_2_7_20_1) 1992 e_1_2_7_11_1 Schröder U. P. (e_1_2_7_19_1) 1996 Höpfner J. (e_1_2_7_6_1) 2013; 140 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 (e_1_2_7_26_1) 2013 e_1_2_7_21_1 Burchard W. (e_1_2_7_15_1) 1990 Elliott M. (e_1_2_7_16_1) 2004 Flory P. (e_1_2_7_14_1) 1953 Buchholz F. L. (e_1_2_7_2_1) 1998 Williams A. (e_1_2_7_10_1) 2013; 28 |
References_xml | – volume: 182 start-page: 40 year: 1962 publication-title: Kolloid Z. Z. Polym. – volume: 140 start-page: 247 year: 2013 publication-title: Prog. Coll. Polym. Sci. – volume: 73 start-page: 512 year: 1996 publication-title: J. Chem. Educ. – volume: 48 start-page: 7157 year: 2014 publication-title: Environ. Sci. Technol. – year: 1996 – year: 1975 – volume: 20 start-page: 3060 year: 1987 publication-title: Macromolecules – volume: 15 start-page: 69 year: 1955 publication-title: J. Polym. Sci. – year: 1990 – volume: 46 start-page: 359 year: 2007 publication-title: Ind. Eng. Chem. Res. – year: 1992 – year: 1998 – volume: 32 start-page: 1600 year: 2011 publication-title: Macromol. Rapid Commun. – volume: 224 start-page: 64 year: 2008 publication-title: Desalination – volume: 28 start-page: 2 year: 2013 publication-title: Water & Wastewater International – volume: 210 start-page: 568 year: 1966 publication-title: Nature – volume: 2 start-page: 195 year: 2001 publication-title: Biomacromolecules – year: 2004 – volume: 1 start-page: 84 year: 2000 publication-title: Biomacromolecules – volume: 36 start-page: 1313 year: 1998 publication-title: J. Polym. Sci. B: Polym. Phys. – year: 1953 – volume: 44 start-page: 724 year: 2005 publication-title: Angew. Chem., Int. Ed. – volume: 47 start-page: 4251 year: 2014 publication-title: Macromolecules – volume: 31 start-page: 1337 year: 2010 publication-title: Macromol. Rapid Commun. – year: 2013 – ident: e_1_2_7_11_1 doi: 10.1016/j.desal.2007.02.080 – ident: e_1_2_7_17_1 doi: 10.1021/ie061077k – volume: 28 start-page: 2 year: 2013 ident: e_1_2_7_10_1 publication-title: Water & Wastewater International contributor: fullname: Williams A. – volume-title: Superabsorbent Polymers year: 2004 ident: e_1_2_7_16_1 contributor: fullname: Elliott M. – ident: e_1_2_7_21_1 doi: 10.1021/ma00178a020 – ident: e_1_2_7_23_1 doi: 10.1002/marc.201100342 – ident: e_1_2_7_13_1 doi: 10.1021/es500909q – volume-title: ASTM International, Standard Practice for the Preparation of Substitute Ocean Water year: 2013 ident: e_1_2_7_26_1 – volume-title: Modern Superabsorbent Polymer Technology year: 1998 ident: e_1_2_7_2_1 contributor: fullname: Buchholz F. L. – volume: 140 start-page: 247 year: 2013 ident: e_1_2_7_6_1 publication-title: Prog. Coll. Polym. Sci. contributor: fullname: Höpfner J. – ident: e_1_2_7_7_1 doi: 10.1007/BF01499739 – volume-title: Physical Networks: Polymers and Gels year: 1990 ident: e_1_2_7_15_1 contributor: fullname: Burchard W. – ident: e_1_2_7_22_1 doi: 10.1002/anie.200462226 – ident: e_1_2_7_4_1 doi: 10.1002/pol.1955.120157906 – volume-title: Principles of Polymer Chemistry year: 1953 ident: e_1_2_7_14_1 contributor: fullname: Flory P. – ident: e_1_2_7_18_1 doi: 10.1021/ma500558v – ident: e_1_2_7_25_1 doi: 10.1021/bm0056153 – ident: e_1_2_7_3_1 doi: 10.1021/ed073p512 – ident: e_1_2_7_5_1 doi: 10.1002/marc.201000058 – volume-title: Polyelectrolyte Gels – Properties, Preparation, and Applications year: 1992 ident: e_1_2_7_20_1 contributor: fullname: Yin Y.‐L. – ident: e_1_2_7_8_1 doi: 10.1038/210568a0 – ident: e_1_2_7_1_1 doi: 10.1002/(SICI)1099-0488(199806)36:8<1313::AID-POLB6>3.0.CO;2-S – ident: e_1_2_7_9_1 – ident: e_1_2_7_12_1 – ident: e_1_2_7_24_1 doi: 10.1021/bm9905031 – volume-title: Physical Properties of Polyelectrolyte Gels year: 1996 ident: e_1_2_7_19_1 contributor: fullname: Schröder U. P. |
SSID | ssj0001537418 |
Score | 2.3136876 |
Snippet | Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a... Poly(acrylic acid)-based hydrogels can swell up to 100-1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1700112 |
SubjectTerms | energy recovery hydrogels osmotic engine poly(acrylic acid) polyelectrolytes |
SummonAdditionalLinks | – databaseName: Wiley Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bS8MwFMaDzBdfxHmdNyIIbmBZm6Rr69sUxxCmAx3srSRpqoPRju4C--89p92VPYivTQghX5LzJU1-IeRecqGQAmNFPBaW8KRjSb8BC9c4EBHywX0bLzh33hvtnnjru_2NW_wFH2K14YYjI5-vcYBLNa6voaEymiFuG_lyDj4zvI_YGKTnM9Fd77K4HPEs-MIcrK4t7guxJDfarL5dxHZk2rGbu6cmN91sHo5aR-Rw4SNpsxC-TPZMckzKi5E6ptUFTrp2QqYf-VM9mhbowSeahyc8Apd802VacUswM3SQTFLakVhFnY4gpWPwbjBKSVtppg2dDSTtpsN5tamz-RByNPUgqtFnCIcRbc-jLP2GeHtKeq3Xr5e2tXhswdKCC2FJYxyHCzfGUc0DpWXAIhM4sZHMVr5QIKNnuPId7khXBzKIPRvhYTY3DCeGM1JK0sRcEGqYhnb2NcyzDRErrtBUxcwgeVV7AauQh2VDh6OCqREW9GQWoiThSpIKuVvqEEK3x38ZMjHpdBw6AURfD9ZudoWcF7qsyoI1JJhSz60Qb0uxVQZEam-nJIOfHK0N_g8cGpT5mGv7R_VCsA6fvCEu_5f9ihzgt-Kk2jUpTbKpuQFrM1G3ee_9BRa_8ao priority: 102 providerName: Wiley-Blackwell |
Title | Osmotic Engine: Translating Osmotic Pressure into Macroscopic Mechanical Force via Poly(Acrylic Acid) Based Hydrogels |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201700112 https://www.ncbi.nlm.nih.gov/pubmed/28932675 https://search.proquest.com/docview/1941372590 https://pubmed.ncbi.nlm.nih.gov/PMC5604390 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL003cteRrtPr1tQYbAW5saWlNjeW1oawiBd2Fbom5FkuTOkdnCTQv797pXtkNKHQZ8lZOFzpXNk33sE8EUJqckFxs9ELn0ZqdBX8QgPrnkiM_IHjwMqcJ5djabX8sfN8GYPhl0tjEvaN7o4Kxd3Z2Xx1-VWLu_MoMsTG8xnF8jSyKPBoAc9DNCdI3pTGizIkaUzaAz4QGUPZMxNTnSoLsj-NybVQqmFu1z0RGA-zZPc1a-OgCYH8KpVjmzczPAQ9mz5Gg7btXnPTloD6dM3sP7pLucxrDEb_M4cIVHSW3nLuramLrC2rChXFZspmqKpltgys1QNTOCxSVUbyx4KxebVYnMyNvVmgT3GpshO2TkSYMamm6yubpFh38L15PLPxdRvr1fwjRRS-sraMBRymNM6Fok2KuGZTcLcKh7oWGoELrJCx6EI1dAkKsmjgOzCAmE5bQXvYL-sSvsBmOUmxnOewZ11JHMtNMmonFvyWjVRwj342r3odNm4aKSNXzJPCZ10i44Hxx0OKQY6_b1Qpa3W92mYIN9GeFoLPHjf4LIdqwPUg-gRYtsOZKL9uAVjy5lpt7HkwTeH7X-ml6JY-C1G8uOzH3QEL2m0Jk3tE-yv6rX9jLpmpfvQ43Lehxfnl1fzX333daDvYvsfzmn5yQ |
link.rule.ids | 230,315,730,783,787,867,888,11574,27936,27937,33757,46064,46488,50826,50935,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bS8MwFMaDzAd9Ee_OawTBDSxrm_Tm2xTHvHQO3MC3kqapDqQd3Sbsv_ecXqbDB_E5IYR-OTlf0uQXQi4E4yFSYLSIxVzjjjA04dqwcI09HiEf3NXxgrPfs7tD_vBqVacJ8S5MwYdYbLhhZOTzNQY4bki3vqmhIvpE3jYC5gx8Z3iV2zAaEe7M-9_bLBZDPgs-MQfLa425nFfoRt1sLTexnJp--c3fxyZ_2tk8H3U2yUZpJGm7UH6LrKhkm2yVoTqhjZIn3dwhs-f8rR5JC_bgNc3zE56BS95oVVZcE8wUHSXTlPoCuyjTMZT4Ci8Ho5a0k2ZS0c-RoP30Y95oy2z-ATXachQ16Q3kw4h251GWvkHC3SXDzt3gtquVry1okjPONaGUYTBuxRjWzAul8MxIeUashKmHLg9BR0ex0DWYISzpCS92dKSH6UyZODPskVqSJuqAUGVK-M6uhInW5nHIQnRVsakQvSodz6yTy-pDB-MCqhEU-GQzQEmChSR1cl7pEMC4x58ZIlHpbBIYHqRfBxZvep3sF7os2oJFJLhSx6oTZ0mxRQVkai-XJKP3nK0NBhAsGrR5lWv7R_cC8A4vzOaH_6t-Rta6A_8peLrvPR6RdSwvjq0dk9o0m6kT8DnT8DQfyV8-P_Ue |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bS8MwFMaDKIgv4rzOawTBDSy2Sbq2vs3LmJfNgQq-lTRN52C0o7vA_nvPaXdlD-JzQgj5enK-pMkvhFxJLgKkwBghj4QhHGkZ0q3AwjXyRIh8cNfEC86NZqX-JV6-7e-FW_w5H2K24YaRkc3XGOC9MLqdQ0NlOELcNvLlLHxmeEOAF0d6PhOt-S6LzRHPgi_Mwera4K4QU3KjyW6Xm1jOTCt2c_XU5KKbzdJRbYdsT3wkrebCF8iajndJYRKpfVqa4KTLe2T4nj3Vo2iOHryjWXrCI3Bxm07L8luCqaadeJDQhsQuqqQHJQ2Nd4NRSlpLUqXpqCNpK-mOS1WVjrtQo6o6YZneQzoMaX0cpkkb8u0--ao9fT7UjcljC4YSXAhDam1ZXNgRRjX3AiU9FmrPirRkZuCKAGR0NA9ci1vSVp70IsdEeJjJNcOJ4YCsx0msjwjVTME4uwrm2YqIAh6gqYqYRvKqcjxWJNfTgfZ7OVPDz-nJzEdJ_JkkRXI51cGHzx7_ZchYJ8O-b3mQfR1Yu5lFcpjrMmsL1pBgSh27SJwlxWYVEKm9XBJ3fjK0Nvg_cGjQ5k2m7R_d88E6fPCKOP5f9Quy2Xqs-W_PzdcTsoXF-aG1U7I-SIf6DFzOIDjPPuRfpRr0Pg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osmotic+Engine%3A+Translating+Osmotic+Pressure+into+Macroscopic+Mechanical+Force+via+Poly%28Acrylic+Acid%29+Based+Hydrogels&rft.jtitle=Advanced+science&rft.au=Arens%2C+Lukas&rft.au=Wei%C3%9Fenfeld%2C+Felix&rft.au=Klein%2C+Christopher+O.&rft.au=Schlag%2C+Karin&rft.date=2017-09-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=4&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.201700112&rft.externalDBID=10.1002%252Fadvs.201700112&rft.externalDocID=ADVS364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |