Osmotic Engine: Translating Osmotic Pressure into Macroscopic Mechanical Force via Poly(Acrylic Acid) Based Hydrogels

Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be u...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 4; no. 9; pp. 1700112 - n/a
Main Authors Arens, Lukas, Weißenfeld, Felix, Klein, Christopher O., Schlag, Karin, Wilhelm, Manfred
Format Journal Article
LanguageEnglish
Published Germany John Wiley and Sons Inc 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg−1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. Poly(acrylic acid) based hydrogels can convert the chemical potential of salt gradients into mechanical forces. Polyelectrolyte hydrogels swell to a much lower extend in salt water than in fresh water. This feature is used for the cyclical movement of a piston in an osmotic motor. Chemical parameters of the network structure are varied to get higher energy production.
AbstractList Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg −1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic.
Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg−1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. Poly(acrylic acid) based hydrogels can convert the chemical potential of salt gradients into mechanical forces. Polyelectrolyte hydrogels swell to a much lower extend in salt water than in fresh water. This feature is used for the cyclical movement of a piston in an osmotic motor. Chemical parameters of the network structure are varied to get higher energy production.
Poly(acrylic acid)-based hydrogels can swell up to 100-1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2-12 lower in seawater-like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370-670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic.
Author Arens, Lukas
Wilhelm, Manfred
Klein, Christopher O.
Schlag, Karin
Weißenfeld, Felix
AuthorAffiliation 1 Institute for Technical Chemistry and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
AuthorAffiliation_xml – name: 1 Institute for Technical Chemistry and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
Author_xml – sequence: 1
  givenname: Lukas
  surname: Arens
  fullname: Arens, Lukas
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 2
  givenname: Felix
  surname: Weißenfeld
  fullname: Weißenfeld, Felix
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 3
  givenname: Christopher O.
  surname: Klein
  fullname: Klein, Christopher O.
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 4
  givenname: Karin
  surname: Schlag
  fullname: Schlag, Karin
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 5
  givenname: Manfred
  surname: Wilhelm
  fullname: Wilhelm, Manfred
  email: manfred.wilhelm@kit.edu
  organization: Karlsruhe Institute of Technology (KIT)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28932675$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1PGzEQxa2KqlDKtcfKR3pI6q_NrnuolFIoSCCQgF6tWe9scOXYwd5Ntf99Nw1EcOppRnq_eTOa957shRiQkI-cTTlj4gs06zwVjJeMcS7ekAPBdTWRlVJ7L_p9cpTzbzYyhSwVr96RfVFpKWZlcUD667yMnbP0NCxcwK_0LkHIHjoXFvRZu0mYc5-QutBFegU2xWzjalSu0D5AcBY8PYvJIl07oDfRD8dzmwY_EnPrms_0O2Rs6PnQpLhAnz-Qty34jEdP9ZDcn53enZxPLq9_XpzMLydWSaUmgMi5VEXLFGNS1xa0aFDzFkGwulJ1CbxEWVdcciisBt2WrJJMMIlC8koekm9b31VfL7GxGLoE3qySW0IaTARnXivBPZhFXJtixpTUbDQ4fjJI8bHH3Jmlyxa9h4Cxz4ZrxWUpin_odItuvpMTtrs1nJlNXGYTl9nFNQ58enncDn8OZwTkFvjjPA7_sTPzH79u5UzJv5Olo4g
CitedBy_id crossref_primary_10_1021_acs_macromol_9b01216
crossref_primary_10_1149_2_0031816jes
crossref_primary_10_1016_j_jcis_2024_05_142
crossref_primary_10_1002_mame_202000383
crossref_primary_10_1016_j_rser_2022_112283
crossref_primary_10_1680_jgrma_20_00069
crossref_primary_10_3389_fchem_2022_891519
crossref_primary_10_3390_polym13040645
crossref_primary_10_1209_0295_5075_120_46002
crossref_primary_10_1088_1361_665X_aaab29
crossref_primary_10_3390_mi13091395
crossref_primary_10_1016_j_desal_2021_114995
crossref_primary_10_1063_5_0174530
crossref_primary_10_1016_j_energy_2022_124843
crossref_primary_10_1002_macp_201900093
crossref_primary_10_1016_j_energy_2021_121055
crossref_primary_10_1021_acs_iecr_1c00409
crossref_primary_10_1002_app_53366
crossref_primary_10_1063_5_0013357
crossref_primary_10_3390_polym15173568
crossref_primary_10_1039_C9TB02880C
crossref_primary_10_1016_j_cej_2023_145036
crossref_primary_10_1002_mame_202000174
crossref_primary_10_1021_acsami_3c06999
crossref_primary_10_1016_j_cej_2023_142569
crossref_primary_10_1021_acsnano_0c04899
crossref_primary_10_1021_acssuschemeng_2c04784
crossref_primary_10_3390_gels7040232
crossref_primary_10_1002_macp_201900387
crossref_primary_10_1021_acsami_2c00645
crossref_primary_10_1039_C9SM01468C
crossref_primary_10_1089_3dp_2017_0054
crossref_primary_10_1002_admt_202202136
crossref_primary_10_1021_acs_macromol_0c00260
crossref_primary_10_1016_j_electacta_2023_142807
crossref_primary_10_1021_acs_langmuir_8b01645
crossref_primary_10_1103_PhysRevLett_132_208201
crossref_primary_10_1021_acs_est_8b06377
crossref_primary_10_1002_macp_201800525
crossref_primary_10_1007_s40843_023_2688_y
Cites_doi 10.1016/j.desal.2007.02.080
10.1021/ie061077k
10.1021/ma00178a020
10.1002/marc.201100342
10.1021/es500909q
10.1007/BF01499739
10.1002/anie.200462226
10.1002/pol.1955.120157906
10.1021/ma500558v
10.1021/bm0056153
10.1021/ed073p512
10.1002/marc.201000058
10.1038/210568a0
10.1002/(SICI)1099-0488(199806)36:8<1313::AID-POLB6>3.0.CO;2-S
10.1021/bm9905031
ContentType Journal Article
Copyright 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
WIN
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1002/advs.201700112
DatabaseName Wiley Open Access
Wiley Free Archive
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID 10_1002_advs_201700112
28932675
ADVS364
Genre article
Journal Article
GrantInformation_xml – fundername: DFG
  funderid: WI 1911/24‐1
– fundername: DFG
  grantid: WI 1911/24‐1
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
EJD
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
ITC
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c4344-aee11345f040039bca92de91fea20b84b7a17e3b8131a5c9a9f70830203e23183
IEDL.DBID RPM
ISSN 2198-3844
IngestDate Tue Sep 17 21:13:46 EDT 2024
Fri Oct 25 22:56:42 EDT 2024
Thu Sep 26 16:47:28 EDT 2024
Wed Oct 16 00:45:45 EDT 2024
Sat Aug 24 00:57:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords hydrogels
energy recovery
osmotic engine
polyelectrolytes
poly(acrylic acid)
Language English
License Attribution
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4344-aee11345f040039bca92de91fea20b84b7a17e3b8131a5c9a9f70830203e23183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5604390/
PMID 28932675
PQID 1941372590
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5604390
proquest_miscellaneous_1941372590
crossref_primary_10_1002_advs_201700112
pubmed_primary_28932675
wiley_primary_10_1002_advs_201700112_ADVS364
PublicationCentury 2000
PublicationDate September 2017
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2017
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2010; 31
1966; 210
2013; 28
1962; 182
1998
1975
2014; 48
1953
2014; 47
1996
1996; 73
2011; 32
2013; 140
2004
2000; 1
2008; 224
1992
2005; 44
1955; 15
1987; 20
1990
2001; 2
2013
2007; 46
1998; 36
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_12_1
Yin Y.‐L. (e_1_2_7_20_1) 1992
e_1_2_7_11_1
Schröder U. P. (e_1_2_7_19_1) 1996
Höpfner J. (e_1_2_7_6_1) 2013; 140
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
(e_1_2_7_26_1) 2013
e_1_2_7_21_1
Burchard W. (e_1_2_7_15_1) 1990
Elliott M. (e_1_2_7_16_1) 2004
Flory P. (e_1_2_7_14_1) 1953
Buchholz F. L. (e_1_2_7_2_1) 1998
Williams A. (e_1_2_7_10_1) 2013; 28
References_xml – volume: 182
  start-page: 40
  year: 1962
  publication-title: Kolloid Z. Z. Polym.
– volume: 140
  start-page: 247
  year: 2013
  publication-title: Prog. Coll. Polym. Sci.
– volume: 73
  start-page: 512
  year: 1996
  publication-title: J. Chem. Educ.
– volume: 48
  start-page: 7157
  year: 2014
  publication-title: Environ. Sci. Technol.
– year: 1996
– year: 1975
– volume: 20
  start-page: 3060
  year: 1987
  publication-title: Macromolecules
– volume: 15
  start-page: 69
  year: 1955
  publication-title: J. Polym. Sci.
– year: 1990
– volume: 46
  start-page: 359
  year: 2007
  publication-title: Ind. Eng. Chem. Res.
– year: 1992
– year: 1998
– volume: 32
  start-page: 1600
  year: 2011
  publication-title: Macromol. Rapid Commun.
– volume: 224
  start-page: 64
  year: 2008
  publication-title: Desalination
– volume: 28
  start-page: 2
  year: 2013
  publication-title: Water & Wastewater International
– volume: 210
  start-page: 568
  year: 1966
  publication-title: Nature
– volume: 2
  start-page: 195
  year: 2001
  publication-title: Biomacromolecules
– year: 2004
– volume: 1
  start-page: 84
  year: 2000
  publication-title: Biomacromolecules
– volume: 36
  start-page: 1313
  year: 1998
  publication-title: J. Polym. Sci. B: Polym. Phys.
– year: 1953
– volume: 44
  start-page: 724
  year: 2005
  publication-title: Angew. Chem., Int. Ed.
– volume: 47
  start-page: 4251
  year: 2014
  publication-title: Macromolecules
– volume: 31
  start-page: 1337
  year: 2010
  publication-title: Macromol. Rapid Commun.
– year: 2013
– ident: e_1_2_7_11_1
  doi: 10.1016/j.desal.2007.02.080
– ident: e_1_2_7_17_1
  doi: 10.1021/ie061077k
– volume: 28
  start-page: 2
  year: 2013
  ident: e_1_2_7_10_1
  publication-title: Water & Wastewater International
  contributor:
    fullname: Williams A.
– volume-title: Superabsorbent Polymers
  year: 2004
  ident: e_1_2_7_16_1
  contributor:
    fullname: Elliott M.
– ident: e_1_2_7_21_1
  doi: 10.1021/ma00178a020
– ident: e_1_2_7_23_1
  doi: 10.1002/marc.201100342
– ident: e_1_2_7_13_1
  doi: 10.1021/es500909q
– volume-title: ASTM International, Standard Practice for the Preparation of Substitute Ocean Water
  year: 2013
  ident: e_1_2_7_26_1
– volume-title: Modern Superabsorbent Polymer Technology
  year: 1998
  ident: e_1_2_7_2_1
  contributor:
    fullname: Buchholz F. L.
– volume: 140
  start-page: 247
  year: 2013
  ident: e_1_2_7_6_1
  publication-title: Prog. Coll. Polym. Sci.
  contributor:
    fullname: Höpfner J.
– ident: e_1_2_7_7_1
  doi: 10.1007/BF01499739
– volume-title: Physical Networks: Polymers and Gels
  year: 1990
  ident: e_1_2_7_15_1
  contributor:
    fullname: Burchard W.
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.200462226
– ident: e_1_2_7_4_1
  doi: 10.1002/pol.1955.120157906
– volume-title: Principles of Polymer Chemistry
  year: 1953
  ident: e_1_2_7_14_1
  contributor:
    fullname: Flory P.
– ident: e_1_2_7_18_1
  doi: 10.1021/ma500558v
– ident: e_1_2_7_25_1
  doi: 10.1021/bm0056153
– ident: e_1_2_7_3_1
  doi: 10.1021/ed073p512
– ident: e_1_2_7_5_1
  doi: 10.1002/marc.201000058
– volume-title: Polyelectrolyte Gels – Properties, Preparation, and Applications
  year: 1992
  ident: e_1_2_7_20_1
  contributor:
    fullname: Yin Y.‐L.
– ident: e_1_2_7_8_1
  doi: 10.1038/210568a0
– ident: e_1_2_7_1_1
  doi: 10.1002/(SICI)1099-0488(199806)36:8<1313::AID-POLB6>3.0.CO;2-S
– ident: e_1_2_7_9_1
– ident: e_1_2_7_12_1
– ident: e_1_2_7_24_1
  doi: 10.1021/bm9905031
– volume-title: Physical Properties of Polyelectrolyte Gels
  year: 1996
  ident: e_1_2_7_19_1
  contributor:
    fullname: Schröder U. P.
SSID ssj0001537418
Score 2.3136876
Snippet Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a...
Poly(acrylic acid)-based hydrogels can swell up to 100-1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1700112
SubjectTerms energy recovery
hydrogels
osmotic engine
poly(acrylic acid)
polyelectrolytes
SummonAdditionalLinks – databaseName: Wiley Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bS8MwFMaDzBdfxHmdNyIIbmBZm6Rr69sUxxCmAx3srSRpqoPRju4C--89p92VPYivTQghX5LzJU1-IeRecqGQAmNFPBaW8KRjSb8BC9c4EBHywX0bLzh33hvtnnjru_2NW_wFH2K14YYjI5-vcYBLNa6voaEymiFuG_lyDj4zvI_YGKTnM9Fd77K4HPEs-MIcrK4t7guxJDfarL5dxHZk2rGbu6cmN91sHo5aR-Rw4SNpsxC-TPZMckzKi5E6ptUFTrp2QqYf-VM9mhbowSeahyc8Apd802VacUswM3SQTFLakVhFnY4gpWPwbjBKSVtppg2dDSTtpsN5tamz-RByNPUgqtFnCIcRbc-jLP2GeHtKeq3Xr5e2tXhswdKCC2FJYxyHCzfGUc0DpWXAIhM4sZHMVr5QIKNnuPId7khXBzKIPRvhYTY3DCeGM1JK0sRcEGqYhnb2NcyzDRErrtBUxcwgeVV7AauQh2VDh6OCqREW9GQWoiThSpIKuVvqEEK3x38ZMjHpdBw6AURfD9ZudoWcF7qsyoI1JJhSz60Qb0uxVQZEam-nJIOfHK0N_g8cGpT5mGv7R_VCsA6fvCEu_5f9ihzgt-Kk2jUpTbKpuQFrM1G3ee_9BRa_8ao
  priority: 102
  providerName: Wiley-Blackwell
Title Osmotic Engine: Translating Osmotic Pressure into Macroscopic Mechanical Force via Poly(Acrylic Acid) Based Hydrogels
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201700112
https://www.ncbi.nlm.nih.gov/pubmed/28932675
https://search.proquest.com/docview/1941372590
https://pubmed.ncbi.nlm.nih.gov/PMC5604390
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL003cteRrtPr1tQYbAW5saWlNjeW1oawiBd2Fbom5FkuTOkdnCTQv797pXtkNKHQZ8lZOFzpXNk33sE8EUJqckFxs9ELn0ZqdBX8QgPrnkiM_IHjwMqcJ5djabX8sfN8GYPhl0tjEvaN7o4Kxd3Z2Xx1-VWLu_MoMsTG8xnF8jSyKPBoAc9DNCdI3pTGizIkaUzaAz4QGUPZMxNTnSoLsj-NybVQqmFu1z0RGA-zZPc1a-OgCYH8KpVjmzczPAQ9mz5Gg7btXnPTloD6dM3sP7pLucxrDEb_M4cIVHSW3nLuramLrC2rChXFZspmqKpltgys1QNTOCxSVUbyx4KxebVYnMyNvVmgT3GpshO2TkSYMamm6yubpFh38L15PLPxdRvr1fwjRRS-sraMBRymNM6Fok2KuGZTcLcKh7oWGoELrJCx6EI1dAkKsmjgOzCAmE5bQXvYL-sSvsBmOUmxnOewZ11JHMtNMmonFvyWjVRwj342r3odNm4aKSNXzJPCZ10i44Hxx0OKQY6_b1Qpa3W92mYIN9GeFoLPHjf4LIdqwPUg-gRYtsOZKL9uAVjy5lpt7HkwTeH7X-ml6JY-C1G8uOzH3QEL2m0Jk3tE-yv6rX9jLpmpfvQ43Lehxfnl1fzX333daDvYvsfzmn5yQ
link.rule.ids 230,315,730,783,787,867,888,11574,27936,27937,33757,46064,46488,50826,50935,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bS8MwFMaDzAd9Ee_OawTBDSxrm_Tm2xTHvHQO3MC3kqapDqQd3Sbsv_ecXqbDB_E5IYR-OTlf0uQXQi4E4yFSYLSIxVzjjjA04dqwcI09HiEf3NXxgrPfs7tD_vBqVacJ8S5MwYdYbLhhZOTzNQY4bki3vqmhIvpE3jYC5gx8Z3iV2zAaEe7M-9_bLBZDPgs-MQfLa425nFfoRt1sLTexnJp--c3fxyZ_2tk8H3U2yUZpJGm7UH6LrKhkm2yVoTqhjZIn3dwhs-f8rR5JC_bgNc3zE56BS95oVVZcE8wUHSXTlPoCuyjTMZT4Ci8Ho5a0k2ZS0c-RoP30Y95oy2z-ATXachQ16Q3kw4h251GWvkHC3SXDzt3gtquVry1okjPONaGUYTBuxRjWzAul8MxIeUashKmHLg9BR0ex0DWYISzpCS92dKSH6UyZODPskVqSJuqAUGVK-M6uhInW5nHIQnRVsakQvSodz6yTy-pDB-MCqhEU-GQzQEmChSR1cl7pEMC4x58ZIlHpbBIYHqRfBxZvep3sF7os2oJFJLhSx6oTZ0mxRQVkai-XJKP3nK0NBhAsGrR5lWv7R_cC8A4vzOaH_6t-Rta6A_8peLrvPR6RdSwvjq0dk9o0m6kT8DnT8DQfyV8-P_Ue
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bS8MwFMaDKIgv4rzOawTBDSy2Sbq2vs3LmJfNgQq-lTRN52C0o7vA_nvPaXdlD-JzQgj5enK-pMkvhFxJLgKkwBghj4QhHGkZ0q3AwjXyRIh8cNfEC86NZqX-JV6-7e-FW_w5H2K24YaRkc3XGOC9MLqdQ0NlOELcNvLlLHxmeEOAF0d6PhOt-S6LzRHPgi_Mwera4K4QU3KjyW6Xm1jOTCt2c_XU5KKbzdJRbYdsT3wkrebCF8iajndJYRKpfVqa4KTLe2T4nj3Vo2iOHryjWXrCI3Bxm07L8luCqaadeJDQhsQuqqQHJQ2Nd4NRSlpLUqXpqCNpK-mOS1WVjrtQo6o6YZneQzoMaX0cpkkb8u0--ao9fT7UjcljC4YSXAhDam1ZXNgRRjX3AiU9FmrPirRkZuCKAGR0NA9ci1vSVp70IsdEeJjJNcOJ4YCsx0msjwjVTME4uwrm2YqIAh6gqYqYRvKqcjxWJNfTgfZ7OVPDz-nJzEdJ_JkkRXI51cGHzx7_ZchYJ8O-b3mQfR1Yu5lFcpjrMmsL1pBgSh27SJwlxWYVEKm9XBJ3fjK0Nvg_cGjQ5k2m7R_d88E6fPCKOP5f9Quy2Xqs-W_PzdcTsoXF-aG1U7I-SIf6DFzOIDjPPuRfpRr0Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osmotic+Engine%3A+Translating+Osmotic+Pressure+into+Macroscopic+Mechanical+Force+via+Poly%28Acrylic+Acid%29+Based+Hydrogels&rft.jtitle=Advanced+science&rft.au=Arens%2C+Lukas&rft.au=Wei%C3%9Fenfeld%2C+Felix&rft.au=Klein%2C+Christopher+O.&rft.au=Schlag%2C+Karin&rft.date=2017-09-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=4&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.201700112&rft.externalDBID=10.1002%252Fadvs.201700112&rft.externalDocID=ADVS364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon