Flexible and Wire-Shaped Micro-Supercapacitor Based on Ni(OH)2-Nanowire and Ordered Mesoporous Carbon Electrodes

Portable and multifunctional electronic devices are developing in the trend of being small, flexible, roll‐up, and even wearable, which asks us to develop flexible and micro‐sized energy conversion/storage devices. Here, the high performance of a flexible, wire‐shaped, and solid‐state micro‐supercap...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 24; no. 22; pp. 3405 - 3412
Main Authors Dong, Xiaoli, Guo, Ziyang, Song, Yanfang, Hou, Mengyan, Wang, Jianqiang, Wang, Yonggang, Xia, Yongyao
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.06.2014
Online AccessGet full text

Cover

Loading…
Abstract Portable and multifunctional electronic devices are developing in the trend of being small, flexible, roll‐up, and even wearable, which asks us to develop flexible and micro‐sized energy conversion/storage devices. Here, the high performance of a flexible, wire‐shaped, and solid‐state micro‐supercapacitor, which is prepared by twisting a Ni(OH)2‐nanowire fiber‐electrode and an ordered mesoporous carbon fiber‐electrode together with a polymer electrolyte, is demonstrated. This micro‐supercapacitor displays a high specific capacitance of 6.67 mF cm–1 (or 35.67 mF cm–2) and a high specific energy density of 0.01 mWh cm–2 (or 2.16 mWh cm–3), which are about 10–100 times higher than previous reports. Furthermore, its capacitance retention is 70% over 10 000 cycles, indicating perfect cyclic ability. Two wire‐shaped micro‐supercapacitors (0.6 mm in diameter, ≈3 cm in length) in series can successfully operate a red light‐emitting‐diode, indicating promising practical application. Furthermore, synchrotron radiation X‐ray computed microtomo­graphy technology is employed to investigate inner structure of the micro‐device, confirming its solid‐state characteristic. This micro‐supercapacitor may bring new design opportunities of device configuration for energy‐storage devices in the future wearable electronic area. The high performance of a flexible, wire‐shaped, and solid‐state micro‐supercapacitor, which is prepared by twisting a Ni(OH)2‐nanowire fiber‐electrode and an ordered mesoporous carbon fiber‐electrode together with solid‐state polymer electrolyte, is demonstrated.
AbstractList Portable and multifunctional electronic devices are developing in the trend of being small, flexible, roll‐up, and even wearable, which asks us to develop flexible and micro‐sized energy conversion/storage devices. Here, the high performance of a flexible, wire‐shaped, and solid‐state micro‐supercapacitor, which is prepared by twisting a Ni(OH)2‐nanowire fiber‐electrode and an ordered mesoporous carbon fiber‐electrode together with a polymer electrolyte, is demonstrated. This micro‐supercapacitor displays a high specific capacitance of 6.67 mF cm –1 (or 35.67 mF cm –2 ) and a high specific energy density of 0.01 mWh cm –2 (or 2.16 mWh cm –3 ), which are about 10–100 times higher than previous reports. Furthermore, its capacitance retention is 70% over 10 000 cycles, indicating perfect cyclic ability. Two wire‐shaped micro‐supercapacitors (0.6 mm in diameter, ≈3 cm in length) in series can successfully operate a red light‐emitting‐diode, indicating promising practical application. Furthermore, synchrotron radiation X‐ray computed microtomo­graphy technology is employed to investigate inner structure of the micro‐device, confirming its solid‐state characteristic. This micro‐supercapacitor may bring new design opportunities of device configuration for energy‐storage devices in the future wearable electronic area.
Portable and multifunctional electronic devices are developing in the trend of being small, flexible, roll‐up, and even wearable, which asks us to develop flexible and micro‐sized energy conversion/storage devices. Here, the high performance of a flexible, wire‐shaped, and solid‐state micro‐supercapacitor, which is prepared by twisting a Ni(OH)2‐nanowire fiber‐electrode and an ordered mesoporous carbon fiber‐electrode together with a polymer electrolyte, is demonstrated. This micro‐supercapacitor displays a high specific capacitance of 6.67 mF cm–1 (or 35.67 mF cm–2) and a high specific energy density of 0.01 mWh cm–2 (or 2.16 mWh cm–3), which are about 10–100 times higher than previous reports. Furthermore, its capacitance retention is 70% over 10 000 cycles, indicating perfect cyclic ability. Two wire‐shaped micro‐supercapacitors (0.6 mm in diameter, ≈3 cm in length) in series can successfully operate a red light‐emitting‐diode, indicating promising practical application. Furthermore, synchrotron radiation X‐ray computed microtomo­graphy technology is employed to investigate inner structure of the micro‐device, confirming its solid‐state characteristic. This micro‐supercapacitor may bring new design opportunities of device configuration for energy‐storage devices in the future wearable electronic area. The high performance of a flexible, wire‐shaped, and solid‐state micro‐supercapacitor, which is prepared by twisting a Ni(OH)2‐nanowire fiber‐electrode and an ordered mesoporous carbon fiber‐electrode together with solid‐state polymer electrolyte, is demonstrated.
Author Wang, Yonggang
Hou, Mengyan
Wang, Jianqiang
Xia, Yongyao
Song, Yanfang
Guo, Ziyang
Dong, Xiaoli
Author_xml – sequence: 1
  givenname: Xiaoli
  surname: Dong
  fullname: Dong, Xiaoli
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China
– sequence: 2
  givenname: Ziyang
  surname: Guo
  fullname: Guo, Ziyang
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China
– sequence: 3
  givenname: Yanfang
  surname: Song
  fullname: Song, Yanfang
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China
– sequence: 4
  givenname: Mengyan
  surname: Hou
  fullname: Hou, Mengyan
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China
– sequence: 5
  givenname: Jianqiang
  surname: Wang
  fullname: Wang, Jianqiang
  organization: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204, Shanghai, P. R. China
– sequence: 6
  givenname: Yonggang
  surname: Wang
  fullname: Wang, Yonggang
  email: ygwang@fudan.edu.cn
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China
– sequence: 7
  givenname: Yongyao
  surname: Xia
  fullname: Xia, Yongyao
  email: ygwang@fudan.edu.cn
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China
BookMark eNqF0M9PwjAUB_DGYCKgV8876mHYrqNjR36j4YeKBm9N173F6liXdkT47y1iiDExntr0vU9f3reBaoUuAKFLglsE4-BGpNm6FWBCcYgxOUF1wgjzKQ46teOdvJyhhrVvriGKaFhH5SiHrUpy8ESReitlwF--ihJSb6ak0f5yU4KRohRSVdp4PWFdSRfeXF0tJteBPxeF_nDqiy9MCmZPwepSG72xXl-YxLUPc5CV0SnYc3SaidzCxffZRM-j4VN_4k8X49t-d-rLkIbET4jMGMMkFDFQ3AaSSgaQMCYTKZKsI0UUyU5AE5ZCTNoQS0oglJl7yCgDSpuodfjXbWGtgYyXRq2F2XGC-T4vvs-LH_NyIPwF3MqiUrqojFD53yw-sA-Vw-6fIbw7GM1-Wv9gla1ge7TCvHMW0ajNV_Mxn03veoPH1T1_oJ8bzZL7
CitedBy_id crossref_primary_10_1039_C8RA01384E
crossref_primary_10_1016_j_jallcom_2022_164721
crossref_primary_10_1016_j_carbon_2019_10_020
crossref_primary_10_1016_j_ensm_2019_09_002
crossref_primary_10_1016_j_apt_2017_12_004
crossref_primary_10_1016_j_electacta_2017_09_016
crossref_primary_10_1039_C6RA27356D
crossref_primary_10_1021_acsami_6b16101
crossref_primary_10_1039_C5CC10113A
crossref_primary_10_1002_smll_201801815
crossref_primary_10_1021_acsami_8b12279
crossref_primary_10_1016_j_est_2023_107360
crossref_primary_10_1039_C4DT02831G
crossref_primary_10_1016_j_electacta_2019_06_055
crossref_primary_10_1016_j_jelechem_2018_05_037
crossref_primary_10_1016_j_mseb_2021_115436
crossref_primary_10_1016_j_nanoen_2016_03_027
crossref_primary_10_1039_C7TA08758F
crossref_primary_10_1002_celc_202001112
crossref_primary_10_1016_j_carbon_2016_04_031
crossref_primary_10_1002_adsu_201700044
crossref_primary_10_1039_C6TA00683C
crossref_primary_10_1002_ange_201500133
crossref_primary_10_1039_C5TA03467A
crossref_primary_10_1016_j_jallcom_2019_152712
crossref_primary_10_1039_C7CS00505A
crossref_primary_10_1007_s40843_017_9035_8
crossref_primary_10_1021_acsami_5b03042
crossref_primary_10_1039_C6CS00041J
crossref_primary_10_1039_C6TA03732A
crossref_primary_10_1088_1361_6528_aa6f89
crossref_primary_10_1002_er_7190
crossref_primary_10_1016_j_electacta_2015_10_035
crossref_primary_10_3390_app9183683
crossref_primary_10_1039_C5RA26848F
crossref_primary_10_1002_aenm_201402115
crossref_primary_10_1002_aenm_201800069
crossref_primary_10_1016_j_ensm_2018_12_018
crossref_primary_10_1016_j_cej_2018_01_123
crossref_primary_10_1016_j_ensm_2017_10_009
crossref_primary_10_3389_fchem_2020_602322
crossref_primary_10_1002_adma_201600506
crossref_primary_10_1016_j_electacta_2020_136312
crossref_primary_10_1002_adma_201602802
crossref_primary_10_1021_acsnano_5b01244
crossref_primary_10_1016_j_matchemphys_2024_129514
crossref_primary_10_1016_j_nanoen_2017_02_044
crossref_primary_10_1016_j_ensm_2019_06_012
crossref_primary_10_1002_ange_201506142
crossref_primary_10_1002_cssc_201700149
crossref_primary_10_1088_1361_6528_aa742f
crossref_primary_10_1002_advs_201600382
crossref_primary_10_1016_j_jechem_2017_06_011
crossref_primary_10_1039_C7NR09682H
crossref_primary_10_1016_j_cej_2017_04_065
crossref_primary_10_1016_j_isci_2020_101396
crossref_primary_10_1021_acs_chemmater_5b01128
crossref_primary_10_1039_C6QM00298F
crossref_primary_10_1016_j_apmt_2017_08_010
crossref_primary_10_1021_acsnano_6b03044
crossref_primary_10_1039_C6RA13902G
crossref_primary_10_1039_C8TA10133G
crossref_primary_10_1016_j_jallcom_2019_152187
crossref_primary_10_1016_j_jpowsour_2017_04_100
crossref_primary_10_1016_j_apmt_2016_10_003
crossref_primary_10_1016_j_apsusc_2019_01_012
crossref_primary_10_1002_ente_201600391
crossref_primary_10_1016_j_materresbull_2021_111678
crossref_primary_10_1016_j_jechem_2018_05_008
crossref_primary_10_1021_acsaem_8b00928
crossref_primary_10_1039_C8SE00223A
crossref_primary_10_1016_j_electacta_2020_136097
crossref_primary_10_1016_j_jpowsour_2024_234069
crossref_primary_10_1021_acsami_8b11997
crossref_primary_10_1016_j_apsusc_2015_11_071
crossref_primary_10_1016_j_jallcom_2019_151769
crossref_primary_10_1039_C5QI00187K
crossref_primary_10_1002_adma_201603436
crossref_primary_10_1016_j_jcis_2021_09_011
crossref_primary_10_1039_D4TA00979G
crossref_primary_10_1016_j_cej_2020_124880
crossref_primary_10_1016_j_electacta_2024_144892
crossref_primary_10_1016_j_jcis_2017_11_054
crossref_primary_10_1016_j_ceramint_2017_03_118
crossref_primary_10_1016_j_est_2020_101460
crossref_primary_10_1080_10584587_2019_1592602
crossref_primary_10_1016_j_jpowsour_2021_230130
crossref_primary_10_1016_j_jcis_2019_02_019
crossref_primary_10_1039_C6NR02267G
crossref_primary_10_1002_anie_201506142
crossref_primary_10_1007_s40820_020_00529_8
crossref_primary_10_1016_j_matchemphys_2017_11_032
crossref_primary_10_1039_C5TA10781D
crossref_primary_10_1039_D1NR00593F
crossref_primary_10_1021_acsami_6b05496
crossref_primary_10_1039_C6TA07171F
crossref_primary_10_1016_j_cej_2022_137732
crossref_primary_10_1039_C6QI00595K
crossref_primary_10_1039_D1TA03262C
crossref_primary_10_3390_polym15020454
crossref_primary_10_1007_s10854_017_6601_7
crossref_primary_10_1016_j_chempr_2017_05_004
crossref_primary_10_1016_j_inoche_2019_107603
crossref_primary_10_1002_adfm_202103073
crossref_primary_10_1016_j_jallcom_2015_06_230
crossref_primary_10_1360_SST_2022_0369
crossref_primary_10_1016_j_ensm_2017_05_002
crossref_primary_10_1021_acsaem_7b00204
crossref_primary_10_1088_1361_6528_ac6432
crossref_primary_10_1007_s12274_023_6388_1
crossref_primary_10_1016_j_mssp_2018_11_004
crossref_primary_10_1039_C7TA02652H
crossref_primary_10_1002_aenm_201500677
crossref_primary_10_1039_C8CS00237A
crossref_primary_10_1002_adma_201803430
crossref_primary_10_1002_smll_202204346
crossref_primary_10_1002_aenm_201600783
crossref_primary_10_1016_j_jallcom_2021_161502
crossref_primary_10_1016_j_jallcom_2015_08_090
crossref_primary_10_1016_j_carbon_2020_09_053
crossref_primary_10_1016_j_nanoen_2014_11_055
crossref_primary_10_1002_chem_201502269
crossref_primary_10_1021_acsami_7b15922
crossref_primary_10_1039_C7NR06725A
crossref_primary_10_1021_acsenergylett_8b02496
crossref_primary_10_1002_smtd_201800124
crossref_primary_10_1016_j_cej_2021_128871
crossref_primary_10_1002_adma_202104764
crossref_primary_10_1016_j_est_2023_108544
crossref_primary_10_1016_j_electacta_2020_136731
crossref_primary_10_1021_acsami_8b03725
crossref_primary_10_1002_aenm_201501812
crossref_primary_10_1021_acsaem_8b00556
crossref_primary_10_1021_acsaem_8b01645
crossref_primary_10_1039_C5DT02724A
crossref_primary_10_1557_mrc_2019_157
crossref_primary_10_1039_C6RA20373F
crossref_primary_10_1016_j_est_2016_02_007
crossref_primary_10_1039_C7TA03004E
crossref_primary_10_1016_j_est_2020_101946
crossref_primary_10_1039_C7CS00205J
crossref_primary_10_1088_1361_6528_ab009f
crossref_primary_10_1016_j_mtener_2017_04_007
crossref_primary_10_1039_C5EE02703A
crossref_primary_10_1039_C5TA05295E
crossref_primary_10_1016_j_ceramint_2019_08_140
crossref_primary_10_1021_acsami_7b11263
crossref_primary_10_1039_C7TA06353A
crossref_primary_10_1002_celc_201500089
crossref_primary_10_1016_j_carbon_2018_06_041
crossref_primary_10_1016_j_electacta_2016_06_059
crossref_primary_10_1016_j_jpowsour_2018_02_034
crossref_primary_10_1149_1945_7111_ab7096
crossref_primary_10_1039_C7CC01400G
crossref_primary_10_1007_s12274_014_0595_8
crossref_primary_10_1021_acs_langmuir_5b00649
crossref_primary_10_1021_acs_jpcc_1c05148
crossref_primary_10_1002_admi_201600057
crossref_primary_10_1002_batt_202100093
crossref_primary_10_1021_acsaem_3c02798
crossref_primary_10_1038_srep08536
crossref_primary_10_1016_j_nanoen_2017_07_050
crossref_primary_10_1002_smll_201603494
crossref_primary_10_1016_j_est_2024_112848
crossref_primary_10_1002_ente_201402161
crossref_primary_10_1039_C5TA06317E
crossref_primary_10_1002_aenm_201401303
crossref_primary_10_1021_acssuschemeng_8b03196
crossref_primary_10_1002_cssc_201600150
crossref_primary_10_1016_j_cej_2019_01_102
crossref_primary_10_1039_D4GC01098A
crossref_primary_10_1002_chem_202403439
crossref_primary_10_1088_0957_4484_26_42_425402
crossref_primary_10_1002_bte2_20230061
crossref_primary_10_1021_acsami_0c01537
crossref_primary_10_1039_C5TA01105A
crossref_primary_10_1002_adma_202413292
crossref_primary_10_1039_C8MH00112J
crossref_primary_10_1002_anie_201500133
crossref_primary_10_1021_acsami_8b05802
crossref_primary_10_1016_j_jallcom_2015_09_221
crossref_primary_10_1021_acsami_9b04006
crossref_primary_10_1002_aelm_201400053
crossref_primary_10_1002_asia_201403085
crossref_primary_10_1039_D0NR04933F
crossref_primary_10_1016_j_matlet_2022_132442
crossref_primary_10_1039_C8TA01117F
crossref_primary_10_1016_j_cej_2022_138877
crossref_primary_10_1002_adma_201800124
crossref_primary_10_1002_advs_201802067
crossref_primary_10_1557_jmr_2019_234
crossref_primary_10_1007_s10854_023_11868_8
crossref_primary_10_1007_s12274_017_1448_z
crossref_primary_10_1002_adma_201600319
crossref_primary_10_1007_s11664_020_08020_1
crossref_primary_10_1016_j_jpowsour_2016_11_096
crossref_primary_10_1002_adma_201605336
crossref_primary_10_1016_j_nanoen_2015_07_030
crossref_primary_10_1039_C4RA13473G
crossref_primary_10_1039_D2CE00466F
crossref_primary_10_1021_acssuschemeng_5b01263
crossref_primary_10_1016_j_jpowsour_2018_09_030
crossref_primary_10_1002_ente_201500067
crossref_primary_10_1039_C8NR03316A
crossref_primary_10_1016_j_jpowsour_2015_03_126
crossref_primary_10_1021_acs_jpcc_9b04718
crossref_primary_10_1016_j_carbon_2019_09_064
crossref_primary_10_1016_j_electacta_2019_05_059
crossref_primary_10_1039_D0CS01603A
crossref_primary_10_1002_adfm_201605307
crossref_primary_10_1002_adma_201403243
crossref_primary_10_1021_acsaem_8b01051
crossref_primary_10_1021_acs_jpclett_9b03267
crossref_primary_10_1039_C7CC03517A
crossref_primary_10_1002_er_8530
crossref_primary_10_1002_adfm_201605313
crossref_primary_10_1039_C5TA05666G
crossref_primary_10_1002_adma_201600689
crossref_primary_10_1039_C6RA17123K
crossref_primary_10_1021_acsaem_2c01023
crossref_primary_10_1016_j_mseb_2023_116813
crossref_primary_10_1016_j_electacta_2016_02_047
crossref_primary_10_1080_00150193_2020_1760612
crossref_primary_10_1016_j_jallcom_2022_168603
crossref_primary_10_1021_acsaem_3c01157
crossref_primary_10_1039_C6TA08331E
crossref_primary_10_1002_ppsc_201500005
crossref_primary_10_1039_C5TA04731E
crossref_primary_10_1002_adfm_201800064
crossref_primary_10_1016_j_nanoen_2015_04_034
crossref_primary_10_1016_j_diamond_2020_107808
crossref_primary_10_1002_er_5493
crossref_primary_10_1039_C6TA00093B
crossref_primary_10_1039_C6TA08330G
crossref_primary_10_1016_j_nanoen_2016_12_020
crossref_primary_10_1021_acsnano_9b07325
crossref_primary_10_1039_C7TA04712F
crossref_primary_10_1002_advs_201801797
crossref_primary_10_1016_j_cej_2018_03_147
crossref_primary_10_1016_j_electacta_2020_135828
crossref_primary_10_1002_aenm_201901892
crossref_primary_10_1039_C7NR01644A
crossref_primary_10_1016_j_est_2024_110987
crossref_primary_10_1021_acsami_5b02157
crossref_primary_10_1002_adfm_201503662
crossref_primary_10_1007_s10800_017_1051_8
crossref_primary_10_1039_C5CS00303B
crossref_primary_10_1039_C6TA00123H
crossref_primary_10_1039_C6QI00199H
crossref_primary_10_1002_asia_201500335
crossref_primary_10_1016_j_jallcom_2015_10_036
crossref_primary_10_1016_j_nanoen_2023_108763
crossref_primary_10_1039_C9TA13887K
crossref_primary_10_3390_molecules24173041
crossref_primary_10_1002_smll_201805277
crossref_primary_10_1016_j_electacta_2019_134770
crossref_primary_10_1063_1_5044560
crossref_primary_10_1007_s10853_017_1467_x
crossref_primary_10_1002_aenm_201700127
crossref_primary_10_1039_D1TA00522G
crossref_primary_10_1016_j_jallcom_2018_02_080
crossref_primary_10_1021_acsami_8b08680
crossref_primary_10_1039_C9GC02920F
crossref_primary_10_1002_adfm_201606696
crossref_primary_10_1016_j_matlet_2018_10_157
crossref_primary_10_1021_acsami_6b03559
crossref_primary_10_1039_D1DT01075A
crossref_primary_10_1016_j_isci_2022_104141
crossref_primary_10_1016_j_jpcs_2022_110872
crossref_primary_10_1039_D1NR00814E
crossref_primary_10_1039_C7RA06569H
crossref_primary_10_1007_s11581_016_1669_2
crossref_primary_10_1002_smll_201503021
crossref_primary_10_1016_j_cej_2020_127523
crossref_primary_10_1021_acsami_7b02478
crossref_primary_10_1002_slct_201903707
crossref_primary_10_1016_j_cej_2021_128479
crossref_primary_10_1088_1361_6528_aadad4
crossref_primary_10_1002_aenm_202003509
crossref_primary_10_1016_j_cej_2018_05_090
crossref_primary_10_3390_polym16223164
crossref_primary_10_1016_j_electacta_2014_12_021
crossref_primary_10_1016_j_mattod_2015_01_002
crossref_primary_10_1002_adfm_202109593
crossref_primary_10_1002_cey2_187
crossref_primary_10_1002_admi_201801470
crossref_primary_10_1021_acsami_8b09085
crossref_primary_10_3390_nano8060422
crossref_primary_10_1016_j_apsusc_2015_04_005
crossref_primary_10_1016_j_jpowsour_2016_10_006
crossref_primary_10_1021_acsnano_2c02841
crossref_primary_10_1016_j_ijhydene_2019_04_021
crossref_primary_10_1016_S1872_5805_19_60031_4
Cites_doi 10.1039/c2cp00019a
10.1021/nl400760a
10.1021/nn4000836
10.1149/2.012302jes
10.1002/adma.201202930
10.1002/adma.201301519
10.1021/nl1019672
10.1002/adfm.201102796
10.1002/adma.201301932
10.1126/science.1184126
10.1002/adfm.201301345
10.1002/anie.201207023
10.1016/j.carbon.2007.08.005
10.1021/nn203085j
10.1002/anie.201006062
10.1021/nn2041279
10.1038/ncomms2446
10.1002/adma.201302498
10.1149/1.2171833
10.1021/nn1018158
10.1007/s10008-009-0984-1
10.1002/adfm.201102839
10.1039/c0nr00990c
10.1021/cr020740l
10.1126/science.1151831
10.1039/b815647f
10.1016/j.jpowsour.2009.08.085
10.1021/nn403068d
10.1002/adma.201204003
10.1002/adma.201202196
10.1002/aenm.201100255
10.1002/adma.201301465
10.1016/j.jpowsour.2012.07.111
10.1002/adma.201300132
10.1038/nmat2297
10.1002/anie.200501561
10.1038/nnano.2010.162
10.1002/adma.201203445
10.1038/nnano.2011.110
10.1038/nphoton.2010.267
10.1038/ncomms2932
10.1002/adma.201205064
10.1021/ja102267j
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/adfm.201304001
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 3412
ExternalDocumentID 10_1002_adfm_201304001
ADFM201304001
ark_67375_WNG_MLJBDRWP_Q
Genre article
GrantInformation_xml – fundername: Shanghai Pujiang Program
  funderid: 13PJ1400800
– fundername: State Key Basic Research Program of PRC
  funderid: 2013CB934103
– fundername: Natural Science Foundation of China
  funderid: 21373060; 21333002
– fundername: Shanghai Science & Technology Committee
  funderid: 11DZ1100207; 08DZ2270500
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c4341-b1cf66014a9e305e1dc6eeb66cbcabf8ca77c823b6de915e9c31e4cf3b6f36e33
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Tue Jul 01 01:30:13 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Wed Jan 22 16:36:21 EST 2025
Wed Oct 30 09:52:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4341-b1cf66014a9e305e1dc6eeb66cbcabf8ca77c823b6de915e9c31e4cf3b6f36e33
Notes Shanghai Science & Technology Committee - No. 11DZ1100207; No. 08DZ2270500
ArticleID:ADFM201304001
istex:FBB4DADFC3814E2D312294D9A9DFDF55A23738DE
Natural Science Foundation of China - No. 21373060; No. 21333002
ark:/67375/WNG-MLJBDRWP-Q
State Key Basic Research Program of PRC - No. 2013CB934103
Shanghai Pujiang Program - No. 13PJ1400800
PageCount 8
ParticipantIDs crossref_primary_10_1002_adfm_201304001
crossref_citationtrail_10_1002_adfm_201304001
wiley_primary_10_1002_adfm_201304001_ADFM201304001
istex_primary_ark_67375_WNG_MLJBDRWP_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References M. Q. Xue, Z. Xie, L. S. Zhang, X. L. Ma, X. L. Wu, Y. G. Guo, W. G. Song, Z. B. Li, T. B. Cao, Nanoscale 2011, 3, 2703.
Y. G. Wang, Y. Y. Xia, J. Electrochem. Soc. 2006, 153, A743.
X. H. Lu, M. H. Yu, T. Zhai, G. M. Wang, S. L. Xie, T. Y. Liu, C. L. Liang, Y. X. Tong, Y. Li, Nano Lett. 2013, 13, 2628.
H. Nishide, K. Oyaizu, Science 2008, 319, 737.
G. W. Yang, C. L. Xu, H. L. Li, Chem. Commun. 2008, 6537.
P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.
J. W. Long, B. Dunn, D. R. Rolison, H. S. White, Chem. Rev. 2004, 104, 4463.
D. Pech, M. Brunet, P. L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conedera, H. Durou, J. Power Sources 2010, 195, 1266.
Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053.
A. Sumboja, C. Y. Foo, X. Wang, P. S. Lee, Adv. Mater. 2013, 25, 2809.
C. Z. Meng, C. H. Liu, L. Z. Chen, C. H. Hu, S. S. Fan, Nano Lett. 2010, 10, 4025.
J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, Y. Gogotsi, Science 2010, 328, 480.
J. Yan, Z. J. Fan, W. Sun, G. Q. Ning, T. Wei, Q. Zhang, R. F. Zhang, L. J. Zhi, F. Wei, Adv. Funct. Mater. 2012, 22, 2632.
W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. J. Ci, R. Vajtai, Q. Zhang, B. Q. Wei, P. M. Ajayan, Nature Nanotech. 2011, 6, 496.
J. W. Lang, L. B. Kong, M. Liu, Y. C. Lou, L. Kang, J. Solid State Electrochem. 2010, 14, 1533.
L. B. Hu, H. Wu, F. L. Mantia, Y. Yang, Y. Cui, ACS Nano 2010, 4, 5843.
H. L. Wang, H. S. Casalongue, Y. Y. Liang, H. J. Dai, J. Am. Chem. Soc. 2010, 132, 7472.
C. C. Hu, J. C. Chen, K. H. Chang, J. Power Sources 2013, 221, 128.
Z. Tang, C. H. Tang, H. Gong, Adv. Funct. Mater. 2012, 22, 1272.
H. Q. Li, R. L. Liu, D. Y. Zhao, Y. Y. Xia, Carbon 2007, 45, 2628.
Y. G. Wang, D. D. Zhou, D. Zhao, M. Y. Hou, C. X. Wang, Y. Y. Xia, J. Electrochem. Soc. 2013, 160, A98.
J. Bae, M. K. Song, Y. J. Park, J. M. Kim, M. L. Liu, Z. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 1683.
L. B. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef, Y. Cui, ACS Nano 2011, 5, 8904.
K. H. Choi, S. J. Cho, S. H. Kim, Y. H. Kwon, J. Y. Kim, S. Y. Lee, Adv. Funct. Mater. 2014, 24, 44.
Z. Q. Niu, H. B. Dong, B. W. Zhu, J. Z. Li, H. H. Hng, W. Y. Zhou, X. D. Chen, S. S. Xie, Adv. Mater. 2013, 25, 1058.
H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, G. W. Yang, Nat. Commun. 2013, 4, 1894.
Y. H. Kwon, S. W. Woo, H. R. Jung, H. K. Yu, K. Kim, B. H. Oh, S. Ahn, S. Y. Lee, S. W. Song, J. Cho, H. C. Shin, J. Y. Kim, Adv. Mater. 2012, 24, 5192.
X. L. Chen, L. B. Qiu, J. Ren, G. Z. Guan, H. J. Lin, Z. T. Zhang, P. N. Chen, Y. G. Wang, H. S. Peng, Adv. Mater. 2013, 25, 6436.
M. F. El-Kady, R. B. Kaner, Nat. Commun. 2013, 4, 1475.
T. Chen, L. B. Qiu, Z. B, Yang, Z. B. Cai, J. Ren, H. P. Li, H. J. Lin, X. M. Sun, H. S. Peng, Angew. Chem. Int. Ed. 2012, 51, 11977.
Y. P. Fu, X. Cai, H. W. Wu, Z. B. Lv, S. C. Hou, M. Peng, X. Yu, D. C. Zou, Adv. Mater. 2012, 24, 5713.
A. Sakdinawat, D. Attwood, Nat. Photonics 2010, 4, 840.
J. Ren, W. Y. Bai, G. Z. Guan, Y. Zhang, H. S. Peng, Adv. Mater. 2013, 25, 5965.
X. Xu, X. Peng, H. Y. Jin, T. Q. Li, C. C. Zhang, B. Gao, B. Hu, K. F. Huo, J. Zhou, Adv. Mater. 2013, 25, 5091.
D. Pech, M. Brunet, H. Durou, P. H. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, Nature Nanotech 2010, 5, 651.
Y. N. Meng, Y. Zhao, C. G. Hu, H. H. Cheng, Y. Hu, Z. P. Zhang, G. Q. Shi, L. T. Qu, Adv. Mater. 2013, 25, 2326.
Y. G. Wang, Y. Y. Xia, Adv. Mater. 2013, 25, 5336.
L. Y. Yuan, X. H. Lu, X. Xiao, T. Zhai, J. J. Dai, F. C. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C. G. Hu, Y. X. Tong, J. Zhou, Z. L. Wang, ACS Nano 2012, 6, 656.
J. Ren, L. Li, C. Chen, X. L. Chen, Z. B. Cai, L. B. Qiu, Y. G. Wang, X. R. Zhu, H. S. Peng, Adv. Mater. 2013, 25, 1155.
H. J. Liu, J. Wang, C. X. Wang, Y. Y. Xia, Adv. Energy Mater. 2011, 1, 1101.
Y. X. Xu, Z. Y. Lin, X. Q. Huang, Y. Liu, Y. Huang, X. F. Duan, ACS Nano 2013, 7, 4042.
J. Duay, E. Gillette, R. Liu, S. B. Lee, Phys. Chem. Chem. Phys. 2012, 14, 3329.
D. Kim, G. Shin, Y. J. Kang, W. Kim, J. S. Ha, ACS Nano 2013, 7, 7975.
2010; 10
2013; 25
2013; 4
2004; 104
2010; 14
2011; 1
2010; 328
2008
2013; 221
2008; 7
2014; 24
2006; 153
2013; 7
2012; 14
2011; 3
2011; 6
2011; 5
2013; 160
2005; 44
2012; 51
2013; 13
2008; 319
2011; 50
2010; 132
2010; 195
2012; 6
2012; 24
2010; 5
2010; 4
2007; 45
2012; 22
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – reference: D. Kim, G. Shin, Y. J. Kang, W. Kim, J. S. Ha, ACS Nano 2013, 7, 7975.
– reference: K. H. Choi, S. J. Cho, S. H. Kim, Y. H. Kwon, J. Y. Kim, S. Y. Lee, Adv. Funct. Mater. 2014, 24, 44.
– reference: Y. N. Meng, Y. Zhao, C. G. Hu, H. H. Cheng, Y. Hu, Z. P. Zhang, G. Q. Shi, L. T. Qu, Adv. Mater. 2013, 25, 2326.
– reference: Y. G. Wang, Y. Y. Xia, Adv. Mater. 2013, 25, 5336.
– reference: A. Sumboja, C. Y. Foo, X. Wang, P. S. Lee, Adv. Mater. 2013, 25, 2809.
– reference: J. Ren, L. Li, C. Chen, X. L. Chen, Z. B. Cai, L. B. Qiu, Y. G. Wang, X. R. Zhu, H. S. Peng, Adv. Mater. 2013, 25, 1155.
– reference: H. Nishide, K. Oyaizu, Science 2008, 319, 737.
– reference: T. Chen, L. B. Qiu, Z. B, Yang, Z. B. Cai, J. Ren, H. P. Li, H. J. Lin, X. M. Sun, H. S. Peng, Angew. Chem. Int. Ed. 2012, 51, 11977.
– reference: X. H. Lu, M. H. Yu, T. Zhai, G. M. Wang, S. L. Xie, T. Y. Liu, C. L. Liang, Y. X. Tong, Y. Li, Nano Lett. 2013, 13, 2628.
– reference: Y. H. Kwon, S. W. Woo, H. R. Jung, H. K. Yu, K. Kim, B. H. Oh, S. Ahn, S. Y. Lee, S. W. Song, J. Cho, H. C. Shin, J. Y. Kim, Adv. Mater. 2012, 24, 5192.
– reference: Y. G. Wang, D. D. Zhou, D. Zhao, M. Y. Hou, C. X. Wang, Y. Y. Xia, J. Electrochem. Soc. 2013, 160, A98.
– reference: M. Q. Xue, Z. Xie, L. S. Zhang, X. L. Ma, X. L. Wu, Y. G. Guo, W. G. Song, Z. B. Li, T. B. Cao, Nanoscale 2011, 3, 2703.
– reference: P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.
– reference: C. C. Hu, J. C. Chen, K. H. Chang, J. Power Sources 2013, 221, 128.
– reference: J. Duay, E. Gillette, R. Liu, S. B. Lee, Phys. Chem. Chem. Phys. 2012, 14, 3329.
– reference: C. Z. Meng, C. H. Liu, L. Z. Chen, C. H. Hu, S. S. Fan, Nano Lett. 2010, 10, 4025.
– reference: J. Ren, W. Y. Bai, G. Z. Guan, Y. Zhang, H. S. Peng, Adv. Mater. 2013, 25, 5965.
– reference: J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, Y. Gogotsi, Science 2010, 328, 480.
– reference: D. Pech, M. Brunet, H. Durou, P. H. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, Nature Nanotech 2010, 5, 651.
– reference: J. W. Long, B. Dunn, D. R. Rolison, H. S. White, Chem. Rev. 2004, 104, 4463.
– reference: H. Q. Li, R. L. Liu, D. Y. Zhao, Y. Y. Xia, Carbon 2007, 45, 2628.
– reference: Y. X. Xu, Z. Y. Lin, X. Q. Huang, Y. Liu, Y. Huang, X. F. Duan, ACS Nano 2013, 7, 4042.
– reference: Y. P. Fu, X. Cai, H. W. Wu, Z. B. Lv, S. C. Hou, M. Peng, X. Yu, D. C. Zou, Adv. Mater. 2012, 24, 5713.
– reference: A. Sakdinawat, D. Attwood, Nat. Photonics 2010, 4, 840.
– reference: D. Pech, M. Brunet, P. L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conedera, H. Durou, J. Power Sources 2010, 195, 1266.
– reference: J. W. Lang, L. B. Kong, M. Liu, Y. C. Lou, L. Kang, J. Solid State Electrochem. 2010, 14, 1533.
– reference: H. J. Liu, J. Wang, C. X. Wang, Y. Y. Xia, Adv. Energy Mater. 2011, 1, 1101.
– reference: X. Xu, X. Peng, H. Y. Jin, T. Q. Li, C. C. Zhang, B. Gao, B. Hu, K. F. Huo, J. Zhou, Adv. Mater. 2013, 25, 5091.
– reference: J. Bae, M. K. Song, Y. J. Park, J. M. Kim, M. L. Liu, Z. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 1683.
– reference: L. B. Hu, H. Wu, F. L. Mantia, Y. Yang, Y. Cui, ACS Nano 2010, 4, 5843.
– reference: L. B. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef, Y. Cui, ACS Nano 2011, 5, 8904.
– reference: G. W. Yang, C. L. Xu, H. L. Li, Chem. Commun. 2008, 6537.
– reference: Z. Q. Niu, H. B. Dong, B. W. Zhu, J. Z. Li, H. H. Hng, W. Y. Zhou, X. D. Chen, S. S. Xie, Adv. Mater. 2013, 25, 1058.
– reference: X. L. Chen, L. B. Qiu, J. Ren, G. Z. Guan, H. J. Lin, Z. T. Zhang, P. N. Chen, Y. G. Wang, H. S. Peng, Adv. Mater. 2013, 25, 6436.
– reference: L. Y. Yuan, X. H. Lu, X. Xiao, T. Zhai, J. J. Dai, F. C. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C. G. Hu, Y. X. Tong, J. Zhou, Z. L. Wang, ACS Nano 2012, 6, 656.
– reference: Z. Tang, C. H. Tang, H. Gong, Adv. Funct. Mater. 2012, 22, 1272.
– reference: Y. G. Wang, Y. Y. Xia, J. Electrochem. Soc. 2006, 153, A743.
– reference: W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. J. Ci, R. Vajtai, Q. Zhang, B. Q. Wei, P. M. Ajayan, Nature Nanotech. 2011, 6, 496.
– reference: Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053.
– reference: M. F. El-Kady, R. B. Kaner, Nat. Commun. 2013, 4, 1475.
– reference: H. L. Wang, H. S. Casalongue, Y. Y. Liang, H. J. Dai, J. Am. Chem. Soc. 2010, 132, 7472.
– reference: J. Yan, Z. J. Fan, W. Sun, G. Q. Ning, T. Wei, Q. Zhang, R. F. Zhang, L. J. Zhi, F. Wei, Adv. Funct. Mater. 2012, 22, 2632.
– reference: H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, G. W. Yang, Nat. Commun. 2013, 4, 1894.
– volume: 25
  start-page: 5965
  year: 2013
  publication-title: Adv. Mater.
– volume: 104
  start-page: 4463
  year: 2004
  publication-title: Chem. Rev.
– volume: 25
  start-page: 1058
  year: 2013
  publication-title: Adv. Mater.
– volume: 319
  start-page: 737
  year: 2008
  publication-title: Science
– volume: 4
  start-page: 840
  year: 2010
  publication-title: Nat. Photonics
– volume: 153
  start-page: A743
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 24
  start-page: 5192
  year: 2012
  publication-title: Adv. Mater.
– volume: 6
  start-page: 656
  year: 2012
  publication-title: ACS Nano
– volume: 45
  start-page: 2628
  year: 2007
  publication-title: Carbon
– volume: 24
  start-page: 5713
  year: 2012
  publication-title: Adv. Mater.
– volume: 50
  start-page: 1683
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 1101
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 25
  start-page: 1155
  year: 2013
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1475
  year: 2013
  publication-title: Nat. Commun.
– volume: 25
  start-page: 6436
  year: 2013
  publication-title: Adv. Mater.
– volume: 7
  start-page: 845
  year: 2008
  publication-title: Nat. Mater.
– volume: 7
  start-page: 4042
  year: 2013
  publication-title: ACS Nano
– volume: 14
  start-page: 3329
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 13
  start-page: 2628
  year: 2013
  publication-title: Nano Lett.
– volume: 22
  start-page: 2632
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 5336
  year: 2013
  publication-title: Adv. Mater.
– start-page: 6537
  year: 2008
  publication-title: Chem. Commun.
– volume: 10
  start-page: 4025
  year: 2010
  publication-title: Nano Lett.
– volume: 25
  start-page: 2326
  year: 2013
  publication-title: Adv. Mater.
– volume: 22
  start-page: 1272
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 1894
  year: 2013
  publication-title: Nat. Commun.
– volume: 25
  start-page: 5091
  year: 2013
  publication-title: Adv. Mater.
– volume: 195
  start-page: 1266
  year: 2010
  publication-title: J. Power Sources
– volume: 3
  start-page: 2703
  year: 2011
  publication-title: Nanoscale
– volume: 5
  start-page: 8904
  year: 2011
  publication-title: ACS Nano
– volume: 24
  start-page: 44
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 11977
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 328
  start-page: 480
  year: 2010
  publication-title: Science
– volume: 5
  start-page: 651
  year: 2010
  publication-title: Nature Nanotech
– volume: 221
  start-page: 128
  year: 2013
  publication-title: J. Power Sources
– volume: 7
  start-page: 7975
  year: 2013
  publication-title: ACS Nano
– volume: 160
  start-page: A98
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 25
  start-page: 2809
  year: 2013
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1533
  year: 2010
  publication-title: J. Solid State Electrochem.
– volume: 6
  start-page: 496
  year: 2011
  publication-title: Nature Nanotech.
– volume: 44
  start-page: 7053
  year: 2005
  publication-title: Angew. Chem. Int. Ed.
– volume: 132
  start-page: 7472
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 5843
  year: 2010
  publication-title: ACS Nano
– ident: e_1_2_4_13_1
  doi: 10.1039/c2cp00019a
– ident: e_1_2_4_14_1
  doi: 10.1021/nl400760a
– ident: e_1_2_4_10_1
  doi: 10.1021/nn4000836
– ident: e_1_2_4_41_1
  doi: 10.1149/2.012302jes
– ident: e_1_2_4_26_1
  doi: 10.1002/adma.201202930
– ident: e_1_2_4_25_1
  doi: 10.1002/adma.201301519
– ident: e_1_2_4_3_1
  doi: 10.1021/nl1019672
– ident: e_1_2_4_42_1
  doi: 10.1002/adfm.201102796
– ident: e_1_2_4_36_1
  doi: 10.1002/adma.201301932
– ident: e_1_2_4_16_1
  doi: 10.1126/science.1184126
– ident: e_1_2_4_7_1
  doi: 10.1002/adfm.201301345
– ident: e_1_2_4_28_1
  doi: 10.1002/anie.201207023
– ident: e_1_2_4_35_1
  doi: 10.1016/j.carbon.2007.08.005
– ident: e_1_2_4_4_1
  doi: 10.1021/nn203085j
– ident: e_1_2_4_22_1
  doi: 10.1002/anie.201006062
– ident: e_1_2_4_9_1
  doi: 10.1021/nn2041279
– ident: e_1_2_4_19_1
  doi: 10.1038/ncomms2446
– ident: e_1_2_4_24_1
  doi: 10.1002/adma.201302498
– ident: e_1_2_4_32_1
  doi: 10.1149/1.2171833
– ident: e_1_2_4_2_1
  doi: 10.1021/nn1018158
– ident: e_1_2_4_40_1
  doi: 10.1007/s10008-009-0984-1
– ident: e_1_2_4_38_1
  doi: 10.1002/adfm.201102839
– ident: e_1_2_4_12_1
  doi: 10.1039/c0nr00990c
– ident: e_1_2_4_20_1
  doi: 10.1021/cr020740l
– ident: e_1_2_4_1_1
  doi: 10.1126/science.1151831
– ident: e_1_2_4_31_1
  doi: 10.1039/b815647f
– ident: e_1_2_4_18_1
  doi: 10.1016/j.jpowsour.2009.08.085
– ident: e_1_2_4_21_1
  doi: 10.1021/nn403068d
– ident: e_1_2_4_8_1
  doi: 10.1002/adma.201204003
– ident: e_1_2_4_11_1
  doi: 10.1002/adma.201202196
– ident: e_1_2_4_34_1
  doi: 10.1002/aenm.201100255
– ident: e_1_2_4_5_1
  doi: 10.1002/adma.201301465
– ident: e_1_2_4_39_1
  doi: 10.1016/j.jpowsour.2012.07.111
– ident: e_1_2_4_27_1
  doi: 10.1002/adma.201300132
– ident: e_1_2_4_33_1
  doi: 10.1038/nmat2297
– ident: e_1_2_4_37_1
  doi: 10.1002/anie.200501561
– ident: e_1_2_4_17_1
  doi: 10.1038/nnano.2010.162
– ident: e_1_2_4_23_1
  doi: 10.1002/adma.201203445
– ident: e_1_2_4_15_1
  doi: 10.1038/nnano.2011.110
– ident: e_1_2_4_43_1
  doi: 10.1038/nphoton.2010.267
– ident: e_1_2_4_29_1
  doi: 10.1038/ncomms2932
– ident: e_1_2_4_6_1
  doi: 10.1002/adma.201205064
– ident: e_1_2_4_30_1
  doi: 10.1021/ja102267j
SSID ssj0017734
Score 2.5779555
Snippet Portable and multifunctional electronic devices are developing in the trend of being small, flexible, roll‐up, and even wearable, which asks us to develop...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 3405
Title Flexible and Wire-Shaped Micro-Supercapacitor Based on Ni(OH)2-Nanowire and Ordered Mesoporous Carbon Electrodes
URI https://api.istex.fr/ark:/67375/WNG-MLJBDRWP-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201304001
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYquMChpZSq2wfyoaLlEIgTrx0fF5btCpGlvMTeIj_GAoGSVXYXVT31J_Q39pfUTnYDWwkhlVscja3EM54ZJ5-_QeizITaKheIBZ8YGlBEZKK3jwDLaJokhodEVynfA-hf0cNgePjjFX_NDNB_c_Mqo_LVf4FKNd-9JQ6Wx_iS588HODP3-xwO2fFZ02vBHEc7r38qMeIAXGc5ZG8Nod7H7QlRa9hP8YzFbrcJN7xWS8wetUSY3O9OJ2tE__-FwfM6brKGXs1wUd2rjeY1eQL6OVh8wFL5Bdz1PmKluAcvcYA-V_fPr99mVHIHBqcfy-eZ0BKV2QVc771DiPRcXDS5yPLj-etzfjpyEc-GF50SuBjkuq_qgOIVx4ZL_YjrG-7JUrsNBXZLHwHgDXfQOzvf7waxUQ6Cpi4OBItoyt7ejUoDzIECMZgCKMa20VDbRknOdRLFiBgRpg9AxAaqtu2FjBnH8Fi3lRQ7vEJahSKi1TAgIqU0gEZLHKgkT4KHhRLRQMFdVpmc85r6cxm1WMzBHmZ_PrJnPFvrSyI9qBo9HJbcqzTdisrzxuDfezi4H37L06HCve3r5PTtpoajS5xPjZZ1uL21a7_-n0we04q5pjU37iJYm5RQ-uSxoojbRcqebHp1tVhb_F4upA0A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQewAOvBHb8vAB8TikjROvHR_7Wpay2UJp1d4sP8YCtUpW2V2EOPET-I38EmxnN7BICAmOtsZWMrZnxvbnbxB6aonLcqF5wpl1CWVEJdqYPHGM9klhSWpNRPmO2fCUHp73l2jC8Bam5YfoDtzCyoj2OizwcCC9_ZM1VFkXnpJ7I-znod8ArYe03nFXddwxSBHO24tlRgLEi5wveRvTbHu1_YpfWg8q_rwar0aHM7iJ9PJTW5zJxdZ8prfMl99YHP_rX26hG4twFO-08-c2ugLVHXT9F5LCu-jTIHBm6kvAqrI4oGW_f_32_oOagMVlgPOF4nwCjfF-13gD0eBd7xotris8_vjiaPgy8xLeiteBFjl2ctTEFKG4hGnt4_96PsV7qtG-wUGblcfC9B46HRyc7A2TRbaGxFDvChNNjGN-e0eVAG9EgFjDADRjRhulXWEU56bIcs0sCNIHYXIC1Dhf4XIGeX4frVV1BQ8QVqkoqHNMCEipK6AQiue6SAvgqeVE9FCyHCtpFlTmIaPGpWxJmDMZ9Ck7ffbQ805-0pJ4_FHyWRz6Tkw1FwH6xvvybPxKlqPD3f3js7fyXQ9lcUD_0p_c2R-UXWnjXxo9QVeHJ-VIjl6P32yia76etlC1h2ht1szhkQ-KZvpxnPY_AInBBcc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKyE4QHmpWyj4gHgc0saJ146PbbdhKd1tKVTdm-XHWFStklV2FyFO_Qn9jfwS7GQ3dJEQEhxtzViJPZ4ZJ5-_QeilJS5JheYRZ9ZFlBEVaWPSyDHaJZklsTU1ynfI-qf0YNQd3bjF3_BDtB_cws6o_XXY4GPrtn-Rhirrwk1y74O9GfrzzyplcRbsunfSEkgRzpv_yowEhBcZLWgb42R7WX8pLK2GGf62nK7W8Sa_j9TiSRuYycXWbKq3zPffSBz_51XW0L15Mop3Gut5gG5B8RDdvUFR-Ah9zQNjpr4ErAqLA1b2x9X1py9qDBYPApgvNGdjqIyPusa7hwrv-sBocVng4fmbo_7bxEt4H14GUuR6kKOqLhCKBzApffZfziZ4T1XaK-w3NXksTB6j03z_814_mtdqiAz1gTDSxDjmD3dUCfAuBIg1DEAzZrRR2mVGcW6yJNXMgiBdECYlQI3zHS5lkKZP0EpRFrCOsIpFRp1jQkBMXQaZUDzVWZwBjy0nooOixVJJMycyD_U0LmVDwZzIMJ-ync8Oet3KjxsKjz9KvqpXvhVT1UUAvvGuPBu-k4PDg93eydmx_NhBSb2efxlP7vTyQdva-BelF-j2cS-Xh--HH56iO76bNji1Z2hlWs1g02dEU_28NvqfkQQEfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+Wire%E2%80%90Shaped+Micro%E2%80%90Supercapacitor+Based+on+Ni%28OH%29+2+%E2%80%90Nanowire+and+Ordered+Mesoporous+Carbon+Electrodes&rft.jtitle=Advanced+functional+materials&rft.au=Dong%2C+Xiaoli&rft.au=Guo%2C+Ziyang&rft.au=Song%2C+Yanfang&rft.au=Hou%2C+Mengyan&rft.date=2014-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=24&rft.issue=22&rft.spage=3405&rft.epage=3412&rft_id=info:doi/10.1002%2Fadfm.201304001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201304001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon