Multifaceted regulation of the HOX cluster and its implications in oral cancer

The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known. Our findings revealed that HOXA and HOXB cl...

Full description

Saved in:
Bibliographic Details
Published inClinical epigenetics Vol. 17; no. 1; pp. 126 - 15
Main Authors Padam, Kanaka Sai Ram, Hunter, Keith D., Radhakrishnan, Raghu
Format Journal Article
LanguageEnglish
Published Germany BioMed Central Ltd 17.07.2025
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known. Our findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2-M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis. The functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression.
AbstractList The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known. Our findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2-M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis. The functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression.
The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known.BACKGROUNDThe hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known.Our findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2-M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis.RESULTSOur findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2-M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis.The functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression.CONCLUSIONThe functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression.
Background The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known. Results Our findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2-M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis. Conclusion The functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression. Keywords: Epigenetics, HOXB9, Methylation, Transcriptome, Antisense
Abstract Background The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known. Results Our findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2–M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis. Conclusion The functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression.
The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known. Our findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2-M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis. The functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression.
ArticleNumber 126
Audience Academic
Author Padam, Kanaka Sai Ram
Radhakrishnan, Raghu
Hunter, Keith D.
Author_xml – sequence: 1
  givenname: Kanaka Sai Ram
  surname: Padam
  fullname: Padam, Kanaka Sai Ram
– sequence: 2
  givenname: Keith D.
  surname: Hunter
  fullname: Hunter, Keith D.
– sequence: 3
  givenname: Raghu
  orcidid: 0000-0003-0088-4777
  surname: Radhakrishnan
  fullname: Radhakrishnan, Raghu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40676709$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vFSEUhompsbX2D7gwk7jpZiof8wHLptG2SbUbTdyRAxyuNHOHKzBp_Pdy79RGE4EEOOfhDXDe1-RojjMS8pbRC8bk8CEzwTrZUt63lCkh2scX5KQmZDtSKY7-Wh-Ts5wfaG1CKcXoK3Lc0WEcRqpOyJfPy1SCB4sFXZNws0xQQpyb6JvyA5ub---NnZZcMDUwuyaU3ITtbgr2gNVNRRNMjYXZYnpDXnqYMp49zafk26ePX69u2rv769ury7vWdkKU1qsR6hiMUM6PTNqBChiUMtR4qnqBIDszOmCD63uFRjhAIYbRWE79CFKckttV10V40LsUtpB-6QhBHwIxbTSkEuyE2nhhDQfnlOKdkVxZ6zomKe3tiMD3Wuer1i7FnwvmorchW5wmmDEuWQsuGB-k7GlF36_oBqpymH0sCewe15eyk7x-8UHw4j9U7Q63wdYy-lDj_xx493SDxWzRPb_nT5kqwFfApphzQv-MMKr3dtCrHXS1gz7YQT-K35uopVo
Cites_doi 10.1093/nar/gkz804
10.1016/S1079-2104(05)80226-4
10.1093/bioinformatics/btn439
10.1093/nar/gkx1013
10.1093/nar/28.1.27
10.1093/nar/gkab1113
10.1016/S1368-8375(97)00035-3
10.1089/omi.2011.0118
10.1186/s13072-016-0058-4
10.1056/NEJMoa073770
10.1016/j.molcel.2009.10.009
10.1158/1055-9965.EPI-13-0147
10.1016/j.devcel.2016.08.004
10.3322/caac.21660
10.1186/s13059-020-01984-7
10.1016/j.cels.2015.12.004
10.1002/ijc.29616
10.1038/nrc907
10.1093/nar/gkl1041
10.1093/database/baw100
10.1002/ijc.33949
10.18632/oncotarget.14216
10.4103/jomfp.JOMFP_164_20
10.1093/nar/gkg108
10.1016/j.ijom.2019.07.014
10.1093/bioinformatics/btr167
10.1126/science.aav1898
10.1186/1471-2105-12-495
10.1093/carcin/bgp220
10.1038/nbt.2931
10.1093/nar/gkac1002
10.1101/gr.1239303
10.1002/ijc.2910340504
10.1158/1078-0432.CCR-05-2173
10.1093/bib/bbn016
10.1038/s41587-020-0546-8
10.1186/1471-2407-14-353
10.1111/jop.13613
10.1186/1471-2407-12-146
10.1016/j.oraloncology.2014.07.019
10.1093/bioinformatics/btq466
10.1016/j.oooo.2024.11.088
10.1101/gr.229102
10.1016/j.cell.2012.04.040
10.1042/bse0540091
10.1093/nar/gkz1062
10.1186/1471-2105-11-94
ContentType Journal Article
Copyright 2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
Copyright_xml – notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1186/s13148-025-01933-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1868-7083
EndPage 15
ExternalDocumentID oai_doaj_org_article_bf3cb2add9924b829ccd418005c7ea28
A848200328
40676709
10_1186_s13148_025_01933_w
Genre Journal Article
GrantInformation_xml – fundername: Wellcome Trust DBT India Alliance
  grantid: IA/CPHI/18/1/503927
GroupedDBID ---
0R~
2JY
4.4
53G
5C9
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
EN4
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HF~
HMCUK
HYE
HZ~
IAO
IHR
INH
INR
ITC
KOV
KQ8
LK8
M1P
M7P
O9I
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
QOS
R9I
RBZ
RNS
ROL
RPM
RSV
S1Z
S27
SBL
SOJ
T13
U2A
UKHRP
WK8
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PUEGO
ID FETCH-LOGICAL-c433t-f97a97a6b39df718c603a699b0bf0953ea84b7da16d559eb3dae3367bc20f7a83
IEDL.DBID DOA
ISSN 1868-7083
1868-7075
IngestDate Wed Aug 27 01:17:21 EDT 2025
Fri Jul 18 18:49:57 EDT 2025
Wed Jul 23 16:52:03 EDT 2025
Tue Jul 22 03:43:27 EDT 2025
Mon Jul 21 01:57:48 EDT 2025
Thu Jul 24 02:14:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Epigenetics
Antisense
HOXB9
Methylation
Transcriptome
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-f97a97a6b39df718c603a699b0bf0953ea84b7da16d559eb3dae3367bc20f7a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0088-4777
OpenAccessLink https://doaj.org/article/bf3cb2add9924b829ccd418005c7ea28
PMID 40676709
PQID 3231268850
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_bf3cb2add9924b829ccd418005c7ea28
proquest_miscellaneous_3231268850
gale_infotracmisc_A848200328
gale_infotracacademiconefile_A848200328
pubmed_primary_40676709
crossref_primary_10_1186_s13148_025_01933_w
PublicationCentury 2000
PublicationDate 2025-07-17
PublicationDateYYYYMMDD 2025-07-17
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-17
  day: 17
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Clinical epigenetics
PublicationTitleAlternate Clin Epigenetics
PublicationYear 2025
Publisher BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BMC
References A Liberzon (1933_CR32) 2015; 1
N Shah (1933_CR13) 2010; 10
Y Luo (1933_CR27) 2020; 48
R Morgan (1933_CR15) 2022; 150
WJ Kent (1933_CR16) 2002; 12
JH Bullard (1933_CR36) 2010; 11
ML Poeta (1933_CR9) 2007; 357
M Kanehisa (1933_CR38) 2000; 28
C Bacci (1933_CR6) 2014; 45
Z-H Shen (1933_CR14) 2017; 21
E Wingender (1933_CR21) 2008; 9
H Han (1933_CR30) 2018; 46
W Giaretti (1933_CR7) 2013; 22
Y Chen (1933_CR48) 2016; 9
P Shannon (1933_CR35) 2003; 13
W Li (1933_CR52) 2020; 111
C Abate-Shen (1933_CR12) 2002; 2
H Sung (1933_CR1) 2021; 71
F Krueger (1933_CR18) 2011; 27
B-Q Sui (1933_CR44) 2018; 15
H Mirghani (1933_CR4) 2014; 50
JA Castro-Mondragon (1933_CR26) 2022; 50
G Zheng (1933_CR29) 2008; 24
D Risso (1933_CR37) 2014; 32
MJ Goldman (1933_CR20) 2020; 38
1933_CR22
M Wight (1933_CR53) 2013; 54
Y Lin (1933_CR33) 2020; 48
M Perino (1933_CR47) 2016; 38
V Matys (1933_CR25) 2003; 31
L Gao (1933_CR51) 2020; 49
KSR Padam (1933_CR45) 2025; 139
S Sharma (1933_CR40) 2010; 31
J Califano (1933_CR2) 1996; 56
B Xia (1933_CR43) 2017; 8
A Lachmann (1933_CR23) 2010; 26
1933_CR17
H Lumerman (1933_CR5) 1995; 79
CC Bitu (1933_CR54) 2012; 12
M Partridge (1933_CR8) 1997; 33
Y Zheng (1933_CR34) 2023; 51
K Uchida (1933_CR46) 2014; 14
JM Elwood (1933_CR3) 1984; 34
RK Palakurthy (1933_CR41) 2009; 36
Z Jia (1933_CR50) 2020; 21
G Yu (1933_CR39) 2012; 16
RB Moharil (1933_CR11) 2020; 24
S Neph (1933_CR31) 2012; 150
W Qiu (1933_CR10) 2006; 12
MR Corces (1933_CR19) 2018; 362
1933_CR49
C Jiang (1933_CR28) 2007; 35
H Heinonen (1933_CR42) 2015; 137
K Daily (1933_CR24) 2011; 12
References_xml – volume: 48
  start-page: D189
  issue: D1
  year: 2020
  ident: 1933_CR33
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz804
– volume: 79
  start-page: 321
  issue: 3
  year: 1995
  ident: 1933_CR5
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
  doi: 10.1016/S1079-2104(05)80226-4
– volume: 24
  start-page: 2416
  issue: 20
  year: 2008
  ident: 1933_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn439
– volume: 46
  start-page: D380
  issue: D1
  year: 2018
  ident: 1933_CR30
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1013
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: 1933_CR38
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 21
  start-page: 945
  issue: 5
  year: 2017
  ident: 1933_CR14
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 50
  start-page: D165
  issue: D1
  year: 2022
  ident: 1933_CR26
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab1113
– volume: 33
  start-page: 332
  issue: 5
  year: 1997
  ident: 1933_CR8
  publication-title: Oral Oncol
  doi: 10.1016/S1368-8375(97)00035-3
– volume: 16
  start-page: 284
  issue: 5
  year: 2012
  ident: 1933_CR39
  publication-title: OMICS
  doi: 10.1089/omi.2011.0118
– volume: 9
  start-page: 10
  issue: 1
  year: 2016
  ident: 1933_CR48
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-016-0058-4
– volume: 357
  start-page: 2552
  issue: 25
  year: 2007
  ident: 1933_CR9
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa073770
– volume: 36
  start-page: 219
  issue: 2
  year: 2009
  ident: 1933_CR41
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.10.009
– volume: 22
  start-page: 1133
  issue: 6
  year: 2013
  ident: 1933_CR7
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-13-0147
– volume: 56
  start-page: 2488
  issue: 11
  year: 1996
  ident: 1933_CR2
  publication-title: Cancer Res
– volume: 45
  start-page: 789
  year: 2014
  ident: 1933_CR6
  publication-title: Quintessence Int
– volume: 38
  start-page: 610
  issue: 6
  year: 2016
  ident: 1933_CR47
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2016.08.004
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: 1933_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 21
  start-page: 75
  issue: 1
  year: 2020
  ident: 1933_CR50
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-01984-7
– volume: 1
  start-page: 417
  issue: 6
  year: 2015
  ident: 1933_CR32
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2015.12.004
– volume: 137
  start-page: 2374
  issue: 10
  year: 2015
  ident: 1933_CR42
  publication-title: Int J cancer
  doi: 10.1002/ijc.29616
– volume: 2
  start-page: 777
  issue: 10
  year: 2002
  ident: 1933_CR12
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc907
– volume: 35
  start-page: D137
  issue: Database issue
  year: 2007
  ident: 1933_CR28
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl1041
– ident: 1933_CR22
  doi: 10.1093/database/baw100
– volume: 150
  start-page: 1919
  issue: 12
  year: 2022
  ident: 1933_CR15
  publication-title: Int J Cancer
  doi: 10.1002/ijc.33949
– volume: 8
  start-page: 9794
  issue: 6
  year: 2017
  ident: 1933_CR43
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14216
– volume: 24
  start-page: 397
  issue: 2
  year: 2020
  ident: 1933_CR11
  publication-title: J Oral Maxillofac Pathol
  doi: 10.4103/jomfp.JOMFP_164_20
– volume: 31
  start-page: 374
  year: 2003
  ident: 1933_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg108
– volume: 49
  start-page: 292
  issue: 3
  year: 2020
  ident: 1933_CR51
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1016/j.ijom.2019.07.014
– volume: 27
  start-page: 1571
  issue: 11
  year: 2011
  ident: 1933_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr167
– volume: 362
  start-page: eaav1898
  issue: 6413
  year: 2018
  ident: 1933_CR19
  publication-title: Science (80-)
  doi: 10.1126/science.aav1898
– volume: 12
  start-page: 495
  issue: 1
  year: 2011
  ident: 1933_CR24
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-495
– volume: 31
  start-page: 27
  issue: 1
  year: 2010
  ident: 1933_CR40
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgp220
– volume: 32
  start-page: 896
  issue: 9
  year: 2014
  ident: 1933_CR37
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2931
– volume: 111
  year: 2020
  ident: 1933_CR52
  publication-title: Oral Oncol
– volume: 51
  start-page: D232
  issue: D1
  year: 2023
  ident: 1933_CR34
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac1002
– volume: 13
  start-page: 2498
  issue: 11
  year: 2003
  ident: 1933_CR35
  publication-title: Genome Res
  doi: 10.1101/gr.1239303
– volume: 34
  start-page: 603
  issue: 5
  year: 1984
  ident: 1933_CR3
  publication-title: Int J cancer
  doi: 10.1002/ijc.2910340504
– volume: 12
  start-page: 1441
  issue: 5
  year: 2006
  ident: 1933_CR10
  publication-title: Clin cancer Res an Off J Am Assoc Cancer Res
  doi: 10.1158/1078-0432.CCR-05-2173
– volume: 9
  start-page: 326
  issue: 4
  year: 2008
  ident: 1933_CR21
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbn016
– volume: 10
  start-page: 885
  issue: MAy
  year: 2010
  ident: 1933_CR13
  publication-title: Nat Publ Gr
– volume: 38
  start-page: 675
  issue: 6
  year: 2020
  ident: 1933_CR20
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0546-8
– volume: 15
  start-page: 8833
  issue: 6
  year: 2018
  ident: 1933_CR44
  publication-title: Oncol Lett
– volume: 14
  start-page: 353
  year: 2014
  ident: 1933_CR46
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-14-353
– ident: 1933_CR49
  doi: 10.1111/jop.13613
– volume: 12
  start-page: 146
  year: 2012
  ident: 1933_CR54
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-12-146
– volume: 50
  start-page: 1025
  issue: 11
  year: 2014
  ident: 1933_CR4
  publication-title: Oral Oncol
  doi: 10.1016/j.oraloncology.2014.07.019
– volume: 26
  start-page: 2438
  issue: 19
  year: 2010
  ident: 1933_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq466
– volume: 139
  start-page: 550
  issue: 5
  year: 2025
  ident: 1933_CR45
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol
  doi: 10.1016/j.oooo.2024.11.088
– volume: 12
  start-page: 996
  issue: 6
  year: 2002
  ident: 1933_CR16
  publication-title: Genome Res
  doi: 10.1101/gr.229102
– ident: 1933_CR17
– volume: 150
  start-page: 1274
  issue: 6
  year: 2012
  ident: 1933_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.040
– volume: 54
  start-page: 91
  year: 2013
  ident: 1933_CR53
  publication-title: Essays Biochem
  doi: 10.1042/bse0540091
– volume: 48
  start-page: D882
  issue: D1
  year: 2020
  ident: 1933_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz1062
– volume: 11
  start-page: 94
  year: 2010
  ident: 1933_CR36
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-94
SSID ssj0000399910
Score 2.3475542
Snippet The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the...
Background The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence....
Abstract Background The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 126
SubjectTerms Anopheles
Antisense
Chromatin
CpG Islands
Development and progression
DNA binding proteins
DNA Methylation
Epigenesis, Genetic
Epigenetic inheritance
Epigenetics
Female
Gene Expression Regulation, Neoplastic
Genes
Genes, Homeobox
Genetic aspects
Genetic transcription
Homeodomain Proteins - genetics
HOXB9
Humans
Male
Methylation
Middle Aged
Mouth cancer
Mouth Neoplasms - genetics
Multigene Family
RNA
RNA, Long Noncoding - genetics
Transcriptome
Title Multifaceted regulation of the HOX cluster and its implications in oral cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/40676709
https://www.proquest.com/docview/3231268850
https://doaj.org/article/bf3cb2add9924b829ccd418005c7ea28
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGXkj6zSbqoUOihmMiWrccxCUmXQrelNGB6EXrCQvAGr5f8_c7Iu2G3PfRSMD5YA5ZnJM83YuYbQj5Ez0NSlSxYYyFA0VEWzmldlL62wSUrXYXVyF_nYnZTf2mbdqfVF-aEjfTAo-LOXOLeVbALNUQKTlXa-1CXAHMaL6Otcpkv-LydYCr_gzkCH7atklHibFVyPDvD7q2Aajgv7vc8USbs__u3_AfYzE7n-pA836BFej7O8gV5FLuX5OmvZT4Lf0XmuXw2WQ_IN9B-bCsPiqbLRAHY0dm3lvrbNXIhUNsFuhhWdLGTQk4XINrDCzzavn9Nbq6vfl7Oik2DhMLXnA9F0tLCJRzXIYGT8YJxK7R2zCXkkYtW1U4GW4oAgQOEzcFGzoV0vmJJWsXfkINu2cUjQrW22gkW8Wyx1kqoGERkKjKtlE6smZBPW2WZu5EHw-T4QQkzqtaAak1WrbmfkAvU54MkcljnB2BZs7Gs-ZdlJ-QjWsPgTht66-2mYAAmjJxV5lzVClPrUPJ0TxJ2iN8bfr-1p8EhTCvr4nK9MhzQbSWUatiEvB0N_TBnQDoSye2O_8e3nJBnVV56yMh5Sg6Gfh3fAZoZ3JQ8lq2ckicXV_PvP6Z5GcP9c1v-BiDE87Y
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifaceted+regulation+of+the+HOX+cluster+and+its+implications+in+oral+cancer&rft.jtitle=Clinical+epigenetics&rft.au=Kanaka+Sai+Ram+Padam&rft.au=Keith+D.+Hunter&rft.au=Raghu+Radhakrishnan&rft.date=2025-07-17&rft.pub=BMC&rft.eissn=1868-7083&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1186%2Fs13148-025-01933-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf3cb2add9924b829ccd418005c7ea28
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-7083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-7083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-7083&client=summon