Flexible and Wire-Shaped Micro-Supercapacitor Based on Ni(OH)2-Nanowire and Ordered Mesoporous Carbon Electrodes
Portable and multifunctional electronic devices are developing in the trend of being small, flexible, roll‐up, and even wearable, which asks us to develop flexible and micro‐sized energy conversion/storage devices. Here, the high performance of a flexible, wire‐shaped, and solid‐state micro‐supercap...
Saved in:
Published in | Advanced functional materials Vol. 24; no. 22; pp. 3405 - 3412 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.06.2014
|
Online Access | Get full text |
Cover
Loading…
Abstract | Portable and multifunctional electronic devices are developing in the trend of being small, flexible, roll‐up, and even wearable, which asks us to develop flexible and micro‐sized energy conversion/storage devices. Here, the high performance of a flexible, wire‐shaped, and solid‐state micro‐supercapacitor, which is prepared by twisting a Ni(OH)2‐nanowire fiber‐electrode and an ordered mesoporous carbon fiber‐electrode together with a polymer electrolyte, is demonstrated. This micro‐supercapacitor displays a high specific capacitance of 6.67 mF cm–1 (or 35.67 mF cm–2) and a high specific energy density of 0.01 mWh cm–2 (or 2.16 mWh cm–3), which are about 10–100 times higher than previous reports. Furthermore, its capacitance retention is 70% over 10 000 cycles, indicating perfect cyclic ability. Two wire‐shaped micro‐supercapacitors (0.6 mm in diameter, ≈3 cm in length) in series can successfully operate a red light‐emitting‐diode, indicating promising practical application. Furthermore, synchrotron radiation X‐ray computed microtomography technology is employed to investigate inner structure of the micro‐device, confirming its solid‐state characteristic. This micro‐supercapacitor may bring new design opportunities of device configuration for energy‐storage devices in the future wearable electronic area.
The high performance of a flexible, wire‐shaped, and solid‐state micro‐supercapacitor, which is prepared by twisting a Ni(OH)2‐nanowire fiber‐electrode and an ordered mesoporous carbon fiber‐electrode together with solid‐state polymer electrolyte, is demonstrated. |
---|---|
AbstractList | Portable and multifunctional electronic devices are developing in the trend of being small, flexible, roll‐up, and even wearable, which asks us to develop flexible and micro‐sized energy conversion/storage devices. Here, the high performance of a flexible, wire‐shaped, and solid‐state micro‐supercapacitor, which is prepared by twisting a Ni(OH)2‐nanowire fiber‐electrode and an ordered mesoporous carbon fiber‐electrode together with a polymer electrolyte, is demonstrated. This micro‐supercapacitor displays a high specific capacitance of 6.67 mF cm
–1
(or 35.67 mF cm
–2
) and a high specific energy density of 0.01 mWh cm
–2
(or 2.16 mWh cm
–3
), which are about 10–100 times higher than previous reports. Furthermore, its capacitance retention is 70% over 10 000 cycles, indicating perfect cyclic ability. Two wire‐shaped micro‐supercapacitors (0.6 mm in diameter, ≈3 cm in length) in series can successfully operate a red light‐emitting‐diode, indicating promising practical application. Furthermore, synchrotron radiation X‐ray computed microtomography technology is employed to investigate inner structure of the micro‐device, confirming its solid‐state characteristic. This micro‐supercapacitor may bring new design opportunities of device configuration for energy‐storage devices in the future wearable electronic area. Portable and multifunctional electronic devices are developing in the trend of being small, flexible, roll‐up, and even wearable, which asks us to develop flexible and micro‐sized energy conversion/storage devices. Here, the high performance of a flexible, wire‐shaped, and solid‐state micro‐supercapacitor, which is prepared by twisting a Ni(OH)2‐nanowire fiber‐electrode and an ordered mesoporous carbon fiber‐electrode together with a polymer electrolyte, is demonstrated. This micro‐supercapacitor displays a high specific capacitance of 6.67 mF cm–1 (or 35.67 mF cm–2) and a high specific energy density of 0.01 mWh cm–2 (or 2.16 mWh cm–3), which are about 10–100 times higher than previous reports. Furthermore, its capacitance retention is 70% over 10 000 cycles, indicating perfect cyclic ability. Two wire‐shaped micro‐supercapacitors (0.6 mm in diameter, ≈3 cm in length) in series can successfully operate a red light‐emitting‐diode, indicating promising practical application. Furthermore, synchrotron radiation X‐ray computed microtomography technology is employed to investigate inner structure of the micro‐device, confirming its solid‐state characteristic. This micro‐supercapacitor may bring new design opportunities of device configuration for energy‐storage devices in the future wearable electronic area. The high performance of a flexible, wire‐shaped, and solid‐state micro‐supercapacitor, which is prepared by twisting a Ni(OH)2‐nanowire fiber‐electrode and an ordered mesoporous carbon fiber‐electrode together with solid‐state polymer electrolyte, is demonstrated. |
Author | Wang, Yonggang Hou, Mengyan Wang, Jianqiang Xia, Yongyao Song, Yanfang Guo, Ziyang Dong, Xiaoli |
Author_xml | – sequence: 1 givenname: Xiaoli surname: Dong fullname: Dong, Xiaoli organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China – sequence: 2 givenname: Ziyang surname: Guo fullname: Guo, Ziyang organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China – sequence: 3 givenname: Yanfang surname: Song fullname: Song, Yanfang organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China – sequence: 4 givenname: Mengyan surname: Hou fullname: Hou, Mengyan organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China – sequence: 5 givenname: Jianqiang surname: Wang fullname: Wang, Jianqiang organization: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204, Shanghai, P. R. China – sequence: 6 givenname: Yonggang surname: Wang fullname: Wang, Yonggang email: ygwang@fudan.edu.cn organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China – sequence: 7 givenname: Yongyao surname: Xia fullname: Xia, Yongyao email: ygwang@fudan.edu.cn organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 200433, Shanghai, China |
BookMark | eNqF0M9PwjAUB_DGYCKgV8876mHYrqNjR36j4YeKBm9N173F6liXdkT47y1iiDExntr0vU9f3reBaoUuAKFLglsE4-BGpNm6FWBCcYgxOUF1wgjzKQ46teOdvJyhhrVvriGKaFhH5SiHrUpy8ESReitlwF--ihJSb6ak0f5yU4KRohRSVdp4PWFdSRfeXF0tJteBPxeF_nDqiy9MCmZPwepSG72xXl-YxLUPc5CV0SnYc3SaidzCxffZRM-j4VN_4k8X49t-d-rLkIbET4jMGMMkFDFQ3AaSSgaQMCYTKZKsI0UUyU5AE5ZCTNoQS0oglJl7yCgDSpuodfjXbWGtgYyXRq2F2XGC-T4vvs-LH_NyIPwF3MqiUrqojFD53yw-sA-Vw-6fIbw7GM1-Wv9gla1ge7TCvHMW0ajNV_Mxn03veoPH1T1_oJ8bzZL7 |
CitedBy_id | crossref_primary_10_1039_C8RA01384E crossref_primary_10_1016_j_jallcom_2022_164721 crossref_primary_10_1016_j_carbon_2019_10_020 crossref_primary_10_1016_j_ensm_2019_09_002 crossref_primary_10_1016_j_apt_2017_12_004 crossref_primary_10_1016_j_electacta_2017_09_016 crossref_primary_10_1039_C6RA27356D crossref_primary_10_1021_acsami_6b16101 crossref_primary_10_1039_C5CC10113A crossref_primary_10_1002_smll_201801815 crossref_primary_10_1021_acsami_8b12279 crossref_primary_10_1016_j_est_2023_107360 crossref_primary_10_1039_C4DT02831G crossref_primary_10_1016_j_electacta_2019_06_055 crossref_primary_10_1016_j_jelechem_2018_05_037 crossref_primary_10_1016_j_mseb_2021_115436 crossref_primary_10_1016_j_nanoen_2016_03_027 crossref_primary_10_1039_C7TA08758F crossref_primary_10_1002_celc_202001112 crossref_primary_10_1016_j_carbon_2016_04_031 crossref_primary_10_1002_adsu_201700044 crossref_primary_10_1039_C6TA00683C crossref_primary_10_1002_ange_201500133 crossref_primary_10_1039_C5TA03467A crossref_primary_10_1016_j_jallcom_2019_152712 crossref_primary_10_1039_C7CS00505A crossref_primary_10_1007_s40843_017_9035_8 crossref_primary_10_1021_acsami_5b03042 crossref_primary_10_1039_C6CS00041J crossref_primary_10_1039_C6TA03732A crossref_primary_10_1088_1361_6528_aa6f89 crossref_primary_10_1002_er_7190 crossref_primary_10_1016_j_electacta_2015_10_035 crossref_primary_10_3390_app9183683 crossref_primary_10_1039_C5RA26848F crossref_primary_10_1002_aenm_201402115 crossref_primary_10_1002_aenm_201800069 crossref_primary_10_1016_j_ensm_2018_12_018 crossref_primary_10_1016_j_cej_2018_01_123 crossref_primary_10_1016_j_ensm_2017_10_009 crossref_primary_10_3389_fchem_2020_602322 crossref_primary_10_1002_adma_201600506 crossref_primary_10_1016_j_electacta_2020_136312 crossref_primary_10_1002_adma_201602802 crossref_primary_10_1021_acsnano_5b01244 crossref_primary_10_1016_j_matchemphys_2024_129514 crossref_primary_10_1016_j_nanoen_2017_02_044 crossref_primary_10_1016_j_ensm_2019_06_012 crossref_primary_10_1002_ange_201506142 crossref_primary_10_1002_cssc_201700149 crossref_primary_10_1088_1361_6528_aa742f crossref_primary_10_1002_advs_201600382 crossref_primary_10_1016_j_jechem_2017_06_011 crossref_primary_10_1039_C7NR09682H crossref_primary_10_1016_j_cej_2017_04_065 crossref_primary_10_1016_j_isci_2020_101396 crossref_primary_10_1021_acs_chemmater_5b01128 crossref_primary_10_1039_C6QM00298F crossref_primary_10_1016_j_apmt_2017_08_010 crossref_primary_10_1021_acsnano_6b03044 crossref_primary_10_1039_C6RA13902G crossref_primary_10_1039_C8TA10133G crossref_primary_10_1016_j_jallcom_2019_152187 crossref_primary_10_1016_j_jpowsour_2017_04_100 crossref_primary_10_1016_j_apmt_2016_10_003 crossref_primary_10_1016_j_apsusc_2019_01_012 crossref_primary_10_1002_ente_201600391 crossref_primary_10_1016_j_materresbull_2021_111678 crossref_primary_10_1016_j_jechem_2018_05_008 crossref_primary_10_1021_acsaem_8b00928 crossref_primary_10_1039_C8SE00223A crossref_primary_10_1016_j_electacta_2020_136097 crossref_primary_10_1016_j_jpowsour_2024_234069 crossref_primary_10_1021_acsami_8b11997 crossref_primary_10_1016_j_apsusc_2015_11_071 crossref_primary_10_1016_j_jallcom_2019_151769 crossref_primary_10_1039_C5QI00187K crossref_primary_10_1002_adma_201603436 crossref_primary_10_1016_j_jcis_2021_09_011 crossref_primary_10_1039_D4TA00979G crossref_primary_10_1016_j_cej_2020_124880 crossref_primary_10_1016_j_electacta_2024_144892 crossref_primary_10_1016_j_jcis_2017_11_054 crossref_primary_10_1016_j_ceramint_2017_03_118 crossref_primary_10_1016_j_est_2020_101460 crossref_primary_10_1080_10584587_2019_1592602 crossref_primary_10_1016_j_jpowsour_2021_230130 crossref_primary_10_1016_j_jcis_2019_02_019 crossref_primary_10_1039_C6NR02267G crossref_primary_10_1002_anie_201506142 crossref_primary_10_1007_s40820_020_00529_8 crossref_primary_10_1016_j_matchemphys_2017_11_032 crossref_primary_10_1039_C5TA10781D crossref_primary_10_1039_D1NR00593F crossref_primary_10_1021_acsami_6b05496 crossref_primary_10_1039_C6TA07171F crossref_primary_10_1016_j_cej_2022_137732 crossref_primary_10_1039_C6QI00595K crossref_primary_10_1039_D1TA03262C crossref_primary_10_3390_polym15020454 crossref_primary_10_1007_s10854_017_6601_7 crossref_primary_10_1016_j_chempr_2017_05_004 crossref_primary_10_1016_j_inoche_2019_107603 crossref_primary_10_1002_adfm_202103073 crossref_primary_10_1016_j_jallcom_2015_06_230 crossref_primary_10_1360_SST_2022_0369 crossref_primary_10_1016_j_ensm_2017_05_002 crossref_primary_10_1021_acsaem_7b00204 crossref_primary_10_1088_1361_6528_ac6432 crossref_primary_10_1007_s12274_023_6388_1 crossref_primary_10_1016_j_mssp_2018_11_004 crossref_primary_10_1039_C7TA02652H crossref_primary_10_1002_aenm_201500677 crossref_primary_10_1039_C8CS00237A crossref_primary_10_1002_adma_201803430 crossref_primary_10_1002_smll_202204346 crossref_primary_10_1002_aenm_201600783 crossref_primary_10_1016_j_jallcom_2021_161502 crossref_primary_10_1016_j_jallcom_2015_08_090 crossref_primary_10_1016_j_carbon_2020_09_053 crossref_primary_10_1016_j_nanoen_2014_11_055 crossref_primary_10_1002_chem_201502269 crossref_primary_10_1021_acsami_7b15922 crossref_primary_10_1039_C7NR06725A crossref_primary_10_1021_acsenergylett_8b02496 crossref_primary_10_1002_smtd_201800124 crossref_primary_10_1016_j_cej_2021_128871 crossref_primary_10_1002_adma_202104764 crossref_primary_10_1016_j_est_2023_108544 crossref_primary_10_1016_j_electacta_2020_136731 crossref_primary_10_1021_acsami_8b03725 crossref_primary_10_1002_aenm_201501812 crossref_primary_10_1021_acsaem_8b00556 crossref_primary_10_1021_acsaem_8b01645 crossref_primary_10_1039_C5DT02724A crossref_primary_10_1557_mrc_2019_157 crossref_primary_10_1039_C6RA20373F crossref_primary_10_1016_j_est_2016_02_007 crossref_primary_10_1039_C7TA03004E crossref_primary_10_1016_j_est_2020_101946 crossref_primary_10_1039_C7CS00205J crossref_primary_10_1088_1361_6528_ab009f crossref_primary_10_1016_j_mtener_2017_04_007 crossref_primary_10_1039_C5EE02703A crossref_primary_10_1039_C5TA05295E crossref_primary_10_1016_j_ceramint_2019_08_140 crossref_primary_10_1021_acsami_7b11263 crossref_primary_10_1039_C7TA06353A crossref_primary_10_1002_celc_201500089 crossref_primary_10_1016_j_carbon_2018_06_041 crossref_primary_10_1016_j_electacta_2016_06_059 crossref_primary_10_1016_j_jpowsour_2018_02_034 crossref_primary_10_1149_1945_7111_ab7096 crossref_primary_10_1039_C7CC01400G crossref_primary_10_1007_s12274_014_0595_8 crossref_primary_10_1021_acs_langmuir_5b00649 crossref_primary_10_1021_acs_jpcc_1c05148 crossref_primary_10_1002_admi_201600057 crossref_primary_10_1002_batt_202100093 crossref_primary_10_1021_acsaem_3c02798 crossref_primary_10_1038_srep08536 crossref_primary_10_1016_j_nanoen_2017_07_050 crossref_primary_10_1002_smll_201603494 crossref_primary_10_1016_j_est_2024_112848 crossref_primary_10_1002_ente_201402161 crossref_primary_10_1039_C5TA06317E crossref_primary_10_1002_aenm_201401303 crossref_primary_10_1021_acssuschemeng_8b03196 crossref_primary_10_1002_cssc_201600150 crossref_primary_10_1016_j_cej_2019_01_102 crossref_primary_10_1039_D4GC01098A crossref_primary_10_1002_chem_202403439 crossref_primary_10_1088_0957_4484_26_42_425402 crossref_primary_10_1002_bte2_20230061 crossref_primary_10_1021_acsami_0c01537 crossref_primary_10_1039_C5TA01105A crossref_primary_10_1002_adma_202413292 crossref_primary_10_1039_C8MH00112J crossref_primary_10_1002_anie_201500133 crossref_primary_10_1021_acsami_8b05802 crossref_primary_10_1016_j_jallcom_2015_09_221 crossref_primary_10_1021_acsami_9b04006 crossref_primary_10_1002_aelm_201400053 crossref_primary_10_1002_asia_201403085 crossref_primary_10_1039_D0NR04933F crossref_primary_10_1016_j_matlet_2022_132442 crossref_primary_10_1039_C8TA01117F crossref_primary_10_1016_j_cej_2022_138877 crossref_primary_10_1002_adma_201800124 crossref_primary_10_1002_advs_201802067 crossref_primary_10_1557_jmr_2019_234 crossref_primary_10_1007_s10854_023_11868_8 crossref_primary_10_1007_s12274_017_1448_z crossref_primary_10_1002_adma_201600319 crossref_primary_10_1007_s11664_020_08020_1 crossref_primary_10_1016_j_jpowsour_2016_11_096 crossref_primary_10_1002_adma_201605336 crossref_primary_10_1016_j_nanoen_2015_07_030 crossref_primary_10_1039_C4RA13473G crossref_primary_10_1039_D2CE00466F crossref_primary_10_1021_acssuschemeng_5b01263 crossref_primary_10_1016_j_jpowsour_2018_09_030 crossref_primary_10_1002_ente_201500067 crossref_primary_10_1039_C8NR03316A crossref_primary_10_1016_j_jpowsour_2015_03_126 crossref_primary_10_1021_acs_jpcc_9b04718 crossref_primary_10_1016_j_carbon_2019_09_064 crossref_primary_10_1016_j_electacta_2019_05_059 crossref_primary_10_1039_D0CS01603A crossref_primary_10_1002_adfm_201605307 crossref_primary_10_1002_adma_201403243 crossref_primary_10_1021_acsaem_8b01051 crossref_primary_10_1021_acs_jpclett_9b03267 crossref_primary_10_1039_C7CC03517A crossref_primary_10_1002_er_8530 crossref_primary_10_1002_adfm_201605313 crossref_primary_10_1039_C5TA05666G crossref_primary_10_1002_adma_201600689 crossref_primary_10_1039_C6RA17123K crossref_primary_10_1021_acsaem_2c01023 crossref_primary_10_1016_j_mseb_2023_116813 crossref_primary_10_1016_j_electacta_2016_02_047 crossref_primary_10_1080_00150193_2020_1760612 crossref_primary_10_1016_j_jallcom_2022_168603 crossref_primary_10_1021_acsaem_3c01157 crossref_primary_10_1039_C6TA08331E crossref_primary_10_1002_ppsc_201500005 crossref_primary_10_1039_C5TA04731E crossref_primary_10_1002_adfm_201800064 crossref_primary_10_1016_j_nanoen_2015_04_034 crossref_primary_10_1016_j_diamond_2020_107808 crossref_primary_10_1002_er_5493 crossref_primary_10_1039_C6TA00093B crossref_primary_10_1039_C6TA08330G crossref_primary_10_1016_j_nanoen_2016_12_020 crossref_primary_10_1021_acsnano_9b07325 crossref_primary_10_1039_C7TA04712F crossref_primary_10_1002_advs_201801797 crossref_primary_10_1016_j_cej_2018_03_147 crossref_primary_10_1016_j_electacta_2020_135828 crossref_primary_10_1002_aenm_201901892 crossref_primary_10_1039_C7NR01644A crossref_primary_10_1016_j_est_2024_110987 crossref_primary_10_1021_acsami_5b02157 crossref_primary_10_1002_adfm_201503662 crossref_primary_10_1007_s10800_017_1051_8 crossref_primary_10_1039_C5CS00303B crossref_primary_10_1039_C6TA00123H crossref_primary_10_1039_C6QI00199H crossref_primary_10_1002_asia_201500335 crossref_primary_10_1016_j_jallcom_2015_10_036 crossref_primary_10_1016_j_nanoen_2023_108763 crossref_primary_10_1039_C9TA13887K crossref_primary_10_3390_molecules24173041 crossref_primary_10_1002_smll_201805277 crossref_primary_10_1016_j_electacta_2019_134770 crossref_primary_10_1063_1_5044560 crossref_primary_10_1007_s10853_017_1467_x crossref_primary_10_1002_aenm_201700127 crossref_primary_10_1039_D1TA00522G crossref_primary_10_1016_j_jallcom_2018_02_080 crossref_primary_10_1021_acsami_8b08680 crossref_primary_10_1039_C9GC02920F crossref_primary_10_1002_adfm_201606696 crossref_primary_10_1016_j_matlet_2018_10_157 crossref_primary_10_1021_acsami_6b03559 crossref_primary_10_1039_D1DT01075A crossref_primary_10_1016_j_isci_2022_104141 crossref_primary_10_1016_j_jpcs_2022_110872 crossref_primary_10_1039_D1NR00814E crossref_primary_10_1039_C7RA06569H crossref_primary_10_1007_s11581_016_1669_2 crossref_primary_10_1002_smll_201503021 crossref_primary_10_1016_j_cej_2020_127523 crossref_primary_10_1021_acsami_7b02478 crossref_primary_10_1002_slct_201903707 crossref_primary_10_1016_j_cej_2021_128479 crossref_primary_10_1088_1361_6528_aadad4 crossref_primary_10_1002_aenm_202003509 crossref_primary_10_1016_j_cej_2018_05_090 crossref_primary_10_3390_polym16223164 crossref_primary_10_1016_j_electacta_2014_12_021 crossref_primary_10_1016_j_mattod_2015_01_002 crossref_primary_10_1002_adfm_202109593 crossref_primary_10_1002_cey2_187 crossref_primary_10_1002_admi_201801470 crossref_primary_10_1021_acsami_8b09085 crossref_primary_10_3390_nano8060422 crossref_primary_10_1016_j_apsusc_2015_04_005 crossref_primary_10_1016_j_jpowsour_2016_10_006 crossref_primary_10_1021_acsnano_2c02841 crossref_primary_10_1016_j_ijhydene_2019_04_021 crossref_primary_10_1016_S1872_5805_19_60031_4 |
Cites_doi | 10.1039/c2cp00019a 10.1021/nl400760a 10.1021/nn4000836 10.1149/2.012302jes 10.1002/adma.201202930 10.1002/adma.201301519 10.1021/nl1019672 10.1002/adfm.201102796 10.1002/adma.201301932 10.1126/science.1184126 10.1002/adfm.201301345 10.1002/anie.201207023 10.1016/j.carbon.2007.08.005 10.1021/nn203085j 10.1002/anie.201006062 10.1021/nn2041279 10.1038/ncomms2446 10.1002/adma.201302498 10.1149/1.2171833 10.1021/nn1018158 10.1007/s10008-009-0984-1 10.1002/adfm.201102839 10.1039/c0nr00990c 10.1021/cr020740l 10.1126/science.1151831 10.1039/b815647f 10.1016/j.jpowsour.2009.08.085 10.1021/nn403068d 10.1002/adma.201204003 10.1002/adma.201202196 10.1002/aenm.201100255 10.1002/adma.201301465 10.1016/j.jpowsour.2012.07.111 10.1002/adma.201300132 10.1038/nmat2297 10.1002/anie.200501561 10.1038/nnano.2010.162 10.1002/adma.201203445 10.1038/nnano.2011.110 10.1038/nphoton.2010.267 10.1038/ncomms2932 10.1002/adma.201205064 10.1021/ja102267j |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/adfm.201304001 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 3412 |
ExternalDocumentID | 10_1002_adfm_201304001 ADFM201304001 ark_67375_WNG_MLJBDRWP_Q |
Genre | article |
GrantInformation_xml | – fundername: Shanghai Pujiang Program funderid: 13PJ1400800 – fundername: State Key Basic Research Program of PRC funderid: 2013CB934103 – fundername: Natural Science Foundation of China funderid: 21373060; 21333002 – fundername: Shanghai Science & Technology Committee funderid: 11DZ1100207; 08DZ2270500 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c4341-b1cf66014a9e305e1dc6eeb66cbcabf8ca77c823b6de915e9c31e4cf3b6f36e33 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Tue Jul 01 01:30:13 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Wed Jan 22 16:36:21 EST 2025 Wed Oct 30 09:52:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4341-b1cf66014a9e305e1dc6eeb66cbcabf8ca77c823b6de915e9c31e4cf3b6f36e33 |
Notes | Shanghai Science & Technology Committee - No. 11DZ1100207; No. 08DZ2270500 ArticleID:ADFM201304001 istex:FBB4DADFC3814E2D312294D9A9DFDF55A23738DE Natural Science Foundation of China - No. 21373060; No. 21333002 ark:/67375/WNG-MLJBDRWP-Q State Key Basic Research Program of PRC - No. 2013CB934103 Shanghai Pujiang Program - No. 13PJ1400800 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1002_adfm_201304001 crossref_citationtrail_10_1002_adfm_201304001 wiley_primary_10_1002_adfm_201304001_ADFM201304001 istex_primary_ark_67375_WNG_MLJBDRWP_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | M. Q. Xue, Z. Xie, L. S. Zhang, X. L. Ma, X. L. Wu, Y. G. Guo, W. G. Song, Z. B. Li, T. B. Cao, Nanoscale 2011, 3, 2703. Y. G. Wang, Y. Y. Xia, J. Electrochem. Soc. 2006, 153, A743. X. H. Lu, M. H. Yu, T. Zhai, G. M. Wang, S. L. Xie, T. Y. Liu, C. L. Liang, Y. X. Tong, Y. Li, Nano Lett. 2013, 13, 2628. H. Nishide, K. Oyaizu, Science 2008, 319, 737. G. W. Yang, C. L. Xu, H. L. Li, Chem. Commun. 2008, 6537. P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845. J. W. Long, B. Dunn, D. R. Rolison, H. S. White, Chem. Rev. 2004, 104, 4463. D. Pech, M. Brunet, P. L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conedera, H. Durou, J. Power Sources 2010, 195, 1266. Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053. A. Sumboja, C. Y. Foo, X. Wang, P. S. Lee, Adv. Mater. 2013, 25, 2809. C. Z. Meng, C. H. Liu, L. Z. Chen, C. H. Hu, S. S. Fan, Nano Lett. 2010, 10, 4025. J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, Y. Gogotsi, Science 2010, 328, 480. J. Yan, Z. J. Fan, W. Sun, G. Q. Ning, T. Wei, Q. Zhang, R. F. Zhang, L. J. Zhi, F. Wei, Adv. Funct. Mater. 2012, 22, 2632. W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. J. Ci, R. Vajtai, Q. Zhang, B. Q. Wei, P. M. Ajayan, Nature Nanotech. 2011, 6, 496. J. W. Lang, L. B. Kong, M. Liu, Y. C. Lou, L. Kang, J. Solid State Electrochem. 2010, 14, 1533. L. B. Hu, H. Wu, F. L. Mantia, Y. Yang, Y. Cui, ACS Nano 2010, 4, 5843. H. L. Wang, H. S. Casalongue, Y. Y. Liang, H. J. Dai, J. Am. Chem. Soc. 2010, 132, 7472. C. C. Hu, J. C. Chen, K. H. Chang, J. Power Sources 2013, 221, 128. Z. Tang, C. H. Tang, H. Gong, Adv. Funct. Mater. 2012, 22, 1272. H. Q. Li, R. L. Liu, D. Y. Zhao, Y. Y. Xia, Carbon 2007, 45, 2628. Y. G. Wang, D. D. Zhou, D. Zhao, M. Y. Hou, C. X. Wang, Y. Y. Xia, J. Electrochem. Soc. 2013, 160, A98. J. Bae, M. K. Song, Y. J. Park, J. M. Kim, M. L. Liu, Z. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 1683. L. B. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef, Y. Cui, ACS Nano 2011, 5, 8904. K. H. Choi, S. J. Cho, S. H. Kim, Y. H. Kwon, J. Y. Kim, S. Y. Lee, Adv. Funct. Mater. 2014, 24, 44. Z. Q. Niu, H. B. Dong, B. W. Zhu, J. Z. Li, H. H. Hng, W. Y. Zhou, X. D. Chen, S. S. Xie, Adv. Mater. 2013, 25, 1058. H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, G. W. Yang, Nat. Commun. 2013, 4, 1894. Y. H. Kwon, S. W. Woo, H. R. Jung, H. K. Yu, K. Kim, B. H. Oh, S. Ahn, S. Y. Lee, S. W. Song, J. Cho, H. C. Shin, J. Y. Kim, Adv. Mater. 2012, 24, 5192. X. L. Chen, L. B. Qiu, J. Ren, G. Z. Guan, H. J. Lin, Z. T. Zhang, P. N. Chen, Y. G. Wang, H. S. Peng, Adv. Mater. 2013, 25, 6436. M. F. El-Kady, R. B. Kaner, Nat. Commun. 2013, 4, 1475. T. Chen, L. B. Qiu, Z. B, Yang, Z. B. Cai, J. Ren, H. P. Li, H. J. Lin, X. M. Sun, H. S. Peng, Angew. Chem. Int. Ed. 2012, 51, 11977. Y. P. Fu, X. Cai, H. W. Wu, Z. B. Lv, S. C. Hou, M. Peng, X. Yu, D. C. Zou, Adv. Mater. 2012, 24, 5713. A. Sakdinawat, D. Attwood, Nat. Photonics 2010, 4, 840. J. Ren, W. Y. Bai, G. Z. Guan, Y. Zhang, H. S. Peng, Adv. Mater. 2013, 25, 5965. X. Xu, X. Peng, H. Y. Jin, T. Q. Li, C. C. Zhang, B. Gao, B. Hu, K. F. Huo, J. Zhou, Adv. Mater. 2013, 25, 5091. D. Pech, M. Brunet, H. Durou, P. H. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, Nature Nanotech 2010, 5, 651. Y. N. Meng, Y. Zhao, C. G. Hu, H. H. Cheng, Y. Hu, Z. P. Zhang, G. Q. Shi, L. T. Qu, Adv. Mater. 2013, 25, 2326. Y. G. Wang, Y. Y. Xia, Adv. Mater. 2013, 25, 5336. L. Y. Yuan, X. H. Lu, X. Xiao, T. Zhai, J. J. Dai, F. C. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C. G. Hu, Y. X. Tong, J. Zhou, Z. L. Wang, ACS Nano 2012, 6, 656. J. Ren, L. Li, C. Chen, X. L. Chen, Z. B. Cai, L. B. Qiu, Y. G. Wang, X. R. Zhu, H. S. Peng, Adv. Mater. 2013, 25, 1155. H. J. Liu, J. Wang, C. X. Wang, Y. Y. Xia, Adv. Energy Mater. 2011, 1, 1101. Y. X. Xu, Z. Y. Lin, X. Q. Huang, Y. Liu, Y. Huang, X. F. Duan, ACS Nano 2013, 7, 4042. J. Duay, E. Gillette, R. Liu, S. B. Lee, Phys. Chem. Chem. Phys. 2012, 14, 3329. D. Kim, G. Shin, Y. J. Kang, W. Kim, J. S. Ha, ACS Nano 2013, 7, 7975. 2010; 10 2013; 25 2013; 4 2004; 104 2010; 14 2011; 1 2010; 328 2008 2013; 221 2008; 7 2014; 24 2006; 153 2013; 7 2012; 14 2011; 3 2011; 6 2011; 5 2013; 160 2005; 44 2012; 51 2013; 13 2008; 319 2011; 50 2010; 132 2010; 195 2012; 6 2012; 24 2010; 5 2010; 4 2007; 45 2012; 22 e_1_2_4_40_1 e_1_2_4_41_1 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – reference: D. Kim, G. Shin, Y. J. Kang, W. Kim, J. S. Ha, ACS Nano 2013, 7, 7975. – reference: K. H. Choi, S. J. Cho, S. H. Kim, Y. H. Kwon, J. Y. Kim, S. Y. Lee, Adv. Funct. Mater. 2014, 24, 44. – reference: Y. N. Meng, Y. Zhao, C. G. Hu, H. H. Cheng, Y. Hu, Z. P. Zhang, G. Q. Shi, L. T. Qu, Adv. Mater. 2013, 25, 2326. – reference: Y. G. Wang, Y. Y. Xia, Adv. Mater. 2013, 25, 5336. – reference: A. Sumboja, C. Y. Foo, X. Wang, P. S. Lee, Adv. Mater. 2013, 25, 2809. – reference: J. Ren, L. Li, C. Chen, X. L. Chen, Z. B. Cai, L. B. Qiu, Y. G. Wang, X. R. Zhu, H. S. Peng, Adv. Mater. 2013, 25, 1155. – reference: H. Nishide, K. Oyaizu, Science 2008, 319, 737. – reference: T. Chen, L. B. Qiu, Z. B, Yang, Z. B. Cai, J. Ren, H. P. Li, H. J. Lin, X. M. Sun, H. S. Peng, Angew. Chem. Int. Ed. 2012, 51, 11977. – reference: X. H. Lu, M. H. Yu, T. Zhai, G. M. Wang, S. L. Xie, T. Y. Liu, C. L. Liang, Y. X. Tong, Y. Li, Nano Lett. 2013, 13, 2628. – reference: Y. H. Kwon, S. W. Woo, H. R. Jung, H. K. Yu, K. Kim, B. H. Oh, S. Ahn, S. Y. Lee, S. W. Song, J. Cho, H. C. Shin, J. Y. Kim, Adv. Mater. 2012, 24, 5192. – reference: Y. G. Wang, D. D. Zhou, D. Zhao, M. Y. Hou, C. X. Wang, Y. Y. Xia, J. Electrochem. Soc. 2013, 160, A98. – reference: M. Q. Xue, Z. Xie, L. S. Zhang, X. L. Ma, X. L. Wu, Y. G. Guo, W. G. Song, Z. B. Li, T. B. Cao, Nanoscale 2011, 3, 2703. – reference: P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845. – reference: C. C. Hu, J. C. Chen, K. H. Chang, J. Power Sources 2013, 221, 128. – reference: J. Duay, E. Gillette, R. Liu, S. B. Lee, Phys. Chem. Chem. Phys. 2012, 14, 3329. – reference: C. Z. Meng, C. H. Liu, L. Z. Chen, C. H. Hu, S. S. Fan, Nano Lett. 2010, 10, 4025. – reference: J. Ren, W. Y. Bai, G. Z. Guan, Y. Zhang, H. S. Peng, Adv. Mater. 2013, 25, 5965. – reference: J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, Y. Gogotsi, Science 2010, 328, 480. – reference: D. Pech, M. Brunet, H. Durou, P. H. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, Nature Nanotech 2010, 5, 651. – reference: J. W. Long, B. Dunn, D. R. Rolison, H. S. White, Chem. Rev. 2004, 104, 4463. – reference: H. Q. Li, R. L. Liu, D. Y. Zhao, Y. Y. Xia, Carbon 2007, 45, 2628. – reference: Y. X. Xu, Z. Y. Lin, X. Q. Huang, Y. Liu, Y. Huang, X. F. Duan, ACS Nano 2013, 7, 4042. – reference: Y. P. Fu, X. Cai, H. W. Wu, Z. B. Lv, S. C. Hou, M. Peng, X. Yu, D. C. Zou, Adv. Mater. 2012, 24, 5713. – reference: A. Sakdinawat, D. Attwood, Nat. Photonics 2010, 4, 840. – reference: D. Pech, M. Brunet, P. L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conedera, H. Durou, J. Power Sources 2010, 195, 1266. – reference: J. W. Lang, L. B. Kong, M. Liu, Y. C. Lou, L. Kang, J. Solid State Electrochem. 2010, 14, 1533. – reference: H. J. Liu, J. Wang, C. X. Wang, Y. Y. Xia, Adv. Energy Mater. 2011, 1, 1101. – reference: X. Xu, X. Peng, H. Y. Jin, T. Q. Li, C. C. Zhang, B. Gao, B. Hu, K. F. Huo, J. Zhou, Adv. Mater. 2013, 25, 5091. – reference: J. Bae, M. K. Song, Y. J. Park, J. M. Kim, M. L. Liu, Z. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 1683. – reference: L. B. Hu, H. Wu, F. L. Mantia, Y. Yang, Y. Cui, ACS Nano 2010, 4, 5843. – reference: L. B. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef, Y. Cui, ACS Nano 2011, 5, 8904. – reference: G. W. Yang, C. L. Xu, H. L. Li, Chem. Commun. 2008, 6537. – reference: Z. Q. Niu, H. B. Dong, B. W. Zhu, J. Z. Li, H. H. Hng, W. Y. Zhou, X. D. Chen, S. S. Xie, Adv. Mater. 2013, 25, 1058. – reference: X. L. Chen, L. B. Qiu, J. Ren, G. Z. Guan, H. J. Lin, Z. T. Zhang, P. N. Chen, Y. G. Wang, H. S. Peng, Adv. Mater. 2013, 25, 6436. – reference: L. Y. Yuan, X. H. Lu, X. Xiao, T. Zhai, J. J. Dai, F. C. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C. G. Hu, Y. X. Tong, J. Zhou, Z. L. Wang, ACS Nano 2012, 6, 656. – reference: Z. Tang, C. H. Tang, H. Gong, Adv. Funct. Mater. 2012, 22, 1272. – reference: Y. G. Wang, Y. Y. Xia, J. Electrochem. Soc. 2006, 153, A743. – reference: W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. J. Ci, R. Vajtai, Q. Zhang, B. Q. Wei, P. M. Ajayan, Nature Nanotech. 2011, 6, 496. – reference: Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053. – reference: M. F. El-Kady, R. B. Kaner, Nat. Commun. 2013, 4, 1475. – reference: H. L. Wang, H. S. Casalongue, Y. Y. Liang, H. J. Dai, J. Am. Chem. Soc. 2010, 132, 7472. – reference: J. Yan, Z. J. Fan, W. Sun, G. Q. Ning, T. Wei, Q. Zhang, R. F. Zhang, L. J. Zhi, F. Wei, Adv. Funct. Mater. 2012, 22, 2632. – reference: H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, G. W. Yang, Nat. Commun. 2013, 4, 1894. – volume: 25 start-page: 5965 year: 2013 publication-title: Adv. Mater. – volume: 104 start-page: 4463 year: 2004 publication-title: Chem. Rev. – volume: 25 start-page: 1058 year: 2013 publication-title: Adv. Mater. – volume: 319 start-page: 737 year: 2008 publication-title: Science – volume: 4 start-page: 840 year: 2010 publication-title: Nat. Photonics – volume: 153 start-page: A743 year: 2006 publication-title: J. Electrochem. Soc. – volume: 24 start-page: 5192 year: 2012 publication-title: Adv. Mater. – volume: 6 start-page: 656 year: 2012 publication-title: ACS Nano – volume: 45 start-page: 2628 year: 2007 publication-title: Carbon – volume: 24 start-page: 5713 year: 2012 publication-title: Adv. Mater. – volume: 50 start-page: 1683 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 1101 year: 2011 publication-title: Adv. Energy Mater. – volume: 25 start-page: 1155 year: 2013 publication-title: Adv. Mater. – volume: 4 start-page: 1475 year: 2013 publication-title: Nat. Commun. – volume: 25 start-page: 6436 year: 2013 publication-title: Adv. Mater. – volume: 7 start-page: 845 year: 2008 publication-title: Nat. Mater. – volume: 7 start-page: 4042 year: 2013 publication-title: ACS Nano – volume: 14 start-page: 3329 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 13 start-page: 2628 year: 2013 publication-title: Nano Lett. – volume: 22 start-page: 2632 year: 2012 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 5336 year: 2013 publication-title: Adv. Mater. – start-page: 6537 year: 2008 publication-title: Chem. Commun. – volume: 10 start-page: 4025 year: 2010 publication-title: Nano Lett. – volume: 25 start-page: 2326 year: 2013 publication-title: Adv. Mater. – volume: 22 start-page: 1272 year: 2012 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1894 year: 2013 publication-title: Nat. Commun. – volume: 25 start-page: 5091 year: 2013 publication-title: Adv. Mater. – volume: 195 start-page: 1266 year: 2010 publication-title: J. Power Sources – volume: 3 start-page: 2703 year: 2011 publication-title: Nanoscale – volume: 5 start-page: 8904 year: 2011 publication-title: ACS Nano – volume: 24 start-page: 44 year: 2014 publication-title: Adv. Funct. Mater. – volume: 51 start-page: 11977 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 328 start-page: 480 year: 2010 publication-title: Science – volume: 5 start-page: 651 year: 2010 publication-title: Nature Nanotech – volume: 221 start-page: 128 year: 2013 publication-title: J. Power Sources – volume: 7 start-page: 7975 year: 2013 publication-title: ACS Nano – volume: 160 start-page: A98 year: 2013 publication-title: J. Electrochem. Soc. – volume: 25 start-page: 2809 year: 2013 publication-title: Adv. Mater. – volume: 14 start-page: 1533 year: 2010 publication-title: J. Solid State Electrochem. – volume: 6 start-page: 496 year: 2011 publication-title: Nature Nanotech. – volume: 44 start-page: 7053 year: 2005 publication-title: Angew. Chem. Int. Ed. – volume: 132 start-page: 7472 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 5843 year: 2010 publication-title: ACS Nano – ident: e_1_2_4_13_1 doi: 10.1039/c2cp00019a – ident: e_1_2_4_14_1 doi: 10.1021/nl400760a – ident: e_1_2_4_10_1 doi: 10.1021/nn4000836 – ident: e_1_2_4_41_1 doi: 10.1149/2.012302jes – ident: e_1_2_4_26_1 doi: 10.1002/adma.201202930 – ident: e_1_2_4_25_1 doi: 10.1002/adma.201301519 – ident: e_1_2_4_3_1 doi: 10.1021/nl1019672 – ident: e_1_2_4_42_1 doi: 10.1002/adfm.201102796 – ident: e_1_2_4_36_1 doi: 10.1002/adma.201301932 – ident: e_1_2_4_16_1 doi: 10.1126/science.1184126 – ident: e_1_2_4_7_1 doi: 10.1002/adfm.201301345 – ident: e_1_2_4_28_1 doi: 10.1002/anie.201207023 – ident: e_1_2_4_35_1 doi: 10.1016/j.carbon.2007.08.005 – ident: e_1_2_4_4_1 doi: 10.1021/nn203085j – ident: e_1_2_4_22_1 doi: 10.1002/anie.201006062 – ident: e_1_2_4_9_1 doi: 10.1021/nn2041279 – ident: e_1_2_4_19_1 doi: 10.1038/ncomms2446 – ident: e_1_2_4_24_1 doi: 10.1002/adma.201302498 – ident: e_1_2_4_32_1 doi: 10.1149/1.2171833 – ident: e_1_2_4_2_1 doi: 10.1021/nn1018158 – ident: e_1_2_4_40_1 doi: 10.1007/s10008-009-0984-1 – ident: e_1_2_4_38_1 doi: 10.1002/adfm.201102839 – ident: e_1_2_4_12_1 doi: 10.1039/c0nr00990c – ident: e_1_2_4_20_1 doi: 10.1021/cr020740l – ident: e_1_2_4_1_1 doi: 10.1126/science.1151831 – ident: e_1_2_4_31_1 doi: 10.1039/b815647f – ident: e_1_2_4_18_1 doi: 10.1016/j.jpowsour.2009.08.085 – ident: e_1_2_4_21_1 doi: 10.1021/nn403068d – ident: e_1_2_4_8_1 doi: 10.1002/adma.201204003 – ident: e_1_2_4_11_1 doi: 10.1002/adma.201202196 – ident: e_1_2_4_34_1 doi: 10.1002/aenm.201100255 – ident: e_1_2_4_5_1 doi: 10.1002/adma.201301465 – ident: e_1_2_4_39_1 doi: 10.1016/j.jpowsour.2012.07.111 – ident: e_1_2_4_27_1 doi: 10.1002/adma.201300132 – ident: e_1_2_4_33_1 doi: 10.1038/nmat2297 – ident: e_1_2_4_37_1 doi: 10.1002/anie.200501561 – ident: e_1_2_4_17_1 doi: 10.1038/nnano.2010.162 – ident: e_1_2_4_23_1 doi: 10.1002/adma.201203445 – ident: e_1_2_4_15_1 doi: 10.1038/nnano.2011.110 – ident: e_1_2_4_43_1 doi: 10.1038/nphoton.2010.267 – ident: e_1_2_4_29_1 doi: 10.1038/ncomms2932 – ident: e_1_2_4_6_1 doi: 10.1002/adma.201205064 – ident: e_1_2_4_30_1 doi: 10.1021/ja102267j |
SSID | ssj0017734 |
Score | 2.5779555 |
Snippet | Portable and multifunctional electronic devices are developing in the trend of being small, flexible, roll‐up, and even wearable, which asks us to develop... |
SourceID | crossref wiley istex |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3405 |
Title | Flexible and Wire-Shaped Micro-Supercapacitor Based on Ni(OH)2-Nanowire and Ordered Mesoporous Carbon Electrodes |
URI | https://api.istex.fr/ark:/67375/WNG-MLJBDRWP-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201304001 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYquMChpZSq2wfyoaLlEIgTrx0fF5btCpGlvMTeIj_GAoGSVXYXVT31J_Q39pfUTnYDWwkhlVscja3EM54ZJ5-_QeizITaKheIBZ8YGlBEZKK3jwDLaJokhodEVynfA-hf0cNgePjjFX_NDNB_c_Mqo_LVf4FKNd-9JQ6Wx_iS588HODP3-xwO2fFZ02vBHEc7r38qMeIAXGc5ZG8Nod7H7QlRa9hP8YzFbrcJN7xWS8wetUSY3O9OJ2tE__-FwfM6brKGXs1wUd2rjeY1eQL6OVh8wFL5Bdz1PmKluAcvcYA-V_fPr99mVHIHBqcfy-eZ0BKV2QVc771DiPRcXDS5yPLj-etzfjpyEc-GF50SuBjkuq_qgOIVx4ZL_YjrG-7JUrsNBXZLHwHgDXfQOzvf7waxUQ6Cpi4OBItoyt7ejUoDzIECMZgCKMa20VDbRknOdRLFiBgRpg9AxAaqtu2FjBnH8Fi3lRQ7vEJahSKi1TAgIqU0gEZLHKgkT4KHhRLRQMFdVpmc85r6cxm1WMzBHmZ_PrJnPFvrSyI9qBo9HJbcqzTdisrzxuDfezi4H37L06HCve3r5PTtpoajS5xPjZZ1uL21a7_-n0we04q5pjU37iJYm5RQ-uSxoojbRcqebHp1tVhb_F4upA0A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQewAOvBHb8vAB8TikjROvHR_7Wpay2UJp1d4sP8YCtUpW2V2EOPET-I38EmxnN7BICAmOtsZWMrZnxvbnbxB6aonLcqF5wpl1CWVEJdqYPHGM9klhSWpNRPmO2fCUHp73l2jC8Bam5YfoDtzCyoj2OizwcCC9_ZM1VFkXnpJ7I-znod8ArYe03nFXddwxSBHO24tlRgLEi5wveRvTbHu1_YpfWg8q_rwar0aHM7iJ9PJTW5zJxdZ8prfMl99YHP_rX26hG4twFO-08-c2ugLVHXT9F5LCu-jTIHBm6kvAqrI4oGW_f_32_oOagMVlgPOF4nwCjfF-13gD0eBd7xotris8_vjiaPgy8xLeiteBFjl2ctTEFKG4hGnt4_96PsV7qtG-wUGblcfC9B46HRyc7A2TRbaGxFDvChNNjGN-e0eVAG9EgFjDADRjRhulXWEU56bIcs0sCNIHYXIC1Dhf4XIGeX4frVV1BQ8QVqkoqHNMCEipK6AQiue6SAvgqeVE9FCyHCtpFlTmIaPGpWxJmDMZ9Ck7ffbQ805-0pJ4_FHyWRz6Tkw1FwH6xvvybPxKlqPD3f3js7fyXQ9lcUD_0p_c2R-UXWnjXxo9QVeHJ-VIjl6P32yia76etlC1h2ht1szhkQ-KZvpxnPY_AInBBcc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKyE4QHmpWyj4gHgc0saJ146PbbdhKd1tKVTdm-XHWFStklV2FyFO_Qn9jfwS7GQ3dJEQEhxtzViJPZ4ZJ5-_QeilJS5JheYRZ9ZFlBEVaWPSyDHaJZklsTU1ynfI-qf0YNQd3bjF3_BDtB_cws6o_XXY4GPrtn-Rhirrwk1y74O9GfrzzyplcRbsunfSEkgRzpv_yowEhBcZLWgb42R7WX8pLK2GGf62nK7W8Sa_j9TiSRuYycXWbKq3zPffSBz_51XW0L15Mop3Gut5gG5B8RDdvUFR-Ah9zQNjpr4ErAqLA1b2x9X1py9qDBYPApgvNGdjqIyPusa7hwrv-sBocVng4fmbo_7bxEt4H14GUuR6kKOqLhCKBzApffZfziZ4T1XaK-w3NXksTB6j03z_814_mtdqiAz1gTDSxDjmD3dUCfAuBIg1DEAzZrRR2mVGcW6yJNXMgiBdECYlQI3zHS5lkKZP0EpRFrCOsIpFRp1jQkBMXQaZUDzVWZwBjy0nooOixVJJMycyD_U0LmVDwZzIMJ-ync8Oet3KjxsKjz9KvqpXvhVT1UUAvvGuPBu-k4PDg93eydmx_NhBSb2efxlP7vTyQdva-BelF-j2cS-Xh--HH56iO76bNji1Z2hlWs1g02dEU_28NvqfkQQEfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+Wire%E2%80%90Shaped+Micro%E2%80%90Supercapacitor+Based+on+Ni%28OH%29+2+%E2%80%90Nanowire+and+Ordered+Mesoporous+Carbon+Electrodes&rft.jtitle=Advanced+functional+materials&rft.au=Dong%2C+Xiaoli&rft.au=Guo%2C+Ziyang&rft.au=Song%2C+Yanfang&rft.au=Hou%2C+Mengyan&rft.date=2014-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=24&rft.issue=22&rft.spage=3405&rft.epage=3412&rft_id=info:doi/10.1002%2Fadfm.201304001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201304001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |