Synthesizing individualized aging brains in health and disease with generative models and parallel transport
Simulating prospective magnetic resonance imaging (MRI) scans from a given individual brain image is challenging, as it requires accounting for canonical changes in aging and/or disease progression while also considering the individual brain’s current status and unique characteristics. While current...
Saved in:
Published in | MEDICAL IMAGE ANALYSIS Vol. 105; p. 103669 |
---|---|
Main Authors | , , , , |
Format | Journal Article Publication |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Simulating prospective magnetic resonance imaging (MRI) scans from a given individual brain image is challenging, as it requires accounting for canonical changes in aging and/or disease progression while also considering the individual brain’s current status and unique characteristics. While current deep generative models can produce high-resolution anatomically accurate templates for population-wide studies, their ability to predict future aging trajectories for individuals remains limited, particularly in capturing subject-specific neuroanatomical variations over time. In this study, we introduce Individualized Brain Synthesis (InBrainSyn), a framework for synthesizing high-resolution subject-specific longitudinal MRI scans that simulate neurodegeneration in both Alzheimer’s disease (AD) and normal aging. InBrainSyn uses a parallel transport algorithm to adapt the population-level aging trajectories learned by a generative deep template network, enabling individualized aging synthesis. As InBrainSyn uses diffeomorphic transformations to simulate aging, the synthesized images are topologically consistent with the original anatomy by design. We evaluated InBrainSyn both quantitatively and qualitatively on AD and healthy control cohorts from the Open Access Series of Imaging Studies - version 3 dataset. Experimentally, InBrainSyn can also model neuroanatomical transitions between normal aging and AD. An evaluation of an external set supports its generalizability. Overall, with only a single baseline scan, InBrainSyn synthesizes realistic 3D spatiotemporal T1w MRI scans, producing personalized longitudinal aging trajectories. The code for InBrainSyn is available at https://github.com/Fjr9516/InBrainSyn.
•We simulate subject-specific neurodegeneration from a single image.•We use a deep generative model to create cohort-specific spatiotemporal templates.•Parallel transport translates the aging trajectory of a cohort into the subject.•Diffeomorphism guarantees the anatomical plausibility of the synthetic images.•The method is tested for simulating normal aging and Alzheimer’s disease. |
---|---|
AbstractList | Simulating prospective magnetic resonance imaging (MRI) scans from a given individual brain image is challenging, as it requires accounting for canonical changes in aging and/or disease progression while also considering the individual brain's current status and unique characteristics. While current deep generative models can produce high-resolution anatomically accurate templates for population-wide studies, their ability to predict future aging trajectories for individuals remains limited, particularly in capturing subject-specific neuroanatomical variations over time. In this study, we introduce Individualized Brain Synthesis (InBrainSyn), a framework for synthesizing high-resolution subject-specific longitudinal MRI scans that simulate neurodegeneration in both Alzheimer's disease (AD) and normal aging. InBrainSyn uses a parallel transport algorithm to adapt the population-level aging trajectories learned by a generative deep template network, enabling individualized aging synthesis. As InBrainSyn uses diffeomorphic transformations to simulate aging, the synthesized images are topologically consistent with the original anatomy by design. We evaluated InBrainSyn both quantitatively and qualitatively on AD and healthy control cohorts from the Open Access Series of Imaging Studies - version 3 dataset. Experimentally, InBrainSyn can also model neuroanatomical transitions between normal aging and AD. An evaluation of an external set supports its generalizability. Overall, with only a single baseline scan, InBrainSyn synthesizes realistic 3D spatiotemporal T1w MRI scans, producing personalized longitudinal aging trajectories. The code for InBrainSyn is available at https://github.com/Fjr9516/InBrainSyn.Simulating prospective magnetic resonance imaging (MRI) scans from a given individual brain image is challenging, as it requires accounting for canonical changes in aging and/or disease progression while also considering the individual brain's current status and unique characteristics. While current deep generative models can produce high-resolution anatomically accurate templates for population-wide studies, their ability to predict future aging trajectories for individuals remains limited, particularly in capturing subject-specific neuroanatomical variations over time. In this study, we introduce Individualized Brain Synthesis (InBrainSyn), a framework for synthesizing high-resolution subject-specific longitudinal MRI scans that simulate neurodegeneration in both Alzheimer's disease (AD) and normal aging. InBrainSyn uses a parallel transport algorithm to adapt the population-level aging trajectories learned by a generative deep template network, enabling individualized aging synthesis. As InBrainSyn uses diffeomorphic transformations to simulate aging, the synthesized images are topologically consistent with the original anatomy by design. We evaluated InBrainSyn both quantitatively and qualitatively on AD and healthy control cohorts from the Open Access Series of Imaging Studies - version 3 dataset. Experimentally, InBrainSyn can also model neuroanatomical transitions between normal aging and AD. An evaluation of an external set supports its generalizability. Overall, with only a single baseline scan, InBrainSyn synthesizes realistic 3D spatiotemporal T1w MRI scans, producing personalized longitudinal aging trajectories. The code for InBrainSyn is available at https://github.com/Fjr9516/InBrainSyn. Simulating prospective magnetic resonance imaging (MRI) scans from a given individual brain image is challenging, as it requires accounting for canonical changes in aging and/or disease progression while also considering the individual brain's current status and unique characteristics. While current deep generative models can produce high-resolution anatomically accurate templates for population-wide studies, their ability to predict future aging trajectories for individuals remains limited, particularly in capturing subject-specific neuroanatomical variations over time. In this study, we introduce Individualized Brain Synthesis (InBrainSyn), a framework for synthesizing high-resolution subject-specific longitudinal MRI scans that simulate neurodegeneration in both Alzheimer's disease (AD) and normal aging. InBrainSyn uses a parallel transport algorithm to adapt the population-level aging trajectories learned by a generative deep template network, enabling individualized aging synthesis. As InBrainSyn uses diffeomorphic transformations to simulate aging, the synthesized images are topologically consistent with the original anatomy by design. We evaluated InBrainSyn both quantitatively and qualitatively on AD and healthy control cohorts from the Open Access Series of Imaging Studies - version 3 dataset. Experimentally, InBrainSyn can also model neuroanatomical transitions between normal aging and AD. An evaluation of an external set supports its generalizability. Overall, with only a single baseline scan, InBrainSyn synthesizes realistic 3D spatiotemporal T1w MRI scans, producing personalized longitudinal aging trajectories. The code for InBrainSyn is available at https://github.com/Fjr9516/InBrainSyn. Simulating prospective magnetic resonance imaging (MRI) scans from a given individual brain image is challenging, as it requires accounting for canonical changes in aging and/or disease progression while also considering the individual brain’s current status and unique characteristics. While current deep generative models can produce high-resolution anatomically accurate templates for population-wide studies, their ability to predict future aging trajectories for individuals remains limited, particularly in capturing subject-specific neuroanatomical variations over time. In this study, we introduce Individualized Brain Synthesis (InBrainSyn), a framework for synthesizing high-resolution subject-specific longitudinal MRI scans that simulate neurodegeneration in both Alzheimer’s disease (AD) and normal aging. InBrainSyn uses a parallel transport algorithm to adapt the population-level aging trajectories learned by a generative deep template network, enabling individualized aging synthesis. As InBrainSyn uses diffeomorphic transformations to simulate aging, the synthesized images are topologically consistent with the original anatomy by design. We evaluated InBrainSyn both quantitatively and qualitatively on AD and healthy control cohorts from the Open Access Series of Imaging Studies - version 3 dataset. Experimentally, InBrainSyn can also model neuroanatomical transitions between normal aging and AD. An evaluation of an external set supports its generalizability. Overall, with only a single baseline scan, InBrainSyn synthesizes realistic 3D spatiotemporal T1w MRI scans, producing personalized longitudinal aging trajectories. The code for InBrainSyn is available at https://github.com/Fjr9516/InBrainSyn. •We simulate subject-specific neurodegeneration from a single image.•We use a deep generative model to create cohort-specific spatiotemporal templates.•Parallel transport translates the aging trajectory of a cohort into the subject.•Diffeomorphism guarantees the anatomical plausibility of the synthetic images.•The method is tested for simulating normal aging and Alzheimer’s disease. |
ArticleNumber | 103669 |
Author | Ferreira, Daniel Moreno, Rodrigo Dey, Neel Zheng, Yuqi Fu, Jingru |
Author_xml | – sequence: 1 givenname: Jingru orcidid: 0000-0003-4175-395X surname: Fu fullname: Fu, Jingru email: jingruf@kth.se organization: Division of Biomedical Imaging, KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 2 givenname: Yuqi orcidid: 0009-0003-4183-0633 surname: Zheng fullname: Zheng, Yuqi email: yuqizh@kth.se organization: Division of Biomedical Imaging, KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 3 givenname: Neel orcidid: 0000-0003-1427-6406 surname: Dey fullname: Dey, Neel email: dey@csail.mit.edu organization: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, MA, USA – sequence: 4 givenname: Daniel orcidid: 0000-0001-9522-4338 surname: Ferreira fullname: Ferreira, Daniel email: daniel.ferreira.padilla@ki.se organization: Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden – sequence: 5 givenname: Rodrigo orcidid: 0000-0001-5765-2964 surname: Moreno fullname: Moreno, Rodrigo email: rodmore@kth.se organization: Division of Biomedical Imaging, KTH Royal Institute of Technology, Stockholm, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40570808$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-368670$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index |
BookMark | eNp9kTtv2zAURokiRfNof0GBQmMXuXxIJDV0CNInEKBDk64ETV7ZdGhSJSUHya8vHTne0okXH893h3vO0UmIARB6T_CCYMI_bRZbsE4vKKZtSRjn3St0RhgntWwoOznOpD1F5zlvMMaiafAbdNrgVmCJ5Rnyvx_CuIbsHl1YVS5Yt3N20t49gq30ah8uk3Yhl79qDdqP60oHW1mXQWeo7l0JVhAg6dHtoNpGCz4_IYNO2nvw1Zh0yENM41v0utc-w7vDe4Fuv329ufpRX__6_vPq8ro2DWNj3RtgXUek5EujQfS019J0zDCCrTTUCsuYlL0lBoB3wIWgrZHAWmGA6F6yC7SY9-Z7GKalGpLb6vSgonbqEN2VCVS5GpW0K4X6xcIX9-dSxbRSd-NaMS65wIX_OPNDin8nyKPaumzAex0gTlkxShvORNvRgn44oNOy-DquflZQADYDJsWcE_RHhGC1F6026km02otWs-jS-jy3yrVh5yCpbBwEU8AEZlQ2uv_2_wFQarRU |
Cites_doi | 10.3389/fnagi.2017.00117 10.1038/s41467-022-32202-6 10.1016/j.neuroimage.2004.07.010 10.1016/j.ncl.2007.03.008 10.1016/j.neurobiolaging.2018.06.013 10.3389/fnagi.2017.00188 10.1016/j.neuroimage.2018.11.063 10.1109/TMI.2019.2897538 10.1016/j.media.2022.102723 10.1016/j.neuroimage.2007.07.007 10.1109/ACCESS.2021.3121609 10.1001/jamaneurol.2019.4749 10.1016/j.media.2023.102789 10.1016/j.neuroimage.2007.10.001 10.3389/fnins.2016.00236 10.1109/TMI.2022.3166131 10.1002/hbm.26165 10.1038/s41598-025-96234-w 10.1212/WNL.0b013e3181e7ca82 10.1016/j.neuroimage.2011.03.050 10.1523/JNEUROSCI.3252-09.2009 10.1007/978-3-031-34048-2_30 10.3389/fnins.2017.00132 10.1212/WNL.0b013e3181cb3e25 10.1016/j.media.2007.06.004 10.1007/s10851-008-0074-5 10.1016/j.media.2021.102036 10.1016/j.media.2019.07.006 10.1007/s10851-013-0470-3 10.1023/A:1011161132514 10.1016/j.media.2021.102257 10.1016/j.neurobiolaging.2005.05.020 10.1016/j.neuroimage.2016.03.061 10.1016/j.brain.2023.100080 10.1016/S0140-6736(04)15441-X 10.1111/j.1467-9868.2007.00574.x 10.1006/nimg.2000.0582 10.3389/fninf.2012.00003 10.1109/TMI.2021.3116879 10.1016/j.neuroimage.2004.07.068 10.1093/cercor/bhae475 10.1093/cercor/bhi044 10.3389/fnagi.2022.1063721 10.1016/j.media.2021.102169 10.1016/j.media.2005.03.002 10.1007/s00429-015-1140-6 10.1016/j.neurobiolaging.2014.07.046 10.1016/j.media.2022.102615 10.1016/j.neurobiolaging.2010.04.029 10.1016/j.neuroimage.2017.10.040 10.1016/j.neurobiolaging.2019.11.020 10.1109/42.650886 10.1016/j.neuroimage.2009.09.062 10.1016/j.neuroimage.2010.09.025 10.1023/B:VISI.0000043755.93987.aa 10.1007/s00791-002-0084-6 |
ContentType | Journal Article Publication |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS D8V BZJLE D8T STUKM |
DOI | 10.1016/j.media.2025.103669 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan SwePub Other SWEPUB Freely available online SwePub Other full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
ExternalDocumentID | oai_swepub_ki_se_1032829 oai_DiVA_org_kth_368670 40570808 10_1016_j_media_2025_103669 S1361841525002166 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 AGRNS ADTPV AOWAS D8V BZJLE D8T STUKM |
ID | FETCH-LOGICAL-c433t-fce3991886bcae7f2fa8c93c310d8c2d7d3388fd1cee69e67725c8e357ce1af83 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Mon Aug 25 03:40:53 EDT 2025 Fri Aug 22 03:12:44 EDT 2025 Fri Jun 27 20:31:29 EDT 2025 Thu Aug 28 04:48:33 EDT 2025 Wed Aug 27 16:38:18 EDT 2025 Sat Aug 30 17:13:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain aging Medical image generation Alzheimer’s disease Diffeomorphic registration Parallel transport |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-fce3991886bcae7f2fa8c93c310d8c2d7d3388fd1cee69e67725c8e357ce1af83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4175-395X 0000-0003-1427-6406 0000-0001-9522-4338 0009-0003-4183-0633 0000-0001-5765-2964 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1361841525002166 |
PMID | 40570808 |
PQID | 3224637592 |
PQPubID | 23479 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_1032829 swepub_primary_oai_DiVA_org_kth_368670 proquest_miscellaneous_3224637592 pubmed_primary_40570808 crossref_primary_10_1016_j_media_2025_103669 elsevier_sciencedirect_doi_10_1016_j_media_2025_103669 |
PublicationCentury | 2000 |
PublicationDate | 2025-10-01 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | MEDICAL IMAGE ANALYSIS |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jung, Luna, Park (b36) 2021 Khanal, Lorenzi, Ayache, Pennec (b39) 2016; 134 Demirci, Jafarabadi, Wang, Wang, Holland (b23) 2023; 5 Joshi, Davis, Jomier, Gerig (b35) 2004; 23 Lorenzi, Pennec (b44) 2014; 50 Yoon, Zhang, Suk, Guo, Li (b78) 2023 Fu, Tzortzakakis, Barroso, Westman, Ferreira, Moreno (b30) 2023; 44 LaMontagne, Benzinger, Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, Moulder, Vlassenko, Raichle, Cruchaga, Marcus (b42) 2019 Avants, Tustison, Song, Cook, Klein, Gee (b8) 2011; 54 Avants, Yushkevich, Pluta, Minkoff, Korczykowski, Detre, Gee (b9) 2010; 49 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b31) 2014; Vol. 27 Atkinson, Hill, Stoyle, Summers, Keevil (b5) 1997; 16 Whitwell, Jack, Pankratz, Parisi, Knopman, Boeve, Petersen, Dickson, Josephs (b74) 2008; 39 Choi, Choi, Kim, Ha, Kim, Choo (b17) 2018 Dalca, Balakrishnan, Guttag, Sabuncu (b20) 2019; 57 Rohlfing, Russakoff, Maurer (b66) 2003 Chen, Frey, He, Segars, Li, Du (b16) 2022; 82 Hadj-Hamou, Lorenzi, Ayache, Pennec (b32) 2016; 10 Cury, Lorenzi, Cash, Nicholas, Routier, Rohrer, Ourselin, Durrleman, Modat (b19) 2016 Rakic, Guttag, Dalca (b60) 2020 De Vos, Berendsen, Viergever, Staring, Išgum (b22) 2017 Avants, Epstein, Grossman, Gee (b6) 2008; 12 Vemuri, Wiste, Weigand, Knopman, Trojanowski, Shaw, Bernstein, Aisen, Weiner, Petersen (b71) 2010; 75 Kelley, Petersen (b37) 2007; 25 Khanal, Ayache, Pennec (b38) 2017; 11 Ouyang, Zhao, Adeli, Zaharchuk, Pohl (b52) 2022; 41 Avants, Gee (b7) 2004; 23 Dalca, Rakic, Guttag, Sabuncu (b21) 2019 Puglisi, Alexander, Ravì (b58) 2024 Allassonnière, Amit, Trouvé (b1) 2007; 69 Bossa, Hernandez, Olmos (b14) 2007 Thompson, Toga (b69) 2002; 5 Ashburner (b3) 2007; 38 Kim, Küçükaslan, Navab (b41) 2021; 9 Ashburner, Friston (b4) 2000; 11 Beg, Miller, Trouvé, Younes (b12) 2005; 61 Eavani, Habes, Satterthwaite, An, Hsieh, Honnorat, Erus, Doshi, Ferrucci, Beason-Held (b25) 2018; 71 Kim, Kim, Park, Kim, Lee, Ye (b40) 2021; 71 Yoon, Zhang, Suk, Guo, Li (b79) 2023 Silva, Sudre, Garcia, Bass, Cardoso, Robinson (b67) 2021 Fu, Ferreira, Smedby, Moreno (b29) 2025; 15 Wegmayr, Hörold, Buhmann (b73) 2019 Wu, Jia, Wang, Shen (b76) 2011; 56 Huizinga, Poot, Vernooij, Roshchupkin, Bron, Ikram, Rueckert, Niessen, Klein (b34) 2018; 169 Thung, Wee, Yap, Shen (b70) 2016; 221 Dey, Ren, Dalca, Gerig (b24) 2021 Mescheder, Geiger, Nowozin (b48) 2018; Vol. 80 Arsigny, Commowick, Pennec, Ayache (b2) 2006 Rhodius-Meester, Benedictus, Wattjes, Barkhof, Scheltens, Muller, van der Flier (b64) 2017; 9 Pombo, Gray, Cardoso, Ourselin, Rees, Ashburner, Nachev (b56) 2023; 84 Risacher, Shen, West, Kim, McDonald, Beckett, Harvey, Jack Jr., Weiner, Saykin (b65) 2010; 31 Wrigglesworth, Ryan, Ward, Woods, Storey, Egan, Murray, Espinoza, Shah, Trevaks (b75) 2023; 14 Ravi, Blumberg, Ingala, Barkhof, Alexander, Oxtoby, Alzheimer’s Disease Neuroimaging Initiative (b62) 2022; 75 Billot, Greve, Puonti, Thielscher, Van Leemput, Fischl, Dalca, Iglesias (b13) 2023; 86 Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (b11) 2019; 38 Bowles, Gunn, Hammers, Rueckert (b15) 2018; Vol. 10574 Lorenzi, Pennec, Frisoni, Ayache (b45) 2015; 36 Raz, Lindenberger, Rodrigue, Kennedy, Head, Williamson, Dahle, Gerstorf, Acker (b63) 2005; 15 Bagarinao, Watanabe, Maesawa, Kawabata, Hara, Ohdake, Ogura, Mori, Yoneyama, Imai (b10) 2022; 9 Sivera, Capet, Manera, Fabre, Lorenzi, Delingette, Pennec, Ayache, Robert (b68) 2020; 94 Ziegler, Dahnke, Gaser, Alzheimer’s Disease Neuroimaging Initiative (b81) 2012; 6 Meysami, Raji, Merrill, Porter, Mendez (b50) 2021; 36 Ravi, Alexander, Oxtoby, Alzheimer’s Disease Neuroimaging Initiative (b61) 2019 Meyer, Binette, Gonneaud, Breitner, Villeneuve, Investigators (b49) 2020; 77 Cury, Durrleman, Cash, Lorenzi, Nicholas, Bocchetta, van Swieten, Borroni, Galimberti, Masellis, Tartaglia, Rowe, Graff, Tagliavini, Frisoni, Laforce, Finger, de Mendonça, Sorbi, Ourselin, Rohrer, Modat, Andersson, Archetti, Arighi, Benussi, Black, Cosseddu, Fallstrm, Ferreira, Fenoglio, Fox, Freedman, Fumagalli, Gazzina, Ghidoni, Grisoli, Jelic, Jiskoot, Keren, Lombardi, Maruta, Meeter, van Minkelen, Nacmias, ijerstedt, Padovani, Panman, Pievani, Polito, Premi, Prioni, Rademakers, Redaelli, Rogaeva, Rossi, Rossor, Scarpini, Tang-Wai, Tartaglia, Thonberg, Tiraboschi, Verdelho, Warren (b18) 2019; 188 Lorenzen, Prastawa, Davis, Gerig, Bullitt, Joshi (b43) 2006; 10 Poulakis, Pereira, Muehlboeck, Wahlund, Smedby, Volpe, Masters, Ames, Niimi, Iwatsubo (b57) 2022; 13 Xia, Chartsias, Wang, Tsaftaris, Alzheimer’s Disease Neuroimaging Initiative (b77) 2021; 73 Pathan, Hong (b53) 2018 Perez, Strub, De Vries, Dumoulin, Courville (b54) 2018; Vol. 32 Ferreira, Machado, Molina, Nieto, Correia, Westman, Barroso (b26) 2017; 9 Petersen, Aisen, Beckett, Donohue, Gamst, Harvey, Jack, Jagust, Shaw, Toga (b55) 2010; 74 Walhovd, Fjell, Reinvang, Lundervold, Dale, Eilertsen, Quinn, Salat, Makris, Fischl (b72) 2005; 26 Fjell, Walhovd, Fennema-Notestine, McEvoy, Hagler, Holland, Brewer, Dale (b27) 2009; 29 Mao, Li, Xie, Lau, Wang, Paul Smolley (b46) 2017 Miller, Younes (b51) 2001; 41 Mehta, Keith, Teixeira, Worhunsky, Phelps, Ward, Miller, Navia, Pockl, Rajabalee (b47) 2024; 34 Younes, Qiu, Winslow, Miller (b80) 2008; 32 Fox, Schott (b28) 2004; 363 Hoffmann, Billot, Greve, Iglesias, Fischl, Dalca (b33) 2022; 41 Puglisi, Alexander, Ravì (b59) 2025 Fu (10.1016/j.media.2025.103669_b29) 2025; 15 Younes (10.1016/j.media.2025.103669_b80) 2008; 32 Silva (10.1016/j.media.2025.103669_b67) 2021 Lorenzi (10.1016/j.media.2025.103669_b45) 2015; 36 Avants (10.1016/j.media.2025.103669_b7) 2004; 23 Dalca (10.1016/j.media.2025.103669_b20) 2019; 57 Bowles (10.1016/j.media.2025.103669_b15) 2018; Vol. 10574 Ziegler (10.1016/j.media.2025.103669_b81) 2012; 6 Khanal (10.1016/j.media.2025.103669_b38) 2017; 11 Sivera (10.1016/j.media.2025.103669_b68) 2020; 94 Miller (10.1016/j.media.2025.103669_b51) 2001; 41 Yoon (10.1016/j.media.2025.103669_b79) 2023 Mehta (10.1016/j.media.2025.103669_b47) 2024; 34 Ouyang (10.1016/j.media.2025.103669_b52) 2022; 41 Pombo (10.1016/j.media.2025.103669_b56) 2023; 84 Meyer (10.1016/j.media.2025.103669_b49) 2020; 77 Demirci (10.1016/j.media.2025.103669_b23) 2023; 5 Dalca (10.1016/j.media.2025.103669_b21) 2019 Poulakis (10.1016/j.media.2025.103669_b57) 2022; 13 Chen (10.1016/j.media.2025.103669_b16) 2022; 82 Risacher (10.1016/j.media.2025.103669_b65) 2010; 31 Meysami (10.1016/j.media.2025.103669_b50) 2021; 36 Balakrishnan (10.1016/j.media.2025.103669_b11) 2019; 38 Ferreira (10.1016/j.media.2025.103669_b26) 2017; 9 Billot (10.1016/j.media.2025.103669_b13) 2023; 86 Atkinson (10.1016/j.media.2025.103669_b5) 1997; 16 LaMontagne (10.1016/j.media.2025.103669_b42) 2019 Raz (10.1016/j.media.2025.103669_b63) 2005; 15 Thung (10.1016/j.media.2025.103669_b70) 2016; 221 Hoffmann (10.1016/j.media.2025.103669_b33) 2022; 41 Mescheder (10.1016/j.media.2025.103669_b48) 2018; Vol. 80 Bagarinao (10.1016/j.media.2025.103669_b10) 2022; 9 Ravi (10.1016/j.media.2025.103669_b61) 2019 Pathan (10.1016/j.media.2025.103669_b53) 2018 Arsigny (10.1016/j.media.2025.103669_b2) 2006 Mao (10.1016/j.media.2025.103669_b46) 2017 Whitwell (10.1016/j.media.2025.103669_b74) 2008; 39 Joshi (10.1016/j.media.2025.103669_b35) 2004; 23 Walhovd (10.1016/j.media.2025.103669_b72) 2005; 26 Avants (10.1016/j.media.2025.103669_b6) 2008; 12 Thompson (10.1016/j.media.2025.103669_b69) 2002; 5 Khanal (10.1016/j.media.2025.103669_b39) 2016; 134 Cury (10.1016/j.media.2025.103669_b19) 2016 Rohlfing (10.1016/j.media.2025.103669_b66) 2003 Ashburner (10.1016/j.media.2025.103669_b3) 2007; 38 Fox (10.1016/j.media.2025.103669_b28) 2004; 363 Hadj-Hamou (10.1016/j.media.2025.103669_b32) 2016; 10 Kim (10.1016/j.media.2025.103669_b40) 2021; 71 Petersen (10.1016/j.media.2025.103669_b55) 2010; 74 Goodfellow (10.1016/j.media.2025.103669_b31) 2014; Vol. 27 Puglisi (10.1016/j.media.2025.103669_b59) 2025 Wegmayr (10.1016/j.media.2025.103669_b73) 2019 Dey (10.1016/j.media.2025.103669_b24) 2021 Eavani (10.1016/j.media.2025.103669_b25) 2018; 71 De Vos (10.1016/j.media.2025.103669_b22) 2017 Avants (10.1016/j.media.2025.103669_b9) 2010; 49 Puglisi (10.1016/j.media.2025.103669_b58) 2024 Fjell (10.1016/j.media.2025.103669_b27) 2009; 29 Kelley (10.1016/j.media.2025.103669_b37) 2007; 25 Lorenzen (10.1016/j.media.2025.103669_b43) 2006; 10 Xia (10.1016/j.media.2025.103669_b77) 2021; 73 Beg (10.1016/j.media.2025.103669_b12) 2005; 61 Ravi (10.1016/j.media.2025.103669_b62) 2022; 75 Rhodius-Meester (10.1016/j.media.2025.103669_b64) 2017; 9 Choi (10.1016/j.media.2025.103669_b17) 2018 Fu (10.1016/j.media.2025.103669_b30) 2023; 44 Perez (10.1016/j.media.2025.103669_b54) 2018; Vol. 32 Jung (10.1016/j.media.2025.103669_b36) 2021 Ashburner (10.1016/j.media.2025.103669_b4) 2000; 11 Huizinga (10.1016/j.media.2025.103669_b34) 2018; 169 Avants (10.1016/j.media.2025.103669_b8) 2011; 54 Wrigglesworth (10.1016/j.media.2025.103669_b75) 2023; 14 Cury (10.1016/j.media.2025.103669_b18) 2019; 188 Yoon (10.1016/j.media.2025.103669_b78) 2023 Vemuri (10.1016/j.media.2025.103669_b71) 2010; 75 Bossa (10.1016/j.media.2025.103669_b14) 2007 Wu (10.1016/j.media.2025.103669_b76) 2011; 56 Kim (10.1016/j.media.2025.103669_b41) 2021; 9 Rakic (10.1016/j.media.2025.103669_b60) 2020 Allassonnière (10.1016/j.media.2025.103669_b1) 2007; 69 Lorenzi (10.1016/j.media.2025.103669_b44) 2014; 50 |
References_xml | – volume: Vol. 27 year: 2014 ident: b31 article-title: Generative adversarial nets publication-title: Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS), MontrÉal, Canada, December 8-11, 2014 – start-page: 388 year: 2023 end-page: 400 ident: b78 article-title: Sadm: Sequence-aware diffusion model for longitudinal medical image generation publication-title: International Conference on Information Processing in Medical Imaging – year: 2020 ident: b60 article-title: Anatomical predictions using subject-specific medical data publication-title: Medical Imaging with Deep Learning (MIDL), MontrÉal, Canada, July 6-9, 2020 – start-page: 388 year: 2023 end-page: 400 ident: b79 article-title: SADM: Sequence-aware diffusion model for longitudinal medical image generation publication-title: Information Processing in Medical Imaging – volume: 15 start-page: 11813 year: 2025 ident: b29 article-title: Decomposing the effect of normal aging and Alzheimer’s disease in brain morphological changes via learned aging templates publication-title: Scientific Reports – volume: 94 start-page: 50 year: 2020 end-page: 59 ident: b68 article-title: Voxel-based assessments of treatment effects on longitudinal brain changes in the multidomain Alzheimer preventive trial cohort publication-title: Neurobiol. Aging – volume: 9 year: 2022 ident: b10 article-title: Reserve and maintenance in the aging brain: a longitudinal study of healthy older adults publication-title: EN Euro – start-page: 2794 year: 2017 end-page: 2802 ident: b46 article-title: Least squares generative adversarial networks publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Venice, Italy, October 22-29, 2017 – volume: 14 year: 2023 ident: b75 article-title: Health-related heterogeneity in brain aging and associations with longitudinal change in cognitive function publication-title: Front. Aging Neurosci. – start-page: 924 year: 2006 end-page: 931 ident: b2 article-title: A log-Euclidean framework for statistics on diffeomorphisms publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1-6, 2006. Proceedings, Part I 9 – volume: 134 start-page: 35 year: 2016 end-page: 52 ident: b39 article-title: A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer’s disease publication-title: NeuroImage – volume: 9 start-page: 143212 year: 2021 end-page: 143221 ident: b41 article-title: Longitudinal brain MR image modeling using personalized memory for Alzheimer’s Disease publication-title: IEEE Access – volume: 13 start-page: 4566 year: 2022 ident: b57 article-title: Multi-cohort and longitudinal Bayesian clustering study of stage and subtype in Alzheimer’s disease publication-title: Nat. Commun. – volume: 38 start-page: 95 year: 2007 end-page: 113 ident: b3 article-title: A fast diffeomorphic image registration algorithm publication-title: NeuroImage – volume: 5 year: 2023 ident: b23 article-title: Consistency and variation in the placement of cortical folds: A perspective publication-title: Brain Multiphys. – volume: Vol. 10574 start-page: 105741K year: 2018 ident: b15 article-title: Modelling the progression of Alzheimer’s disease in MRI using generative adversarial networks publication-title: SPIE Medical Imaging 2018: Image Processing, Houston, US – start-page: 8789 year: 2018 end-page: 8797 ident: b17 article-title: StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, US, June 18-22, 2018 – year: 2018 ident: b53 article-title: Predictive image regression for longitudinal studies with missing data – volume: 16 start-page: 903 year: 1997 end-page: 910 ident: b5 article-title: Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion publication-title: IEEE Trans. Med. Imaging – volume: 5 start-page: 13 year: 2002 end-page: 34 ident: b69 article-title: A framework for computational anatomy publication-title: Comput. Vis. Sci. – start-page: 247 year: 2019 end-page: 260 ident: b73 article-title: Generative aging of brain MR-images and prediction of Alzheimer progression publication-title: German Conference on Pattern Recognition (GCPR), Dortmund, Germany, September 10-13, 2019 – volume: 56 start-page: 1968 year: 2011 end-page: 1981 ident: b76 article-title: SharpMean: groupwise registration guided by sharp mean image and tree-based registration publication-title: NeuroImage – volume: 82 year: 2022 ident: b16 article-title: Transmorph: Transformer for unsupervised medical image registration publication-title: Med. Image Anal. – start-page: 806 year: 2019 end-page: 818 ident: b21 article-title: Learning conditional deformable templates with convolutional networks publication-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, December 8-14, 2019 – volume: 86 year: 2023 ident: b13 article-title: SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining publication-title: Med. Image Anal. – volume: Vol. 32 year: 2018 ident: b54 article-title: FiLM: Visual reasoning with a general conditioning layer publication-title: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), New Orleans, USA, February 2–7, 2018 – volume: 44 start-page: 1289 year: 2023 end-page: 1380 ident: b30 article-title: Fast three-dimensional image generation for healthy brain aging using diffeomorphic registration publication-title: Hum. Brain Mapp. – volume: 23 start-page: S139 year: 2004 end-page: S150 ident: b7 article-title: Geodesic estimation for large deformation anatomical shape averaging and interpolation publication-title: NeuroImage – volume: 77 start-page: 508 year: 2020 end-page: 516 ident: b49 article-title: Characterization of Alzheimer disease biomarker discrepancies using cerebrospinal fluid phosphorylated tau and AV1451 positron emission tomography publication-title: JAMA Neurol. – volume: 71 start-page: 41 year: 2018 end-page: 50 ident: b25 article-title: Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods publication-title: Neurobiol. Aging – volume: 41 start-page: 61 year: 2001 end-page: 84 ident: b51 article-title: Group actions, homeomorphisms, and matching: A general framework publication-title: Int. J. Comput. Vis. – start-page: 173 year: 2024 end-page: 183 ident: b58 article-title: Enhancing spatiotemporal disease progression models via latent diffusion and prior knowledge publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2024: 27th International Conference, Marrakesh, Morocco, October 6–10, 2024, Proceedings, Part II – year: 2025 ident: b59 article-title: Brain latent progression: Individual-based spatiotemporal disease progression on 3D brain MRIs via latent diffusion – start-page: 164 year: 2019 end-page: 172 ident: b61 article-title: Degenerative adversarial neuroimage nets: generating images that mimic disease progression publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part I – volume: 36 year: 2021 ident: b50 article-title: Quantitative MRI differences between early versus late onset Alzheimer’s disease publication-title: Am. J. Alzheimer’s Dis. Other Dementias – volume: 9 start-page: 188 year: 2017 ident: b26 article-title: Cognitive variability during middle-age: possible association with neurodegeneration and cognitive reserve publication-title: Front. Aging Neurosci. – volume: 71 year: 2021 ident: b40 article-title: CycleMorph: Cycle consistent unsupervised deformable image registration publication-title: Med. Image Anal. – volume: 363 start-page: 392 year: 2004 end-page: 394 ident: b28 article-title: Imaging cerebral atrophy: normal ageing to Alzheimer’s disease publication-title: Lancet – volume: Vol. 80 start-page: 3481 year: 2018 end-page: 3490 ident: b48 article-title: Which training methods for GANs do actually converge? publication-title: Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, July 10-15, 2018 – start-page: 63 year: 2016 end-page: 75 ident: b19 article-title: Spatio-temporal shape analysis of cross-sectional data for detection of early changes in neurodegenerative disease publication-title: International Workshop on Spectral and Shape Analysis in Medical Imaging–SeSAMI 2016, Athens, Greece, October 21, 2016 – year: 2019 ident: b42 article-title: OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer Disease publication-title: MedRxiv – start-page: 13 year: 2021 end-page: 22 ident: b67 article-title: Distinguishing healthy ageing from dementia: A biomechanical simulation of brain atrophy using deep networks publication-title: Machine Learning in Clinical Neuroimaging: 4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 4 – volume: 32 start-page: 41 year: 2008 end-page: 56 ident: b80 article-title: Transport of relational structures in groups of diffeomorphisms publication-title: J. Math. Imaging Vision – volume: 221 start-page: 3979 year: 2016 end-page: 3995 ident: b70 article-title: Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans publication-title: Brain Struct. Funct. – volume: 84 year: 2023 ident: b56 article-title: Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models publication-title: Med. Image Anal. – volume: 39 start-page: 1034 year: 2008 end-page: 1040 ident: b74 article-title: Rates of brain atrophy over time in autopsy-proven frontotemporal dementia and Alzheimer disease publication-title: NeuroImage – start-page: 667 year: 2007 end-page: 674 ident: b14 article-title: Contributions to 3D diffeomorphic atlas estimation: application to brain images publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2007: 10th International Conference, Brisbane, Australia, October 29-November 2, 2007, Proceedings, Part I 10 – volume: 69 start-page: 3 year: 2007 end-page: 29 ident: b1 article-title: Towards a coherent statistical framework for dense deformable template estimation publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 10 start-page: 440 year: 2006 end-page: 451 ident: b43 article-title: Multi-modal image set registration and atlas formation publication-title: Med. Image Anal. – volume: 9 start-page: 117 year: 2017 ident: b64 article-title: MRI visual ratings of brain atrophy and white matter hyperintensities across the spectrum of cognitive decline are differently affected by age and diagnosis publication-title: Front. Aging Neurosci. – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: b6 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. – volume: 41 start-page: 2558 year: 2022 end-page: 2569 ident: b52 article-title: Disentangling normal aging from severity of disease via weak supervision on longitudinal MRI publication-title: IEEE Trans. Med. Imaging – volume: 11 start-page: 805 year: 2000 end-page: 821 ident: b4 article-title: Voxel-based morphometry–the methods publication-title: NeuroImage – volume: 23 start-page: S151 year: 2004 end-page: S160 ident: b35 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: NeuroImage – volume: 50 start-page: 5 year: 2014 end-page: 17 ident: b44 article-title: Efficient parallel transport of deformations in time series of images: from Schild’s to pole ladder publication-title: J. Math. Imaging Vision – volume: 54 start-page: 2033 year: 2011 end-page: 2044 ident: b8 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: NeuroImage – volume: 73 year: 2021 ident: b77 article-title: Learning to synthesise the ageing brain without longitudinal data publication-title: Med. Image Anal. – volume: 36 start-page: S42 year: 2015 end-page: S52 ident: b45 article-title: Disentangling normal aging from Alzheimer’s disease in structural magnetic resonance images publication-title: Neurobiol. Aging – volume: 188 start-page: 282 year: 2019 end-page: 290 ident: b18 article-title: Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort publication-title: NeuroImage – volume: 75 start-page: 143 year: 2010 end-page: 151 ident: b71 article-title: Serial MRI and CSF biomarkers in normal aging, MCI, and AD publication-title: Neurology – volume: 74 start-page: 201 year: 2010 end-page: 209 ident: b55 article-title: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization publication-title: Neurology – start-page: 318 year: 2021 end-page: 328 ident: b36 article-title: Conditional GAN with an attention-based generator and a 3D discriminator for 3D medical image generation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part VII – volume: 31 start-page: 1401 year: 2010 end-page: 1418 ident: b65 article-title: Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort publication-title: Neurobiol. Aging – volume: 6 start-page: 3 year: 2012 ident: b81 article-title: Models of the aging brain structure and individual decline publication-title: Front. Neuroinform. – volume: 25 start-page: 577 year: 2007 end-page: 609 ident: b37 article-title: Alzheimer’s disease and mild cognitive impairment publication-title: Neurol. Clin. – start-page: 3929 year: 2021 end-page: 3941 ident: b24 article-title: Generative adversarial registration for improved conditional deformable templates publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 11-17, 2021 – volume: 15 start-page: 1676 year: 2005 end-page: 1689 ident: b63 article-title: Regional brain changes in aging healthy adults: general trends, individual differences and modifiers publication-title: Cerebral Cortex – volume: 11 start-page: 132 year: 2017 ident: b38 article-title: Simulating longitudinal brain MRIs with known volume changes and realistic variations in image intensity publication-title: Front. Neurosci. – volume: 57 start-page: 226 year: 2019 end-page: 236 ident: b20 article-title: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces publication-title: Med. Image Anal. – volume: 75 year: 2022 ident: b62 article-title: Degenerative adversarial neuroimage nets for brain scan simulations: Application in ageing and dementia publication-title: Med. Image Anal. – volume: 10 start-page: 236 year: 2016 ident: b32 article-title: Longitudinal analysis of image time series with diffeomorphic deformations: a computational framework based on stationary velocity fields publication-title: Front. Neurosci. – volume: 38 start-page: 1788 year: 2019 end-page: 1800 ident: b11 article-title: VoxelMorph: A learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging – volume: 34 year: 2024 ident: b47 article-title: The early-onset Alzheimer’s disease MRI signature: a replication and extension analysis in early-stage AD publication-title: Cerebral Cortex – volume: 29 start-page: 15223 year: 2009 end-page: 15231 ident: b27 article-title: One-year brain atrophy evident in healthy aging publication-title: J. Neurosci. – volume: 49 start-page: 2457 year: 2010 end-page: 2466 ident: b9 article-title: The optimal template effect in hippocampus studies of diseased populations publication-title: NeuroImage – volume: 61 start-page: 139 year: 2005 end-page: 157 ident: b12 article-title: Computing large deformation metric mappings via geodesic flows of diffeomorphisms publication-title: Int. J. Comput. Vis. – volume: 169 start-page: 11 year: 2018 end-page: 22 ident: b34 article-title: A spatio-temporal reference model of the aging brain publication-title: NeuroImage – volume: 41 start-page: 543 year: 2022 end-page: 558 ident: b33 article-title: SynthMorph: Learning contrast-invariant registration without acquired images publication-title: IEEE Trans. Med. Imaging – start-page: 204 year: 2017 end-page: 212 ident: b22 article-title: End-to-end unsupervised deformable image registration with a convolutional neural network publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, QuÉbec City, QC, Canada, September 14, Proceedings 3 – volume: 26 start-page: 1261 year: 2005 end-page: 1270 ident: b72 article-title: Effects of age on volumes of cortex, white matter and subcortical structures publication-title: Neurobiol. Aging – start-page: 578 year: 2003 end-page: 585 ident: b66 article-title: Extraction and application of expert priors to combine multiple segmentations of human brain tissue publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2003: 6th International Conference, MontrÉal, Canada, November 15-18, 2003. Proceedings 6 – volume: 9 start-page: 117 year: 2017 ident: 10.1016/j.media.2025.103669_b64 article-title: MRI visual ratings of brain atrophy and white matter hyperintensities across the spectrum of cognitive decline are differently affected by age and diagnosis publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2017.00117 – volume: 13 start-page: 4566 issue: 1 year: 2022 ident: 10.1016/j.media.2025.103669_b57 article-title: Multi-cohort and longitudinal Bayesian clustering study of stage and subtype in Alzheimer’s disease publication-title: Nat. Commun. doi: 10.1038/s41467-022-32202-6 – volume: 23 start-page: S139 issn: 1053-8119 year: 2004 ident: 10.1016/j.media.2025.103669_b7 article-title: Geodesic estimation for large deformation anatomical shape averaging and interpolation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.010 – volume: 25 start-page: 577 issue: 3 year: 2007 ident: 10.1016/j.media.2025.103669_b37 article-title: Alzheimer’s disease and mild cognitive impairment publication-title: Neurol. Clin. doi: 10.1016/j.ncl.2007.03.008 – start-page: 388 year: 2023 ident: 10.1016/j.media.2025.103669_b78 article-title: Sadm: Sequence-aware diffusion model for longitudinal medical image generation – start-page: 667 year: 2007 ident: 10.1016/j.media.2025.103669_b14 article-title: Contributions to 3D diffeomorphic atlas estimation: application to brain images – volume: 71 start-page: 41 year: 2018 ident: 10.1016/j.media.2025.103669_b25 article-title: Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2018.06.013 – volume: 9 start-page: 188 year: 2017 ident: 10.1016/j.media.2025.103669_b26 article-title: Cognitive variability during middle-age: possible association with neurodegeneration and cognitive reserve publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2017.00188 – volume: 188 start-page: 282 year: 2019 ident: 10.1016/j.media.2025.103669_b18 article-title: Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.11.063 – start-page: 924 year: 2006 ident: 10.1016/j.media.2025.103669_b2 article-title: A log-Euclidean framework for statistics on diffeomorphisms – start-page: 2794 year: 2017 ident: 10.1016/j.media.2025.103669_b46 article-title: Least squares generative adversarial networks – volume: 38 start-page: 1788 issue: 8 year: 2019 ident: 10.1016/j.media.2025.103669_b11 article-title: VoxelMorph: A learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2897538 – start-page: 806 year: 2019 ident: 10.1016/j.media.2025.103669_b21 article-title: Learning conditional deformable templates with convolutional networks – start-page: 173 year: 2024 ident: 10.1016/j.media.2025.103669_b58 article-title: Enhancing spatiotemporal disease progression models via latent diffusion and prior knowledge – volume: 84 year: 2023 ident: 10.1016/j.media.2025.103669_b56 article-title: Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102723 – volume: 38 start-page: 95 issue: 1 year: 2007 ident: 10.1016/j.media.2025.103669_b3 article-title: A fast diffeomorphic image registration algorithm publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.007 – volume: 9 start-page: 143212 year: 2021 ident: 10.1016/j.media.2025.103669_b41 article-title: Longitudinal brain MR image modeling using personalized memory for Alzheimer’s Disease publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3121609 – volume: Vol. 32 year: 2018 ident: 10.1016/j.media.2025.103669_b54 article-title: FiLM: Visual reasoning with a general conditioning layer – start-page: 247 year: 2019 ident: 10.1016/j.media.2025.103669_b73 article-title: Generative aging of brain MR-images and prediction of Alzheimer progression – volume: 36 year: 2021 ident: 10.1016/j.media.2025.103669_b50 article-title: Quantitative MRI differences between early versus late onset Alzheimer’s disease publication-title: Am. J. Alzheimer’s Dis. Other Dementias – volume: 77 start-page: 508 issue: 4 year: 2020 ident: 10.1016/j.media.2025.103669_b49 article-title: Characterization of Alzheimer disease biomarker discrepancies using cerebrospinal fluid phosphorylated tau and AV1451 positron emission tomography publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2019.4749 – volume: 86 issn: 1361-8415 year: 2023 ident: 10.1016/j.media.2025.103669_b13 article-title: SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102789 – volume: Vol. 80 start-page: 3481 year: 2018 ident: 10.1016/j.media.2025.103669_b48 article-title: Which training methods for GANs do actually converge? – volume: 39 start-page: 1034 issue: 3 year: 2008 ident: 10.1016/j.media.2025.103669_b74 article-title: Rates of brain atrophy over time in autopsy-proven frontotemporal dementia and Alzheimer disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.10.001 – volume: 10 start-page: 236 year: 2016 ident: 10.1016/j.media.2025.103669_b32 article-title: Longitudinal analysis of image time series with diffeomorphic deformations: a computational framework based on stationary velocity fields publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00236 – volume: 41 start-page: 2558 issue: 10 year: 2022 ident: 10.1016/j.media.2025.103669_b52 article-title: Disentangling normal aging from severity of disease via weak supervision on longitudinal MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3166131 – volume: 44 start-page: 1289 issue: 4 year: 2023 ident: 10.1016/j.media.2025.103669_b30 article-title: Fast three-dimensional image generation for healthy brain aging using diffeomorphic registration publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.26165 – start-page: 63 year: 2016 ident: 10.1016/j.media.2025.103669_b19 article-title: Spatio-temporal shape analysis of cross-sectional data for detection of early changes in neurodegenerative disease – volume: 15 start-page: 11813 issue: 1 year: 2025 ident: 10.1016/j.media.2025.103669_b29 article-title: Decomposing the effect of normal aging and Alzheimer’s disease in brain morphological changes via learned aging templates publication-title: Scientific Reports doi: 10.1038/s41598-025-96234-w – volume: 75 start-page: 143 issue: 2 year: 2010 ident: 10.1016/j.media.2025.103669_b71 article-title: Serial MRI and CSF biomarkers in normal aging, MCI, and AD publication-title: Neurology doi: 10.1212/WNL.0b013e3181e7ca82 – volume: 56 start-page: 1968 issue: 4 year: 2011 ident: 10.1016/j.media.2025.103669_b76 article-title: SharpMean: groupwise registration guided by sharp mean image and tree-based registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.050 – start-page: 164 year: 2019 ident: 10.1016/j.media.2025.103669_b61 article-title: Degenerative adversarial neuroimage nets: generating images that mimic disease progression – volume: 29 start-page: 15223 issue: 48 year: 2009 ident: 10.1016/j.media.2025.103669_b27 article-title: One-year brain atrophy evident in healthy aging publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3252-09.2009 – start-page: 388 year: 2023 ident: 10.1016/j.media.2025.103669_b79 article-title: SADM: Sequence-aware diffusion model for longitudinal medical image generation doi: 10.1007/978-3-031-34048-2_30 – start-page: 3929 year: 2021 ident: 10.1016/j.media.2025.103669_b24 article-title: Generative adversarial registration for improved conditional deformable templates – volume: 11 start-page: 132 year: 2017 ident: 10.1016/j.media.2025.103669_b38 article-title: Simulating longitudinal brain MRIs with known volume changes and realistic variations in image intensity publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00132 – volume: 74 start-page: 201 issue: 3 year: 2010 ident: 10.1016/j.media.2025.103669_b55 article-title: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization publication-title: Neurology doi: 10.1212/WNL.0b013e3181cb3e25 – volume: 12 start-page: 26 issue: 1 year: 2008 ident: 10.1016/j.media.2025.103669_b6 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – start-page: 8789 year: 2018 ident: 10.1016/j.media.2025.103669_b17 article-title: StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation – start-page: 318 year: 2021 ident: 10.1016/j.media.2025.103669_b36 article-title: Conditional GAN with an attention-based generator and a 3D discriminator for 3D medical image generation – start-page: 13 year: 2021 ident: 10.1016/j.media.2025.103669_b67 article-title: Distinguishing healthy ageing from dementia: A biomechanical simulation of brain atrophy using deep networks – year: 2020 ident: 10.1016/j.media.2025.103669_b60 article-title: Anatomical predictions using subject-specific medical data – volume: Vol. 27 year: 2014 ident: 10.1016/j.media.2025.103669_b31 article-title: Generative adversarial nets – volume: 32 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.media.2025.103669_b80 article-title: Transport of relational structures in groups of diffeomorphisms publication-title: J. Math. Imaging Vision doi: 10.1007/s10851-008-0074-5 – year: 2018 ident: 10.1016/j.media.2025.103669_b53 – year: 2025 ident: 10.1016/j.media.2025.103669_b59 – volume: 71 year: 2021 ident: 10.1016/j.media.2025.103669_b40 article-title: CycleMorph: Cycle consistent unsupervised deformable image registration publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102036 – volume: 57 start-page: 226 issn: 1361-8415 year: 2019 ident: 10.1016/j.media.2025.103669_b20 article-title: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.07.006 – volume: 50 start-page: 5 year: 2014 ident: 10.1016/j.media.2025.103669_b44 article-title: Efficient parallel transport of deformations in time series of images: from Schild’s to pole ladder publication-title: J. Math. Imaging Vision doi: 10.1007/s10851-013-0470-3 – volume: 41 start-page: 61 year: 2001 ident: 10.1016/j.media.2025.103669_b51 article-title: Group actions, homeomorphisms, and matching: A general framework publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1011161132514 – start-page: 204 year: 2017 ident: 10.1016/j.media.2025.103669_b22 article-title: End-to-end unsupervised deformable image registration with a convolutional neural network – volume: 75 year: 2022 ident: 10.1016/j.media.2025.103669_b62 article-title: Degenerative adversarial neuroimage nets for brain scan simulations: Application in ageing and dementia publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102257 – volume: Vol. 10574 start-page: 105741K year: 2018 ident: 10.1016/j.media.2025.103669_b15 article-title: Modelling the progression of Alzheimer’s disease in MRI using generative adversarial networks – volume: 26 start-page: 1261 issue: 9 year: 2005 ident: 10.1016/j.media.2025.103669_b72 article-title: Effects of age on volumes of cortex, white matter and subcortical structures publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2005.05.020 – volume: 134 start-page: 35 year: 2016 ident: 10.1016/j.media.2025.103669_b39 article-title: A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.03.061 – volume: 5 year: 2023 ident: 10.1016/j.media.2025.103669_b23 article-title: Consistency and variation in the placement of cortical folds: A perspective publication-title: Brain Multiphys. doi: 10.1016/j.brain.2023.100080 – volume: 363 start-page: 392 issue: 9406 year: 2004 ident: 10.1016/j.media.2025.103669_b28 article-title: Imaging cerebral atrophy: normal ageing to Alzheimer’s disease publication-title: Lancet doi: 10.1016/S0140-6736(04)15441-X – volume: 9 issue: 1 year: 2022 ident: 10.1016/j.media.2025.103669_b10 article-title: Reserve and maintenance in the aging brain: a longitudinal study of healthy older adults publication-title: EN Euro – volume: 69 start-page: 3 issue: 1 year: 2007 ident: 10.1016/j.media.2025.103669_b1 article-title: Towards a coherent statistical framework for dense deformable template estimation publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2007.00574.x – volume: 11 start-page: 805 issue: 6 year: 2000 ident: 10.1016/j.media.2025.103669_b4 article-title: Voxel-based morphometry–the methods publication-title: NeuroImage doi: 10.1006/nimg.2000.0582 – start-page: 578 year: 2003 ident: 10.1016/j.media.2025.103669_b66 article-title: Extraction and application of expert priors to combine multiple segmentations of human brain tissue – volume: 6 start-page: 3 year: 2012 ident: 10.1016/j.media.2025.103669_b81 article-title: Models of the aging brain structure and individual decline publication-title: Front. Neuroinform. doi: 10.3389/fninf.2012.00003 – volume: 41 start-page: 543 issue: 3 year: 2022 ident: 10.1016/j.media.2025.103669_b33 article-title: SynthMorph: Learning contrast-invariant registration without acquired images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3116879 – year: 2019 ident: 10.1016/j.media.2025.103669_b42 article-title: OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer Disease publication-title: MedRxiv – volume: 23 start-page: S151 year: 2004 ident: 10.1016/j.media.2025.103669_b35 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.068 – volume: 34 issue: 12 year: 2024 ident: 10.1016/j.media.2025.103669_b47 article-title: The early-onset Alzheimer’s disease MRI signature: a replication and extension analysis in early-stage AD publication-title: Cerebral Cortex doi: 10.1093/cercor/bhae475 – volume: 15 start-page: 1676 issue: 11 year: 2005 ident: 10.1016/j.media.2025.103669_b63 article-title: Regional brain changes in aging healthy adults: general trends, individual differences and modifiers publication-title: Cerebral Cortex doi: 10.1093/cercor/bhi044 – volume: 14 year: 2023 ident: 10.1016/j.media.2025.103669_b75 article-title: Health-related heterogeneity in brain aging and associations with longitudinal change in cognitive function publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2022.1063721 – volume: 73 year: 2021 ident: 10.1016/j.media.2025.103669_b77 article-title: Learning to synthesise the ageing brain without longitudinal data publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102169 – volume: 10 start-page: 440 issue: 3 year: 2006 ident: 10.1016/j.media.2025.103669_b43 article-title: Multi-modal image set registration and atlas formation publication-title: Med. Image Anal. doi: 10.1016/j.media.2005.03.002 – volume: 221 start-page: 3979 year: 2016 ident: 10.1016/j.media.2025.103669_b70 article-title: Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans publication-title: Brain Struct. Funct. doi: 10.1007/s00429-015-1140-6 – volume: 36 start-page: S42 year: 2015 ident: 10.1016/j.media.2025.103669_b45 article-title: Disentangling normal aging from Alzheimer’s disease in structural magnetic resonance images publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.07.046 – volume: 82 year: 2022 ident: 10.1016/j.media.2025.103669_b16 article-title: Transmorph: Transformer for unsupervised medical image registration publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102615 – volume: 31 start-page: 1401 issue: 8 year: 2010 ident: 10.1016/j.media.2025.103669_b65 article-title: Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.04.029 – volume: 169 start-page: 11 year: 2018 ident: 10.1016/j.media.2025.103669_b34 article-title: A spatio-temporal reference model of the aging brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.10.040 – volume: 94 start-page: 50 year: 2020 ident: 10.1016/j.media.2025.103669_b68 article-title: Voxel-based assessments of treatment effects on longitudinal brain changes in the multidomain Alzheimer preventive trial cohort publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2019.11.020 – volume: 16 start-page: 903 issue: 6 year: 1997 ident: 10.1016/j.media.2025.103669_b5 article-title: Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.650886 – volume: 49 start-page: 2457 issue: 3 year: 2010 ident: 10.1016/j.media.2025.103669_b9 article-title: The optimal template effect in hippocampus studies of diseased populations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.09.062 – volume: 54 start-page: 2033 issue: 3 year: 2011 ident: 10.1016/j.media.2025.103669_b8 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.025 – volume: 61 start-page: 139 year: 2005 ident: 10.1016/j.media.2025.103669_b12 article-title: Computing large deformation metric mappings via geodesic flows of diffeomorphisms publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000043755.93987.aa – volume: 5 start-page: 13 issue: 1 year: 2002 ident: 10.1016/j.media.2025.103669_b69 article-title: A framework for computational anatomy publication-title: Comput. Vis. Sci. doi: 10.1007/s00791-002-0084-6 |
SSID | ssj0007440 |
Score | 2.455475 |
Snippet | Simulating prospective magnetic resonance imaging (MRI) scans from a given individual brain image is challenging, as it requires accounting for canonical... |
SourceID | swepub proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 103669 |
SubjectTerms | Aged Aging - pathology Algorithms Alzheimer Disease - diagnostic imaging Alzheimer's disease Brain - diagnostic imaging Brain aging Diffeomorphic registration Female Humans Magnetic Resonance Imaging - methods Male Medical image generation Middle Aged Parallel transport |
Title | Synthesizing individualized aging brains in health and disease with generative models and parallel transport |
URI | https://dx.doi.org/10.1016/j.media.2025.103669 https://www.ncbi.nlm.nih.gov/pubmed/40570808 https://www.proquest.com/docview/3224637592 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-368670 http://kipublications.ki.se/Default.aspx?queryparsed=id |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJwQLQ8GqCVkRBcCLuJHdt7XAplebSX0qo3K36V0FW26qYHeuC347GT5VVx4JTEdiQn48x8zsx8A_AMGb69Y0XuvaA5-m_z2liTM6fHRgpmaeTp3j_gsyP24aQ6WYPdIRcGwyp73Z90etTWfcuof5uj86YZHRYUi5Vg_R40VBxptxkTuMpfff8Z5oEEeCn3qshx9MA8FGO8YnZG2CSWFSafc4x6vt46_Y0-_6AWjeZo7y7c6XEkmaapbsCaazfh9i_sgptwc7_3m9-D-eG3NiC9ZXMVekizSsJqrpwlsU4R0VgrYhn6SEqNJHVrSe--Ifi3lpxGhmpUjyTWz1nGIcgdPp-7OekGmvT7cLT39vPuLO_rLOSGUdrl3rgAUwopuTa1E770tTQTagLys9KUVtiwj5XeFsGg8onjAZBXRjpaCeOK2kv6ANbbReu2gITdn9OVH8taW1ZpHUCxYLWQzHM9rkqXwcvh_arzRKehhjizryqKQ6E4VBJHBnyQgfptVaig8P9949NBYip8L-gEqVu3uFwqigx6VFSTMoOHSZSrmSB4DQhaZvA8yXbVgyTcb5rjqVpcnKqz7ouiXHIxzuDFNQP7prNw5lQkLCwnj_73SR7DLbxK8YNPYL27uHTbAQd1eicu9B24MX3_cXYQju9efzqe_gAQdAuN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkE5ICiv8DQSggthN7Fje49VoVqg20tb1JsVv0raVbbqpgd64LfjsZPlVXHgFtmO5Hjsmc-ZmW8AXiHDt3esyL0XNEf_bV4ba3Lm9NhIwSyNPN2zPT49ZJ-OqqM12B5yYTCsstf9SadHbd23jPrVHJ01zWi_oFisBOv3oKHi_BpcZ-H4YhmDd99_xnkgA15KvipyHD5QD8Ugr5ieEW6JZYXZ5xzDnq82T3_Dzz-4RaM92rkDt3sgSbbSXO_Cmms34dYv9IKbcGPWO87vwXz_Wxug3rK5DD2kWWVhNZfOklioiGgsFrEMfSTlRpK6taT33xD8XUuOI0U16kcSC-gs4xAkD5_P3Zx0A0_6fTjc-XCwPc37Qgu5YZR2uTcu4JRCSq5N7YQvfS3NhJoA_aw0pRU2XGSlt0WwqHzieEDklZGOVsK4ovaSPoD1dtG6R0DC9c_pyo9lrS2rtA6oWLBaSOa5Hlely-DtsL7qLPFpqCHQ7ERFcSgUh0riyIAPMlC_bQsVNP6_X3w5SEyFA4NekLp1i4ulokihR0U1KTN4mES5mgmi1wChZQavk2xXPcjC_b75sqUW58fqtPuqKJdcjDN4c8XAvuk0PDkVGQvLyeP__ZIXcHN6MNtVux_3Pj-BDexJwYRPYb07v3DPAijq9PO46X8AsfkLjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesizing+individualized+aging+brains+in+health+and+disease+with+generative+models+and+parallel+transport&rft.jtitle=Medical+image+analysis&rft.au=Fu%2C+Jingru&rft.au=Zheng%2C+Yuqi&rft.au=Dey%2C+Neel&rft.au=Ferreira%2C+Daniel&rft.date=2025-10-01&rft.issn=1361-8415&rft.volume=105&rft.spage=103669&rft_id=info:doi/10.1016%2Fj.media.2025.103669&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2025_103669 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |