Machine Vibration Monitoring for Diagnostics through Hypothesis Testing

Nowadays, the subject of machine diagnostics is gathering growing interest in the research field as switching from a programmed to a preventive maintenance regime based on the real health conditions (i.e., condition-based maintenance) can lead to great advantages both in terms of safety and costs. N...

Full description

Saved in:
Bibliographic Details
Published inInformation (Basel) Vol. 10; no. 6; p. 204
Main Authors Daga, Alessandro Paolo, Garibaldi, Luigi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nowadays, the subject of machine diagnostics is gathering growing interest in the research field as switching from a programmed to a preventive maintenance regime based on the real health conditions (i.e., condition-based maintenance) can lead to great advantages both in terms of safety and costs. Nondestructive tests monitoring the state of health are fundamental for this purpose. An effective form of condition monitoring is that based on vibration (vibration monitoring), which exploits inexpensive accelerometers to perform machine diagnostics. In this work, statistics and hypothesis testing will be used to build a solid foundation for damage detection by recognition of patterns in a multivariate dataset which collects simple time features extracted from accelerometric measurements. In this regard, data from high-speed aeronautical bearings were analyzed. These were acquired on a test rig built by the Dynamic and Identification Research Group (DIRG) of the Department of Mechanical and Aerospace Engineering at Politecnico di Torino. The proposed strategy was to reduce the multivariate dataset to a single index which the health conditions can be determined. This dimensionality reduction was initially performed using Principal Component Analysis, which proved to be a lossy compression. Improvement was obtained via Fisher’s Linear Discriminant Analysis, which finds the direction with maximum distance between the damaged and healthy indices. This method is still ineffective in highlighting phenomena that develop in directions orthogonal to the discriminant. Finally, a lossless compression was achieved using the Mahalanobis distance-based Novelty Indices, which was also able to compensate for possible latent confounding factors. Further, considerations about the confidence, the sensitivity, the curse of dimensionality, and the minimum number of samples were also tackled for ensuring statistical significance. The results obtained here were very good not only in terms of reduced amounts of missed and false alarms, but also considering the speed of the algorithms, their simplicity, and the full independence from human interaction, which make them suitable for real time implementation and integration in condition-based maintenance (CBM) regimes.
AbstractList Nowadays, the subject of machine diagnostics is gathering growing interest in the research field as switching from a programmed to a preventive maintenance regime based on the real health conditions (i.e., condition-based maintenance) can lead to great advantages both in terms of safety and costs. Nondestructive tests monitoring the state of health are fundamental for this purpose. An effective form of condition monitoring is that based on vibration (vibration monitoring), which exploits inexpensive accelerometers to perform machine diagnostics. In this work, statistics and hypothesis testing will be used to build a solid foundation for damage detection by recognition of patterns in a multivariate dataset which collects simple time features extracted from accelerometric measurements. In this regard, data from high-speed aeronautical bearings were analyzed. These were acquired on a test rig built by the Dynamic and Identification Research Group (DIRG) of the Department of Mechanical and Aerospace Engineering at Politecnico di Torino. The proposed strategy was to reduce the multivariate dataset to a single index which the health conditions can be determined. This dimensionality reduction was initially performed using Principal Component Analysis, which proved to be a lossy compression. Improvement was obtained via Fisher's Linear Discriminant Analysis, which finds the direction with maximum distance between the damaged and healthy indices. This method is still ineffective in highlighting phenomena that develop in directions orthogonal to the discriminant. Finally, a lossless compression was achieved using the Mahalanobis distance-based Novelty Indices, which was also able to compensate for possible latent confounding factors. Further, considerations about the confidence, the sensitivity, the curse of dimensionality, and the minimum number of samples were also tackled for ensuring statistical significance. The results obtained here were very good not only in terms of reduced amounts of missed and false alarms, but also considering the speed of the algorithms, their simplicity, and the full independence from human interaction, which make them suitable for real time implementation and integration in condition-based maintenance (CBM) regimes.
Author Daga, Alessandro Paolo
Garibaldi, Luigi
Author_xml – sequence: 1
  givenname: Alessandro Paolo
  orcidid: 0000-0002-5341-7710
  surname: Daga
  fullname: Daga, Alessandro Paolo
– sequence: 2
  givenname: Luigi
  orcidid: 0000-0001-9415-1915
  surname: Garibaldi
  fullname: Garibaldi, Luigi
BookMark eNptUE1PwzAMjRBIwNiNH1CJK4OkSZr0iPgYSExcBtfISd0u00hG0h3493QbQgjhiy37-fn5nZLDEAMScs7oFec1vfahjYzSipZUHJCTkio9KYWuD3_Vx2Sc85IOoZQWmp2Q6Qzcwgcs3rxN0PsYilkMvo_Jh65oYyruPHQh5t67XPSLFDfdonj8XMd-gdnnYo7DKHRn5KiFVcbxdx6R14f7-e3j5Pll-nR78zxxgvN-0joO3La2qrRGV1pEpSWAlI2kKDhrsVaWuxrAVVZzqZmV1grkvEGlAPiIPO15mwhLs07-HdKnieDNrhFTZyANWldoLJRSKqxKACrqRmglqRAMkWqgDbCB62LPtU7xYzP8YZZxk8Ig35RSaMkk5VvU5R7lUsw5YftzlVGzdd78dn6Al3_gzvc7Y_sEfvX_0hfDJYmL
CitedBy_id crossref_primary_10_3390_app11146262
crossref_primary_10_3390_machines10040270
crossref_primary_10_3390_app11156785
crossref_primary_10_3390_machines9100235
crossref_primary_10_20965_jrm_2022_p1011
crossref_primary_10_1016_j_prostr_2020_02_044
crossref_primary_10_1016_j_rser_2024_114327
crossref_primary_10_1051_meca_2022016
crossref_primary_10_3390_app12030972
crossref_primary_10_1109_JSEN_2023_3325820
crossref_primary_10_3390_app14209276
crossref_primary_10_3390_en13061474
crossref_primary_10_3390_machines11010036
crossref_primary_10_1016_j_ymssp_2023_110154
Cites_doi 10.1016/j.ymssp.2018.10.010
10.1016/0167-7152(87)90039-3
10.1016/j.ymssp.2004.12.003
10.3390/e21050519
10.1177/1475921704041866
10.1016/j.ymssp.2004.12.002
10.1007/978-3-7091-0399-9
10.1016/0167-9473(87)90014-4
10.3390/machines5040021
10.1016/j.ymssp.2017.11.045
10.1006/jsvi.1999.2514
10.1117/12.475226
10.1007/978-94-011-4503-9
10.1016/j.ymssp.2010.07.017
10.1016/j.ymssp.2005.09.012
10.1016/j.ymssp.2017.01.037
10.1016/S0888-3270(03)00012-8
10.1007/s00170-015-7543-y
10.17531/ein.2019.2.19
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/info10060204
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2078-2489
ExternalDocumentID oai_doaj_org_article_ba2557e62aa049d48750441ee08a0da1
10_3390_info10060204
GroupedDBID .4I
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
MK~
ML~
MODMG
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c433t-fc3a3bfb6688ec2bee785aa55d50e431fe97b3c9aac6b83581b5bb4e33de77aa3
IEDL.DBID DOA
ISSN 2078-2489
IngestDate Wed Aug 27 01:32:03 EDT 2025
Fri Jul 25 07:36:32 EDT 2025
Tue Jul 01 04:24:42 EDT 2025
Thu Apr 24 22:55:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-fc3a3bfb6688ec2bee785aa55d50e431fe97b3c9aac6b83581b5bb4e33de77aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9415-1915
0000-0002-5341-7710
OpenAccessLink https://doaj.org/article/ba2557e62aa049d48750441ee08a0da1
PQID 2548515031
PQPubID 2032384
ParticipantIDs doaj_primary_oai_doaj_org_article_ba2557e62aa049d48750441ee08a0da1
proquest_journals_2548515031
crossref_primary_10_3390_info10060204
crossref_citationtrail_10_3390_info10060204
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Information (Basel)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References You (ref_7) 2019; 2019
Randall (ref_8) 2011; 25
Gupta (ref_26) 1987; 5
ref_14
Antoni (ref_10) 2004; 18
ref_11
Bustillo (ref_29) 2016; 83
Jardine (ref_5) 2006; 20
ref_19
Antoni (ref_9) 2017; 97
ref_18
Deraemaeker (ref_4) 2018; 105
ref_17
ref_15
Worden (ref_16) 2000; 229
Takahashi (ref_25) 1987; 5
Yan (ref_21) 2005; 19
Worden (ref_3) 2004; 3
Penny (ref_22) 1996; 45
Daga (ref_12) 2019; 120
ref_24
ref_23
ref_20
ref_1
ref_2
ref_28
Yan (ref_27) 2005; 19
Sikora (ref_13) 2019; 21
ref_6
References_xml – volume: 120
  start-page: 252
  year: 2019
  ident: ref_12
  article-title: The Politecnico di Torino rolling bearing test rig: Description and analysis of open access data
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.10.010
– volume: 5
  start-page: 197
  year: 1987
  ident: ref_25
  article-title: Normalizing constants of a distribution which belongs to the domain of attraction of the Gumbel distribution
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/0167-7152(87)90039-3
– volume: 19
  start-page: 865
  year: 2005
  ident: ref_27
  article-title: Structural damage diagnosis under varying environmental conditions—Part II: Local PCA for non-linear cases
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2004.12.003
– ident: ref_24
– ident: ref_6
  doi: 10.3390/e21050519
– volume: 2019
  start-page: 1908485
  year: 2019
  ident: ref_7
  article-title: A Fault Diagnosis Model for Rotating Machinery Using VWC and MSFLA-SVM Based on Vibration Signal Analysis
  publication-title: Shock Vib.
– volume: 3
  start-page: 85
  year: 2004
  ident: ref_3
  article-title: An overview of intelligent fault detection in systems and structures
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921704041866
– volume: 19
  start-page: 847
  year: 2005
  ident: ref_21
  article-title: Structural damage diagnosis under varying environmental conditions—Part I: A linear analysis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2004.12.002
– ident: ref_28
  doi: 10.1007/978-3-7091-0399-9
– ident: ref_14
– ident: ref_18
– volume: 5
  start-page: 185
  year: 1987
  ident: ref_26
  article-title: Sample size determination in estimating a covariance matrix
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/0167-9473(87)90014-4
– ident: ref_11
  doi: 10.3390/machines5040021
– volume: 105
  start-page: 1
  year: 2018
  ident: ref_4
  article-title: A comparison of linear approaches to filter out environmental effects in structural health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.11.045
– volume: 229
  start-page: 647
  year: 2000
  ident: ref_16
  article-title: Damage detection using outlier analysis
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1999.2514
– ident: ref_23
  doi: 10.1117/12.475226
– ident: ref_1
  doi: 10.1007/978-94-011-4503-9
– volume: 25
  start-page: 485
  year: 2011
  ident: ref_8
  article-title: Rolling Element Bearing Diagnostics—A Tutorial
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.07.017
– ident: ref_2
– ident: ref_15
– volume: 45
  start-page: 73
  year: 1996
  ident: ref_22
  article-title: Appropriate critical values when testing for a single multivariate outlier by using the Mahalanobis distance
  publication-title: J. Royal Stat. Soc. Series C (Appl. Stat.)
– ident: ref_17
– ident: ref_19
– volume: 20
  start-page: 1483
  year: 2006
  ident: ref_5
  article-title: A review of machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 97
  start-page: 112
  year: 2017
  ident: ref_9
  article-title: Feedback on the Surveillance 8 challenge: Vibration-based diagnosis of a Safran aircraft engine
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2017.01.037
– volume: 18
  start-page: 89
  year: 2004
  ident: ref_10
  article-title: Unsupervised noise cancellation for vibration signals: Part I and II—Evaluation of adaptive algorithms
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/S0888-3270(03)00012-8
– ident: ref_20
– volume: 83
  start-page: 847
  year: 2016
  ident: ref_29
  article-title: Using artificial neural networks for the prediction of dimensional error on inclined surfaces manufactured by ball-end milling
  publication-title: Int. J. Adv. Manufact. Technol.
  doi: 10.1007/s00170-015-7543-y
– volume: 21
  start-page: 341
  year: 2019
  ident: ref_13
  article-title: Monitoring and maintenance of a gantry based on a wireless system for measurement and analysis of the vibration level
  publication-title: Eksploat. Niezawodn.
  doi: 10.17531/ein.2019.2.19
SSID ssj0000778481
Score 2.231016
Snippet Nowadays, the subject of machine diagnostics is gathering growing interest in the research field as switching from a programmed to a preventive maintenance...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 204
SubjectTerms Accelerometers
Aerospace engineering
Algorithms
bearings diagnostics
classification
condition-based monitoring
Damage detection
Datasets
Discriminant analysis
False alarms
Feature extraction
Hypotheses
hypothesis testing
linear discriminant analysis
Machinery condition monitoring
Mahalanobis distance
Multivariate analysis
Noise
Nondestructive testing
novelty detection
Pattern recognition
Preventive maintenance
principal component analysis
Principal components analysis
Signal processing
Statistical methods
Vibration monitoring
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LnoQn1itkoOeZHFtkk32JNZXEVpEVLwtyexUBGmrrQf_vTO7aRVEr5ucZiYz35edfCPEgdIp5D4vE8iUT3QGkLjcQNJyhqqt1wjVK9duL-s86Jsn8xQv3MaxrXKaE6tEXQ6B78iPicgQODAUg6ejt4SnRvHf1ThCY14sUgp2RL4W25e927vZLUtqLevF1x3vivj9MfvthFVIWnE227QWVZL9vzJyVWauVsVKxIfyrHbompjDwbpY_qEauCGuu1UDJMpHprpsWFmfTF6WBELlRd0_xwrMMg7ikZ3PET-2Gr-M5T0rawyeN8XD1eX9eSeJ8xAS0EpNkj4or0I_ZJlzCK2AaJ3x3pjSpEhAoI-5DYpM7yELjoXNgglBo1IlWuu92hILg-EAt4X0ykHogwMq-DrVwWUWSiS2ZH0JVmNDHE0tU0AUC-eZFa8FkQa2Y_HTjg1xONs9qkUy_tjXZiPP9rC0dfVh-P5cxJNC1ZtYjkUKFE_spWRClRJmQ0ydT0t_0hDNqYuKeN7GxXd07Py_vCuWCPLkdbNXUyxM3j9wj2DFJOzH2PkCL_nPCg
  priority: 102
  providerName: ProQuest
Title Machine Vibration Monitoring for Diagnostics through Hypothesis Testing
URI https://www.proquest.com/docview/2548515031
https://doaj.org/article/ba2557e62aa049d48750441ee08a0da1
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46L3oQf-J0jhz0JGV1SZr0uLlfiBuim3grSfoqgtTh5sH_3pe0GwURL54KbUrL95K874OX7xFywXhoYx2ngY2YDnhkbaBiYYO2EphtNQfrT7mOJ9Foxm-fxXOl1ZerCSvsgQvgWkYj6ZWA72kks6nj1yGmcIBQ6TDVXvhgzquIKb8HS-l84otKd4a6vuXide3cR9plT7ZVDvJW_T92Yp9eBntkt-SFtFP8zz7ZgPyA7FTcAg_JcOwLH4E-OYnrAKXFinSPKZJP2ivq5pzzMi0b8NDR19wdslq8LujUOWrkL0dkNuhPb0ZB2QchsJyxZZBZppnJTBQpBbZtAKQSWguRihCQAGQQS8MQcm0jo5yhmRHGcGAsBSm1Zseklr_ncEKoZsqazCqLiZ6H3KhI2hRQJUmdWsmhTq5WyCS2NAl3vSreEhQLDsekimOdXK5HzwtzjF_GdR3I6zHO0trfwEAnZaCTvwJdJ41ViJJynS0SlLdIGQXuTKf_8Y0zso2EKC5KwRqktvz4hHMkHUvTJJtqMGySrU5vfPeI125_cv_Q9LPuGzNT2d0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxRBEK0AHsCDUdCwiNoHOZEJw3T3dM_BGBWXRVhOi-E2dtfUEhKzu7BrDH_K32jVfKwkRm9cpzudTPXrqnoz1a8A3mqTYhGKKsFch8TkiIkvLCaZtxxtgyGsb7kOz_PBhflyaS9X4Fd3F0bKKjufWDvqaoryjfyAiQwnB5Yx-H52k0jXKPm72rXQaGBxSnc_mbLN350c8f7uZVn_8-jTIGm7CiRotF4kY9RBx3HMc-8Js0jkvA3B2sqmxOF0TIWLml8gYB69yINFG6MhrStyLgTN667CI16rkBPl-8fLbzqpc6JO39TX83h6ICg5FM2TrO0E10W-ukHAX_6_Dmr9p_CkzUbVhwY-z2CFJpvw-J5G4RYcD-tyS1JfhVjLNqrGD8iw4pRXHTXVeqL3rNq2P2pwN5OrXfPruRqJjsfk6jlcPIidXsDaZDqhbVBBe4xj9MjphUlN9LnDipibuVChM9SD_c4yJbbS5NIh43vJFEXsWN63Yw_2lrNnjSTHP-Z9FCMv54iQdv1gentVtueScwXmVI4YloG5UiX0LeUMkSj1Ia3CYQ92uy0q29M9L_9gcef_w29gfTAanpVnJ-enL2GDk62iKTPbhbXF7Q96xQnNIr6uUaTg20PD9jeobAz_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTooeJTbFvAB3pC0bqxHTsHhCjbZUvpqkIt6i3YzqRCqna33UWof41fx0w-lkoIbr0mVqSMnz3vJeM3AK-VljH3eZnETPlEZzEmLjcxSZ2hbOs1xvqU6_EkG5_pT-fmfA1-dWdhuKyy2xPrjbqcRf5GPiAhQ-TAEAYHVVsWcTIcvZtfJdxBiv-0du00Gogc4c1Pkm-Lt4dDmuvdNB0dnH4YJ22HgSRqpZZJFZVXoQpZ5hzGNCBaZ7w3pjQSKbVWmNug6GV8zIJjq7BgQtCoVInWeq_oufdg3ZIqkj1Y3z-YnHxZfeGR1rJXfVNtr1QuB4yZPXZASdu-cF0erNsF_JUN6hQ3egibLTcV7xswPYI1nD6GjVuOhU_g43FdfIniK8tsnlTR7Ap8WxABFsOmdo_dn0XbBEiMb-Z80GvxfSFO2dVjevEUzu4kUs-gN51N8TkIr1wMVXSRyIaWOrjMxhJJqVlfRquxD2-6yBSxNSrnfhmXBQkWjmNxO4592F2NnjcGHf8Yt89BXo1hW-36wuz6omhXKTEHUlgWCaSelFPJYk4SX0SUzsvS7_Vhp5uiol3ri-IPMrf-f_sV3CfIFp8PJ0fb8ICYV97UnO1Ab3n9A18Qu1mGly2MBHy7a-T-BjphEpE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Vibration+Monitoring+for+Diagnostics+through+Hypothesis+Testing&rft.jtitle=Information+%28Basel%29&rft.au=Daga%2C+Alessandro+Paolo&rft.au=Garibaldi%2C+Luigi&rft.date=2019-06-01&rft.issn=2078-2489&rft.eissn=2078-2489&rft.volume=10&rft.issue=6&rft.spage=204&rft_id=info:doi/10.3390%2Finfo10060204&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_info10060204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon