Multifaceted regulation of the HOX cluster and its implications in oral cancer
The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known. Our findings revealed that HOXA and HOXB cl...
Saved in:
Published in | Clinical epigenetics Vol. 17; no. 1; pp. 126 - 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
BioMed Central Ltd
17.07.2025
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known.
Our findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2-M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis.
The functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression. |
---|---|
AbstractList | The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known. Our findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2-M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis. The functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression. The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known.BACKGROUNDThe hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known.Our findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2-M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis.RESULTSOur findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2-M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis.The functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression.CONCLUSIONThe functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression. Background The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known. Results Our findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2-M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis. Conclusion The functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression. Keywords: Epigenetics, HOXB9, Methylation, Transcriptome, Antisense Abstract Background The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known. Results Our findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2–M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis. Conclusion The functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression. The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the mechanism of regulation involved in the clustered dysregulation of HOX clusters is not clearly known. Our findings revealed that HOXA and HOXB clusters showed significant locus-specific CpG methylation changes compared with the HOXC and HOXD clusters. The constitutively unmethylated regions identified in the HOXA1, HOXA11, HOXB5, HOXB6, HOXB9, HOXC5, HOXC10 and HOXC11 genes may be associated with open chromatin-mediated gene regulation. The methylation of CpG loci within the intron of HOXB9 may serve as a potential marker for distinguishing patients with premalignant and advanced oral tumors. HOXA5 and HOXC9 showed higher transcription factor-mediated interactions with neighboring HOX genes within and across the clusters. Additionally, HOXB9 and HOXC10 were predicted to directly regulate the G2-M checkpoint and hypoxia pathways. HOXA genes can be post-transcriptionally regulated through an antisense-mediated mechanism involving embedded HOX long noncoding RNAs (lncRNAs). Posterior HOX genes were more highly expressed than anterior HOX genes. The HOXC and HOXD cluster gene expression patterns were similar to those of the embedded lncRNAs. HOXA1, HOXC13 and HOXD10 were significantly correlated with the cancer hallmarks driving oral carcinogenesis. The functional consequence of HOX genes dysregulation was driven by diverse DNA and RNA epigenetic mechanisms affecting the transcriptional and post-transcriptional regulation contributing to the oral cancer progression. |
ArticleNumber | 126 |
Audience | Academic |
Author | Padam, Kanaka Sai Ram Radhakrishnan, Raghu Hunter, Keith D. |
Author_xml | – sequence: 1 givenname: Kanaka Sai Ram surname: Padam fullname: Padam, Kanaka Sai Ram – sequence: 2 givenname: Keith D. surname: Hunter fullname: Hunter, Keith D. – sequence: 3 givenname: Raghu orcidid: 0000-0003-0088-4777 surname: Radhakrishnan fullname: Radhakrishnan, Raghu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40676709$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vFSEUhompsbX2D7gwk7jpZiof8wHLptG2SbUbTdyRAxyuNHOHKzBp_Pdy79RGE4EEOOfhDXDe1-RojjMS8pbRC8bk8CEzwTrZUt63lCkh2scX5KQmZDtSKY7-Wh-Ts5wfaG1CKcXoK3Lc0WEcRqpOyJfPy1SCB4sFXZNws0xQQpyb6JvyA5ub---NnZZcMDUwuyaU3ITtbgr2gNVNRRNMjYXZYnpDXnqYMp49zafk26ePX69u2rv769ury7vWdkKU1qsR6hiMUM6PTNqBChiUMtR4qnqBIDszOmCD63uFRjhAIYbRWE79CFKckttV10V40LsUtpB-6QhBHwIxbTSkEuyE2nhhDQfnlOKdkVxZ6zomKe3tiMD3Wuer1i7FnwvmorchW5wmmDEuWQsuGB-k7GlF36_oBqpymH0sCewe15eyk7x-8UHw4j9U7Q63wdYy-lDj_xx493SDxWzRPb_nT5kqwFfApphzQv-MMKr3dtCrHXS1gz7YQT-K35uopVo |
Cites_doi | 10.1093/nar/gkz804 10.1016/S1079-2104(05)80226-4 10.1093/bioinformatics/btn439 10.1093/nar/gkx1013 10.1093/nar/28.1.27 10.1093/nar/gkab1113 10.1016/S1368-8375(97)00035-3 10.1089/omi.2011.0118 10.1186/s13072-016-0058-4 10.1056/NEJMoa073770 10.1016/j.molcel.2009.10.009 10.1158/1055-9965.EPI-13-0147 10.1016/j.devcel.2016.08.004 10.3322/caac.21660 10.1186/s13059-020-01984-7 10.1016/j.cels.2015.12.004 10.1002/ijc.29616 10.1038/nrc907 10.1093/nar/gkl1041 10.1093/database/baw100 10.1002/ijc.33949 10.18632/oncotarget.14216 10.4103/jomfp.JOMFP_164_20 10.1093/nar/gkg108 10.1016/j.ijom.2019.07.014 10.1093/bioinformatics/btr167 10.1126/science.aav1898 10.1186/1471-2105-12-495 10.1093/carcin/bgp220 10.1038/nbt.2931 10.1093/nar/gkac1002 10.1101/gr.1239303 10.1002/ijc.2910340504 10.1158/1078-0432.CCR-05-2173 10.1093/bib/bbn016 10.1038/s41587-020-0546-8 10.1186/1471-2407-14-353 10.1111/jop.13613 10.1186/1471-2407-12-146 10.1016/j.oraloncology.2014.07.019 10.1093/bioinformatics/btq466 10.1016/j.oooo.2024.11.088 10.1101/gr.229102 10.1016/j.cell.2012.04.040 10.1042/bse0540091 10.1093/nar/gkz1062 10.1186/1471-2105-11-94 |
ContentType | Journal Article |
Copyright | 2025. The Author(s). COPYRIGHT 2025 BioMed Central Ltd. |
Copyright_xml | – notice: 2025. The Author(s). – notice: COPYRIGHT 2025 BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1186/s13148-025-01933-w |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1868-7083 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_bf3cb2add9924b829ccd418005c7ea28 A848200328 40676709 10_1186_s13148_025_01933_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust DBT India Alliance grantid: IA/CPHI/18/1/503927 |
GroupedDBID | --- 0R~ 2JY 4.4 53G 5C9 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS EN4 F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HF~ HMCUK HYE HZ~ IAO IHR INH INR ITC KOV KQ8 LK8 M1P M7P O9I OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO QOS R9I RBZ RNS ROL RPM RSV S1Z S27 SBL SOJ T13 U2A UKHRP WK8 CGR CUY CVF ECM EIF NPM 7X8 PUEGO |
ID | FETCH-LOGICAL-c433t-f97a97a6b39df718c603a699b0bf0953ea84b7da16d559eb3dae3367bc20f7a83 |
IEDL.DBID | DOA |
ISSN | 1868-7083 1868-7075 |
IngestDate | Wed Aug 27 01:17:21 EDT 2025 Fri Jul 18 18:49:57 EDT 2025 Wed Jul 23 16:52:03 EDT 2025 Tue Jul 22 03:43:27 EDT 2025 Mon Jul 21 01:57:48 EDT 2025 Thu Jul 24 02:14:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Epigenetics Antisense HOXB9 Methylation Transcriptome |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-f97a97a6b39df718c603a699b0bf0953ea84b7da16d559eb3dae3367bc20f7a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0088-4777 |
OpenAccessLink | https://doaj.org/article/bf3cb2add9924b829ccd418005c7ea28 |
PMID | 40676709 |
PQID | 3231268850 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bf3cb2add9924b829ccd418005c7ea28 proquest_miscellaneous_3231268850 gale_infotracmisc_A848200328 gale_infotracacademiconefile_A848200328 pubmed_primary_40676709 crossref_primary_10_1186_s13148_025_01933_w |
PublicationCentury | 2000 |
PublicationDate | 2025-07-17 |
PublicationDateYYYYMMDD | 2025-07-17 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Clinical epigenetics |
PublicationTitleAlternate | Clin Epigenetics |
PublicationYear | 2025 |
Publisher | BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BMC |
References | A Liberzon (1933_CR32) 2015; 1 N Shah (1933_CR13) 2010; 10 Y Luo (1933_CR27) 2020; 48 R Morgan (1933_CR15) 2022; 150 WJ Kent (1933_CR16) 2002; 12 JH Bullard (1933_CR36) 2010; 11 ML Poeta (1933_CR9) 2007; 357 M Kanehisa (1933_CR38) 2000; 28 C Bacci (1933_CR6) 2014; 45 Z-H Shen (1933_CR14) 2017; 21 E Wingender (1933_CR21) 2008; 9 H Han (1933_CR30) 2018; 46 W Giaretti (1933_CR7) 2013; 22 Y Chen (1933_CR48) 2016; 9 P Shannon (1933_CR35) 2003; 13 W Li (1933_CR52) 2020; 111 C Abate-Shen (1933_CR12) 2002; 2 H Sung (1933_CR1) 2021; 71 F Krueger (1933_CR18) 2011; 27 B-Q Sui (1933_CR44) 2018; 15 H Mirghani (1933_CR4) 2014; 50 JA Castro-Mondragon (1933_CR26) 2022; 50 G Zheng (1933_CR29) 2008; 24 D Risso (1933_CR37) 2014; 32 MJ Goldman (1933_CR20) 2020; 38 1933_CR22 M Wight (1933_CR53) 2013; 54 Y Lin (1933_CR33) 2020; 48 M Perino (1933_CR47) 2016; 38 V Matys (1933_CR25) 2003; 31 L Gao (1933_CR51) 2020; 49 KSR Padam (1933_CR45) 2025; 139 S Sharma (1933_CR40) 2010; 31 J Califano (1933_CR2) 1996; 56 B Xia (1933_CR43) 2017; 8 A Lachmann (1933_CR23) 2010; 26 1933_CR17 H Lumerman (1933_CR5) 1995; 79 CC Bitu (1933_CR54) 2012; 12 M Partridge (1933_CR8) 1997; 33 Y Zheng (1933_CR34) 2023; 51 K Uchida (1933_CR46) 2014; 14 JM Elwood (1933_CR3) 1984; 34 RK Palakurthy (1933_CR41) 2009; 36 Z Jia (1933_CR50) 2020; 21 G Yu (1933_CR39) 2012; 16 RB Moharil (1933_CR11) 2020; 24 S Neph (1933_CR31) 2012; 150 W Qiu (1933_CR10) 2006; 12 MR Corces (1933_CR19) 2018; 362 1933_CR49 C Jiang (1933_CR28) 2007; 35 H Heinonen (1933_CR42) 2015; 137 K Daily (1933_CR24) 2011; 12 |
References_xml | – volume: 48 start-page: D189 issue: D1 year: 2020 ident: 1933_CR33 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz804 – volume: 79 start-page: 321 issue: 3 year: 1995 ident: 1933_CR5 publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod doi: 10.1016/S1079-2104(05)80226-4 – volume: 24 start-page: 2416 issue: 20 year: 2008 ident: 1933_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn439 – volume: 46 start-page: D380 issue: D1 year: 2018 ident: 1933_CR30 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1013 – volume: 28 start-page: 27 issue: 1 year: 2000 ident: 1933_CR38 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – volume: 21 start-page: 945 issue: 5 year: 2017 ident: 1933_CR14 publication-title: Eur Rev Med Pharmacol Sci – volume: 50 start-page: D165 issue: D1 year: 2022 ident: 1933_CR26 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab1113 – volume: 33 start-page: 332 issue: 5 year: 1997 ident: 1933_CR8 publication-title: Oral Oncol doi: 10.1016/S1368-8375(97)00035-3 – volume: 16 start-page: 284 issue: 5 year: 2012 ident: 1933_CR39 publication-title: OMICS doi: 10.1089/omi.2011.0118 – volume: 9 start-page: 10 issue: 1 year: 2016 ident: 1933_CR48 publication-title: Epigenetics Chromatin doi: 10.1186/s13072-016-0058-4 – volume: 357 start-page: 2552 issue: 25 year: 2007 ident: 1933_CR9 publication-title: N Engl J Med doi: 10.1056/NEJMoa073770 – volume: 36 start-page: 219 issue: 2 year: 2009 ident: 1933_CR41 publication-title: Mol Cell doi: 10.1016/j.molcel.2009.10.009 – volume: 22 start-page: 1133 issue: 6 year: 2013 ident: 1933_CR7 publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-13-0147 – volume: 56 start-page: 2488 issue: 11 year: 1996 ident: 1933_CR2 publication-title: Cancer Res – volume: 45 start-page: 789 year: 2014 ident: 1933_CR6 publication-title: Quintessence Int – volume: 38 start-page: 610 issue: 6 year: 2016 ident: 1933_CR47 publication-title: Dev Cell doi: 10.1016/j.devcel.2016.08.004 – volume: 71 start-page: 209 issue: 3 year: 2021 ident: 1933_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21660 – volume: 21 start-page: 75 issue: 1 year: 2020 ident: 1933_CR50 publication-title: Genome Biol doi: 10.1186/s13059-020-01984-7 – volume: 1 start-page: 417 issue: 6 year: 2015 ident: 1933_CR32 publication-title: Cell Syst doi: 10.1016/j.cels.2015.12.004 – volume: 137 start-page: 2374 issue: 10 year: 2015 ident: 1933_CR42 publication-title: Int J cancer doi: 10.1002/ijc.29616 – volume: 2 start-page: 777 issue: 10 year: 2002 ident: 1933_CR12 publication-title: Nat Rev Cancer doi: 10.1038/nrc907 – volume: 35 start-page: D137 issue: Database issue year: 2007 ident: 1933_CR28 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl1041 – ident: 1933_CR22 doi: 10.1093/database/baw100 – volume: 150 start-page: 1919 issue: 12 year: 2022 ident: 1933_CR15 publication-title: Int J Cancer doi: 10.1002/ijc.33949 – volume: 8 start-page: 9794 issue: 6 year: 2017 ident: 1933_CR43 publication-title: Oncotarget doi: 10.18632/oncotarget.14216 – volume: 24 start-page: 397 issue: 2 year: 2020 ident: 1933_CR11 publication-title: J Oral Maxillofac Pathol doi: 10.4103/jomfp.JOMFP_164_20 – volume: 31 start-page: 374 year: 2003 ident: 1933_CR25 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg108 – volume: 49 start-page: 292 issue: 3 year: 2020 ident: 1933_CR51 publication-title: Int J Oral Maxillofac Surg doi: 10.1016/j.ijom.2019.07.014 – volume: 27 start-page: 1571 issue: 11 year: 2011 ident: 1933_CR18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr167 – volume: 362 start-page: eaav1898 issue: 6413 year: 2018 ident: 1933_CR19 publication-title: Science (80-) doi: 10.1126/science.aav1898 – volume: 12 start-page: 495 issue: 1 year: 2011 ident: 1933_CR24 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-495 – volume: 31 start-page: 27 issue: 1 year: 2010 ident: 1933_CR40 publication-title: Carcinogenesis doi: 10.1093/carcin/bgp220 – volume: 32 start-page: 896 issue: 9 year: 2014 ident: 1933_CR37 publication-title: Nat Biotechnol doi: 10.1038/nbt.2931 – volume: 111 year: 2020 ident: 1933_CR52 publication-title: Oral Oncol – volume: 51 start-page: D232 issue: D1 year: 2023 ident: 1933_CR34 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac1002 – volume: 13 start-page: 2498 issue: 11 year: 2003 ident: 1933_CR35 publication-title: Genome Res doi: 10.1101/gr.1239303 – volume: 34 start-page: 603 issue: 5 year: 1984 ident: 1933_CR3 publication-title: Int J cancer doi: 10.1002/ijc.2910340504 – volume: 12 start-page: 1441 issue: 5 year: 2006 ident: 1933_CR10 publication-title: Clin cancer Res an Off J Am Assoc Cancer Res doi: 10.1158/1078-0432.CCR-05-2173 – volume: 9 start-page: 326 issue: 4 year: 2008 ident: 1933_CR21 publication-title: Brief Bioinform doi: 10.1093/bib/bbn016 – volume: 10 start-page: 885 issue: MAy year: 2010 ident: 1933_CR13 publication-title: Nat Publ Gr – volume: 38 start-page: 675 issue: 6 year: 2020 ident: 1933_CR20 publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0546-8 – volume: 15 start-page: 8833 issue: 6 year: 2018 ident: 1933_CR44 publication-title: Oncol Lett – volume: 14 start-page: 353 year: 2014 ident: 1933_CR46 publication-title: BMC Cancer doi: 10.1186/1471-2407-14-353 – ident: 1933_CR49 doi: 10.1111/jop.13613 – volume: 12 start-page: 146 year: 2012 ident: 1933_CR54 publication-title: BMC Cancer doi: 10.1186/1471-2407-12-146 – volume: 50 start-page: 1025 issue: 11 year: 2014 ident: 1933_CR4 publication-title: Oral Oncol doi: 10.1016/j.oraloncology.2014.07.019 – volume: 26 start-page: 2438 issue: 19 year: 2010 ident: 1933_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq466 – volume: 139 start-page: 550 issue: 5 year: 2025 ident: 1933_CR45 publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol doi: 10.1016/j.oooo.2024.11.088 – volume: 12 start-page: 996 issue: 6 year: 2002 ident: 1933_CR16 publication-title: Genome Res doi: 10.1101/gr.229102 – ident: 1933_CR17 – volume: 150 start-page: 1274 issue: 6 year: 2012 ident: 1933_CR31 publication-title: Cell doi: 10.1016/j.cell.2012.04.040 – volume: 54 start-page: 91 year: 2013 ident: 1933_CR53 publication-title: Essays Biochem doi: 10.1042/bse0540091 – volume: 48 start-page: D882 issue: D1 year: 2020 ident: 1933_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz1062 – volume: 11 start-page: 94 year: 2010 ident: 1933_CR36 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-94 |
SSID | ssj0000399910 |
Score | 2.3475542 |
Snippet | The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence. However, the... Background The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining prominence.... Abstract Background The hypothesis that aberrant expression of homeobox (HOX) transcription factors contributes to oral cancer progression is gaining... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 126 |
SubjectTerms | Anopheles Antisense Chromatin CpG Islands Development and progression DNA binding proteins DNA Methylation Epigenesis, Genetic Epigenetic inheritance Epigenetics Female Gene Expression Regulation, Neoplastic Genes Genes, Homeobox Genetic aspects Genetic transcription Homeodomain Proteins - genetics HOXB9 Humans Male Methylation Middle Aged Mouth cancer Mouth Neoplasms - genetics Multigene Family RNA RNA, Long Noncoding - genetics Transcriptome |
Title | Multifaceted regulation of the HOX cluster and its implications in oral cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40676709 https://www.proquest.com/docview/3231268850 https://doaj.org/article/bf3cb2add9924b829ccd418005c7ea28 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGXkj6zSbqoUOihmMiWrccxCUmXQrelNGB6EXrCQvAGr5f8_c7Iu2G3PfRSMD5YA5ZnJM83YuYbQj5Ez0NSlSxYYyFA0VEWzmldlL62wSUrXYXVyF_nYnZTf2mbdqfVF-aEjfTAo-LOXOLeVbALNUQKTlXa-1CXAHMaL6Otcpkv-LydYCr_gzkCH7atklHibFVyPDvD7q2Aajgv7vc8USbs__u3_AfYzE7n-pA836BFej7O8gV5FLuX5OmvZT4Lf0XmuXw2WQ_IN9B-bCsPiqbLRAHY0dm3lvrbNXIhUNsFuhhWdLGTQk4XINrDCzzavn9Nbq6vfl7Oik2DhMLXnA9F0tLCJRzXIYGT8YJxK7R2zCXkkYtW1U4GW4oAgQOEzcFGzoV0vmJJWsXfkINu2cUjQrW22gkW8Wyx1kqoGERkKjKtlE6smZBPW2WZu5EHw-T4QQkzqtaAak1WrbmfkAvU54MkcljnB2BZs7Gs-ZdlJ-QjWsPgTht66-2mYAAmjJxV5lzVClPrUPJ0TxJ2iN8bfr-1p8EhTCvr4nK9MhzQbSWUatiEvB0N_TBnQDoSye2O_8e3nJBnVV56yMh5Sg6Gfh3fAZoZ3JQ8lq2ckicXV_PvP6Z5GcP9c1v-BiDE87Y |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifaceted+regulation+of+the+HOX+cluster+and+its+implications+in+oral+cancer&rft.jtitle=Clinical+epigenetics&rft.au=Kanaka+Sai+Ram+Padam&rft.au=Keith+D.+Hunter&rft.au=Raghu+Radhakrishnan&rft.date=2025-07-17&rft.pub=BMC&rft.eissn=1868-7083&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1186%2Fs13148-025-01933-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf3cb2add9924b829ccd418005c7ea28 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-7083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-7083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-7083&client=summon |