Factors Affecting Geographic Variation in Echolocation Calls of the Endemic Myotis davidii in China
The sensory drive hypothesis of speciation predicts that divergence in communication systems will occur when environments differ and that this sensory divergence can ultimately promote speciation. The factors affecting geographic evolution in acoustic signals remain poorly understood, especially in...
Saved in:
Published in | Ethology Vol. 119; no. 10; pp. 881 - 890 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hamburg
Blackwell Publishing Ltd
01.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The sensory drive hypothesis of speciation predicts that divergence in communication systems will occur when environments differ and that this sensory divergence can ultimately promote speciation. The factors affecting geographic evolution in acoustic signals remain poorly understood, especially in the contexts of high gene flow. This study investigated variation patterns in peak frequency emitted by the Chinese endemic Myotis davidii on a broad geographic scale by evaluating the relative importance of morphological, environmental, geographic, and genetic variables. Significant variation in peak frequency was observed among regions, but peak frequencies among populations within region had some percentage of similarity. Differences in peak frequency were not associated with morphological difference, genetic structure, and geographic distance among regions, which suggested that peak frequency divergences in M. davidii were not the primary driver of regions' isolation in a context of weak gene flow. Within the Middle East Plain (MEP), one of the regions delineated in this study, peak frequency differences of M. davidii were not significantly correlated with genetic distance and geographic distance among populations, suggesting that peak frequency was not be subject to cultural drift within MEP. Our results provide evidence that geographic variation in echolocation call design may evolve as a consequence of local adaptation to climate conditions. |
---|---|
AbstractList | The sensory drive hypothesis of speciation predicts that divergence in communication systems will occur when environments differ and that this sensory divergence can ultimately promote speciation. The factors affecting geographic evolution in acoustic signals remain poorly understood, especially in the contexts of high gene flow. This study investigated variation patterns in peak frequency emitted by the Chinese endemic Myotis davidii on a broad geographic scale by evaluating the relative importance of morphological, environmental, geographic, and genetic variables. Significant variation in peak frequency was observed among regions, but peak frequencies among populations within region had some percentage of similarity. Differences in peak frequency were not associated with morphological difference, genetic structure, and geographic distance among regions, which suggested that peak frequency divergences in M. davidii were not the primary driver of regions' isolation in a context of weak gene flow. Within the Middle East Plain (MEP), one of the regions delineated in this study, peak frequency differences of M. davidii were not significantly correlated with genetic distance and geographic distance among populations, suggesting that peak frequency was not be subject to cultural drift within MEP. Our results provide evidence that geographic variation in echolocation call design may evolve as a consequence of local adaptation to climate conditions. The sensory drive hypothesis of speciation predicts that divergence in communication systems will occur when environments differ and that this sensory divergence can ultimately promote speciation. The factors affecting geographic evolution in acoustic signals remain poorly understood, especially in the contexts of high gene flow. This study investigated variation patterns in peak frequency emitted by the Chinese endemic Myotis davidii on a broad geographic scale by evaluating the relative importance of morphological, environmental, geographic, and genetic variables. Significant variation in peak frequency was observed among regions, but peak frequencies among populations within region had some percentage of similarity. Differences in peak frequency were not associated with morphological difference, genetic structure, and geographic distance among regions, which suggested that peak frequency divergences in M. davidii were not the primary driver of regions' isolation in a context of weak gene flow. Within the Middle East Plain (MEP), one of the regions delineated in this study, peak frequency differences of M. davidii were not significantly correlated with genetic distance and geographic distance among populations, suggesting that peak frequency was not be subject to cultural drift within MEP. Our results provide evidence that geographic variation in echolocation call design may evolve as a consequence of local adaptation to climate conditions. [PUBLICATION ABSTRACT] The sensory drive hypothesis of speciation predicts that divergence in communication systems will occur when environments differ and that this sensory divergence can ultimately promote speciation. The factors affecting geographic evolution in acoustic signals remain poorly understood, especially in the contexts of high gene flow. This study investigated variation patterns in peak frequency emitted by the Chinese endemic Myotis davidii on a broad geographic scale by evaluating the relative importance of morphological, environmental, geographic, and genetic variables. Significant variation in peak frequency was observed among regions, but peak frequencies among populations within region had some percentage of similarity. Differences in peak frequency were not associated with morphological difference, genetic structure, and geographic distance among regions, which suggested that peak frequency divergences in M. davidii were not the primary driver of regions' isolation in a context of weak gene flow. Within the Middle East Plain ( MEP ), one of the regions delineated in this study, peak frequency differences of M. davidii were not significantly correlated with genetic distance and geographic distance among populations, suggesting that peak frequency was not be subject to cultural drift within MEP . Our results provide evidence that geographic variation in echolocation call design may evolve as a consequence of local adaptation to climate conditions. |
Author | Lu, Guanjun Berquist, Sean Jiang, Tinglei Wang, Lei Liu, Sen Wu, Hui Feng, Jiang Ho, Jennifer You, Yuyan Puechmaille, Sébastien J. |
Author_xml | – sequence: 1 givenname: Tinglei surname: Jiang fullname: Jiang, Tinglei organization: Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China – sequence: 2 givenname: Yuyan surname: You fullname: You, Yuyan organization: Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China – sequence: 3 givenname: Sen surname: Liu fullname: Liu, Sen organization: Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China – sequence: 4 givenname: Guanjun surname: Lu fullname: Lu, Guanjun organization: Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China – sequence: 5 givenname: Lei surname: Wang fullname: Wang, Lei organization: Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China – sequence: 6 givenname: Hui surname: Wu fullname: Wu, Hui organization: Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China – sequence: 7 givenname: Sean surname: Berquist fullname: Berquist, Sean organization: Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA – sequence: 8 givenname: Jennifer surname: Ho fullname: Ho, Jennifer organization: Department of Integrative Biology and Physiology, University of California, CA, Los Angeles, USA – sequence: 9 givenname: Sébastien J. surname: Puechmaille fullname: Puechmaille, Sébastien J. organization: School of Biology and Environmental Science & UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland – sequence: 10 givenname: Jiang surname: Feng fullname: Feng, Jiang email: Jiang Feng, Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 5268 Renmin St, Changchun 130024, China., fengj@nenu.edu.cn organization: Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China |
BookMark | eNp9kctuEzEUQC1UJNLCgj-wxAYW0_oxnseyhDQFBZCgUHaWx77uuEzsYDtA_h6nARaVwBvrSudcWcfH6MgHDwg9peSUlnMGeTyljHLyAM1ozfuKcEqO0IzQtq9oQ_kjdJzSLSkzb_kM6Qulc4gJn1sLOjt_g5cQbqLajE7jzyo6lV3w2Hm80GOYgj7MczVNCQeL8wh44Q2sC_52F7JL2Kjvzji3d-aj8-oxemjVlODJ7_sEfbpYXM0vq9X75ev5-arSNa9JZRplO6CKDhZqpdqmFkQwazlw0wnbdKbvGB8M1GyAujOCDRTawQxN2wkmen6Cnh_2bmL4toWU5dolDdOkPIRtkvsejAnRNQV9dg-9Ddvoy-sKxXoqWN3SQr04UDqGlCJYuYlureJOUiL3uWXJLe9yF_bsHqtdvmuVo3LT_4wfboLdv1fLxdXlH6M6GC5l-PnXUPGrbMp3Cnn9bik_fmhffXl5_Uau-C-4iaHM |
CitedBy_id | crossref_primary_10_1080_09524622_2017_1357145 crossref_primary_10_1371_journal_pone_0187769 crossref_primary_10_1111_bij_12787 crossref_primary_10_1111_eth_12627 crossref_primary_10_1371_journal_pone_0103452 crossref_primary_10_1111_oik_01604 crossref_primary_10_1111_jzs_12394 crossref_primary_10_1016_j_ecoinf_2022_101654 crossref_primary_10_1007_s10344_015_0957_x crossref_primary_10_1111_1749_4877_12129 crossref_primary_10_1007_s10340_023_01721_6 crossref_primary_10_1139_cjz_2017_0089 crossref_primary_10_1016_j_zool_2018_05_005 crossref_primary_10_1186_s12862_018_1289_8 crossref_primary_10_1007_s10592_016_0844_3 |
Cites_doi | 10.1098/rsbl.2009.0685 10.2307/1380474 10.1016/j.anbehav.2006.12.006 10.1007/BF00380148 10.1111/j.2041-210X.2011.00138.x 10.1163/156853992X00345 10.1098/rspb.2012.1995 10.1080/00949650008812035 10.1139/z99-008 10.1007/s00359-006-0118-5 10.1071/WR9960267 10.1111/j.1095-8312.2000.tb01207.x 10.1515/mamm.2001.65.4.429 10.1644/06-MAMM-A-115R1.1 10.1121/1.3478855 10.1186/1471-2148-10-208 10.1121/1.396621 10.1007/BF00292166 10.1073/pnas.94.15.7719 10.2108/zsj.23.661 10.1111/j.1365-294X.2008.03975.x 10.1007/s003590100223 10.1007/BF00177798 10.1371/journal.pcbi.1000400 10.1098/rspb.2009.1185 10.1121/1.387529 10.1111/j.1365-294X.2006.03067.x 10.1002/ajp.1350270402 10.1016/S0003-3472(71)80134-3 10.1111/j.1365-294X.2005.02466.x 10.1007/s00359-010-0565-x 10.3161/001.004.0208 10.1046/j.1420-9101.2000.00155.x 10.1111/j.0014-3820.2002.tb00199.x 10.1515/mamm.1994.58.1.41 10.1007/s00359-006-0094-9 10.1093/beheco/arh055 10.1644/1545-1542(2002)083<0526:GAIVIV>2.0.CO;2 10.1038/ncomms1582 10.1098/rspb.1993.0055 10.1098/rstb.2001.1056 10.1111/j.1439-0310.2010.01785.x 10.2307/1383229 10.1121/1.3672695 |
ContentType | Journal Article |
Copyright | 2013 Blackwell Verlag GmbH Copyright © 2013 Blackwell Verlag GmbH |
Copyright_xml | – notice: 2013 Blackwell Verlag GmbH – notice: Copyright © 2013 Blackwell Verlag GmbH |
DBID | BSCLL AAYXX CITATION 7QG 7QR 7SN 7SS 8FD C1K FR3 P64 |
DOI | 10.1111/eth.12130 |
DatabaseName | Istex CrossRef Animal Behavior Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Entomology Abstracts Technology Research Database Animal Behavior Abstracts Chemoreception Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Animal Behavior Abstracts Entomology Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Psychology |
EISSN | 1439-0310 |
Editor | Manser, M. |
Editor_xml | – sequence: 11 givenname: M. surname: Manser fullname: Manser, M. |
EndPage | 890 |
ExternalDocumentID | 3060200031 10_1111_eth_12130 ETH12130 ark_67375_WNG_SR7DXBWJ_L |
Genre | article Feature |
GrantInformation_xml | – fundername: Campus youth fund funderid: 10QNJJ 015 – fundername: National Natural Science Foundation of China funderid: 310 30011; 31100280 – fundername: Research Fund for the Doctoral Program of Higher Education of China funderid: 201100; 43120015 |
GroupedDBID | -ET .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIVO ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 VH1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL Y6R ZY4 ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QG 7QR 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 |
ID | FETCH-LOGICAL-c4340-d6af8e1a1bfe4aa7645052ff3e3d85f68d9823bde42be48d52b1e7bdb67852593 |
IEDL.DBID | DR2 |
ISSN | 0179-1613 |
IngestDate | Fri Jul 11 04:22:54 EDT 2025 Fri Jul 25 10:48:58 EDT 2025 Tue Jul 01 01:51:08 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Wed Jan 22 16:36:07 EST 2025 Wed Oct 30 09:52:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4340-d6af8e1a1bfe4aa7645052ff3e3d85f68d9823bde42be48d52b1e7bdb67852593 |
Notes | istex:E0A71BA7C175345DCC568344195E457015554551 ArticleID:ETH12130 National Natural Science Foundation of China - No. 310 30011; No. 31100280 Campus youth fund - No. 10QNJJ 015 ark:/67375/WNG-SR7DXBWJ-L Research Fund for the Doctoral Program of Higher Education of China - No. 201100; No. 43120015 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1429152471 |
PQPubID | 46960 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1439225586 proquest_journals_1429152471 crossref_primary_10_1111_eth_12130 crossref_citationtrail_10_1111_eth_12130 wiley_primary_10_1111_eth_12130_ETH12130 istex_primary_ark_67375_WNG_SR7DXBWJ_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2013 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: October 2013 |
PublicationDecade | 2010 |
PublicationPlace | Hamburg |
PublicationPlace_xml | – name: Hamburg |
PublicationTitle | Ethology |
PublicationTitleAlternate | Ethology |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Grant, P. R., Grant, B. R. & Petren, K. 2000: The allopatric phase of speciation: the sharp-beaked ground finch (Geospiza difficilis) on the Galápagos islands. Biol. J. Linn. Soc. 69, 287-317. Mitani, J. C., Hasegawa, T., Gros-Louis, J., Marler, P. & Byrne, R. 1992: Dialects in wild chimpanzees? Am. J. Primat. 27, 233-243. Obrist, M. K. 1995: Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design. Behav. Ecol. Sociobiol. 36, 207-219. Puechmaille, S. J., Gouilh, M. A., Piyapan, P., Yokubol, M., Mie, K. M., Bates, P. J., Satasook, C., New, T., Bu, S. S., Mackie, I. J., Petit, E. J. & Teeling, E. C. 2011: The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat. Nat. Commun. 2, 573. Cavalli-Sforza, L. L. 1997: Genes, peoples, and languages. Proc. Natl Acad. Sci. USA 94, 7719-7724. Slatkin, M. 1987: Gene flow and the geographic structure of natural populations. Genetics 139, 787-792. Knörnschild, M., Nagy, M., Metz, M., Mayer, F. & von Helversen, O. 2009: Complex vocal imitation during ontogeny in a bat. Biol. Lett. 6, 156-159. Eiriksson, T. 1992: Density dependent song duration in the grasshopper Omocestus viridulus. Behaviour 122, 121-132. Matsumura, S. 1981: Mother-infant communication in a horseshoe bat (Rhinolophus ferrumequinum nippon): vocal communication in three-week old infants. J. Mammal. 62, 20-28. Russo, D., Jones, G. & Mucedda, M. 2001: Influence of age, sex and body size on echolocation calls of Mediterranean and Mehely's horseshoe bats, Rhinolophus euryale and R. mehelyi (Chiroptera: Rhinolophidae). Mammalia 65, 429-436. Hiryu, S., Katsura, K., Nagato, T., Yamazaki, H., Lin, L.-K., Watanabe, Y. & Riquimaroux, H. 2006: Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members. J. Comp. Physiol. A 192, 807-815. Barclay, R. M. R., Fullard, J. H. & Jacobs, D. S. 1999: Variation in the echolocation calls of the hoary bat (Lasiurus cinereus): influence of body size, habitat structure, and geographic location. Can. J. Zool. 77, 530-534. Gillam, E. H. & McCracken, G. F. 2007: Variability in the echolocation of Tadarida brasiliensis: effects of geography and local acoustic environment. Anim. Behav. 74, 277-286. Yoshino, H., Armstrong, K. N., Izawa, M., Yokoyama, J. & Kawata, M. 2008: Genetic and acoustic population structuring in the Okinawa least horseshoe bat: are intercolony acoustic differences maintained by vertical maternal transmission? Mol. Ecol. 17, 4978-4991. Jiang, T. L., Metzner, W., You, Y. Y., Liu, S., Lu, G. J., Li, S., Wang, L. & Feng, J. 2010a: Variation in the resting frequency of Rhinolophus pusillus in Mainland China: effect of climate and implications for conservation. J. Acous. Soc. Am. 128, 2204-2211. You, Y. Y., Sun, K. P., Xu, L. J., Wang, L., Jiang, T. L., Liu, S., Lu, G. J. & Feng, J. 2010: Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, Myotis davidii. BMC. Evolution. Biol. 10, 208. Hartley, D. J. & Suthers, R. A. 1988: The acoustics of the vocal tract in the Horseshoe bat Rhinolophus hildebrandti. J. Acous. Soc. Am. 84, 1201-1213. Jiang, T. L., Liu, R., Metzner, W., You, Y. Y., Li, S. & Feng, J. 2010b: Geographical and individual variation in echolocation calls of the intermediate leaf-nosed bat, Hipposideros larvatus. Ethology 116, 691-703. Denzinger, A., Siemers, B. M., Schaub, A. & Schnitzler, H. U. 2001: Echolocation by the barbastelle bat, Barbastella barbastellus. J. Comp. Physiol. A 187, 521-528. Heller, K. G. & von Helversen, O. 1989: Resource partitioning of sonar frequency bands in rhinolophoid bats. Oecologia 80, 178-186. Excoffier, L. G. L. & Schneider, S. 2005: ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. Online. 1, 47-50. Yovel, Y., Melcon, M. L., Franz, M. O., Denzinger, A. & Schnitzler, H. U. 2009: The voice of bats: How greater mouse-eared bats recognize individuals based on their echolocation calls. PLoS Comput. Biol. 5, e1000400. Yoshino, H., Matsumura, S., Kinjo, K., Tamura, H., Ota, H. & Izawa, M. 2006: Geographical variation in echolocation call and body size of the Okinawan least horseshoe bat, Rhinolophus pumilus (Mammalia: Rhinolophidae), on Okinawa-jima Island, RyukyuArchipelago. Japan. Zool. Sci. 23, 661-667. Bazley, E. 1976: Sound Absorption in air at Frequencies up to 100 kHz. National Physical Laboratory, Teddington, Middlesex, UK. Lawrence, B. D. & Simmons, J. A. 1982: Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J. Acous. Soc. Am. 71, 585-590. Soha, J. A., Nelson, D. A. & Parker, P. G. 2004: Genetic analysis of song dialect populations in Puget Sound white-crowned sparrows. Behav. Ecol. 15, 636-646. Jones, G. & Siemers, B. 2010: The communicative potential of bat echolocation pulses. J. Comp. Physiol. A 197, 447-457. Wright, T. F., Rodriguez, A. M. & Fleischer, R. C. 2005: Vocal dialects, sex-biased dispersal, and microsatellite population structure in the parrot Amazona auropalliata. Mol. Ecol. 14, 1197-1205. Jones, G. & Ransome, R. D. 1993: Echolocation calls of bats are influenced by maternal effects and change over a lifetime. Proc. R. Soc. Lond. B 252, 125-128. Mantel, N. 1967: The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209-220. Slabbekoorn, H. & Smith, T. B. 2002b: Habitat-dependent song divergence in the little greenbul: an analysis of environmental selection pressures on acoustic signals. Evolution 56, 1849-1858. Kemp, M. U., van Loon, E. E., Shamoun-Baranes, J. & Bouten, W. 2012: RNCEP: global weather and climate data at your fingertips Methods Ecol. Evol. 3, 65-70 (R package version 2.15.2). Luo, J. & Fox, B. J. 1996: A review of the Mantel Test in dietary studies: effect of sample size and inequality of sample sizes. Wild. Res. 23, 267-288. Knörnschild, M., Jung, K., Nagy, M., Metz, M. & Kalko, E. 2012: Bat echolocation calls facilitate social communication. Proc. R. Soc. B 279, 4827-4835. Law, B. S., Reinhold, L. & Pennay, M. 2002: Geographic variation in the echolocation calls of Vespadelus spp. (Vespertilionidae) from New South Wales and Queensland. Australia. Acta. Chiropt. 4, 201-215. Jones, G. & Kokurewicz, T. 1994: Sex and age variation in echolocation calls and flight morphology of Daubenton's bats Myotis daubentonii. Mammalia 58, 41-50. Griffin, D. R. 1958: Listening in the Dark. Yale Univ. Press, New Haven, CT. Legendre, P. 2000: Comparison of permutation methods for the partial correlation and partial mantel tests. J. Stat. Comput. Sim 67, 37-73. Slabbekoorn, H. & Smith, T. B. 2002a: Bird song, ecology and speciation. Phil. Trans. R. Soc. B 357, 493-503. Davidson, S. M. & Wilkinson, G. S. 2002: Geographic and individual variation in vocalizations by male Saccopteryx bilineata (Chiroptera: Emballonuridae). J. Mammal. 83, 526-535. Ma, J., Kobayasi, K., Zhang, S. & Metzner, W. 2006: Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum. J. Comp. Physiol. A 192, 535-550. Snell-Rood, E. C. 2012: The effect of climate on acoustic signals: Does atmospheric sound absorption matter for bird song and bat echolocation? J. Acous. Soc. Am. 131, 1650-1658. Chen, S. F., Jones, G. & Rossiter, S. J. 2009: Determinants of echolocation call frequency variation in the Formosan lesser horseshoe bat (Rhinolophus monoceros). Proc. R. Soc. B 276, 3901-3909. Barclay, R. M. R. 1999: Bats are not birds - a cautionary note on using echolocation calls to identify bats: a comment. J. Mammal. 80, 290-296. Griffin, D. R. 1971: The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim Behav. 19, 55-61. Guillén, A., Juste, B. J. & Ibánñz, C. 2000: Variation in the frequency of the echolocation calls of Hipposideros ruber in the Gulf of Guinea: an exploration of the adaptive meaning of the constant frequency value in rhinolophoid CF bats. J. Evol. Biol. 13, 70-80. Smith, A. & Xie, Y. 2008: A Guide to the Mammals of China. Princeton Univ. Press, Princeton. Barbujani, G., Stenico, M., Excoffier, L. & Nigro, L. 1996: Mitochondrial DNA sequence variation across linguistic and geographic boundaries in Italy. Hum. Biol. 68, 201-215. Neuweiler, G., Metzner, W., Heilmann, U., Ruebsamen, R., Eckrich, M. & Costa, H. H. 1987: Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka. Behav. Ecol. Sociobiol. 20, 53-67. Armstrong, K. N. & Coles, R. B. 2007: Echolocation call frequency differences between geographic isolates of Rhinonicteris aurantia (Chiroptera: Hipposideridae): implications of nasal chamber size. J. Mammal. 88, 94-104. 2001; 187 2010; 10 1992; 122 1995; 36 1989; 80 1976 2009; 276 2007; 74 1967; 27 1999; 80 2002a; 357 2012; 131 1997; 94 2006; 23 2002; 83 1971; 19 2000; 13 2010; 197 1988; 84 1996; 68 1993; 252 1996; 23 2011; 2 2000; 69 2012 1982; 71 2000; 67 2008; 17 2009 2008 2002; 4 2006; 192 2010b; 116 1981; 62 2002b; 56 1958 1999 2001; 65 1987; 20 2012; 3 2010a; 128 1987; 139 2004; 15 1999; 77 1994; 58 2005; 1 2009; 6 2009; 5 1992; 27 2012; 279 2007; 88 2005; 14 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 Slatkin M. (e_1_2_6_45_1) 1987; 139 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Knörnschild M. (e_1_2_6_28_1) 2009; 6 e_1_2_6_9_1 Wilczynski W. (e_1_2_6_50_1) 1999 e_1_2_6_5_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 Barbujani G. (e_1_2_6_3_1) 1996; 68 e_1_2_6_14_1 Obrist M. K. (e_1_2_6_39_1) 1995; 36 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 Carroll S. P. (e_1_2_6_7_1) 1999 Griffin D. R. (e_1_2_6_16_1) 1958 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 Mantel N. (e_1_2_6_35_1) 1967; 27 e_1_2_6_40_1 Bazley E. (e_1_2_6_6_1) 1976 e_1_2_6_8_1 Smith A. (e_1_2_6_46_1) 2008 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 |
References_xml | – reference: Eiriksson, T. 1992: Density dependent song duration in the grasshopper Omocestus viridulus. Behaviour 122, 121-132. – reference: Grant, P. R., Grant, B. R. & Petren, K. 2000: The allopatric phase of speciation: the sharp-beaked ground finch (Geospiza difficilis) on the Galápagos islands. Biol. J. Linn. Soc. 69, 287-317. – reference: Law, B. S., Reinhold, L. & Pennay, M. 2002: Geographic variation in the echolocation calls of Vespadelus spp. (Vespertilionidae) from New South Wales and Queensland. Australia. Acta. Chiropt. 4, 201-215. – reference: Cavalli-Sforza, L. L. 1997: Genes, peoples, and languages. Proc. Natl Acad. Sci. USA 94, 7719-7724. – reference: Mantel, N. 1967: The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209-220. – reference: Yovel, Y., Melcon, M. L., Franz, M. O., Denzinger, A. & Schnitzler, H. U. 2009: The voice of bats: How greater mouse-eared bats recognize individuals based on their echolocation calls. PLoS Comput. Biol. 5, e1000400. – reference: Wright, T. F., Rodriguez, A. M. & Fleischer, R. C. 2005: Vocal dialects, sex-biased dispersal, and microsatellite population structure in the parrot Amazona auropalliata. Mol. Ecol. 14, 1197-1205. – reference: Luo, J. & Fox, B. J. 1996: A review of the Mantel Test in dietary studies: effect of sample size and inequality of sample sizes. Wild. Res. 23, 267-288. – reference: Bazley, E. 1976: Sound Absorption in air at Frequencies up to 100 kHz. National Physical Laboratory, Teddington, Middlesex, UK. – reference: Hartley, D. J. & Suthers, R. A. 1988: The acoustics of the vocal tract in the Horseshoe bat Rhinolophus hildebrandti. J. Acous. Soc. Am. 84, 1201-1213. – reference: Barclay, R. M. R. 1999: Bats are not birds - a cautionary note on using echolocation calls to identify bats: a comment. J. Mammal. 80, 290-296. – reference: Gillam, E. H. & McCracken, G. F. 2007: Variability in the echolocation of Tadarida brasiliensis: effects of geography and local acoustic environment. Anim. Behav. 74, 277-286. – reference: Denzinger, A., Siemers, B. M., Schaub, A. & Schnitzler, H. U. 2001: Echolocation by the barbastelle bat, Barbastella barbastellus. J. Comp. Physiol. A 187, 521-528. – reference: Armstrong, K. N. & Coles, R. B. 2007: Echolocation call frequency differences between geographic isolates of Rhinonicteris aurantia (Chiroptera: Hipposideridae): implications of nasal chamber size. J. Mammal. 88, 94-104. – reference: Ma, J., Kobayasi, K., Zhang, S. & Metzner, W. 2006: Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum. J. Comp. Physiol. A 192, 535-550. – reference: Obrist, M. K. 1995: Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design. Behav. Ecol. Sociobiol. 36, 207-219. – reference: Jones, G. & Ransome, R. D. 1993: Echolocation calls of bats are influenced by maternal effects and change over a lifetime. Proc. R. Soc. Lond. B 252, 125-128. – reference: Soha, J. A., Nelson, D. A. & Parker, P. G. 2004: Genetic analysis of song dialect populations in Puget Sound white-crowned sparrows. Behav. Ecol. 15, 636-646. – reference: Smith, A. & Xie, Y. 2008: A Guide to the Mammals of China. Princeton Univ. Press, Princeton. – reference: Griffin, D. R. 1971: The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim Behav. 19, 55-61. – reference: Slabbekoorn, H. & Smith, T. B. 2002b: Habitat-dependent song divergence in the little greenbul: an analysis of environmental selection pressures on acoustic signals. Evolution 56, 1849-1858. – reference: Jiang, T. L., Metzner, W., You, Y. Y., Liu, S., Lu, G. J., Li, S., Wang, L. & Feng, J. 2010a: Variation in the resting frequency of Rhinolophus pusillus in Mainland China: effect of climate and implications for conservation. J. Acous. Soc. Am. 128, 2204-2211. – reference: You, Y. Y., Sun, K. P., Xu, L. J., Wang, L., Jiang, T. L., Liu, S., Lu, G. J. & Feng, J. 2010: Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, Myotis davidii. BMC. Evolution. Biol. 10, 208. – reference: Yoshino, H., Armstrong, K. N., Izawa, M., Yokoyama, J. & Kawata, M. 2008: Genetic and acoustic population structuring in the Okinawa least horseshoe bat: are intercolony acoustic differences maintained by vertical maternal transmission? Mol. Ecol. 17, 4978-4991. – reference: Slabbekoorn, H. & Smith, T. B. 2002a: Bird song, ecology and speciation. Phil. Trans. R. Soc. B 357, 493-503. – reference: Chen, S. F., Jones, G. & Rossiter, S. J. 2009: Determinants of echolocation call frequency variation in the Formosan lesser horseshoe bat (Rhinolophus monoceros). Proc. R. Soc. B 276, 3901-3909. – reference: Legendre, P. 2000: Comparison of permutation methods for the partial correlation and partial mantel tests. J. Stat. Comput. Sim 67, 37-73. – reference: Puechmaille, S. J., Gouilh, M. A., Piyapan, P., Yokubol, M., Mie, K. M., Bates, P. J., Satasook, C., New, T., Bu, S. S., Mackie, I. J., Petit, E. J. & Teeling, E. C. 2011: The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat. Nat. Commun. 2, 573. – reference: Russo, D., Jones, G. & Mucedda, M. 2001: Influence of age, sex and body size on echolocation calls of Mediterranean and Mehely's horseshoe bats, Rhinolophus euryale and R. mehelyi (Chiroptera: Rhinolophidae). Mammalia 65, 429-436. – reference: Snell-Rood, E. C. 2012: The effect of climate on acoustic signals: Does atmospheric sound absorption matter for bird song and bat echolocation? J. Acous. Soc. Am. 131, 1650-1658. – reference: Neuweiler, G., Metzner, W., Heilmann, U., Ruebsamen, R., Eckrich, M. & Costa, H. H. 1987: Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka. Behav. Ecol. Sociobiol. 20, 53-67. – reference: Griffin, D. R. 1958: Listening in the Dark. Yale Univ. Press, New Haven, CT. – reference: Lawrence, B. D. & Simmons, J. A. 1982: Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J. Acous. Soc. Am. 71, 585-590. – reference: Hiryu, S., Katsura, K., Nagato, T., Yamazaki, H., Lin, L.-K., Watanabe, Y. & Riquimaroux, H. 2006: Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members. J. Comp. Physiol. A 192, 807-815. – reference: Davidson, S. M. & Wilkinson, G. S. 2002: Geographic and individual variation in vocalizations by male Saccopteryx bilineata (Chiroptera: Emballonuridae). J. Mammal. 83, 526-535. – reference: Jones, G. & Kokurewicz, T. 1994: Sex and age variation in echolocation calls and flight morphology of Daubenton's bats Myotis daubentonii. Mammalia 58, 41-50. – reference: Knörnschild, M., Jung, K., Nagy, M., Metz, M. & Kalko, E. 2012: Bat echolocation calls facilitate social communication. Proc. R. Soc. B 279, 4827-4835. – reference: Mitani, J. C., Hasegawa, T., Gros-Louis, J., Marler, P. & Byrne, R. 1992: Dialects in wild chimpanzees? Am. J. Primat. 27, 233-243. – reference: Excoffier, L. G. L. & Schneider, S. 2005: ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. Online. 1, 47-50. – reference: Jiang, T. L., Liu, R., Metzner, W., You, Y. Y., Li, S. & Feng, J. 2010b: Geographical and individual variation in echolocation calls of the intermediate leaf-nosed bat, Hipposideros larvatus. Ethology 116, 691-703. – reference: Jones, G. & Siemers, B. 2010: The communicative potential of bat echolocation pulses. J. Comp. Physiol. A 197, 447-457. – reference: Slatkin, M. 1987: Gene flow and the geographic structure of natural populations. Genetics 139, 787-792. – reference: Knörnschild, M., Nagy, M., Metz, M., Mayer, F. & von Helversen, O. 2009: Complex vocal imitation during ontogeny in a bat. Biol. Lett. 6, 156-159. – reference: Matsumura, S. 1981: Mother-infant communication in a horseshoe bat (Rhinolophus ferrumequinum nippon): vocal communication in three-week old infants. J. Mammal. 62, 20-28. – reference: Guillén, A., Juste, B. J. & Ibánñz, C. 2000: Variation in the frequency of the echolocation calls of Hipposideros ruber in the Gulf of Guinea: an exploration of the adaptive meaning of the constant frequency value in rhinolophoid CF bats. J. Evol. Biol. 13, 70-80. – reference: Barbujani, G., Stenico, M., Excoffier, L. & Nigro, L. 1996: Mitochondrial DNA sequence variation across linguistic and geographic boundaries in Italy. Hum. Biol. 68, 201-215. – reference: Yoshino, H., Matsumura, S., Kinjo, K., Tamura, H., Ota, H. & Izawa, M. 2006: Geographical variation in echolocation call and body size of the Okinawan least horseshoe bat, Rhinolophus pumilus (Mammalia: Rhinolophidae), on Okinawa-jima Island, RyukyuArchipelago. Japan. Zool. Sci. 23, 661-667. – reference: Barclay, R. M. R., Fullard, J. H. & Jacobs, D. S. 1999: Variation in the echolocation calls of the hoary bat (Lasiurus cinereus): influence of body size, habitat structure, and geographic location. Can. J. Zool. 77, 530-534. – reference: Kemp, M. U., van Loon, E. E., Shamoun-Baranes, J. & Bouten, W. 2012: RNCEP: global weather and climate data at your fingertips Methods Ecol. Evol. 3, 65-70 (R package version 2.15.2). – reference: Heller, K. G. & von Helversen, O. 1989: Resource partitioning of sonar frequency bands in rhinolophoid bats. Oecologia 80, 178-186. – year: 2009 – volume: 27 start-page: 233 year: 1992 end-page: 243 article-title: Dialects in wild chimpanzees? publication-title: Am. J. Primat. – volume: 276 start-page: 3901 year: 2009 end-page: 3909 article-title: Determinants of echolocation call frequency variation in the Formosan lesser horseshoe bat ( ) publication-title: Proc. R. Soc. B – volume: 15 start-page: 636 year: 2004 end-page: 646 article-title: Genetic analysis of song dialect populations in Puget Sound white‐crowned sparrows publication-title: Behav. Ecol. – volume: 252 start-page: 125 year: 1993 end-page: 128 article-title: Echolocation calls of bats are influenced by maternal effects and change over a lifetime publication-title: Proc. R. Soc. Lond. B – volume: 6 start-page: 156 year: 2009 end-page: 159 article-title: Complex vocal imitation during ontogeny in a bat publication-title: Biol. Lett. – volume: 80 start-page: 290 year: 1999 end-page: 296 article-title: Bats are not birds ‐ a cautionary note on using echolocation calls to identify bats: a comment publication-title: J. Mammal. – volume: 5 start-page: e1000400 year: 2009 article-title: The voice of bats: How greater mouse‐eared bats recognize individuals based on their echolocation calls publication-title: PLoS Comput. Biol. – volume: 13 start-page: 70 year: 2000 end-page: 80 article-title: Variation in the frequency of the echolocation calls of in the Gulf of Guinea: an exploration of the adaptive meaning of the constant frequency value in rhinolophoid CF bats publication-title: J. Evol. Biol. – volume: 187 start-page: 521 year: 2001 end-page: 528 article-title: Echolocation by the barbastelle bat, publication-title: J. Comp. Physiol. A – volume: 3 start-page: 65 year: 2012 end-page: 70 article-title: RNCEP: global weather and climate data at your fingertips publication-title: Methods Ecol. Evol. – start-page: 52 year: 1999 end-page: 68 – volume: 68 start-page: 201 year: 1996 end-page: 215 article-title: Mitochondrial DNA sequence variation across linguistic and geographic boundaries in Italy publication-title: Hum. Biol. – volume: 2 start-page: 573 year: 2011 article-title: The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat publication-title: Nat. Commun. – volume: 116 start-page: 691 year: 2010b end-page: 703 article-title: Geographical and individual variation in echolocation calls of the intermediate leaf‐nosed bat, publication-title: Ethology – start-page: 234 year: 1999 end-page: 261 – volume: 69 start-page: 287 year: 2000 end-page: 317 article-title: The allopatric phase of speciation: the sharp‐beaked ground finch ( ) on the Galápagos islands publication-title: Biol. J. Linn. Soc. – volume: 20 start-page: 53 year: 1987 end-page: 67 article-title: Foraging behaviour and echolocation in the rufous horseshoe bat ( ) of Sri Lanka publication-title: Behav. Ecol. Sociobiol. – volume: 17 start-page: 4978 year: 2008 end-page: 4991 article-title: Genetic and acoustic population structuring in the Okinawa least horseshoe bat: are intercolony acoustic differences maintained by vertical maternal transmission? publication-title: Mol. Ecol. – volume: 67 start-page: 37 year: 2000 end-page: 73 article-title: Comparison of permutation methods for the partial correlation and partial mantel tests publication-title: J. Stat. Comput. Sim – year: 2008 – volume: 192 start-page: 535 year: 2006 end-page: 550 article-title: Vocal communication in adult greater horseshoe bats, publication-title: J. Comp. Physiol. A – volume: 197 start-page: 447 year: 2010 end-page: 457 article-title: The communicative potential of bat echolocation pulses publication-title: J. Comp. Physiol. A – volume: 62 start-page: 20 year: 1981 end-page: 28 article-title: Mother–infant communication in a horseshoe bat ( ): vocal communication in three‐week old infants publication-title: J. Mammal. – volume: 14 start-page: 1197 year: 2005 end-page: 1205 article-title: Vocal dialects, sex‐biased dispersal, and microsatellite population structure in the parrot publication-title: Mol. Ecol. – year: 1976 – volume: 58 start-page: 41 year: 1994 end-page: 50 article-title: Sex and age variation in echolocation calls and flight morphology of Daubenton's bats publication-title: Mammalia – volume: 357 start-page: 493 year: 2002a end-page: 503 article-title: Bird song, ecology and speciation publication-title: Phil. Trans. R. Soc. B – volume: 279 start-page: 4827 year: 2012 end-page: 4835 article-title: Bat echolocation calls facilitate social communication publication-title: Proc. R. Soc. B – volume: 71 start-page: 585 year: 1982 end-page: 590 article-title: Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats publication-title: J. Acous. Soc. Am. – volume: 10 start-page: 208 year: 2010 article-title: Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, publication-title: BMC. Evolution. Biol. – volume: 65 start-page: 429 year: 2001 end-page: 436 article-title: Influence of age, sex and body size on echolocation calls of Mediterranean and Mehely's horseshoe bats, and (Chiroptera: Rhinolophidae) publication-title: Mammalia – volume: 23 start-page: 661 year: 2006 end-page: 667 article-title: Geographical variation in echolocation call and body size of the Okinawan least horseshoe bat, (Mammalia: Rhinolophidae), on Okinawa‐jima Island, RyukyuArchipelago publication-title: Japan. Zool. Sci. – year: 1958 – volume: 88 start-page: 94 year: 2007 end-page: 104 article-title: Echolocation call frequency differences between geographic isolates of (Chiroptera: Hipposideridae): implications of nasal chamber size publication-title: J. Mammal. – volume: 1 start-page: 47 year: 2005 end-page: 50 article-title: ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis publication-title: Evol. Bioinform. Online. – volume: 131 start-page: 1650 year: 2012 end-page: 1658 article-title: The effect of climate on acoustic signals: Does atmospheric sound absorption matter for bird song and bat echolocation? publication-title: J. Acous. Soc. Am. – volume: 74 start-page: 277 year: 2007 end-page: 286 article-title: Variability in the echolocation of : effects of geography and local acoustic environment publication-title: Anim. Behav. – volume: 4 start-page: 201 year: 2002 end-page: 215 article-title: Geographic variation in the echolocation calls of spp. (Vespertilionidae) from New South Wales and Queensland publication-title: Australia. Acta. Chiropt. – volume: 83 start-page: 526 year: 2002 end-page: 535 article-title: Geographic and individual variation in vocalizations by male (Chiroptera: Emballonuridae) publication-title: J. Mammal. – volume: 139 start-page: 787 year: 1987 end-page: 792 article-title: Gene flow and the geographic structure of natural populations publication-title: Genetics – year: 2012 – volume: 80 start-page: 178 year: 1989 end-page: 186 article-title: Resource partitioning of sonar frequency bands in rhinolophoid bats publication-title: Oecologia – volume: 19 start-page: 55 year: 1971 end-page: 61 article-title: The importance of atmospheric attenuation for the echolocation of bats (Chiroptera) publication-title: Anim Behav. – volume: 56 start-page: 1849 year: 2002b end-page: 1858 article-title: Habitat‐dependent song divergence in the little greenbul: an analysis of environmental selection pressures on acoustic signals publication-title: Evolution – volume: 77 start-page: 530 year: 1999 end-page: 534 article-title: Variation in the echolocation calls of the hoary bat ( ): influence of body size, habitat structure, and geographic location publication-title: Can. J. Zool. – volume: 122 start-page: 121 year: 1992 end-page: 132 article-title: Density dependent song duration in the grasshopper publication-title: Behaviour – volume: 128 start-page: 2204 year: 2010a end-page: 2211 article-title: Variation in the resting frequency of in Mainland China: effect of climate and implications for conservation publication-title: J. Acous. Soc. Am. – volume: 94 start-page: 7719 year: 1997 end-page: 7724 article-title: Genes, peoples, and languages publication-title: Proc. Natl Acad. Sci. USA – volume: 36 start-page: 207 year: 1995 end-page: 219 article-title: Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design publication-title: Behav. Ecol. Sociobiol. – volume: 84 start-page: 1201 year: 1988 end-page: 1213 article-title: The acoustics of the vocal tract in the Horseshoe bat publication-title: J. Acous. Soc. Am. – volume: 192 start-page: 807 year: 2006 end-page: 815 article-title: Intra‐individual variation in the vocalized frequency of the Taiwanese leaf‐nosed bat, , influenced by conspecific colony members publication-title: J. Comp. Physiol. A – volume: 27 start-page: 209 year: 1967 end-page: 220 article-title: The detection of disease clustering and a generalized regression approach publication-title: Can. Res. – volume: 23 start-page: 267 year: 1996 end-page: 288 article-title: A review of the Mantel Test in dietary studies: effect of sample size and inequality of sample sizes publication-title: Wild. Res. – volume: 6 start-page: 156 year: 2009 ident: e_1_2_6_28_1 article-title: Complex vocal imitation during ontogeny in a bat publication-title: Biol. Lett. doi: 10.1098/rsbl.2009.0685 – ident: e_1_2_6_36_1 doi: 10.2307/1380474 – ident: e_1_2_6_14_1 doi: 10.1016/j.anbehav.2006.12.006 – ident: e_1_2_6_20_1 doi: 10.1007/BF00380148 – ident: e_1_2_6_27_1 doi: 10.1111/j.2041-210X.2011.00138.x – ident: e_1_2_6_12_1 doi: 10.1163/156853992X00345 – start-page: 52 volume-title: Geographic Variation in Behaviour year: 1999 ident: e_1_2_6_7_1 – ident: e_1_2_6_29_1 doi: 10.1098/rspb.2012.1995 – ident: e_1_2_6_32_1 doi: 10.1080/00949650008812035 – ident: e_1_2_6_5_1 doi: 10.1139/z99-008 – volume: 139 start-page: 787 year: 1987 ident: e_1_2_6_45_1 article-title: Gene flow and the geographic structure of natural populations publication-title: Genetics – volume-title: Sound Absorption in air at Frequencies up to 100 kHz year: 1976 ident: e_1_2_6_6_1 – ident: e_1_2_6_21_1 doi: 10.1007/s00359-006-0118-5 – ident: e_1_2_6_33_1 doi: 10.1071/WR9960267 – volume: 68 start-page: 201 year: 1996 ident: e_1_2_6_3_1 article-title: Mitochondrial DNA sequence variation across linguistic and geographic boundaries in Italy publication-title: Hum. Biol. – ident: e_1_2_6_15_1 doi: 10.1111/j.1095-8312.2000.tb01207.x – ident: e_1_2_6_47_1 – ident: e_1_2_6_42_1 doi: 10.1515/mamm.2001.65.4.429 – ident: e_1_2_6_2_1 doi: 10.1644/06-MAMM-A-115R1.1 – ident: e_1_2_6_22_1 doi: 10.1121/1.3478855 – ident: e_1_2_6_54_1 doi: 10.1186/1471-2148-10-208 – volume: 27 start-page: 209 year: 1967 ident: e_1_2_6_35_1 article-title: The detection of disease clustering and a generalized regression approach publication-title: Can. Res. – ident: e_1_2_6_19_1 doi: 10.1121/1.396621 – volume-title: Listening in the Dark year: 1958 ident: e_1_2_6_16_1 – ident: e_1_2_6_38_1 doi: 10.1007/BF00292166 – ident: e_1_2_6_8_1 doi: 10.1073/pnas.94.15.7719 – ident: e_1_2_6_52_1 doi: 10.2108/zsj.23.661 – ident: e_1_2_6_53_1 doi: 10.1111/j.1365-294X.2008.03975.x – volume-title: A Guide to the Mammals of China year: 2008 ident: e_1_2_6_46_1 – ident: e_1_2_6_11_1 doi: 10.1007/s003590100223 – volume: 36 start-page: 207 year: 1995 ident: e_1_2_6_39_1 article-title: Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design publication-title: Behav. Ecol. Sociobiol. doi: 10.1007/BF00177798 – ident: e_1_2_6_55_1 doi: 10.1371/journal.pcbi.1000400 – ident: e_1_2_6_9_1 doi: 10.1098/rspb.2009.1185 – ident: e_1_2_6_31_1 doi: 10.1121/1.387529 – start-page: 234 volume-title: Geographic Variation in Behaviour year: 1999 ident: e_1_2_6_50_1 – ident: e_1_2_6_13_1 doi: 10.1111/j.1365-294X.2006.03067.x – ident: e_1_2_6_37_1 doi: 10.1002/ajp.1350270402 – ident: e_1_2_6_17_1 doi: 10.1016/S0003-3472(71)80134-3 – ident: e_1_2_6_41_1 – ident: e_1_2_6_51_1 doi: 10.1111/j.1365-294X.2005.02466.x – ident: e_1_2_6_26_1 doi: 10.1007/s00359-010-0565-x – ident: e_1_2_6_30_1 doi: 10.3161/001.004.0208 – ident: e_1_2_6_18_1 doi: 10.1046/j.1420-9101.2000.00155.x – ident: e_1_2_6_44_1 doi: 10.1111/j.0014-3820.2002.tb00199.x – ident: e_1_2_6_24_1 doi: 10.1515/mamm.1994.58.1.41 – ident: e_1_2_6_34_1 doi: 10.1007/s00359-006-0094-9 – ident: e_1_2_6_49_1 doi: 10.1093/beheco/arh055 – ident: e_1_2_6_10_1 doi: 10.1644/1545-1542(2002)083<0526:GAIVIV>2.0.CO;2 – ident: e_1_2_6_40_1 doi: 10.1038/ncomms1582 – ident: e_1_2_6_25_1 doi: 10.1098/rspb.1993.0055 – ident: e_1_2_6_43_1 doi: 10.1098/rstb.2001.1056 – ident: e_1_2_6_23_1 doi: 10.1111/j.1439-0310.2010.01785.x – ident: e_1_2_6_4_1 doi: 10.2307/1383229 – ident: e_1_2_6_48_1 doi: 10.1121/1.3672695 |
SSID | ssj0017373 |
Score | 2.1007607 |
Snippet | The sensory drive hypothesis of speciation predicts that divergence in communication systems will occur when environments differ and that this sensory... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 881 |
SubjectTerms | Animal behavior Animal communication Biogeography Climate adaptation Climatic conditions Evolution Gene flow Genetic structure Myotis Speciation |
Title | Factors Affecting Geographic Variation in Echolocation Calls of the Endemic Myotis davidii in China |
URI | https://api.istex.fr/ark:/67375/WNG-SR7DXBWJ-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Feth.12130 https://www.proquest.com/docview/1429152471 https://www.proquest.com/docview/1439225586 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9Ki9AXW6vitVWiiPiypdlkv_Cp1juPYvtQW3uIsCSbhC49dktvD1r_emeyH7SiIL4t7ASymZnMb5LfzgC8jRNeOMN1oKxJA2lUHGQ60wG3mE2oxKHd0Dnk8Uk8PZdHs2i2Ah_6f2Ha-hDDgRt5ht-vycGVXtxzcttcUmkEQfk6cbUIEJ0OpaN4ItrbZTS4AFGN6KoKEYtnGPkgFq3Rst4-AJr34aqPN5MN-NHPtKWZXO0tG71X_PytiON_fsomPO5wKDtoDecJrNhqC9aH7fBuCx59r_3TUygmbVMeduDJHxjsWNc7_bIs2DfMtr16WVmxsR_eHgOyQzWfL1jtGIJMNq48D58d39VNuWCGuPRlSWN8C-9ncD4Znx1Og645Q1BIIfcDEyuXWq64dlYqlcSSWuI5J6wwaeTi1GRpKLSxMtRWpiYKNbeJNhqjY4Q5l3gOq1Vd2RfAuNL7zqIkbSGFcGgsIVcoZGUR2SIbwfteTXnRVS6nBhrzvM9gcAFzv4AjeDOIXrflOv4k9M7repBQN1fEb0ui_OLkc_71NPk0-3hxlH8ZwW5vDHnn2gvMlcIMQQ8G9RG8Hl6jU9JNi6psvSQZhJ2YrKUxzt1r_u-zycdnU_-w_e-iO7AeUlsOTyrchdXmZmlfIjhq9CvvBb8AkYwKmg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9Ki9gXP6riadVVRHxJabKbL_Cl1jvPencP9WqPgiz7SUOPRHo5sP71zm4-aEVBfAtkFjY7Mzvz253MD-B1kobK6lAGwugsYFokQS5zGYQG0YRILdqNO4eczpLxCTtaxIsNeNf9C9P0h-gP3Jxn-P3aObg7kL7m5aY-d70RKAL2Lcfo7QHVcd88Kkxpc7-MJhdgXkPbvkKujqcfeiMabbmF_XEj1byesPqIM7oL37q5NoUmF3vrWu6pn7-1cfzfj7kHd9pUlBw0tnMfNky5A9v9jni1A7fOKv_0ANSo4eUhB77-A-MdaenTzwtFviLg9homRUmGfnhzEkgOxXK5IpUlmGeSYelL8cn0qqqLFdGunL4o3BjP4v0QTkbD-eE4aPkZAsUo2w90ImxmQhFKa5gQacIcK5611FCdxTbJdJ5FVGrDImlYpuNIhiaVWmKAjBF20UewWValeQwkFHLfGpR0u4iiFu0lCgUKGaZio_IBvO30xFXbvNxxaCx5B2JwAblfwAG86kW_Nx07_iT0xiu7lxCXF67ELY356ewj_3Kcfli8Pz3ikwHsdtbAW-9eIVyKcsx7MK4P4GX_Gv3SXbaI0lRrJ4OZJ-K1LMG5e9X_fTZ8OB_7hyf_LvoCbo_n0wmffJp9fgrbkWPp8DWGu7BZX67NM8yVavncu8QvLHQOtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9Ki9IvPqriadUoIn7ZcrvJvvBT7d151vaQ2tpDhJAnXXrslt4eWP96J9kHrSiI3xZ2AtnMTOY3yexvAF4naaisDmUgjM4CpkUS5DKXQWgwmxCpRbtx55CHs2R6wvbn8XwN3nX_wjT8EP2Bm_MMv187B7_Q9pqTm_rMUSNQzNc3WDLMnEmPjnruqDClzfUyWlyAsIa2tEKujKcfeiMYbbh1_XEDaV7Hqz7gTO7C926qTZ3J-c6qljvq528sjv_5LffgTgtEyW5jOfdhzZRbsNnvh1dbcOtb5Z8egJo0XXnIrq_-wGhH2ubpZ4UiXzHd9volRUnGfnhzDkj2xGKxJJUliDLJuPSF-OTwqqqLJdGumL4o3Bjfw_shnEzGx3vToO3OEChG2TDQibCZCUUorWFCpAlzPfGspYbqLLZJpvMsolIbFknDMh1HMjSp1BLDY4xJF30E62VVmsdAQiGH1qCk20MUtWgtUShQyDAVG5UP4G2nJq5a6nLXQWPBuxQGF5D7BRzAq170ouHr-JPQG6_rXkJcnrsCtzTmp7MP_MtROpq_P93nBwPY7oyBt769xGQpyhH1YFQfwMv-NXqlu2oRpalWTgZxJ2ZrWYJz95r_-2z4-HjqH578u-gLuP15NOEHH2efnsJm5Fp0-ALDbVivL1fmGQKlWj73DvELFKYNbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factors+Affecting+Geographic+Variation+in+Echolocation+Calls+of+the+Endemic+Myotis+davidii+in+China&rft.jtitle=Ethology&rft.au=Jiang%2C+Tinglei&rft.au=You%2C+Yuyan&rft.au=Liu%2C+Sen&rft.au=Lu%2C+Guanjun&rft.date=2013-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0179-1613&rft.eissn=1439-0310&rft.volume=119&rft.issue=10&rft.spage=881&rft_id=info:doi/10.1111%2Feth.12130&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3060200031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-1613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-1613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-1613&client=summon |