Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents

Aim: Biotic interactions — within guilds or across trophic levels — have widely been ignored in species distribution models (SDMs). This synthesis outlines the development of 'species interaction distribution models' (SIDMs), which aim to incorporate multispecies interactions at large spat...

Full description

Saved in:
Bibliographic Details
Published inJournal of biogeography Vol. 39; no. 12; pp. 2163 - 2178
Main Authors Kissling, W. D., Dormann, Carsten F., Groeneveld, Jürgen, Hickler, Thomas, Kühn, Ingolf, McInerny, Greg J., Montoya, José M., Römermann, Christine, Schiffers, Katja, Schurr, Frank M., Singer, Alexander, Svenning, Jens-Christian, Zimmermann, Niklaus E., O'Hara, Robert B.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.12.2012
Blackwell Publishing
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim: Biotic interactions — within guilds or across trophic levels — have widely been ignored in species distribution models (SDMs). This synthesis outlines the development of 'species interaction distribution models' (SIDMs), which aim to incorporate multispecies interactions at large spatial extents using interaction matrices. Location: Local to global. Methods: We review recent approaches for extending classical SDMs to incorporate biotic interactions, and identify some methodological and conceptual limitations. To illustrate possible directions for conceptual advancement we explore three principal ways of modelling multispecies interactions using interaction matrices: simple qualitative linkages between species, quantitative interaction coefficients reflecting interaction strengths, and interactions mediated by interaction currencies. We explain methodological advancements for static interaction data and multispecies time series, and outline methods to reduce complexity when modelling multispecies interactions. Results: Classical SDMs ignore biotic interactions and recent SDM extensions only include the unidirectional influence of one or a few species. However, novel methods using error matrices in multivariate regression models allow interactions between multiple species to be modelled explicitly with spatial co-occurrence data. If time series are available, multivariate versions of population dynamic models can be applied that account for the effects and relative importance of species interactions and environmental drivers. These methods need to be extended by incorporating the non-stationarity in interaction coefficients across space and time, and are challenged by the limited empirical knowledge on spatio-temporal variation in the existence and strength of species interactions. Model complexity may be reduced by: (1) using prior ecological knowledge to set a subset of interaction coefficients to zero, (2) modelling guilds and functional groups rather than individual species, and (3) modelling interaction currencies and species' effect and response traits. Main conclusions: There is great potential for developing novel approaches that incorporate multispecies interactions into the projection of species distributions and community structure at large spatial extents. Progress can be made by: (1) developing statistical models with interaction matrices for multispecies co-occurrence datasets across large-scale environmental gradients, (2) testing the potential and limitations of methods for complexity reduction, and (3) sampling and monitoring comprehensive spatio-temporal data on biotic interactions in multispecies communities.
AbstractList Aim  Biotic interactions – within guilds or across trophic levels – have widely been ignored in species distribution models (SDMs). This synthesis outlines the development of ‘species interaction distribution models’ (SIDMs), which aim to incorporate multispecies interactions at large spatial extents using interaction matrices. Location  Local to global. Methods  We review recent approaches for extending classical SDMs to incorporate biotic interactions, and identify some methodological and conceptual limitations. To illustrate possible directions for conceptual advancement we explore three principal ways of modelling multispecies interactions using interaction matrices: simple qualitative linkages between species, quantitative interaction coefficients reflecting interaction strengths, and interactions mediated by interaction currencies. We explain methodological advancements for static interaction data and multispecies time series, and outline methods to reduce complexity when modelling multispecies interactions. Results  Classical SDMs ignore biotic interactions and recent SDM extensions only include the unidirectional influence of one or a few species. However, novel methods using error matrices in multivariate regression models allow interactions between multiple species to be modelled explicitly with spatial co‐occurrence data. If time series are available, multivariate versions of population dynamic models can be applied that account for the effects and relative importance of species interactions and environmental drivers. These methods need to be extended by incorporating the non‐stationarity in interaction coefficients across space and time, and are challenged by the limited empirical knowledge on spatio‐temporal variation in the existence and strength of species interactions. Model complexity may be reduced by: (1) using prior ecological knowledge to set a subset of interaction coefficients to zero, (2) modelling guilds and functional groups rather than individual species, and (3) modelling interaction currencies and species’ effect and response traits. Main conclusions  There is great potential for developing novel approaches that incorporate multispecies interactions into the projection of species distributions and community structure at large spatial extents. Progress can be made by: (1) developing statistical models with interaction matrices for multispecies co‐occurrence datasets across large‐scale environmental gradients, (2) testing the potential and limitations of methods for complexity reduction, and (3) sampling and monitoring comprehensive spatio‐temporal data on biotic interactions in multispecies communities.
Abstract Aim  Biotic interactions – within guilds or across trophic levels – have widely been ignored in species distribution models (SDMs). This synthesis outlines the development of ‘species interaction distribution models’ (SIDMs), which aim to incorporate multispecies interactions at large spatial extents using interaction matrices. Location  Local to global. Methods  We review recent approaches for extending classical SDMs to incorporate biotic interactions, and identify some methodological and conceptual limitations. To illustrate possible directions for conceptual advancement we explore three principal ways of modelling multispecies interactions using interaction matrices: simple qualitative linkages between species, quantitative interaction coefficients reflecting interaction strengths, and interactions mediated by interaction currencies. We explain methodological advancements for static interaction data and multispecies time series, and outline methods to reduce complexity when modelling multispecies interactions. Results  Classical SDMs ignore biotic interactions and recent SDM extensions only include the unidirectional influence of one or a few species. However, novel methods using error matrices in multivariate regression models allow interactions between multiple species to be modelled explicitly with spatial co‐occurrence data. If time series are available, multivariate versions of population dynamic models can be applied that account for the effects and relative importance of species interactions and environmental drivers. These methods need to be extended by incorporating the non‐stationarity in interaction coefficients across space and time, and are challenged by the limited empirical knowledge on spatio‐temporal variation in the existence and strength of species interactions. Model complexity may be reduced by: (1) using prior ecological knowledge to set a subset of interaction coefficients to zero, (2) modelling guilds and functional groups rather than individual species, and (3) modelling interaction currencies and species’ effect and response traits. Main conclusions  There is great potential for developing novel approaches that incorporate multispecies interactions into the projection of species distributions and community structure at large spatial extents. Progress can be made by: (1) developing statistical models with interaction matrices for multispecies co‐occurrence datasets across large‐scale environmental gradients, (2) testing the potential and limitations of methods for complexity reduction, and (3) sampling and monitoring comprehensive spatio‐temporal data on biotic interactions in multispecies communities.
Aim Biotic interactions - within guilds or across trophic levels - have widely been ignored in species distribution models (SDMs). This synthesis outlines the development of 'species interaction distribution models' (SIDMs), which aim to incorporate multispecies interactions at large spatial extents using interaction matrices. Location Local to global. Methods We review recent approaches for extending classical SDMs to incorporate biotic interactions, and identify some methodological and conceptual limitations. To illustrate possible directions for conceptual advancement we explore three principal ways of modelling multispecies interactions using interaction matrices: simple qualitative linkages between species, quantitative interaction coefficients reflecting interaction strengths, and interactions mediated by interaction currencies. We explain methodological advancements for static interaction data and multispecies time series, and outline methods to reduce complexity when modelling multispecies interactions. Results Classical SDMs ignore biotic interactions and recent SDM extensions only include the unidirectional influence of one or a few species. However, novel methods using error matrices in multivariate regression models allow interactions between multiple species to be modelled explicitly with spatial co-occurrence data. If time series are available, multivariate versions of population dynamic models can be applied that account for the effects and relative importance of species interactions and environmental drivers. These methods need to be extended by incorporating the non-stationarity in interaction coefficients across space and time, and are challenged by the limited empirical knowledge on spatio-temporal variation in the existence and strength of species interactions. Model complexity may be reduced by: (1) using prior ecological knowledge to set a subset of interaction coefficients to zero, (2) modelling guilds and functional groups rather than individual species, and (3) modelling interaction currencies and species' effect and response traits. Main conclusions There is great potential for developing novel approaches that incorporate multispecies interactions into the projection of species distributions and community structure at large spatial extents. Progress can be made by: (1) developing statistical models with interaction matrices for multispecies co-occurrence datasets across large-scale environmental gradients, (2) testing the potential and limitations of methods for complexity reduction, and (3) sampling and monitoring comprehensive spatio-temporal data on biotic interactions in multispecies communities.
Aim Biotic interactions - within guilds or across trophic levels - have widely been ignored in species distribution models (SDMs). This synthesis outlines the development of 'species interaction distribution models' (SIDMs), which aim to incorporate multispecies interactions at large spatial extents using interaction matrices. Location Local to global. Methods We review recent approaches for extending classical SDMs to incorporate biotic interactions, and identify some methodological and conceptual limitations. To illustrate possible directions for conceptual advancement we explore three principal ways of modelling multispecies interactions using interaction matrices: simple qualitative linkages between species, quantitative interaction coefficients reflecting interaction strengths, and interactions mediated by interaction currencies. We explain methodological advancements for static interaction data and multispecies time series, and outline methods to reduce complexity when modelling multispecies interactions. Results Classical SDMs ignore biotic interactions and recent SDM extensions only include the unidirectional influence of one or a few species. However, novel methods using error matrices in multivariate regression models allow interactions between multiple species to be modelled explicitly with spatial co-occurrence data. If time series are available, multivariate versions of population dynamic models can be applied that account for the effects and relative importance of species interactions and environmental drivers. These methods need to be extended by incorporating the non-stationarity in interaction coefficients across space and time, and are challenged by the limited empirical knowledge on spatio-temporal variation in the existence and strength of species interactions. Model complexity may be reduced by: (1) using prior ecological knowledge to set a subset of interaction coefficients to zero, (2) modelling guilds and functional groups rather than individual species, and (3) modelling interaction currencies and species' effect and response traits. Main conclusions There is great potential for developing novel approaches that incorporate multispecies interactions into the projection of species distributions and community structure at large spatial extents. Progress can be made by: (1) developing statistical models with interaction matrices for multispecies co-occurrence datasets across large-scale environmental gradients, (2) testing the potential and limitations of methods for complexity reduction, and (3) sampling and monitoring comprehensive spatio-temporal data on biotic interactions in multispecies communities. [PUBLICATION ABSTRACT]
Author McInerny, Greg J.
Montoya, José M.
Kühn, Ingolf
Hickler, Thomas
Singer, Alexander
Zimmermann, Niklaus E.
Groeneveld, Jürgen
Dormann, Carsten F.
Schiffers, Katja
Svenning, Jens-Christian
Römermann, Christine
O'Hara, Robert B.
Kissling, W. D.
Schurr, Frank M.
Author_xml – sequence: 1
  givenname: W. D.
  surname: Kissling
  fullname: Kissling, W. D.
  email: danielkissling@web.de
  organization: Ecoinformatics & Biodiversity Group, Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
– sequence: 2
  givenname: Carsten F.
  surname: Dormann
  fullname: Dormann, Carsten F.
  organization: Biometry and Environmental System Analysis, Faculty of Forest and Environmental Sciences, University of Freiburg, 79106 Freiburg, Germany
– sequence: 3
  givenname: Jürgen
  surname: Groeneveld
  fullname: Groeneveld, Jürgen
  organization: Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling, 04318 Leipzig, Germany
– sequence: 4
  givenname: Thomas
  surname: Hickler
  fullname: Hickler, Thomas
  organization: Biodiversity and Climate Research Centre (BiK-F), 60325 Frankfurt am Main, Germany
– sequence: 5
  givenname: Ingolf
  surname: Kühn
  fullname: Kühn, Ingolf
  organization: Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, 06120 Halle, Germany
– sequence: 6
  givenname: Greg J.
  surname: McInerny
  fullname: McInerny, Greg J.
  organization: Computational Ecology and Environmental Science Group, Computational Science Laboratory, Microsoft Research, Cambridge CB3 0FB, UK
– sequence: 7
  givenname: José M.
  surname: Montoya
  fullname: Montoya, José M.
  organization: Instituto de Ciencias del Mar, Consejo Superior de Investigaciones Científicas, E-08003 Barcelona, Spain
– sequence: 8
  givenname: Christine
  surname: Römermann
  fullname: Römermann, Christine
  organization: Institute for Physical Geography, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
– sequence: 9
  givenname: Katja
  surname: Schiffers
  fullname: Schiffers, Katja
  organization: Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université J. Fourier, 38041 Grenoble Cedex 9, France
– sequence: 10
  givenname: Frank M.
  surname: Schurr
  fullname: Schurr, Frank M.
  organization: Institute for Physical Geography, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
– sequence: 11
  givenname: Alexander
  surname: Singer
  fullname: Singer, Alexander
  organization: Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling, 04318 Leipzig, Germany
– sequence: 12
  givenname: Jens-Christian
  surname: Svenning
  fullname: Svenning, Jens-Christian
  organization: Ecoinformatics & Biodiversity Group, Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
– sequence: 13
  givenname: Niklaus E.
  surname: Zimmermann
  fullname: Zimmermann, Niklaus E.
  organization: Landscape Dynamics, Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland
– sequence: 14
  givenname: Robert B.
  surname: O'Hara
  fullname: O'Hara, Robert B.
  organization: Biodiversity and Climate Research Centre (BiK-F), 60325 Frankfurt am Main, Germany
BookMark eNqNkctu1DAUhi3USkxbHgHJEhs2Cb7EcbJgAVUphRY2g1haTnIyOCR2sD10-vZ1GjSLrvDG5_j_P-tcztCJdRYQwpTkNJ13Q055KTJW1nXOCKU5YWXJ88MLtDkKJ2hDOBEZYZK8RGchDISQWvBig-zW3WvfBWzdXxixnmfvdPsLAo4OT66DcTR2hxvjommxsRG8bqNxNqQET_sxmjBDaxKgQ4CpGfVuiSMetd8BDrOORo8YDhFsDBfotNdjgFf_7nP049PV9vJzdvv9-ubyw23WFrzgWUkZLRpJBa172WpNGs0BGtlVnSjrDqAEDrpgvOI9F0tSdz1UdQO07NMjP0dv139TO3_2EKKaTGhTM9qC2wdFmZCykJKIZH3zzDq4vbepOkWppEUleE2Sq1pdrXcheOjV7M2k_YOiRC2LUINa5q2WeatlEeppEeqQ0Pcrem9GePhvTn35eLNEiX-98kOIzh95xrkoBFtKy1bdhAiHo679b1VKLoX6-e1aEXm3FVRy9ZU_AqNEqt4
CODEN JBIODN
CitedBy_id crossref_primary_10_1111_ddi_13498
crossref_primary_10_1111_gcb_12469
crossref_primary_10_1371_journal_pbio_1002323
crossref_primary_10_1111_gcb_12466
crossref_primary_10_1111_gcb_12467
crossref_primary_10_1890_12_1482_1
crossref_primary_10_1002_ecy_1944
crossref_primary_10_1111_acv_12894
crossref_primary_10_1111_jbi_12009
crossref_primary_10_1007_s00035_013_0117_4
crossref_primary_10_1111_ecog_04006
crossref_primary_10_3389_fevo_2021_700962
crossref_primary_10_1111_1365_2656_12578
crossref_primary_10_1098_rspb_2013_2495
crossref_primary_10_1111_ecog_01892
crossref_primary_10_1098_rspb_2015_0516
crossref_primary_10_1111_jbi_12258
crossref_primary_10_1111_jbi_13463
crossref_primary_10_1111_geb_12464
crossref_primary_10_1016_j_jenvman_2019_109479
crossref_primary_10_1038_s41598_021_83457_w
crossref_primary_10_1002_ecs2_1349
crossref_primary_10_3897_BDJ_9_e61866
crossref_primary_10_1007_s13253_022_00520_3
crossref_primary_10_1002_ece3_784
crossref_primary_10_1111_geb_12216
crossref_primary_10_1007_s12080_015_0281_9
crossref_primary_10_1002_ecy_2920
crossref_primary_10_1111_j_1600_0706_2013_00706_x
crossref_primary_10_1073_pnas_1918363117
crossref_primary_10_1016_j_gecco_2023_e02441
crossref_primary_10_1111_jbi_12485
crossref_primary_10_1111_jbi_13699
crossref_primary_10_1111_2041_210X_12359
crossref_primary_10_1002_rse2_7
crossref_primary_10_1111_2041_210X_12357
crossref_primary_10_1016_j_funeco_2013_10_003
crossref_primary_10_1002_ecm_1545
crossref_primary_10_1371_journal_pone_0280922
crossref_primary_10_1098_rspb_2017_1841
crossref_primary_10_1111_ele_12401
crossref_primary_10_1371_journal_pone_0199292
crossref_primary_10_1038_srep35303
crossref_primary_10_1093_conphys_cov056
crossref_primary_10_1002_ece3_897
crossref_primary_10_1111_ecog_01557
crossref_primary_10_1111_1365_2745_12713
crossref_primary_10_1111_jbi_12106
crossref_primary_10_1016_j_ecolmodel_2015_12_016
crossref_primary_10_1093_biolinnean_blac134
crossref_primary_10_1002_ece3_1387
crossref_primary_10_1111_ddi_13834
crossref_primary_10_1016_j_ecolmodel_2018_02_002
crossref_primary_10_1111_ecog_00580
crossref_primary_10_1016_j_ecolmodel_2017_07_027
crossref_primary_10_1111_jbi_12234
crossref_primary_10_1007_s11284_015_1263_5
crossref_primary_10_1556_168_2019_20_3_4
crossref_primary_10_1016_j_actao_2020_103526
crossref_primary_10_1111_brv_12222
crossref_primary_10_1016_j_landusepol_2015_10_004
crossref_primary_10_1086_679440
crossref_primary_10_1002_ajb2_1809
crossref_primary_10_3354_cr01463
crossref_primary_10_1007_s10531_017_1379_8
crossref_primary_10_1093_icb_icx057
crossref_primary_10_1002_eap_1434
crossref_primary_10_1111_geb_12678
crossref_primary_10_1590_0102_33062018abb0220
crossref_primary_10_1111_ddi_12872
crossref_primary_10_1016_j_ecoinf_2024_102644
crossref_primary_10_1111_ele_12770
crossref_primary_10_1002_ecy_2221
crossref_primary_10_1007_s10764_015_9875_8
crossref_primary_10_1111_jbi_12224
crossref_primary_10_1111_2041_210X_13106
crossref_primary_10_1111_geb_12311
crossref_primary_10_1111_jav_01225
crossref_primary_10_1016_j_pt_2014_02_003
crossref_primary_10_1111_ecog_04728
crossref_primary_10_1111_ddi_12520
crossref_primary_10_1111_ddi_12406
crossref_primary_10_1111_j_1365_2699_2012_02752_x
crossref_primary_10_1038_s41598_018_28291_3
crossref_primary_10_1080_22221751_2019_1661217
crossref_primary_10_1139_cjfas_2015_0598
crossref_primary_10_1093_icesjms_fsu107
crossref_primary_10_1186_s13071_015_0915_1
crossref_primary_10_1016_j_jnc_2016_09_005
crossref_primary_10_1080_00063657_2017_1358251
crossref_primary_10_1111_j_1600_0587_2013_00345_x
crossref_primary_10_1016_j_ecolmodel_2014_06_005
crossref_primary_10_1111_1365_2664_12862
crossref_primary_10_1186_s12898_020_00308_4
crossref_primary_10_1016_j_scitotenv_2018_03_212
crossref_primary_10_1111_ddi_12895
crossref_primary_10_1126_science_1222732
crossref_primary_10_1111_ele_12757
crossref_primary_10_1111_ecog_03625
crossref_primary_10_24072_pci_ecology_100082
crossref_primary_10_1016_j_apm_2018_09_032
crossref_primary_10_1111_nyas_12211
crossref_primary_10_1111_1365_2745_12049
crossref_primary_10_1111_aec_12569
crossref_primary_10_1111_jbi_12200
crossref_primary_10_1111_oik_07502
crossref_primary_10_1371_journal_pone_0126524
crossref_primary_10_3897_natureconservation_6_6498
crossref_primary_10_1111_nph_12929
crossref_primary_10_1111_2041_210X_12397
crossref_primary_10_1002_ecm_1469
crossref_primary_10_1016_j_seares_2013_04_008
crossref_primary_10_1038_s41598_020_80027_4
crossref_primary_10_1038_s41598_017_07009_x
crossref_primary_10_3389_fmars_2016_00202
crossref_primary_10_1002_ece3_4691
crossref_primary_10_1016_j_ppees_2013_03_003
crossref_primary_10_1111_oik_01426
crossref_primary_10_1126_science_1237184
crossref_primary_10_1016_j_ecss_2018_05_001
crossref_primary_10_1016_j_tree_2021_01_002
crossref_primary_10_1111_ele_12043
crossref_primary_10_1111_jbi_12794
crossref_primary_10_1111_ecog_02441
crossref_primary_10_1111_jbi_12435
crossref_primary_10_1111_2041_210X_12723
crossref_primary_10_1111_1365_2745_13280
crossref_primary_10_1111_j_1600_0587_2013_00077_x
crossref_primary_10_1080_09670874_2018_1533664
crossref_primary_10_1111_ecog_00819
crossref_primary_10_1016_j_ecocom_2014_01_002
crossref_primary_10_1016_j_tree_2015_09_007
crossref_primary_10_1038_s41559_023_02287_3
crossref_primary_10_1111_geb_12357
crossref_primary_10_1890_14_0739_1
crossref_primary_10_1111_1365_2656_13297
crossref_primary_10_1111_oik_09818
crossref_primary_10_1086_683606
crossref_primary_10_1111_2041_210X_12731
crossref_primary_10_3390_rs10060814
crossref_primary_10_1016_j_biocon_2014_09_042
crossref_primary_10_1111_j_1557_9263_2012_00361_x
crossref_primary_10_1002_ece3_6096
crossref_primary_10_1111_2041_210X_12180
crossref_primary_10_1111_ecog_00845
crossref_primary_10_1007_s11258_013_0266_y
crossref_primary_10_1111_geb_12741
crossref_primary_10_1111_nyas_12264
crossref_primary_10_1111_ecog_01134
crossref_primary_10_1111_ecog_03315
crossref_primary_10_1371_journal_pone_0194650
crossref_primary_10_1093_cz_zow069
crossref_primary_10_1111_ecog_05973
crossref_primary_10_1111_fwb_12580
crossref_primary_10_1111_2041_210X_12502
crossref_primary_10_1111_ecog_01490
crossref_primary_10_1111_2041_210X_12501
crossref_primary_10_1111_ecog_06143
crossref_primary_10_1098_rstb_2012_0238
crossref_primary_10_1016_j_biocon_2016_11_008
crossref_primary_10_1111_jeb_12619
crossref_primary_10_1111_gcb_12853
crossref_primary_10_1111_ddi_12694
crossref_primary_10_1016_j_ecolmodel_2015_06_032
crossref_primary_10_1016_j_jmarsys_2014_03_003
crossref_primary_10_1111_jbi_13606
crossref_primary_10_1111_ecog_01129
crossref_primary_10_1111_jbi_13608
crossref_primary_10_1111_oik_01559
crossref_primary_10_1111_ecog_00954
crossref_primary_10_1016_j_tree_2017_03_008
crossref_primary_10_1002_ece3_4800
crossref_primary_10_1111_jvs_12232
crossref_primary_10_1111_oik_08756
crossref_primary_10_1007_s41745_021_00237_1
crossref_primary_10_1111_jvs_12597
crossref_primary_10_1007_s00114_013_1132_4
crossref_primary_10_1016_j_tree_2016_08_003
crossref_primary_10_1038_s41598_019_56515_7
crossref_primary_10_1086_682336
crossref_primary_10_1007_s10841_017_0001_4
crossref_primary_10_4236_oje_2023_137030
crossref_primary_10_1146_annurev_ecolsys_112414_054441
crossref_primary_10_1111_geb_12967
crossref_primary_10_1111_geb_12726
crossref_primary_10_1111_ecog_01714
crossref_primary_10_1111_j_1600_0587_2013_00643_x
crossref_primary_10_1139_cjfas_2017_0150
crossref_primary_10_1007_s10530_018_1864_3
crossref_primary_10_1111_oik_03893
crossref_primary_10_1002_ecm_1370
crossref_primary_10_1111_ecog_02480
crossref_primary_10_1111_ecog_03571
crossref_primary_10_1111_j_1600_0587_2013_00574_x
crossref_primary_10_1111_ecog_02481
crossref_primary_10_1111_nph_19453
crossref_primary_10_3389_fmars_2020_00300
crossref_primary_10_1002_ece3_3294
crossref_primary_10_1111_bij_12567
crossref_primary_10_1111_ele_12372
crossref_primary_10_1007_s11258_016_0598_5
crossref_primary_10_1038_nclimate1954
crossref_primary_10_1016_j_jasrep_2017_11_016
crossref_primary_10_1016_j_foreco_2022_120356
crossref_primary_10_3354_meps13163
crossref_primary_10_1086_695984
crossref_primary_10_1103_PhysRevE_109_024309
crossref_primary_10_1111_gcb_13167
crossref_primary_10_3897_rio_3_e14944
crossref_primary_10_1111_geb_12666
crossref_primary_10_1111_geb_12422
crossref_primary_10_1002_ece3_4399
crossref_primary_10_1016_j_ecolmodel_2020_108956
crossref_primary_10_1007_s10980_018_0622_3
crossref_primary_10_1111_2041_210X_13518
crossref_primary_10_1086_679505
crossref_primary_10_1655_HERPETOLOGICA_D_17_00064_1
crossref_primary_10_1007_s10336_022_01970_9
crossref_primary_10_1371_journal_pone_0128675
crossref_primary_10_1016_j_rse_2014_04_026
crossref_primary_10_1016_j_ecolmodel_2016_06_008
crossref_primary_10_3390_d15010061
crossref_primary_10_1111_fwb_13476
crossref_primary_10_1126_sciadv_aat4858
crossref_primary_10_1111_brv_12366
crossref_primary_10_1111_1365_2435_14429
crossref_primary_10_1111_2041_210X_14050
crossref_primary_10_1016_j_ecolmodel_2015_04_003
crossref_primary_10_1093_mollus_eyu045
crossref_primary_10_1186_s40462_014_0016_3
crossref_primary_10_1038_s41598_023_48204_3
crossref_primary_10_1002_ece3_508
crossref_primary_10_1111_jbi_14106
crossref_primary_10_1007_s00300_015_1820_y
crossref_primary_10_1016_j_ecolmodel_2018_11_013
crossref_primary_10_1016_j_ecolind_2015_11_003
crossref_primary_10_1002_ecs2_2004
crossref_primary_10_1111_ddi_12265
crossref_primary_10_1111_gcb_12289
crossref_primary_10_3390_pr2040711
crossref_primary_10_1007_s10113_023_02052_z
crossref_primary_10_1016_j_biocon_2016_11_030
crossref_primary_10_11609_jott_8357_15_12_24331_24344
crossref_primary_10_1111_jbi_12029
crossref_primary_10_1038_s41598_019_57280_3
crossref_primary_10_1111_oik_01704
crossref_primary_10_1073_pnas_1415442111
crossref_primary_10_1111_jbi_12825
crossref_primary_10_1111_jvs_12444
crossref_primary_10_1016_j_ecolmodel_2015_11_007
crossref_primary_10_1111_jbi_12032
crossref_primary_10_1515_mammalia_2018_0035
crossref_primary_10_1016_j_scitotenv_2022_160370
crossref_primary_10_1111_jbi_12031
crossref_primary_10_1007_s00114_013_1088_4
crossref_primary_10_1111_ele_13664
crossref_primary_10_1111_geb_12759
crossref_primary_10_1111_j_1600_0587_2013_00195_x
crossref_primary_10_1111_cobi_13797
crossref_primary_10_1111_ecog_02836
crossref_primary_10_1029_2018MS001352
crossref_primary_10_1007_s00227_020_03791_x
crossref_primary_10_1016_j_envsoft_2017_02_012
crossref_primary_10_1002_ece3_843
crossref_primary_10_1111_oik_03438
crossref_primary_10_3354_meps10659
crossref_primary_10_1016_j_jnc_2023_126490
crossref_primary_10_1111_tbed_14376
crossref_primary_10_1093_jmammal_gyx070
crossref_primary_10_1890_ES14_00323_1
crossref_primary_10_1111_oik_01149
crossref_primary_10_1071_BT21124
crossref_primary_10_1111_bij_12884
crossref_primary_10_1038_s41598_019_52256_9
crossref_primary_10_1111_2041_210X_12332
crossref_primary_10_1371_journal_pone_0054179
crossref_primary_10_1016_j_ecolind_2016_07_043
Cites_doi 10.1101/SQB.1957.022.01.039
10.1146/annurev.ecolsys.34.011802.132342
10.1073/pnas.0905137106
10.1126/science.1123412
10.1098/rspb.2009.0693
10.2307/1426632
10.1111/j.1600-0587.2010.06229.x
10.1007/s10531-011-9995-1
10.1098/rspb.2006.0311
10.1111/j.1365-2486.2008.01557.x
10.1098/rspb.2010.1371
10.1046/j.1466-822X.2003.00042.x
10.1111/j.1466-8238.2007.00359.x
10.1038/414716a
10.1111/j.1365-2745.2004.00838.x
10.1890/09-1340.1
10.1111/j.0021-8790.2004.00833.x
10.1214/09-BA403
10.1890/02-0344
10.1016/j.tree.2005.04.005
10.1111/j.1365-2656.2010.01699.x
10.1201/b16974
10.1890/10-0173.1
10.1016/j.ecolmodel.2005.10.003
10.1890/10-1086.1
10.1146/annurev-ecolsys-102209-144718
10.1093/aob/mcp027
10.1111/j.2041-210X.2010.00060.x
10.1111/j.1461-0248.2008.01270.x
10.1016/j.tree.2008.08.003
10.7208/chicago/9780226101811.001.0001
10.1111/j.1466-8238.2010.00613.x
10.1016/j.ecocom.2007.05.002
10.1890/07-0451.1
10.1371/journal.pone.0012092
10.1146/annurev.ecolsys.39.110707.173430
10.1111/j.1461-0248.2005.00810.x
10.1890/0012-9658(2001)082[2560:CIBTSI]2.0.CO;2
10.1890/08-0657.1
10.1093/aob/mcp031
10.1111/j.1466-8238.2011.00679.x
10.1111/j.1365-2486.2008.01671.x
10.1098/rspb.2009.0523
10.1146/annurev.ecolsys.36.091704.175535
10.1111/j.1096-3642.1935.tb01680.x
10.1034/j.1600-0706.2003.12031.x
10.1146/annurev.ecolsys.39.110707.173434
10.1515/9781400842933
10.1016/j.tree.2010.03.002
10.1111/j.1461-0248.2008.01170.x
10.1016/j.ecolmodel.2005.11.046
10.2307/3237001
10.1046/j.1365-2745.1998.00268.x
10.1146/annurev.ecolsys.38.091206.095818
10.1146/annurev.ecolsys.110308.120159
10.1890/03-9000
10.1023/A:1012525626267
10.1098/rspb.2010.0244
10.1093/biomet/85.2.347
10.1111/j.1365-2699.2010.02405.x
10.1890/07-1748.1
10.1111/j.1461-0248.2005.00792.x
10.1086/282505
10.1214/09-AOAS250
10.1111/j.1466-8238.2010.00607.x
10.1111/j.1467-9868.2008.00663.x
10.1098/rstb.2010.0008
10.1073/pnas.0706375104
10.1890/09-1175.1
10.1111/j.1466-8238.2006.00293.x
10.1046/j.1365-2435.2002.00664.x
10.1111/j.1600-0587.2010.05892.x
10.1111/j.1461-0248.2008.01250.x
10.1111/j.1466-8238.2007.00345.x
10.1890/10-0602.1
10.1007/978-3-540-32730-1_15
10.1111/j.2517-6161.1996.tb02080.x
10.1111/j.1365-2656.2008.01460.x
10.1146/annurev.es.22.110191.000555
10.1111/j.1365-2656.2010.01743.x
10.1126/science.1065973
10.1111/j.2006.0906-7590.04596.x
10.2307/2845499
10.1007/s10021-008-9166-8
10.1038/35004572
ContentType Journal Article
Copyright Copyright © 2012 Blackwell Publishing Ltd.
2011 Blackwell Publishing Ltd
Copyright_xml – notice: Copyright © 2012 Blackwell Publishing Ltd.
– notice: 2011 Blackwell Publishing Ltd
DBID BSCLL
AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7ST
7U6
DOI 10.1111/j.1365-2699.2011.02663.x
DatabaseName Istex
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList
CrossRef
Ecology Abstracts
Entomology Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Biology
Ecology
EISSN 1365-2699
EndPage 2178
ExternalDocumentID 2819504311
10_1111_j_1365_2699_2011_02663_x
JBI2663
23354520
ark_67375_WNG_07MT5173_K
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABLJU
ABPLY
ABPPZ
ABPTK
ABPVW
ABTLG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AHBTC
AI.
AIRJO
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SAMSI
SUPJJ
TN5
UB1
VH1
VOH
VQP
W8V
W99
WBKPD
WIH
WIK
WMRSR
WOHZO
WQJ
WRC
WSUWO
WXSBR
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
ABXSQ
AQVQM
AAHBH
ADACV
AITYG
HGLYW
IPSME
OIG
AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7ST
7U6
ID FETCH-LOGICAL-c4343-61214b71519f7caa0ba3eeb7d8d569dee6e3ea42383f356e3e9dfe89be16f3833
IEDL.DBID DR2
ISSN 0305-0270
IngestDate Thu Aug 15 23:50:09 EDT 2024
Fri Sep 13 08:50:18 EDT 2024
Fri Aug 23 03:04:25 EDT 2024
Sat Aug 24 01:06:15 EDT 2024
Fri Feb 02 07:02:45 EST 2024
Wed Jan 17 05:02:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4343-61214b71519f7caa0ba3eeb7d8d569dee6e3ea42383f356e3e9dfe89be16f3833
Notes ArticleID:JBI2663
ark:/67375/WNG-07MT5173-K
istex:C604C0F2F2EB34DE0EB0DCF042C40F36584383C6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1171485390
PQPubID 1086398
PageCount 16
ParticipantIDs proquest_miscellaneous_1257747705
proquest_journals_1171485390
crossref_primary_10_1111_j_1365_2699_2011_02663_x
wiley_primary_10_1111_j_1365_2699_2011_02663_x_JBI2663
jstor_primary_23354520
istex_primary_ark_67375_WNG_07MT5173_K
PublicationCentury 2000
PublicationDate 2012-12
20121201
December 2012
2012-12-00
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Journal of biogeography
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell Publishing
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: Wiley Subscription Services, Inc
References Schweiger, O., Heikkinen, R.K., Harpke, A., Hickler, T., Klotz, S., Kudrna, O., Kühn, I., Pöyry, J. & Settele, J. (2012) Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Global Ecology and Biogeography, 21, 88-99.
Chib, S. & Greenberg, E. (1998) Analysis of multivariate probit models. Biometrika, 85, 347-361.
Kissling, W.D., Rahbek, C. & Böhning-Gaese, K. (2007) Food plant diversity as broad-scale determinant of avian frugivore richness. Proceedings of the Royal Society B: Biological Sciences, 274, 799-808.
Holt, R.D. (2009) Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences USA, 106, 19,659-19,665.
Solé, R.V. & Bascompte, J. (2006) Self-organization in complex ecosystems. Princeton University Press, Princeton, NJ.
Amarasekare, P. (2008) Spatial dynamics of foodwebs. Annual Review of Ecology, Evolution, and Systematics, 39, 479-500.
Eviner, V.T. & Chapin, F.S., III (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology, Evolution, and Systematics, 34, 455-485.
Williams, R.J., Anandanadesan, A. & Purves, D. (2010) The probabilistic niche model reveals the niche structure and role of body size in a complex food web. PLoS ONE, 5, e12092.
Olesen, J.M., Bascompte, J., Elberling, H. & Jordano, P. (2008) Temporal dynamics in a pollination network. Ecology, 89, 1573-1582.
Lotka, A.J. (1925) Elements of physical biology. Williams and Wilkins, Baltimore, MD.
MacArthur, R.H. (1972) Geographical ecology. Princeton University Press, Princeton, NJ.
Ovaskainen, O., Hottola, J. & Siitonen, J. (2010) Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 91, 2514-2521.
Lavorel, S. & Garnier, E. (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545-556.
Scotti, M., Podani, J. & Jordán, F. (2007) Weighting, scale dependence and indirect effects in ecological networks: a comparative study. Ecological Complexity, 4, 148-159.
Vázquez, D.P., Morris, W.F. & Jordano, P. (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecology Letters, 8, 1088-1094.
Rüger, N., Williams-Linera, G., Kissling, W.D. & Huth, A. (2008) Long-term impacts of fuelwood extraction on a tropical montane cloud forest. Ecosystems, 11, 868-881.
Manly, B.F.G. (2004) Multivariate statistical methods: a primer, 3rd edn. Chapman & Hall/CRC, Boca Raton, FL.
Banerjee, S., Gelfand, A.E., Finley, A.O. & Sang, H. (2008) Gaussian predictive process models for large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70, 825-848.
Schurr, F.M., Spiegel, O., Steinitz, O., Trakhtenbrot, A., Tsoar, A. & Nathan, R. (2009) Long-distance seed dispersal. Annual Plant Reviews, 38, 204-237.
Stang, M., Klinkhamer, P.G.L., Waser, N.M., Stang, I. & van der Meijden, E. (2009) Size-specific interaction patterns and size matching in a plant-pollinator interaction web. Annals of Botany, 103, 1459-1469.
Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?Global Ecology and Biogeography, 12, 361-371.
Reineking, B. & Schröder, B. (2006) Constrain to perform: regularization of habitat models. Ecological Modelling, 193, 675-690.
Hutchinson, G.E. (1957) Population studies: animal ecology and demography. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427.
Hickler, T., Smith, B., Sykes, M.T., Davis, M.B., Sugita, S. & Walker, K. (2004) Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology, 85, 519-530.
MacArthur, R.H. & Levins, R. (1967) Limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385.
Araújo, M.B. & Luoto, M. (2007) The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography, 16, 743-753.
Finley, A.O., Banerjee, S. & McRoberts, R.E. (2009) Hierarchical spatial models for predicting tree species assemblages across large domains. The Annals of Applied Statistics, 3, 1052-1079.
Ollerton, J., Alarcón, R., Waser, N.M., Price, M.V., Watts, S., Cranmer, L., Hingston, A., Peter, C.I. & Rotenberry, J. (2009) A global test of the pollination syndrome hypothesis. Annals of Botany, 103, 1471-1480.
Grenfell, B.T., Bjørnstad, O.N. & Kappey, J. (2001) Travelling waves and spatial hierarchies in measles epidemics. Nature, 414, 716-723.
Gustafson, P. (2004) Measurement error and misclassification in statistics and epidemiology. Chapman & Hall/CRC, Boca Raton, FL.
Woodward, G., Ebenman, B., Emmerson, M., Montoya, J.M., Olesen, J.M., Valido, A. & Warren, P.H. (2005) Body size in ecological networks. Trends in Ecology and Evolution, 20, 402-409.
Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697.
Pagel, J. & Schurr, F.M. (2011) Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Global Ecology and Biogeography, doi: 10.1111/j.1466-8238.2011.00663.x.
Schiffers, K., Tielbörger, K., Tietjen, B. & Jeltsch, F. (2011) Root plasticity buffers competition among plants: theory meets experimental data. Ecology, 92, 610-620.
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A. & Solomon, A.M. (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19, 117-134.
Fink, D., Hochachka, W.M., Zuckerberg, B., Winkler, D.W., Shaby, B., Munson, M.A., Hooker, G., Riedewald, M., Sheldon, D. & Kelling, S. (2010) Spatiotemporal exploratory models for broad-scale survey data. Ecological Applications, 20, 2131-2147.
Schemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M. & Roy, K. (2009) Is there a latitudinal gradient in the importance of biotic interactions?Annual Review of Ecology, Evolution, and Systematics, 40, 245-269.
Gilman, S.E., Urban, M.C., Tewksbury, J., Gilchrist, G.W. & Holt, R.D. (2010) A framework for community interactions under climate change. Trends in Ecology and Evolution, 25, 325-331.
Blaum, N., Mosner, E., Schwager, M. & Jeltsch, F. (2011) How functional is functional? Ecological groupings in terrestrial animal ecology: towards an animal functional type approach. Biodiversity and Conservation, 20, 2333-2345.
Nicholson, A.J. & Bailey, V.A. (1935) The balance of animal populations.-Part I. Proceedings of the Zoological Society of London, 105, 551-598.
Montoya, J.M. & Solé, R.V. (2003) Topological properties of food webs: from real data to community assembly models. Oikos, 102, 614-622.
Hutchinson, G.E. (1978) An introduction to population biology. Yale University Press, New Haven, CT.
Suding, K.N., Lavorel, S., Chapin, F.S., III, Cornelissen, J.H.C., Díaz, S., Garnier, E., Goldberg, D., Hooper, D.U., Jackson, S.T. & Navas, M.-L. (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology, 14, 1125-1140.
Kuparinen, A., Katul, G., Nathan, R. & Schurr, F.M. (2009) Increases in air temperature can promote wind-driven dispersal and spread of plants. Proceedings of the Royal Society B: Biological Sciences, 276, 3081-3087.
Schurr, F.M., Midgley, G.F., Rebelo, A.G., Reeves, G., Poschlod, P. & Higgins, S.I. (2007) Colonization and persistence ability explain the extent to which plant species fill their potential range. Global Ecology and Biogeography, 16, 449-459.
Bascompte, J., Jordano, P. & Olesen, J.M. (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431-433.
Olesen, J.M., Bascompte, J., Dupont, Y.L., Elberling, H., Rasmussen, C. & Jordano, P. (2011) Missing and forbidden links in mutualistic networks. Proceedings of the Royal Society B: Biological Sciences, 278, 725-732.
Fotheringham, A.S., Brunsdon, C. & Charlton, M. (2002) Geographically weighted regression: the analysis of spatially varying relationships. John Wiley & Sons, Chichester.
Smith, T.M., Shugart, H.H. & Woodward, F.I. (1997) Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge.
Meier, E.S., Lischke, H., Schmatz, D.R. & Zimmermann, N.E. (2011b) Climate, competition and connectivity affect future migration and ranges of European trees. Global Ecology and Biogeography, doi: 10.1111/j.1466-8238.2011.00669.x.
Mutshinda, C.M., O'Hara, R.B. & Woiwod, I.P. (2009) What drives community dynamics?Proceedings of the Royal Society B: Biological Sciences, 276, 2923-2929.
Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58, 267-288.
Rouget, M., Richardson, D.M., Lavorel, S., Vayreda, J., Gracia, C. & Milton, S.J. (2001) Determinants of distribution of six Pinus species in Catalonia, Spain. Journal of Vegetation Science, 12, 491-502.
Hickler, T., Vohland, K., Feehan, J., Miller, P., Smith, B., Costa, L., Giesecke, T., Fronzek, S., Carter, T., Cramer, W., Kühn, I. & Sykes, M. (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography, 21, 50-63.
Faegri, K. & van der Pijl, L. (1979) The principles of pollination biology. Pergamon Press, Oxford.
Guimerá, R., Stouffer, D.B., Sales-Pardo, M., Leicht, E.A., Newman, M.E.J. & Ama
2002; 16
2007; 104
2011; 278
2009; 40
2008; 39
2009; 276
1992; 19
2005; 20
1973
2011b
1972
1998; 85
2008; 70
2011a; 38
1998; 86
1979
1978
1935; 105
2007; 38
2003; 12
2009; 12
2010; 20
2001; 294
2004; 73
2010; 25
2006; 21
2000; 404
2009; 90
2010; 277
2011; 20
1967; 101
2006; 29
2008; 23
2007; 4
2001; 12
2010; 5
2001; 51
2012; 21
2006; 442
2001; 414
2005; 36
2010; 33
2004; 85
2011; 2
2010; 79
2011
1978; 10
2011; 80
2011; 81
2010; 365
2008; 14
1997
2007
2006
1994
2004
2011; 34
2008; 11
2003
2002
2006; 193
1996; 58
2006; 199
2006; 312
2007; 16
2003; 34
1957; 22
2009; 78
2001; 82
1991; 22
2005; 8
2011; 92
2007; 274
2011; 41
2008; 89
2009; 4
2009; 3
2010; 91
2003; 102
1926
1925
2009; 103
2009; 38
2009; 106
Faegri K. (e_1_2_8_18_1) 1979
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
Pagel J. (e_1_2_8_69_1) 2011
e_1_2_8_41_1
e_1_2_8_60_1
Hutchinson G.E. (e_1_2_8_35_1) 1978
Meier E.S. (e_1_2_8_55_1) 2011
e_1_2_8_19_1
Schurr F.M. (e_1_2_8_83_1) 2009; 38
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
Burnham K.P. (e_1_2_8_11_1) 2002
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
Sauer J.R. (e_1_2_8_79_1) 2007
e_1_2_8_2_1
Volterra V. (e_1_2_8_96_1) 1926
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_14_1
e_1_2_8_37_1
Smith T.M. (e_1_2_8_89_1) 1997
May R.M. (e_1_2_8_51_1) 1973
e_1_2_8_94_1
e_1_2_8_90_1
Fotheringham A.S. (e_1_2_8_22_1) 2002
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
Lotka A.J. (e_1_2_8_47_1) 1925
e_1_2_8_71_1
e_1_2_8_24_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_78_1
e_1_2_8_74_1
MacArthur R.H. (e_1_2_8_48_1) 1972
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
Woiwod I.P. (e_1_2_8_100_1) 1994
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_58_1
Gustafson P. (e_1_2_8_28_1) 2004
e_1_2_8_92_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 34
  start-page: 455
  year: 2003
  end-page: 485
  article-title: Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 80
  start-page: 101
  year: 2011
  end-page: 107
  article-title: A multispecies perspective on ecological impacts of climatic forcing
  publication-title: Journal of Animal Ecology
– volume: 85
  start-page: 347
  year: 1998
  end-page: 361
  article-title: Analysis of multivariate probit models
  publication-title: Biometrika
– volume: 16
  start-page: 754
  year: 2007
  end-page: 763
  article-title: Biotic interactions improve prediction of boreal bird distributions at macro‐scales
  publication-title: Global Ecology and Biogeography
– volume: 73
  start-page: 585
  year: 2004
  end-page: 598
  article-title: Interaction strengths in food webs: issues and opportunities
  publication-title: Journal of Animal Ecology
– volume: 40
  start-page: 245
  year: 2009
  end-page: 269
  article-title: Is there a latitudinal gradient in the importance of biotic interactions?
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– start-page: 175
  year: 2007
  end-page: 192
– volume: 294
  start-page: 813
  year: 2001
  end-page: 817
  article-title: Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape
  publication-title: Science
– volume: 11
  start-page: 1351
  year: 2008
  end-page: 1363
  article-title: Global change and species interactions in terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 85
  start-page: 1771
  year: 2004
  end-page: 1789
  article-title: Toward a metabolic theory of ecology
  publication-title: Ecology
– year: 2011b
  article-title: Climate, competition and connectivity affect future migration and ranges of European trees
  publication-title: Global Ecology and Biogeography
– volume: 33
  start-page: 1038
  year: 2010
  end-page: 1048
  article-title: Biotic and abiotic variables show little redundancy in explaining tree species distributions
  publication-title: Ecography
– volume: 90
  start-page: 2426
  year: 2009
  end-page: 2433
  article-title: Press perturbations and indirect effects in real food webs
  publication-title: Ecology
– volume: 20
  start-page: 402
  year: 2005
  end-page: 409
  article-title: Body size in ecological networks
  publication-title: Trends in Ecology and Evolution
– year: 2011
  article-title: Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics
  publication-title: Global Ecology and Biogeography
– volume: 38
  start-page: 371
  year: 2011a
  end-page: 382
  article-title: Co‐occurrence patterns of trees along macro‐climatic gradients and their potential influence on the present and future distribution of L
  publication-title: Journal of Biogeography
– volume: 19
  start-page: 117
  year: 1992
  end-page: 134
  article-title: A global biome model based on plant physiology and dominance, soil properties and climate
  publication-title: Journal of Biogeography
– volume: 11
  start-page: 868
  year: 2008
  end-page: 881
  article-title: Long‐term impacts of fuelwood extraction on a tropical montane cloud forest
  publication-title: Ecosystems
– volume: 414
  start-page: 716
  year: 2001
  end-page: 723
  article-title: Travelling waves and spatial hierarchies in measles epidemics
  publication-title: Nature
– volume: 81
  start-page: 329
  year: 2011
  end-page: 347
  article-title: Decomposing environmental, spatial, and spatiotemporal components of species distributions
  publication-title: Ecological Monographs
– year: 1972
– volume: 103
  start-page: 1459
  year: 2009
  end-page: 1469
  article-title: Size‐specific interaction patterns and size matching in a plant–pollinator interaction web
  publication-title: Annals of Botany
– volume: 16
  start-page: 545
  year: 2002
  end-page: 556
  article-title: Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail
  publication-title: Functional Ecology
– volume: 105
  start-page: 551
  year: 1935
  end-page: 598
  article-title: The balance of animal populations.—Part I
  publication-title: Proceedings of the Zoological Society of London
– volume: 92
  start-page: 610
  year: 2011
  end-page: 620
  article-title: Root plasticity buffers competition among plants: theory meets experimental data
  publication-title: Ecology
– volume: 312
  start-page: 431
  year: 2006
  end-page: 433
  article-title: Asymmetric coevolutionary networks facilitate biodiversity maintenance
  publication-title: Science
– volume: 79
  start-page: 824
  year: 2010
  end-page: 835
  article-title: Bird community response to fruit energy
  publication-title: Journal of Animal Ecology
– volume: 38
  start-page: 204
  year: 2009
  end-page: 237
  article-title: Long‐distance seed dispersal
  publication-title: Annual Plant Reviews
– volume: 278
  start-page: 725
  year: 2011
  end-page: 732
  article-title: Missing and forbidden links in mutualistic networks
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 21
  start-page: 88
  year: 2012
  end-page: 99
  article-title: Increasing range mismatching of interacting species under global change is related to their ecological characteristics
  publication-title: Global Ecology and Biogeography
– volume: 40
  start-page: 677
  year: 2009
  end-page: 697
  article-title: Species distribution models: ecological explanation and prediction across space and time
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– year: 2007
– volume: 5
  year: 2010
  article-title: The probabilistic niche model reveals the niche structure and role of body size in a complex food web
  publication-title: PLoS ONE
– volume: 91
  start-page: 2941
  year: 2010
  end-page: 2951
  article-title: Origin of compartmentalization in food webs
  publication-title: Ecology
– year: 1973
– volume: 22
  start-page: 115
  year: 1991
  end-page: 143
  article-title: The guild concept and the structure of ecological communities
  publication-title: Annual Review of Ecology and Systematics
– year: 1925
– volume: 12
  start-page: 491
  year: 2001
  end-page: 502
  article-title: Determinants of distribution of six species in Catalonia, Spain
  publication-title: Journal of Vegetation Science
– volume: 14
  start-page: 1125
  year: 2008
  end-page: 1140
  article-title: Scaling environmental change through the community‐level: a trait‐based response‐and‐effect framework for plants
  publication-title: Global Change Biology
– year: 2011
  article-title: Bird dietary guild richness across latitudes, environments and biogeographic regions
  publication-title: Global Ecology and Biogeography
– volume: 14
  start-page: 2501
  year: 2008
  end-page: 2515
  article-title: Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions
  publication-title: Global Change Biology
– volume: 8
  start-page: 993
  year: 2005
  end-page: 1009
  article-title: Predicting species distribution: offering more than simple habitat models
  publication-title: Ecology Letters
– volume: 4
  start-page: 85
  year: 2009
  end-page: 118
  article-title: A review of Bayesian variable selection methods: what, how and which
  publication-title: Bayesian Analysis
– year: 2002
– volume: 106
  start-page: 19,659
  year: 2009
  end-page: 19,665
  article-title: Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 102
  start-page: 614
  year: 2003
  end-page: 622
  article-title: Topological properties of food webs: from real data to community assembly models
  publication-title: Oikos
– volume: 22
  start-page: 415
  year: 1957
  end-page: 427
  article-title: Population studies: animal ecology and demography. Concluding remarks
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
– year: 1978
– volume: 10
  start-page: 499
  year: 1978
  end-page: 537
  article-title: Zone of influence models for competition in plantations
  publication-title: Advances in Applied Probability
– volume: 82
  start-page: 2560
  year: 2001
  end-page: 2573
  article-title: Competitive interactions between tree species in New Zealand’s old‐growth indigenous forests
  publication-title: Ecology
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 11
  start-page: 564
  year: 2008
  end-page: 575
  article-title: Long‐term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization
  publication-title: Ecology Letters
– volume: 404
  start-page: 180
  year: 2000
  end-page: 183
  article-title: Simple rules yield complex food webs
  publication-title: Nature
– volume: 276
  start-page: 2923
  year: 2009
  end-page: 2929
  article-title: What drives community dynamics?
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 277
  start-page: 2983
  year: 2010
  end-page: 2990
  article-title: Testing the heterospecific attraction hypothesis with time‐series data on species co‐occurrence
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 2
  start-page: 143
  year: 2011
  end-page: 154
  article-title: Comparing spatially‐varying coefficients models for analysis of ecological data with non‐stationary and anisotropic residual dependence
  publication-title: Methods in Ecology and Evolution
– volume: 21
  start-page: 50
  year: 2012
  end-page: 63
  article-title: Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species‐based dynamic vegetation model
  publication-title: Global Ecology and Biogeography
– volume: 85
  start-page: 519
  year: 2004
  end-page: 530
  article-title: Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA
  publication-title: Ecology
– year: 1979
– volume: 16
  start-page: 743
  year: 2007
  end-page: 753
  article-title: The importance of biotic interactions for modelling species distributions under climate change
  publication-title: Global Ecology and Biogeography
– start-page: 409
  year: 1926
  end-page: 448
– volume: 70
  start-page: 825
  year: 2008
  end-page: 848
  article-title: Gaussian predictive process models for large spatial data sets
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 276
  start-page: 3081
  year: 2009
  end-page: 3087
  article-title: Increases in air temperature can promote wind‐driven dispersal and spread of plants
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 16
  start-page: 449
  year: 2007
  end-page: 459
  article-title: Colonization and persistence ability explain the extent to which plant species fill their potential range
  publication-title: Global Ecology and Biogeography
– volume: 8
  start-page: 1088
  year: 2005
  end-page: 1094
  article-title: Interaction frequency as a surrogate for the total effect of animal mutualists on plants
  publication-title: Ecology Letters
– volume: 78
  start-page: 253
  year: 2009
  end-page: 269
  article-title: Ecological networks – beyond food webs
  publication-title: Journal of Animal Ecology
– year: 2004
– year: 1997
– volume: 12
  start-page: 144
  year: 2009
  end-page: 154
  article-title: Hierarchical models facilitate spatial analysis of large data sets: a case study on invasive plant species in the northeastern United States
  publication-title: Ecology Letters
– volume: 34
  start-page: 507
  year: 2011
  end-page: 518
  article-title: Modelling the impact of climate and land use change on the geographical distribution of leaf anatomy in a temperate flora
  publication-title: Ecography
– volume: 39
  start-page: 479
  year: 2008
  end-page: 500
  article-title: Spatial dynamics of foodwebs
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 38
  start-page: 567
  year: 2007
  end-page: 593
  article-title: Plant–animal mutualistic networks: the architecture of biodiversity
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 101
  start-page: 377
  year: 1967
  end-page: 385
  article-title: Limiting similarity, convergence, and divergence of coexisting species
  publication-title: The American Naturalist
– volume: 3
  start-page: 1052
  year: 2009
  end-page: 1079
  article-title: Hierarchical spatial models for predicting tree species assemblages across large domains
  publication-title: The Annals of Applied Statistics
– year: 2003
– volume: 103
  start-page: 1471
  year: 2009
  end-page: 1480
  article-title: A global test of the pollination syndrome hypothesis
  publication-title: Annals of Botany
– volume: 51
  start-page: 259
  year: 2001
  end-page: 305
  article-title: A review of forest gap models
  publication-title: Climatic Change
– volume: 91
  start-page: 2514
  year: 2010
  end-page: 2521
  article-title: Modeling species co‐occurrence by multivariate logistic regression generates new hypotheses on fungal interactions
  publication-title: Ecology
– volume: 41
  start-page: 21
  year: 2011
  end-page: 38
  article-title: From graphs to spatial graphs
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 89
  start-page: 1573
  year: 2008
  end-page: 1582
  article-title: Temporal dynamics in a pollination network
  publication-title: Ecology
– volume: 20
  start-page: 2333
  year: 2011
  end-page: 2345
  article-title: How functional is functional? Ecological groupings in terrestrial animal ecology: towards an animal functional type approach
  publication-title: Biodiversity and Conservation
– volume: 21
  start-page: 178
  year: 2006
  end-page: 185
  article-title: Rebuilding community ecology from functional traits
  publication-title: Trends in Ecology and Evolution
– volume: 36
  start-page: 419
  year: 2005
  end-page: 444
  article-title: Measurement of interaction strength in nature
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 104
  start-page: 19,891
  year: 2007
  end-page: 19,896
  article-title: The modularity of pollination networks
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 25
  start-page: 325
  year: 2010
  end-page: 331
  article-title: A framework for community interactions under climate change
  publication-title: Trends in Ecology and Evolution
– volume: 12
  start-page: 361
  year: 2003
  end-page: 371
  article-title: Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?
  publication-title: Global Ecology and Biogeography
– volume: 193
  start-page: 675
  year: 2006
  end-page: 690
  article-title: Constrain to perform: regularization of habitat models
  publication-title: Ecological Modelling
– volume: 4
  start-page: 148
  year: 2007
  end-page: 159
  article-title: Weighting, scale dependence and indirect effects in ecological networks: a comparative study
  publication-title: Ecological Complexity
– year: 2006
– volume: 365
  start-page: 2035
  year: 2010
  end-page: 2045
  article-title: Woody plants and the prediction of climate‐change impacts on bird diversity
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 20
  start-page: 2131
  year: 2010
  end-page: 2147
  article-title: Spatiotemporal exploratory models for broad‐scale survey data
  publication-title: Ecological Applications
– volume: 86
  start-page: 405
  year: 1998
  end-page: 420
  article-title: Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems?
  publication-title: Journal of Ecology
– volume: 274
  start-page: 799
  year: 2007
  end-page: 808
  article-title: Food plant diversity as broad‐scale determinant of avian frugivore richness
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 29
  start-page: 129
  year: 2006
  end-page: 151
  article-title: Novel methods improve prediction of species’ distributions from occurrence data
  publication-title: Ecography
– volume: 23
  start-page: 638
  year: 2008
  end-page: 647
  article-title: Mechanisms of long‐distance seed dispersal
  publication-title: Trends in Ecology and Evolution
– volume: 89
  start-page: 3472
  year: 2008
  end-page: 3479
  article-title: Climate change can cause spatial mismatch of trophically interacting species
  publication-title: Ecology
– start-page: 321
  year: 1994
  end-page: 342
– volume: 442
  start-page: 259
  year: 2006
  end-page: 264
  article-title: Ecological networks and their fragility
  publication-title: Nature
– volume: 199
  start-page: 409
  year: 2006
  end-page: 420
  article-title: TreeMig: a forest‐landscape model for simulating spatio‐temporal patterns from stand to landscape scale
  publication-title: Ecological Modelling
– ident: e_1_2_8_34_1
  doi: 10.1101/SQB.1957.022.01.039
– ident: e_1_2_8_17_1
  doi: 10.1146/annurev.ecolsys.34.011802.132342
– ident: e_1_2_8_32_1
  doi: 10.1073/pnas.0905137106
– ident: e_1_2_8_6_1
  doi: 10.1126/science.1123412
– ident: e_1_2_8_41_1
  doi: 10.1098/rspb.2009.0693
– volume-title: Geographically weighted regression: the analysis of spatially varying relationships
  year: 2002
  ident: e_1_2_8_22_1
  contributor:
    fullname: Fotheringham A.S.
– volume-title: Plant functional types: their relevance to ecosystem properties and global change
  year: 1997
  ident: e_1_2_8_89_1
  contributor:
    fullname: Smith T.M.
– ident: e_1_2_8_23_1
  doi: 10.2307/1426632
– ident: e_1_2_8_53_1
  doi: 10.1111/j.1600-0587.2010.06229.x
– ident: e_1_2_8_8_1
  doi: 10.1007/s10531-011-9995-1
– ident: e_1_2_8_38_1
  doi: 10.1098/rspb.2006.0311
– year: 2011
  ident: e_1_2_8_55_1
  article-title: Climate, competition and connectivity affect future migration and ranges of European trees
  publication-title: Global Ecology and Biogeography
  contributor:
    fullname: Meier E.S.
– ident: e_1_2_8_92_1
  doi: 10.1111/j.1365-2486.2008.01557.x
– ident: e_1_2_8_66_1
  doi: 10.1098/rspb.2010.1371
– ident: e_1_2_8_70_1
  doi: 10.1046/j.1466-822X.2003.00042.x
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1466-8238.2007.00359.x
– ident: e_1_2_8_25_1
  doi: 10.1038/414716a
– ident: e_1_2_8_52_1
  doi: 10.1111/j.1365-2745.2004.00838.x
– ident: e_1_2_8_19_1
  doi: 10.1890/09-1340.1
– ident: e_1_2_8_57_1
  doi: 10.1111/j.0021-8790.2004.00833.x
– ident: e_1_2_8_63_1
  doi: 10.1214/09-BA403
– ident: e_1_2_8_30_1
  doi: 10.1890/02-0344
– ident: e_1_2_8_101_1
  doi: 10.1016/j.tree.2005.04.005
– ident: e_1_2_8_72_1
  doi: 10.1111/j.1365-2656.2010.01699.x
– volume-title: The North American breeding bird survey, results and analysis 1966–2007, version 10.13.2007
  year: 2007
  ident: e_1_2_8_79_1
  contributor:
    fullname: Sauer J.R.
– ident: e_1_2_8_50_1
  doi: 10.1201/b16974
– volume-title: Measurement error and misclassification in statistics and epidemiology
  year: 2004
  ident: e_1_2_8_28_1
  contributor:
    fullname: Gustafson P.
– ident: e_1_2_8_68_1
  doi: 10.1890/10-0173.1
– ident: e_1_2_8_76_1
  doi: 10.1016/j.ecolmodel.2005.10.003
– ident: e_1_2_8_81_1
  doi: 10.1890/10-1086.1
– ident: e_1_2_8_14_1
  doi: 10.1146/annurev-ecolsys-102209-144718
– ident: e_1_2_8_91_1
  doi: 10.1093/aob/mcp027
– ident: e_1_2_8_20_1
  doi: 10.1111/j.2041-210X.2010.00060.x
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1461-0248.2008.01270.x
– ident: e_1_2_8_61_1
  doi: 10.1016/j.tree.2008.08.003
– ident: e_1_2_8_12_1
  doi: 10.7208/chicago/9780226101811.001.0001
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1466-8238.2010.00613.x
– ident: e_1_2_8_86_1
  doi: 10.1016/j.ecocom.2007.05.002
– ident: e_1_2_8_65_1
  doi: 10.1890/07-0451.1
– ident: e_1_2_8_99_1
  doi: 10.1371/journal.pone.0012092
– ident: e_1_2_8_80_1
  doi: 10.1146/annurev.ecolsys.39.110707.173430
– ident: e_1_2_8_95_1
  doi: 10.1111/j.1461-0248.2005.00810.x
– ident: e_1_2_8_45_1
  doi: 10.1890/0012-9658(2001)082[2560:CIBTSI]2.0.CO;2
– ident: e_1_2_8_58_1
  doi: 10.1890/08-0657.1
– ident: e_1_2_8_67_1
  doi: 10.1093/aob/mcp031
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1466-8238.2011.00679.x
– ident: e_1_2_8_75_1
  doi: 10.1111/j.1365-2486.2008.01671.x
– ident: e_1_2_8_59_1
  doi: 10.1098/rspb.2009.0523
– ident: e_1_2_8_102_1
  doi: 10.1146/annurev.ecolsys.36.091704.175535
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1096-3642.1935.tb01680.x
– ident: e_1_2_8_56_1
  doi: 10.1034/j.1600-0706.2003.12031.x
– ident: e_1_2_8_2_1
  doi: 10.1146/annurev.ecolsys.39.110707.173434
– ident: e_1_2_8_90_1
  doi: 10.1515/9781400842933
– ident: e_1_2_8_24_1
  doi: 10.1016/j.tree.2010.03.002
– ident: e_1_2_8_71_1
  doi: 10.1111/j.1461-0248.2008.01170.x
– ident: e_1_2_8_46_1
  doi: 10.1016/j.ecolmodel.2005.11.046
– ident: e_1_2_8_77_1
  doi: 10.2307/3237001
– ident: e_1_2_8_97_1
  doi: 10.1046/j.1365-2745.1998.00268.x
– ident: e_1_2_8_5_1
  doi: 10.1146/annurev.ecolsys.38.091206.095818
– volume-title: Geographical ecology
  year: 1972
  ident: e_1_2_8_48_1
  contributor:
    fullname: MacArthur R.H.
– ident: e_1_2_8_15_1
  doi: 10.1146/annurev.ecolsys.110308.120159
– ident: e_1_2_8_9_1
  doi: 10.1890/03-9000
– ident: e_1_2_8_10_1
  doi: 10.1023/A:1012525626267
– volume: 38
  start-page: 204
  year: 2009
  ident: e_1_2_8_83_1
  article-title: Long‐distance seed dispersal
  publication-title: Annual Plant Reviews
  contributor:
    fullname: Schurr F.M.
– ident: e_1_2_8_87_1
  doi: 10.1098/rspb.2010.0244
– start-page: 409
  volume-title: Animal ecology
  year: 1926
  ident: e_1_2_8_96_1
  contributor:
    fullname: Volterra V.
– volume-title: The principles of pollination biology
  year: 1979
  ident: e_1_2_8_18_1
  contributor:
    fullname: Faegri K.
– volume-title: Elements of physical biology
  year: 1925
  ident: e_1_2_8_47_1
  contributor:
    fullname: Lotka A.J.
– ident: e_1_2_8_13_1
  doi: 10.1093/biomet/85.2.347
– ident: e_1_2_8_54_1
  doi: 10.1111/j.1365-2699.2010.02405.x
– year: 2011
  ident: e_1_2_8_69_1
  article-title: Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics
  publication-title: Global Ecology and Biogeography
  contributor:
    fullname: Pagel J.
– ident: e_1_2_8_84_1
  doi: 10.1890/07-1748.1
– ident: e_1_2_8_27_1
  doi: 10.1111/j.1461-0248.2005.00792.x
– ident: e_1_2_8_49_1
  doi: 10.1086/282505
– ident: e_1_2_8_21_1
  doi: 10.1214/09-AOAS250
– ident: e_1_2_8_85_1
  doi: 10.1111/j.1466-8238.2010.00607.x
– ident: e_1_2_8_4_1
  doi: 10.1111/j.1467-9868.2008.00663.x
– ident: e_1_2_8_39_1
  doi: 10.1098/rstb.2010.0008
– ident: e_1_2_8_7_1
  doi: 10.1111/j.0021-8790.2004.00833.x
– ident: e_1_2_8_64_1
  doi: 10.1073/pnas.0706375104
– ident: e_1_2_8_26_1
  doi: 10.1890/09-1175.1
– ident: e_1_2_8_82_1
  doi: 10.1111/j.1466-8238.2006.00293.x
– volume-title: An introduction to population biology
  year: 1978
  ident: e_1_2_8_35_1
  contributor:
    fullname: Hutchinson G.E.
– ident: e_1_2_8_44_1
  doi: 10.1046/j.1365-2435.2002.00664.x
– ident: e_1_2_8_42_1
  doi: 10.1111/j.1600-0587.2010.05892.x
– ident: e_1_2_8_94_1
  doi: 10.1111/j.1461-0248.2008.01250.x
– ident: e_1_2_8_29_1
  doi: 10.1111/j.1466-8238.2007.00345.x
– ident: e_1_2_8_33_1
  doi: 10.1890/10-0602.1
– ident: e_1_2_8_74_1
  doi: 10.1007/978-3-540-32730-1_15
– start-page: 321
  volume-title: Long‐term experiments in agricultural and ecological sciences
  year: 1994
  ident: e_1_2_8_100_1
  contributor:
    fullname: Woiwod I.P.
– ident: e_1_2_8_93_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_8_36_1
  doi: 10.1111/j.1365-2656.2008.01460.x
– ident: e_1_2_8_88_1
  doi: 10.1146/annurev.es.22.110191.000555
– ident: e_1_2_8_60_1
  doi: 10.1111/j.1365-2656.2010.01743.x
– ident: e_1_2_8_37_1
  doi: 10.1126/science.1065973
– ident: e_1_2_8_16_1
  doi: 10.1111/j.2006.0906-7590.04596.x
– ident: e_1_2_8_73_1
  doi: 10.2307/2845499
– ident: e_1_2_8_78_1
  doi: 10.1007/s10021-008-9166-8
– volume-title: Model selection and multimodel inference: a practical information‐theoretic approach
  year: 2002
  ident: e_1_2_8_11_1
  contributor:
    fullname: Burnham K.P.
– ident: e_1_2_8_98_1
  doi: 10.1038/35004572
– volume-title: Stability and complexity in model ecosystems
  year: 1973
  ident: e_1_2_8_51_1
  contributor:
    fullname: May R.M.
SSID ssj0009534
Score 2.5664644
Snippet Aim: Biotic interactions — within guilds or across trophic levels — have widely been ignored in species distribution models (SDMs). This synthesis outlines the...
Aim  Biotic interactions – within guilds or across trophic levels – have widely been ignored in species distribution models (SDMs). This synthesis outlines the...
Abstract Aim  Biotic interactions – within guilds or across trophic levels – have widely been ignored in species distribution models (SDMs). This synthesis...
Aim Biotic interactions - within guilds or across trophic levels - have widely been ignored in species distribution models (SDMs). This synthesis outlines the...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Publisher
StartPage 2163
SubjectTerms Animal ecology
Community ecology
Ecological modeling
ecological networks
Ecology
global change
guild assembly
Modeling
multidimensional complexity
niche theory
Plant interaction
Plants
prediction
Spatial models
Species
species distribution model
species interactions
Studies
Synecology
trait-based community modules
Trophic relationships
Title Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents
URI https://api.istex.fr/ark:/67375/WNG-07MT5173-K/fulltext.pdf
https://www.jstor.org/stable/23354520
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2699.2011.02663.x
https://www.proquest.com/docview/1171485390/abstract/
https://search.proquest.com/docview/1257747705
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQKwQXvqsGWmQkxC0rbxzb8ZFWLaWoPaCt6M2yE0egXZJqk0Utv54ZO1ntIg4IcXM-HCUTj_0mefOGkLesdNlUiizltiogQClk6kpl07y2mnFeFqzCROGLS3l2lZ9fi-uB_4S5MFEfYv3BDT0jzNfo4NZ1204eGVpaD0qcsNbwCeJJ1NVDfPQ529Df5VFJCrlqmWLbpJ4_XmhrpdpFo9-OpMUtOLoJasOqdPqYzMfniWSU-WTVu0n58zepx__zwE_IowG80vdxtD0l93zzjNyP5SzvoHVSDq0HQ231r3fPSTMLzNyONu0Pv6CjiLnvaN_SUIgHM-Kp-9bCVSnKVyxjskUHGzQQHjEdFCJ6CkDff3cLmAKh3dMFsthph5xwuKvwOb_vXpCr05PZ8Vk6VHlIS8xqTVHCLHcKkIeuVWktc5Z771RVVELqynvpubeA-gpec4Ebuqp9oZ2fyhp28j2y07SN3ydUKgt4q2SqliqvmS4qKwV3FvoUVV7ohEzHN2puopiH2QiCwLoGrWvQuiZY19wm5F149esOdjlHMpwS5svlB8PUxUxMFTefErIXxsb6xIxzLODOEnIwDhYzTBAdaqxDICq4hsNv1ofBtfF_jW18u4JzYDqFaE8xkRAZRsZf37U5P_qIrZf_2vEVeQi7s0jcOSA7_XLlDwF-9e51cKxfZE8gSA
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQK1QuvCtSChgJccvKG8d2fATUsn3sHtBW9GbZiaOiLkm1yaKWX8-Mk6x2EQeEuNmxHSUTjz3jfPMNIe9Y7pKxFEnMbZGBg5LJ2OXKxmlpNeM8z1iBgcLTmZxcpKeX4rJPB4SxMB0_xPrADTUjrNeo4Hggva3lHURL656KEzYbPgKDche0XwT_6kuywcDLOy4pRKslim3Dev54p629ahfFfjvAFrcM0k2zNuxLx4_IYnijDo5yPVq1bpT__I3s8T-98mPysLdf6Yduwj0h93z1lNzvMlreQeko70t7fXr1q7tnpJoHcG5Dq_qHX9CBx9w3tK1pyMWDQfHUfavhrhQZLJZdvEUDFRowjxgRCk49BVvff3cLWAWh3NIFAtlpg7BweKpwot82z8nF8dH80yTuEz3EOQa2xshiljoFxocuVW4tc5Z771SRFULqwnvpubdg-GW85AIruih9pp0fyxIu8n2yU9WVf0GoVBZMrpypUqq0ZDorrBTcWRiTFWmmIzIePqm56fg8zIYfBNI1KF2D0jVBuuY2Iu_Dt18PsMtrxMMpYb7OPhumpnMxVtycRWQ_TI51x4RzzOHOInI4zBbTrxEN0qyDLyq4hua362bQbvxlYytfr6APrKjg8CkmIiLD1PjrpzanH0-wdPCvA9-Qvcl8em7OT2ZnL8kD6JJ0OJ5DstMuV_4VWGOtex207BeEAyRq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKx4X3hWBAkZC3LLyxokdH4F26YOuENqK3iw7dgTaJak2WdTy65lxktUu4oAQNyexI2cyY88k33xDyGtW2GQssiTmxuUQoOQitoU0cVoaxTgvcuYwUfhsKo7O05OL7KLHP2EuTMcPsf7ghpYR1ms08EtXbht5h9BSqmfihL2Gj8Cf3E0FT1DDDz4nGwS8vKOSQrBaItk2quePd9raqnZR6lcDanHLH930asO2NLlH5sMDdWiU-WjV2lHx8zeux__zxPfJ3d57pW87dXtAbvjqIbnZ1bO8htZh0bdu98XVv14_ItUsQHMbWtU__IIOLOa-oW1NQyUeTImn9lsNd6XIX7Hssi0aOKAB8Yj5oBDSU_D0_Xe7gDUQ2i1dIIydNggKh1mF7_lt85icTw5n74_ivsxDXGBaa4wcZqmV4HqoUhbGMGu491a63GVCOe-F596A25fzkmd4oFzpc2X9WJRwku-Rnaqu_BNChTTgcBVMlkKmJVO5MyLj1sCY3KW5ish4eKP6smPz0BtREEhXo3Q1SlcH6eqriLwJr349wCzniIaTmf4y_aCZPJtlY8n1aUT2gm6sOyacYwV3FpH9QVl0v0I0SLIOkWjGFVx-tb4Mto0_bEzl6xX0gfUUwj3JsoiIoBl_PWt98u4YW0__deBLcuvTwUR_PJ6ePiN3oEfSgXj2yU67XPnn4Iq19kWwsV_nsiMZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+novel+approaches+to+modelling+biotic+interactions+in+multispecies+assemblages+at+large+spatial+extents&rft.jtitle=Journal+of+biogeography&rft.au=Kissling%2C+W.+D.&rft.au=Dormann%2C+Carsten+F.&rft.au=Groeneveld%2C+J%C3%BCrgen&rft.au=Hickler%2C+Thomas&rft.date=2012-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=39&rft.issue=12&rft.spage=2163&rft.epage=2178&rft_id=info:doi/10.1111%2Fj.1365-2699.2011.02663.x&rft.externalDBID=10.1111%252Fj.1365-2699.2011.02663.x&rft.externalDocID=JBI2663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon