Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber
The perfect control over the constituent and architecture of porous nanomaterials is still a significant challenge in developing high performance electromagnetic wave absorption materials. In this work, we have designed and prepared a novel lightweight electromagnetic wave absorption material with t...
Saved in:
Published in | Carbon (New York) Vol. 167; pp. 485 - 494 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.10.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The perfect control over the constituent and architecture of porous nanomaterials is still a significant challenge in developing high performance electromagnetic wave absorption materials. In this work, we have designed and prepared a novel lightweight electromagnetic wave absorption material with the combination of hollow structure and bimetallic constituents by the thermal decomposition of metal−organic framework (MOF) ZIF-67. We found that by introducing additional metal Nickle into the porous Co/C composites, the CoNi/C-800-PVDF nanocomposite could yield an excellent reflection loss of −61.02 dB at 13.68 GHz and simultaneously possess effective absorbing bandwidth of 5.2 GHz with lower filler loading as 10 wt%, which corresponding to a less absorber thickness of 2 mm. These results demonstrate that the synergistic effects between the bimetallic components and hollow structure of novel CoNi/C composite optimize impedance matching, and thus improve the absorption performance greatly. The properties of specific surface area, interface polarization, dipole polarization, ferromagnetic resonance, eddy current loss and multiple scattering are investigated to further explain the high performance of materials.
[Display omitted]
•Hollow porous structure bimetallic carbon-based nanocomposite (CoNi/C) with excellent electromagnetic wave absorption properties was successfully synthesized.•An excellent reflection loss (RL) of −61.02 dB at 13.68 GHz with a low filler loading (10 wt%) and ultra-thin thickness (2.00 mm).•Effective absorption bandwidth (<−10 dB) up to 5.2 GHz under a single thickness (2.00 mm). |
---|---|
AbstractList | The perfect control over the constituent and architecture of porous nanomaterials is still a significant challenge in developing high performance electromagnetic wave absorption materials. In this work, we have designed and prepared a novel lightweight electromagnetic wave absorption material with the combination of hollow structure and bimetallic constituents by the thermal decomposition of metal−organic framework (MOF) ZIF-67. We found that by introducing additional metal Nickle into the porous Co/C composites, the CoNi/C-800-PVDF nanocomposite could yield an excellent reflection loss of −61.02 dB at 13.68 GHz and simultaneously possess effective absorbing bandwidth of 5.2 GHz with lower filler loading as 10 wt%, which corresponding to a less absorber thickness of 2 mm. These results demonstrate that the synergistic effects between the bimetallic components and hollow structure of novel CoNi/C composite optimize impedance matching, and thus improve the absorption performance greatly. The properties of specific surface area, interface polarization, dipole polarization, ferromagnetic resonance, eddy current loss and multiple scattering are investigated to further explain the high performance of materials. The perfect control over the constituent and architecture of porous nanomaterials is still a significant challenge in developing high performance electromagnetic wave absorption materials. In this work, we have designed and prepared a novel lightweight electromagnetic wave absorption material with the combination of hollow structure and bimetallic constituents by the thermal decomposition of metal−organic framework (MOF) ZIF-67. We found that by introducing additional metal Nickle into the porous Co/C composites, the CoNi/C-800-PVDF nanocomposite could yield an excellent reflection loss of −61.02 dB at 13.68 GHz and simultaneously possess effective absorbing bandwidth of 5.2 GHz with lower filler loading as 10 wt%, which corresponding to a less absorber thickness of 2 mm. These results demonstrate that the synergistic effects between the bimetallic components and hollow structure of novel CoNi/C composite optimize impedance matching, and thus improve the absorption performance greatly. The properties of specific surface area, interface polarization, dipole polarization, ferromagnetic resonance, eddy current loss and multiple scattering are investigated to further explain the high performance of materials. [Display omitted] •Hollow porous structure bimetallic carbon-based nanocomposite (CoNi/C) with excellent electromagnetic wave absorption properties was successfully synthesized.•An excellent reflection loss (RL) of −61.02 dB at 13.68 GHz with a low filler loading (10 wt%) and ultra-thin thickness (2.00 mm).•Effective absorption bandwidth (<−10 dB) up to 5.2 GHz under a single thickness (2.00 mm). |
Author | Yin, Peng-Gang Wang, Guang-Sheng Wang, Yan-Li Sun, Xiao-Bo Yang, Shu-Hao Wang, Hui-Ya |
Author_xml | – sequence: 1 givenname: Yan-Li surname: Wang fullname: Wang, Yan-Li – sequence: 2 givenname: Shu-Hao surname: Yang fullname: Yang, Shu-Hao – sequence: 3 givenname: Hui-Ya surname: Wang fullname: Wang, Hui-Ya – sequence: 4 givenname: Guang-Sheng surname: Wang fullname: Wang, Guang-Sheng email: wanggsh@buaa.edu.cn – sequence: 5 givenname: Xiao-Bo surname: Sun fullname: Sun, Xiao-Bo email: sunxb@buaa.edu.cn – sequence: 6 givenname: Peng-Gang surname: Yin fullname: Yin, Peng-Gang |
BookMark | eNqFkc1rHCEYxqWk0E3a_6AHoZdeZuLXzDo9FMrSNIV8XNqzOPqauszoVt1dmr8-DttTDomIL8LvedDnOUdnIQZA6CMlLSW0v9y2RqcxhpYRRlrSt4SKN2hF5Zo3XA70DK0IIbLpGePv0HnO23oVkooVeryO0xSPeBdT3Ge8iXf-coNNnHcx-wI46BBnXSB5PWVs6zyAxS7FGd_eX2XsYsLgnDceQsE6WDz5hz_lCMuJYQJTKqsfAhRv8FEfAOsxxzRCeo_eumoKH_7PC_T76vuvzXVzc__j5-bbTWME56Vxaz6sOWHODsteg9RGS2alBSd7cEMPzAzcjUAHIrXQ1tCRUkHHzsrRCX6BPp98dyn-3UMuavbZwDTpAPXPinUdHeqSC_rpGbqN-xTq6xQTHR-oIB2p1JcTZVLMOYFTxhddfAwlaT8pStRSi9qqUy1qqUWRXtVaqlg8E--Sn3X695rs60kGNamDh6TyErkB61PNWNnoXzZ4Ai0XrfM |
CitedBy_id | crossref_primary_10_1016_j_jcis_2023_11_153 crossref_primary_10_1016_j_jallcom_2024_176150 crossref_primary_10_1016_j_carbon_2020_10_039 crossref_primary_10_1007_s40820_021_00658_8 crossref_primary_10_1016_j_cej_2023_143763 crossref_primary_10_1016_j_apt_2021_10_010 crossref_primary_10_1016_j_jallcom_2022_164844 crossref_primary_10_1016_j_cej_2022_136394 crossref_primary_10_1016_j_materresbull_2023_112652 crossref_primary_10_1016_j_jmmm_2021_167990 crossref_primary_10_1016_j_matchemphys_2020_124169 crossref_primary_10_1016_j_synthmet_2023_117307 crossref_primary_10_1021_acs_inorgchem_3c02210 crossref_primary_10_1007_s10854_024_12148_9 crossref_primary_10_1016_j_cej_2024_157770 crossref_primary_10_1007_s10854_021_06397_1 crossref_primary_10_1016_j_carbon_2021_04_050 crossref_primary_10_1016_j_carbon_2022_10_043 crossref_primary_10_1016_j_jcis_2023_02_115 crossref_primary_10_1080_19475411_2022_2070681 crossref_primary_10_1016_j_cej_2022_134655 crossref_primary_10_1016_j_nanoms_2024_12_008 crossref_primary_10_1016_j_jcis_2023_07_054 crossref_primary_10_1016_j_jmst_2022_04_049 crossref_primary_10_1007_s40820_021_00734_z crossref_primary_10_1016_j_carbon_2023_118280 crossref_primary_10_1007_s10853_024_09370_5 crossref_primary_10_1016_j_coco_2020_100492 crossref_primary_10_1016_j_coco_2021_100993 crossref_primary_10_1007_s12274_022_4411_6 crossref_primary_10_1016_j_cej_2023_144841 crossref_primary_10_1021_acsami_0c15771 crossref_primary_10_1016_j_compositesa_2021_106772 crossref_primary_10_1016_j_matchemphys_2021_124457 crossref_primary_10_1007_s12613_024_3025_2 crossref_primary_10_1039_D4TA06005A crossref_primary_10_1016_j_apt_2020_12_002 crossref_primary_10_1039_D1TC04881C crossref_primary_10_1002_aelm_202100121 crossref_primary_10_1016_j_jallcom_2023_171796 crossref_primary_10_1016_j_jmst_2022_04_031 crossref_primary_10_1016_j_compscitech_2022_109428 crossref_primary_10_3390_nano14181531 crossref_primary_10_1177_00219983231184017 crossref_primary_10_1016_j_jcis_2021_11_166 crossref_primary_10_1016_j_jallcom_2024_175973 crossref_primary_10_1021_acsaelm_1c00940 crossref_primary_10_1016_j_apsusc_2021_151789 crossref_primary_10_1016_j_optcom_2025_131494 crossref_primary_10_1007_s12613_022_2520_6 crossref_primary_10_1016_j_ceramint_2024_03_039 crossref_primary_10_1007_s11664_021_09035_y crossref_primary_10_1016_j_carbon_2023_03_021 crossref_primary_10_1016_j_jcis_2021_10_006 crossref_primary_10_1016_j_solidstatesciences_2021_106775 crossref_primary_10_1016_j_compscitech_2023_110050 crossref_primary_10_1016_j_materresbull_2024_112911 crossref_primary_10_1016_j_jmst_2021_02_011 crossref_primary_10_1007_s10854_021_06906_2 crossref_primary_10_1016_j_jcis_2021_12_051 crossref_primary_10_1016_j_cej_2021_133865 crossref_primary_10_1016_j_jmst_2022_04_026 crossref_primary_10_2139_ssrn_4132137 crossref_primary_10_1016_j_jcis_2023_07_072 crossref_primary_10_1016_j_ceramint_2021_05_151 crossref_primary_10_1016_j_sna_2023_114645 crossref_primary_10_1016_j_jcis_2022_09_043 crossref_primary_10_1016_j_cej_2023_147413 crossref_primary_10_1002_smll_202402438 crossref_primary_10_1016_j_carbon_2023_118047 crossref_primary_10_1016_j_mssp_2023_107557 crossref_primary_10_1016_j_synthmet_2023_117334 crossref_primary_10_1002_smll_202206323 crossref_primary_10_1021_acsanm_3c06218 crossref_primary_10_1016_j_jmmm_2021_168250 crossref_primary_10_1021_acsanm_2c01215 crossref_primary_10_1016_j_carbon_2020_10_070 crossref_primary_10_1016_j_cej_2023_145224 crossref_primary_10_1007_s10853_023_09057_3 crossref_primary_10_1016_j_carbon_2021_11_044 crossref_primary_10_1039_D4TA05222F crossref_primary_10_1016_j_carbon_2021_11_043 crossref_primary_10_1016_j_optmat_2022_113332 crossref_primary_10_2139_ssrn_3933562 crossref_primary_10_1007_s12274_022_5263_9 crossref_primary_10_1016_j_jcis_2023_06_042 crossref_primary_10_1016_j_jallcom_2021_161097 crossref_primary_10_1016_j_apsusc_2021_151334 crossref_primary_10_1021_acsanm_2c01544 crossref_primary_10_1016_j_colsurfa_2024_133694 crossref_primary_10_1016_j_jallcom_2023_170017 crossref_primary_10_1016_j_jcis_2021_08_206 crossref_primary_10_1007_s10854_023_11004_6 crossref_primary_10_1016_j_jcis_2021_11_110 crossref_primary_10_1007_s40820_021_00773_6 crossref_primary_10_1016_j_ceramint_2024_11_003 crossref_primary_10_1007_s00339_023_06992_5 crossref_primary_10_1016_j_carbon_2021_06_028 crossref_primary_10_1016_j_diamond_2024_110893 crossref_primary_10_1016_j_jallcom_2021_160556 crossref_primary_10_1016_j_jallcom_2022_165866 crossref_primary_10_1016_j_powtec_2024_120132 crossref_primary_10_2139_ssrn_4199855 crossref_primary_10_1016_j_carbon_2023_118506 crossref_primary_10_1016_j_carbon_2023_04_003 crossref_primary_10_1016_j_jallcom_2024_177955 crossref_primary_10_1016_j_jcis_2021_05_015 crossref_primary_10_1021_acsami_1c05007 crossref_primary_10_3390_coatings12010062 crossref_primary_10_1016_j_carbon_2023_01_056 crossref_primary_10_1016_j_carbon_2022_12_004 crossref_primary_10_1016_j_cjche_2021_12_031 crossref_primary_10_1016_j_jcis_2021_07_085 crossref_primary_10_1016_j_apsusc_2022_156219 crossref_primary_10_1016_j_carbon_2021_12_025 crossref_primary_10_1021_acsami_1c21396 crossref_primary_10_1016_j_mtcomm_2024_110483 crossref_primary_10_1016_j_jallcom_2021_162964 crossref_primary_10_1002_cjoc_202200691 crossref_primary_10_1016_j_jmmm_2022_169391 crossref_primary_10_1039_D3TC02072J crossref_primary_10_1016_j_carbon_2021_05_028 crossref_primary_10_1039_D4TC02284J crossref_primary_10_1021_acsaelm_4c00830 crossref_primary_10_1016_j_ceramint_2022_07_007 crossref_primary_10_1016_j_apsusc_2024_160283 crossref_primary_10_1016_j_apt_2022_103854 crossref_primary_10_1016_j_carbon_2021_02_060 crossref_primary_10_1016_j_jmst_2021_05_066 crossref_primary_10_1016_j_nanoms_2024_10_011 crossref_primary_10_1021_acs_chemmater_0c04734 crossref_primary_10_1590_1980_5373_mr_2022_0157 crossref_primary_10_1039_D1TA05181D crossref_primary_10_1039_D1TC00841B crossref_primary_10_1016_j_cej_2024_150649 crossref_primary_10_1016_j_mtcomm_2024_108171 crossref_primary_10_1016_j_carbon_2024_118823 crossref_primary_10_1016_j_carbon_2024_119114 crossref_primary_10_1016_j_cej_2024_151856 crossref_primary_10_1016_j_jcis_2021_01_013 crossref_primary_10_1016_j_jmmm_2022_170253 crossref_primary_10_1007_s42114_024_00890_x crossref_primary_10_1021_acs_jpcc_2c06747 crossref_primary_10_1002_smll_202403689 crossref_primary_10_1016_j_carbon_2021_05_022 crossref_primary_10_1016_j_colsurfa_2023_133025 crossref_primary_10_1016_j_solidstatesciences_2022_106886 crossref_primary_10_1002_smsc_202100077 crossref_primary_10_1016_j_mtphys_2023_101126 crossref_primary_10_1039_D3NR03837H crossref_primary_10_1021_acs_langmuir_3c03425 crossref_primary_10_1016_j_jcis_2022_02_104 crossref_primary_10_2139_ssrn_3950121 crossref_primary_10_1016_j_cej_2021_129960 crossref_primary_10_1016_j_compscitech_2022_109524 crossref_primary_10_1016_j_mtchem_2023_101840 crossref_primary_10_1007_s42114_021_00277_2 crossref_primary_10_1016_j_cej_2021_130725 crossref_primary_10_1021_acsaelm_3c00718 crossref_primary_10_1039_D2CE00578F crossref_primary_10_1016_j_mseb_2024_117741 crossref_primary_10_1007_s40820_022_00804_w crossref_primary_10_1016_j_jcis_2023_05_049 crossref_primary_10_1016_j_ceramint_2024_12_137 crossref_primary_10_2139_ssrn_4125219 crossref_primary_10_1007_s40820_022_00841_5 crossref_primary_10_1016_j_jmmm_2023_170405 crossref_primary_10_1016_j_diamond_2021_108669 crossref_primary_10_1016_j_jallcom_2023_172117 crossref_primary_10_1016_j_synthmet_2021_116731 crossref_primary_10_1016_j_jallcom_2021_159811 crossref_primary_10_1039_D1RA01880A crossref_primary_10_1016_j_mtcomm_2021_102190 crossref_primary_10_1016_j_jallcom_2023_172594 crossref_primary_10_1016_j_jallcom_2022_166758 crossref_primary_10_1016_j_jallcom_2022_167726 crossref_primary_10_1016_j_isci_2023_107132 crossref_primary_10_1039_D3CP05641D crossref_primary_10_1088_1361_665X_acf53d crossref_primary_10_1002_smll_202204649 crossref_primary_10_1016_j_compositesb_2020_108491 crossref_primary_10_1016_j_jmmm_2025_172835 crossref_primary_10_1016_j_mtphys_2022_100950 crossref_primary_10_1016_j_jmst_2021_07_003 crossref_primary_10_1039_D1NR01607E crossref_primary_10_1016_j_jallcom_2023_170742 crossref_primary_10_1021_acsanm_2c01993 crossref_primary_10_1016_j_ceramint_2025_01_320 crossref_primary_10_1016_j_carbon_2021_06_073 crossref_primary_10_1016_j_colsurfa_2024_135964 crossref_primary_10_1007_s40145_022_0624_0 crossref_primary_10_1016_j_carbon_2021_12_100 crossref_primary_10_1016_S1872_5805_22_60624_3 crossref_primary_10_1080_15583724_2020_1870490 crossref_primary_10_1016_j_carbon_2021_09_047 crossref_primary_10_1016_j_jmmm_2022_170348 crossref_primary_10_1016_j_apsusc_2021_150190 crossref_primary_10_1016_j_ceramint_2021_02_030 crossref_primary_10_1016_j_jallcom_2023_170829 crossref_primary_10_1016_j_vacuum_2023_112156 crossref_primary_10_3390_nano12162876 crossref_primary_10_1016_j_cej_2021_132253 crossref_primary_10_1111_jace_18220 crossref_primary_10_1016_j_cej_2021_133586 crossref_primary_10_1016_j_jcis_2023_12_132 crossref_primary_10_1016_j_ccr_2022_214429 crossref_primary_10_1016_j_carbon_2021_10_025 crossref_primary_10_1016_j_carbon_2022_08_090 crossref_primary_10_1016_j_jallcom_2024_174151 crossref_primary_10_1016_j_ecmx_2023_100515 crossref_primary_10_1039_D1TC00371B crossref_primary_10_1007_s10854_023_10164_9 crossref_primary_10_1016_j_jcis_2023_05_197 crossref_primary_10_1016_j_compositesb_2021_109306 crossref_primary_10_1016_j_jallcom_2024_177092 crossref_primary_10_1016_j_jmst_2022_06_013 crossref_primary_10_1016_j_carbon_2020_08_057 crossref_primary_10_1007_s40820_021_00727_y crossref_primary_10_1016_j_jclepro_2023_140118 crossref_primary_10_1016_j_compositesa_2024_108154 crossref_primary_10_1016_j_cej_2021_130079 crossref_primary_10_1016_j_jallcom_2021_162194 crossref_primary_10_1016_j_jcis_2022_08_082 crossref_primary_10_1007_s42114_022_00514_2 crossref_primary_10_1016_j_synthmet_2021_116716 crossref_primary_10_1021_acsami_2c13064 crossref_primary_10_1016_j_carbon_2022_04_042 crossref_primary_10_1016_j_jcis_2022_07_048 crossref_primary_10_1016_j_jallcom_2020_157706 crossref_primary_10_1016_j_ceramint_2025_01_222 crossref_primary_10_1080_19475411_2022_2095456 crossref_primary_10_1016_j_mtcomm_2023_107893 crossref_primary_10_1016_j_ceramint_2024_05_263 crossref_primary_10_1016_j_jallcom_2021_162343 crossref_primary_10_1002_advs_202204151 crossref_primary_10_1016_j_carbon_2024_119604 crossref_primary_10_1016_j_cej_2021_133919 crossref_primary_10_1016_j_carbon_2021_08_025 crossref_primary_10_1016_j_jcis_2021_11_197 crossref_primary_10_1016_j_carbon_2024_119289 crossref_primary_10_1016_j_jmmm_2023_171373 crossref_primary_10_1016_j_mtphys_2022_100801 crossref_primary_10_1016_j_carbon_2022_01_032 crossref_primary_10_2139_ssrn_3999204 crossref_primary_10_1016_j_mtphys_2023_101178 crossref_primary_10_1002_adem_202000827 crossref_primary_10_2139_ssrn_4196733 crossref_primary_10_1016_j_cej_2022_136475 crossref_primary_10_1007_s40195_021_01334_x crossref_primary_10_1016_j_ijhydene_2022_04_036 crossref_primary_10_1016_j_jmst_2021_07_055 crossref_primary_10_1016_j_ceramint_2021_10_052 crossref_primary_10_1039_D2NR02490J crossref_primary_10_1016_j_jcis_2023_03_194 crossref_primary_10_1016_j_diamond_2023_110499 crossref_primary_10_1016_j_ceramint_2024_09_039 crossref_primary_10_1039_D2TC02356C crossref_primary_10_1039_D0TC05811D crossref_primary_10_1007_s40097_022_00499_w crossref_primary_10_1016_j_carbon_2023_118228 crossref_primary_10_1016_j_synthmet_2023_117354 crossref_primary_10_1016_j_carbon_2023_118587 crossref_primary_10_1016_j_isci_2023_107975 crossref_primary_10_1016_j_matchemphys_2021_124530 crossref_primary_10_1016_j_jcis_2022_06_156 crossref_primary_10_1039_D2TA02520E crossref_primary_10_1039_D3CP01275A crossref_primary_10_1016_j_materresbull_2025_113319 crossref_primary_10_1016_j_colsurfa_2024_135372 crossref_primary_10_1002_adfm_202212861 crossref_primary_10_1016_j_compositesa_2021_106451 crossref_primary_10_1016_j_cej_2022_140506 crossref_primary_10_1002_adfm_202302003 crossref_primary_10_1007_s10854_021_05523_3 crossref_primary_10_1007_s10853_022_07202_y crossref_primary_10_1016_j_cej_2024_154854 crossref_primary_10_1002_adem_202100964 crossref_primary_10_1016_j_carbon_2022_10_015 crossref_primary_10_1016_j_mtcomm_2025_111689 crossref_primary_10_1016_j_carbon_2021_10_077 crossref_primary_10_1016_j_apsusc_2023_156910 crossref_primary_10_1016_j_ceramint_2022_03_093 crossref_primary_10_1007_s40820_021_00704_5 crossref_primary_10_1039_D2RA04764K crossref_primary_10_1016_j_jcis_2023_08_195 crossref_primary_10_1039_D3TA04087A crossref_primary_10_1007_s42114_024_01209_6 crossref_primary_10_1016_j_jmst_2021_06_021 crossref_primary_10_1002_smll_202101393 crossref_primary_10_1016_j_cej_2024_156589 crossref_primary_10_1016_j_jallcom_2023_170993 crossref_primary_10_1016_j_jallcom_2023_170992 crossref_primary_10_2139_ssrn_3974044 crossref_primary_10_1021_acsanm_3c01007 crossref_primary_10_1140_epjp_s13360_022_02680_0 crossref_primary_10_1016_j_mtcomm_2024_109520 crossref_primary_10_1016_j_jcis_2021_05_184 crossref_primary_10_1007_s10854_023_11633_x crossref_primary_10_1007_s12274_022_4390_7 crossref_primary_10_1016_j_micromeso_2024_113323 crossref_primary_10_1016_j_jpowsour_2025_236230 crossref_primary_10_1016_j_mtchem_2024_102398 crossref_primary_10_1021_acsanm_3c04196 crossref_primary_10_1016_j_carbon_2022_05_041 crossref_primary_10_1007_s40820_021_00646_y crossref_primary_10_1016_j_jmst_2024_06_018 crossref_primary_10_1016_j_cej_2021_130796 crossref_primary_10_1016_j_cej_2022_138442 crossref_primary_10_1002_sstr_202200219 crossref_primary_10_1016_j_jmst_2022_07_004 crossref_primary_10_1007_s10854_024_14123_w crossref_primary_10_2139_ssrn_3929268 crossref_primary_10_1007_s42114_024_01077_0 crossref_primary_10_1016_j_jpcs_2021_110222 crossref_primary_10_1016_j_ceramint_2023_02_253 crossref_primary_10_1016_j_carbon_2025_120241 crossref_primary_10_1016_j_cej_2022_138205 crossref_primary_10_1016_j_jallcom_2023_173359 crossref_primary_10_1002_crat_202200200 crossref_primary_10_1016_j_jmst_2023_11_023 crossref_primary_10_1021_acsami_2c19926 |
Cites_doi | 10.1021/acsami.8b00965 10.1016/j.ceramint.2019.08.173 10.1021/acsami.7b13063 10.1039/C9RA10327A 10.1021/ja960746q 10.1088/1361-6463/ab7df1 10.1016/j.carbon.2018.10.027 10.1016/j.jallcom.2020.155345 10.1088/1361-6528/ab31bf 10.1021/acsami.9b08525 10.1021/acssuschemeng.9b02913 10.1021/acsami.6b00264 10.1039/C5TC02063H 10.1016/j.jallcom.2017.09.082 10.1016/j.cej.2017.06.006 10.1016/j.jcis.2018.12.111 10.1021/acs.jpcc.9b06753 10.1021/acsami.9b23255 10.1007/s10854-019-01558-9 10.1021/acsanm.8b00703 10.1016/j.carbon.2018.09.006 10.1016/j.compositesb.2019.107283 10.1016/j.msec.2019.110132 10.1021/acsami.5b03177 10.1016/j.carbon.2019.06.064 10.1021/acssuschemeng.8b03683 10.1016/j.apsusc.2018.08.121 10.1039/C8TC04984J 10.1002/ppsc.201700006 10.1016/j.matlet.2018.12.001 10.1016/j.electacta.2018.11.074 10.1016/j.jcis.2020.04.099 10.1016/j.jcis.2019.12.107 10.1016/j.carbon.2018.06.009 10.1016/j.cej.2018.12.172 10.1016/j.coco.2020.02.010 10.1016/j.jcis.2019.10.015 10.1021/jacs.5b02465 10.1021/acsami.8b09093 10.1039/C5EE02903A 10.1021/acs.iecr.8b01324 10.1021/acs.jpcc.7b04230 10.1016/j.carbon.2019.01.028 10.1021/acssuschemeng.8b01270 10.1016/j.jallcom.2018.09.142 10.1016/j.compositesb.2019.01.008 10.1039/C8TC02127A 10.1016/j.compositesb.2019.02.054 10.1016/j.jallcom.2019.151837 10.1016/j.cej.2017.09.174 10.1021/acsanm.8b01203 10.1021/acsanm.8b01326 10.1021/acssuschemeng.8b01332 10.1016/j.ceramint.2019.03.052 10.1007/s12274-016-1290-8 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Oct 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Oct 15, 2020 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.carbon.2020.06.014 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3891 |
EndPage | 494 |
ExternalDocumentID | 10_1016_j_carbon_2020_06_014 S0008622320305777 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TWZ XPP ZMT ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ IHE R2- RIG SEW SMS WUQ 7SR 8FD JG9 SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-f7397302fd9fd9f7e8aca82d8def86ef96e2c93fbe1908a4adc1b1141b5d8bf43 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Fri Jul 11 00:43:20 EDT 2025 Mon Jul 14 09:35:21 EDT 2025 Tue Aug 05 03:08:27 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Fri Feb 23 02:49:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bimetallic carbon-based nanocomposites Microwave absorption Impedance matching Hollow porous structure Metal−organic framework (MOF) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-f7397302fd9fd9f7e8aca82d8def86ef96e2c93fbe1908a4adc1b1141b5d8bf43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2453914050 |
PQPubID | 2045273 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2551999984 proquest_journals_2453914050 crossref_citationtrail_10_1016_j_carbon_2020_06_014 crossref_primary_10_1016_j_carbon_2020_06_014 elsevier_sciencedirect_doi_10_1016_j_carbon_2020_06_014 |
PublicationCentury | 2000 |
PublicationDate | 2020-10-15 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Carbon (New York) |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Sun, Shao, Zhang, Jiang, Ge, Lou, Lin, Zhang, Wu, Dong, Guo (bib32) 2020; 565 Wang, Wang, Shi (bib41) 2018; 57 Fan, Jiang, Xin, Zhang, Fu, Xie, Fan, Jiang, Xin, Cheng, Liu, Qu, Sun, Fan (bib56) 2019; 7 Zhou, Wu, Yan (bib22) 2018; 1 Wu, Cheng, Yang, Jia, Wu, Yang, Li, Guo, Lv (bib60) 2018; 333 Ran, Guo, Liu, Peng, Gao, Gao (bib48) 2019; 30 Chen, Luo, Liu, Tai, Lin, Murugadoss, Lin, Wang, Guo, Wang (bib30) 2020; 12 Yan, Wang, Wu, Huo, Duan (bib50) 2019; 30 Wang, Wen, Bai, Liu, Yang (bib64) 2019; 540 Kim, Lee, Lee, Park, Jung, Lee (bib20) 2019; 361 Song, Wang, Wang, Lin, Wei, Murugadoss, Wu, Guo, Ding, Wei (bib34) 2020; 559 Shi, Qi, Ma, Sun, Xiao, Wei, Huang, Liu, Li, Dong, Fan, Guo (bib29) 2019; 105 Ji, Huang, Yin, Zhao, Cheng, He, Li, He, Liu (bib5) 2018; 1 Hu, Han, Yu, Wang, Lou (bib24) 2016; 9 Wei, Wang, Li, Cui, Zhao, Chu, Wei, Wang, Pan, Li, Zhang, Liu, Wei, Guo (bib14) 2020; 6 Quan, Liang, Ji, Cheng, Liu, Ma (bib53) 2017; 728 Zhou, Jia, Feng, Qu, Wang, Liu, Wang, Wu (bib57) 2020; 575 Huang, Ji, Chen, Li, He, Cheng, He, Liu, Liu (bib3) 2019; 163 Liang, Quan, Chen, Gu, Zhang, Ji (bib21) 2018; 1 Imran, Zhang (bib31) 2020; 53 Liao, Matsagar, Wu (bib23) 2018; 6 Su, Wang, Zhang, Zhang, Wu, Dai, Zou, Shao (bib2) 2019; 239 Li, Han, Ma, Liu, Wang, Xu, Li, Du (bib9) 2018; 6 Feng, Hou, Jia, Wu (bib59) 2020; 10 Wu, Liu, Zeng, Cui, Zhao, Li, Tong (bib18) 2016; 8 Wu, Xu, Wang, Wang, Liu, Liu, Qian, Liu, Gao, Guo (bib16) 2019; 145 Lü, Wang, Li, Lin, Jiang, Xie, Kuang, Zheng (bib35) 2015; 7 Zhao, Deng, Zhang, Liang, Fan, Bai, Shao, Park (bib13) 2018; 3 Wu, Tan, Tian, Hu, Wang, Su, Li (bib4) 2017; 121 Wang, Guan, Qiu, Zhu, Pan, Yu, Zhang (bib40) 2017; 326 Liu, Tan, Yang, Ji (bib61) 2018; 138 Yu, Yang, Cheng, Cao (bib27) 2018; 3 Fan, Jiang, Hou, Deng, Liu, Zhang, Zhang, Fan (bib55) 2020; 835 Liu, Qiao, Zhang, Xu, Wu, Lv, Liu (bib46) 2019; 43 Wang, Zeng, Cao (bib28) 2018; 1 Ran, Guo, Zhong, Fu (bib52) 2019; 773 Liang, Quan, Sun, Ji, Zhang, Ma, Li, Zhang, Du (bib36) 2017; 34 Liu, Gao, Wang, Luo (bib49) 2019; 11 Wang, Chen, Tian, Li, Zhou, Duan, Liu (bib37) 2018; 10 Zhao, Li, Guo, Zhang, Zhang, Hou, Ding, Fan, Guo (bib17) 2019; 45 Wu, Liu, Xu, Liu, Liu, Liu, Zhang, Xie, Guo (bib8) 2019; 7 Liang, Wang (bib19) 2017; 9 Yaghi, Li, Groy (bib25) 1996; 118 Arief, Bhattacharje, PrakashO, Sahu, Suwas, Bose (bib47) 2019; 177 Sun, Dong, Wang, Wang, Fan, Hou, An, Dong, Fan, Guo (bib54) 2019; 123 Chen, Zhao, Wang, Peng, Liu, Zhang, Gu, Guo (bib7) 2019; 45 Idrees, Liu, Batool, Luo, Liang, Xu, Steven, Kong (bib26) 2019; 6 Yan, Huang, Chen, Liu, Liu (bib44) 2019; 152 Hu, Guan, Xia, Lou (bib43) 2015; 137 Xie, Li, He, Dang, Lin, Fan, Hou, Liu, Zhang, Ma, Guo (bib15) 2018; 6 Zhao, Cheng, Lv, Ji, Du (bib51) 2019; 142 Wang, Murugadoss, Kong, He, Mai, Angaiah, Guo (bib6) 2018; 140 Zhang, Jia, Feng, Zhou, Zhang, Wang, Liu, Wu (bib58) 2020; 19 Pan, Wang, GuO, Yu (bib62) 2017; 10 Liu, Chen, Xie, Qiu, Dong (bib45) 2019; 809 Wang, Bai, Wen, Du, Lin (bib10) 2019; 166 Zhang, Zhang, Zhu, Cheng, Qiu, Qi (bib1) 2019; 463 Jing, He, Zhang, Yang, Zhao (bib39) 2019; vol. 11 Zhao, Shao, Fan, Zhao, Zhang, Guan, Zhang (bib63) 2015; 3 Li, Lu, Huang, Liu, Zhuang, Zhong (bib42) 2018; 6 Zhang, Wang, Li, Guo, Zhu, Liu, Yin (bib11) 2017; 7 Lyu, Liu, Liu, Liu, Lu, Sun, Fan, Wang, Lu, Guo, Evan (bib12) 2018; 2 Du, Wang, Zhan, Sun, Kang, Jiang, Zhang, Shao, Dong, Liu, Murugadoss, Guo (bib33) 2019; 296 Liao, He, Zhou, Nie, Wang, Hu, Yang, Li, Tong (bib38) 2018; 10 Chen (10.1016/j.carbon.2020.06.014_bib30) 2020; 12 Wang (10.1016/j.carbon.2020.06.014_bib64) 2019; 540 Wu (10.1016/j.carbon.2020.06.014_bib16) 2019; 145 Liao (10.1016/j.carbon.2020.06.014_bib23) 2018; 6 Liu (10.1016/j.carbon.2020.06.014_bib49) 2019; 11 Lü (10.1016/j.carbon.2020.06.014_bib35) 2015; 7 Zhou (10.1016/j.carbon.2020.06.014_bib57) 2020; 575 Huang (10.1016/j.carbon.2020.06.014_bib3) 2019; 163 Wang (10.1016/j.carbon.2020.06.014_bib28) 2018; 1 Zhao (10.1016/j.carbon.2020.06.014_bib13) 2018; 3 Li (10.1016/j.carbon.2020.06.014_bib9) 2018; 6 Su (10.1016/j.carbon.2020.06.014_bib2) 2019; 239 Wang (10.1016/j.carbon.2020.06.014_bib41) 2018; 57 Shi (10.1016/j.carbon.2020.06.014_bib29) 2019; 105 Ran (10.1016/j.carbon.2020.06.014_bib48) 2019; 30 Arief (10.1016/j.carbon.2020.06.014_bib47) 2019; 177 Liang (10.1016/j.carbon.2020.06.014_bib19) 2017; 9 Zhao (10.1016/j.carbon.2020.06.014_bib51) 2019; 142 Zhou (10.1016/j.carbon.2020.06.014_bib22) 2018; 1 Yaghi (10.1016/j.carbon.2020.06.014_bib25) 1996; 118 Sun (10.1016/j.carbon.2020.06.014_bib54) 2019; 123 Xie (10.1016/j.carbon.2020.06.014_bib15) 2018; 6 Zhang (10.1016/j.carbon.2020.06.014_bib58) 2020; 19 Chen (10.1016/j.carbon.2020.06.014_bib7) 2019; 45 Liang (10.1016/j.carbon.2020.06.014_bib36) 2017; 34 Fan (10.1016/j.carbon.2020.06.014_bib56) 2019; 7 Hu (10.1016/j.carbon.2020.06.014_bib24) 2016; 9 Ji (10.1016/j.carbon.2020.06.014_bib5) 2018; 1 Du (10.1016/j.carbon.2020.06.014_bib33) 2019; 296 Lyu (10.1016/j.carbon.2020.06.014_bib12) 2018; 2 Wang (10.1016/j.carbon.2020.06.014_bib10) 2019; 166 Sun (10.1016/j.carbon.2020.06.014_bib32) 2020; 565 Wu (10.1016/j.carbon.2020.06.014_bib18) 2016; 8 Wei (10.1016/j.carbon.2020.06.014_bib14) 2020; 6 Pan (10.1016/j.carbon.2020.06.014_bib62) 2017; 10 Zhao (10.1016/j.carbon.2020.06.014_bib63) 2015; 3 Fan (10.1016/j.carbon.2020.06.014_bib55) 2020; 835 Yu (10.1016/j.carbon.2020.06.014_bib27) 2018; 3 Wang (10.1016/j.carbon.2020.06.014_bib40) 2017; 326 Imran (10.1016/j.carbon.2020.06.014_bib31) 2020; 53 Jing (10.1016/j.carbon.2020.06.014_bib39) 2019; vol. 11 Liu (10.1016/j.carbon.2020.06.014_bib46) 2019; 43 Kim (10.1016/j.carbon.2020.06.014_bib20) 2019; 361 Hu (10.1016/j.carbon.2020.06.014_bib43) 2015; 137 Yan (10.1016/j.carbon.2020.06.014_bib50) 2019; 30 Quan (10.1016/j.carbon.2020.06.014_bib53) 2017; 728 Zhang (10.1016/j.carbon.2020.06.014_bib1) 2019; 463 Yan (10.1016/j.carbon.2020.06.014_bib44) 2019; 152 Wu (10.1016/j.carbon.2020.06.014_bib4) 2017; 121 Li (10.1016/j.carbon.2020.06.014_bib42) 2018; 6 Wu (10.1016/j.carbon.2020.06.014_bib8) 2019; 7 Zhao (10.1016/j.carbon.2020.06.014_bib17) 2019; 45 Wu (10.1016/j.carbon.2020.06.014_bib60) 2018; 333 Zhang (10.1016/j.carbon.2020.06.014_bib11) 2017; 7 Song (10.1016/j.carbon.2020.06.014_bib34) 2020; 559 Liang (10.1016/j.carbon.2020.06.014_bib21) 2018; 1 Liao (10.1016/j.carbon.2020.06.014_bib38) 2018; 10 Feng (10.1016/j.carbon.2020.06.014_bib59) 2020; 10 Ran (10.1016/j.carbon.2020.06.014_bib52) 2019; 773 Liu (10.1016/j.carbon.2020.06.014_bib45) 2019; 809 Wang (10.1016/j.carbon.2020.06.014_bib37) 2018; 10 Wang (10.1016/j.carbon.2020.06.014_bib6) 2018; 140 Idrees (10.1016/j.carbon.2020.06.014_bib26) 2019; 6 Liu (10.1016/j.carbon.2020.06.014_bib61) 2018; 138 |
References_xml | – volume: 137 start-page: 5590 year: 2015 end-page: 5595 ident: bib43 article-title: Designed formation of Co publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1 year: 2020 end-page: 12 ident: bib14 article-title: Multifunctions of polymer nanocomposites: environmental remediation, electromagnetic interference shielding, and sensing applications publication-title: Chem. Nano Mater. – volume: 10 start-page: 10510 year: 2020 end-page: 10518 ident: bib59 article-title: Synthesis of hierarchical carbon fiber@cobalt ferrite@manganese dioxide composite and its application as microwave absorber publication-title: RSC Adv. – volume: 45 start-page: 24474 year: 2019 end-page: 24486 ident: bib17 article-title: Enhanced electromagnetic wave absorbing nickel (oxide)-carbon nanocomposites publication-title: Ceram. Int. – volume: 559 start-page: 124 year: 2020 end-page: 133 ident: bib34 article-title: Carbon nitride nanoplatelet photocatalysts heterostructured with B-doped carbon nanodots for enhanced photodegradation of organic pollutants publication-title: J. Colloid Interface Sci. – volume: 43 start-page: 16546 year: 2019 end-page: 16554 ident: bib46 article-title: Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties publication-title: The Royal Soc. Chem. – volume: 138 start-page: 143 year: 2018 end-page: 153 ident: bib61 article-title: Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss publication-title: Carbon – volume: 145 start-page: 433 year: 2019 end-page: 444 ident: bib16 article-title: Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods publication-title: Carbon – volume: 540 start-page: 30 year: 2019 end-page: 38 ident: bib64 article-title: Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 8904 year: 2018 end-page: 8913 ident: bib9 article-title: MOFs-Derived hollow Co/C microspheres with enhanced microwave absorption performance publication-title: ACS Sustain. Chem. Eng. – volume: 7 start-page: 13604 year: 2015 end-page: 13611 ident: bib35 article-title: MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties publication-title: Appl. Mater. Interfaces – volume: vol. 11 start-page: 39304 year: 2019 end-page: 39314 ident: bib39 article-title: Trimetallic FeCoNi@C Nanocomposite Hollow Spheres Derived from Metal−organic Frameworks with Superior Electromagnetic Wave Absorption Ability – volume: 45 start-page: 11756 year: 2019 end-page: 11764 ident: bib7 article-title: In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption publication-title: Ceram. Int. – volume: 53 start-page: 245503 year: 2020 ident: bib31 article-title: Ferromagnetic shape memory Ni-Fe-Ga alloy foams for elastocaloric cooling publication-title: J. Phys. D Appl. Phys. – volume: 333 start-page: 519 year: 2018 end-page: 528 ident: bib60 article-title: Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior publication-title: Chem. Eng. J. – volume: 3 start-page: 54 year: 2018 end-page: 61 ident: bib27 article-title: Zeolitic-imidazolate framework (ZIF)@ZnCo-zif core-shell template-derived Co, N-doped carbon catalysts for oxygen reduction reaction publication-title: Eng. Sci. – volume: 773 start-page: 423 year: 2019 end-page: 431 ident: bib52 article-title: In situ growth of BaTiO publication-title: J. Alloys Compd. – volume: 177 start-page: 107283 year: 2019 ident: bib47 article-title: Tunable CoNi microstructures in flexible multilayered polymer films can shield electromagnetic radiation publication-title: Composites Part B – volume: 809 start-page: 151837 year: 2019 ident: bib45 article-title: Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology publication-title: J. Alloys Compd. – volume: 57 start-page: 12478 year: 2018 end-page: 12484 ident: bib41 article-title: LDH Nanoflower lantern derived from ZIF-67 and its application for adsorptive removal of organics from water publication-title: Ind. Eng. Chem. Res. – volume: 8 start-page: 7370 year: 2016 end-page: 7380 ident: bib18 article-title: Facile hydrothermal synthesis of Fe publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 40690 year: 2017 end-page: 40696 ident: bib19 article-title: Controllable fabricating dielectric−dielectric SiC@C core−shell nanowires for high-performance electromagnetic wave attenuation publication-title: ACS Appl. Mater. Interfaces – volume: 835 start-page: 155345 year: 2020 ident: bib55 article-title: Extremely facile and green synthesis of magnetic carbon composites drawn from natural bulrush for electromagnetic wave absorbing publication-title: J. Alloys Compd. – volume: 19 start-page: 42 year: 2020 end-page: 45 ident: bib58 article-title: Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber publication-title: Comps. Commun. – volume: 140 start-page: 696 year: 2018 end-page: 733 ident: bib6 article-title: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding publication-title: Carbon – volume: 9 start-page: 107 year: 2016 end-page: 111 ident: bib24 article-title: Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co publication-title: RSC Energy & Environ. Sci. – volume: 118 start-page: 9097 year: 1996 end-page: 9101 ident: bib25 article-title: Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid publication-title: Am. Chem. Soc. – volume: 142 start-page: 245 year: 2019 end-page: 253 ident: bib51 article-title: A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption publication-title: Carbon – volume: 166 start-page: 464 year: 2019 end-page: 471 ident: bib10 article-title: Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber publication-title: Composites Part B – volume: 123 start-page: 23635 year: 2019 end-page: 23642 ident: bib54 article-title: Tunable negative permittivity in flexible graphene/PDMS metacomposites publication-title: J. Phys. Chem. C – volume: 105 start-page: 110132 year: 2019 ident: bib29 article-title: S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells publication-title: Mater. Sci. Eng. C – volume: 2 start-page: 26 year: 2018 end-page: 42 ident: bib12 article-title: An Overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding publication-title: Eng. Sci. – volume: 10 start-page: 29136 year: 2018 end-page: 29144 ident: bib38 article-title: Highly cuboid-shaped heterobimetallic metal−organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 55 year: 2018 end-page: 63 ident: bib28 article-title: Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/polyaniline composites as high performance supercapacitor materials publication-title: Eng. Sci. – volume: 152 start-page: 545 year: 2019 end-page: 555 ident: bib44 article-title: The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers publication-title: Carbon – volume: 121 start-page: 15784 year: 2017 end-page: 15792 ident: bib4 article-title: Facile preparation of core−shell Fe publication-title: J. Phys. Chem. C – volume: 7 start-page: 22454 year: 2017 end-page: 22460 ident: bib11 article-title: Facile synthesis of NiS publication-title: The Royal Soc. Chem. – volume: 30 start-page: 435701 year: 2019 ident: bib48 article-title: Bifunctional catalysts of CoNi nanoparticle-embedded nitrogen-doped carbon nanotubes for rechargeable Zn–air batteries publication-title: Nanotechnology – volume: 11 start-page: 25624 year: 2019 end-page: 25635 ident: bib49 article-title: Core−Shell CoNi@graphitic carbon decorated on B,N-Co doped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation publication-title: Appl. Mater. Interfaces – volume: 361 start-page: 1182 year: 2019 end-page: 1189 ident: bib20 article-title: Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption publication-title: Chem. Eng. J. – volume: 728 start-page: 1065 year: 2017 end-page: 1075 ident: bib53 article-title: Dielectric polarization in electromagnetic wave absorption: review and perspective publication-title: J. Alloys Compd. – volume: 10 start-page: 284 year: 2017 end-page: 294 ident: bib62 article-title: Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and Polyvinylidene Fluoride publication-title: Nano Res. – volume: 12 start-page: 13941 year: 2020 end-page: 13949 ident: bib30 article-title: Boosting multiple interfaces by Co-doped graphene quantum dots for high efficiency and durability perovskite solar cells publication-title: ACS Appl. Mater. Interfaces – volume: 34 start-page: 1700006 year: 2017 ident: bib36 article-title: Multiple interfaces structure derived from metal–organic frameworks for Excellent electromagnetic wave absorption publication-title: Pract. Syst. Charact. – volume: 30 start-page: 12012 year: 2019 end-page: 12022 ident: bib50 article-title: MOF-derived graphitized porous carbon/Fe–Fe publication-title: Mater. Electron. – volume: 7 start-page: 1659 year: 2019 end-page: 1669 ident: bib8 article-title: Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples publication-title: J. Mater. Chem. C – volume: 1 start-page: 5179 year: 2018 end-page: 5187 ident: bib22 article-title: Hierarchical FeCo@MoS publication-title: ACS Appl. Nano Mater. – volume: 1 start-page: 3935 year: 2018 end-page: 3944 ident: bib5 article-title: Synthesis and electromagnetic and microwave absorption properties of monodispersive Fe publication-title: Appl. Nano Mater. – volume: 10 start-page: 11333 year: 2018 end-page: 11342 ident: bib37 article-title: Porous Co−C core−shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 5712 year: 2018 end-page: 5721 ident: bib21 article-title: Nano bimetallic @carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications publication-title: ACS Appl. Nano Mater. – volume: 296 start-page: 907 year: 2019 end-page: 915 ident: bib33 article-title: Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO publication-title: Electrochim. Acta – volume: 463 start-page: 182 year: 2019 end-page: 189 ident: bib1 article-title: Core-shell nanostructured CS/MoS publication-title: Appl. Surf. Sci. – volume: 6 start-page: 13628 year: 2018 end-page: 13643 ident: bib23 article-title: Metal−Organic Framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass publication-title: ACS Sustain. Chem. Eng. – volume: 326 start-page: 945 year: 2017 end-page: 955 ident: bib40 article-title: Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal–organic framework publication-title: Chem. Eng. J. – volume: 3 start-page: 10862 year: 2015 end-page: 10869 ident: bib63 article-title: In situ synthesis of novel urchin-like ZnS/Ni publication-title: J. Mater. Chem. C – volume: 163 start-page: 598 year: 2019 end-page: 605 ident: bib3 article-title: Broadband microwave absorption of Fe publication-title: Composites Part B – volume: 7 start-page: 18765 year: 2019 end-page: 18774 ident: bib56 article-title: Facile synthesis of Fe@Fe publication-title: ACS Sustain. Chem. Eng. – volume: 6 start-page: 64 year: 2019 end-page: 76 ident: bib26 article-title: Cobalt-Doping enhancing electrochemical performance of Silicon/Carbon nanocomposite as highly efficient anode materials in Lithium-Ion batteries publication-title: Eng. Sci. – volume: 6 start-page: 10021 year: 2018 end-page: 10029 ident: bib42 article-title: ZIF-67 as continuous self-sacrifice template derived NiCo publication-title: ACS Sustain. Chem. Eng. – volume: 565 start-page: 142 year: 2020 end-page: 155 ident: bib32 article-title: N self-doped ZnO derived from microwave hydrothermal synthesized zeolitic imidazolate framework-8 toward enhanced photocatalytic degradation of methylene blue publication-title: J. Colloid Interface Sci. – volume: 575 start-page: 130 year: 2020 end-page: 139 ident: bib57 article-title: Synthesis of porous carbon embedded with NiCo/CoNiO publication-title: J. Colloid Interface Sci. – volume: 239 start-page: 136 year: 2019 end-page: 139 ident: bib2 article-title: Synthesis of core–shell Fe publication-title: Mater. Lett. – volume: 6 start-page: 8812 year: 2018 ident: bib15 article-title: Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption publication-title: J. Mater. Chem. C – volume: 3 start-page: 5 year: 2018 end-page: 40 ident: bib13 article-title: Recent advances on the electromagnetic wave absorption properties of Ni based materials publication-title: Eng. Sci. – volume: 10 start-page: 11333 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib37 article-title: Porous Co−C core−shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00965 – volume: 45 start-page: 24474 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib17 article-title: Enhanced electromagnetic wave absorbing nickel (oxide)-carbon nanocomposites publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.08.173 – volume: 9 start-page: 40690 year: 2017 ident: 10.1016/j.carbon.2020.06.014_bib19 article-title: Controllable fabricating dielectric−dielectric SiC@C core−shell nanowires for high-performance electromagnetic wave attenuation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13063 – volume: 10 start-page: 10510 year: 2020 ident: 10.1016/j.carbon.2020.06.014_bib59 article-title: Synthesis of hierarchical carbon fiber@cobalt ferrite@manganese dioxide composite and its application as microwave absorber publication-title: RSC Adv. doi: 10.1039/C9RA10327A – volume: 118 start-page: 9097 year: 1996 ident: 10.1016/j.carbon.2020.06.014_bib25 article-title: Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid publication-title: Am. Chem. Soc. doi: 10.1021/ja960746q – volume: 2 start-page: 26 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib12 article-title: An Overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding publication-title: Eng. Sci. – volume: 53 start-page: 245503 year: 2020 ident: 10.1016/j.carbon.2020.06.014_bib31 article-title: Ferromagnetic shape memory Ni-Fe-Ga alloy foams for elastocaloric cooling publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/ab7df1 – volume: 3 start-page: 54 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib27 article-title: Zeolitic-imidazolate framework (ZIF)@ZnCo-zif core-shell template-derived Co, N-doped carbon catalysts for oxygen reduction reaction publication-title: Eng. Sci. – volume: 142 start-page: 245 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib51 article-title: A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2018.10.027 – volume: 835 start-page: 155345 year: 2020 ident: 10.1016/j.carbon.2020.06.014_bib55 article-title: Extremely facile and green synthesis of magnetic carbon composites drawn from natural bulrush for electromagnetic wave absorbing publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155345 – volume: 30 start-page: 435701 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib48 article-title: Bifunctional catalysts of CoNi nanoparticle-embedded nitrogen-doped carbon nanotubes for rechargeable Zn–air batteries publication-title: Nanotechnology doi: 10.1088/1361-6528/ab31bf – volume: 11 start-page: 25624 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib49 article-title: Core−Shell CoNi@graphitic carbon decorated on B,N-Co doped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation publication-title: Appl. Mater. Interfaces doi: 10.1021/acsami.9b08525 – volume: 7 start-page: 18765 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib56 article-title: Facile synthesis of Fe@Fe3C/C nanocomposites derived from bulrush for excellent electromagnetic wave-absorbing properties publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02913 – volume: 8 start-page: 7370 year: 2016 ident: 10.1016/j.carbon.2020.06.014_bib18 article-title: Facile hydrothermal synthesis of Fe3O4/C core−shell nanorings for efficient low-frequency microwave absorption publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00264 – volume: 3 start-page: 10862 year: 2015 ident: 10.1016/j.carbon.2020.06.014_bib63 article-title: In situ synthesis of novel urchin-like ZnS/Ni3S2@Ni composite with a core–shell structure for efficient electromagnetic absorption publication-title: J. Mater. Chem. C doi: 10.1039/C5TC02063H – volume: 1 start-page: 55 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib28 article-title: Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/polyaniline composites as high performance supercapacitor materials publication-title: Eng. Sci. – volume: 728 start-page: 1065 year: 2017 ident: 10.1016/j.carbon.2020.06.014_bib53 article-title: Dielectric polarization in electromagnetic wave absorption: review and perspective publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.09.082 – volume: 326 start-page: 945 year: 2017 ident: 10.1016/j.carbon.2020.06.014_bib40 article-title: Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal–organic framework publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.006 – volume: 540 start-page: 30 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib64 article-title: Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.12.111 – volume: 123 start-page: 23635 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib54 article-title: Tunable negative permittivity in flexible graphene/PDMS metacomposites publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b06753 – volume: 12 start-page: 13941 year: 2020 ident: 10.1016/j.carbon.2020.06.014_bib30 article-title: Boosting multiple interfaces by Co-doped graphene quantum dots for high efficiency and durability perovskite solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b23255 – volume: 30 start-page: 12012 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib50 article-title: MOF-derived graphitized porous carbon/Fe–Fe3C nanocomposites with broadband and enhanced microwave absorption performance publication-title: Mater. Electron. doi: 10.1007/s10854-019-01558-9 – volume: 1 start-page: 3935 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib5 article-title: Synthesis and electromagnetic and microwave absorption properties of monodispersive Fe3O4/α-Fe2O3 composites publication-title: Appl. Nano Mater. doi: 10.1021/acsanm.8b00703 – volume: 140 start-page: 696 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib6 article-title: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding publication-title: Carbon doi: 10.1016/j.carbon.2018.09.006 – volume: 177 start-page: 107283 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib47 article-title: Tunable CoNi microstructures in flexible multilayered polymer films can shield electromagnetic radiation publication-title: Composites Part B doi: 10.1016/j.compositesb.2019.107283 – volume: 105 start-page: 110132 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib29 article-title: S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.110132 – volume: 7 start-page: 13604 year: 2015 ident: 10.1016/j.carbon.2020.06.014_bib35 article-title: MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties publication-title: Appl. Mater. Interfaces doi: 10.1021/acsami.5b03177 – volume: 152 start-page: 545 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib44 article-title: The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers publication-title: Carbon doi: 10.1016/j.carbon.2019.06.064 – volume: 6 start-page: 13628 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib23 article-title: Metal−Organic Framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03683 – volume: 463 start-page: 182 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib1 article-title: Core-shell nanostructured CS/MoS2: a promising material for microwave absorption publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.121 – volume: 6 start-page: 64 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib26 article-title: Cobalt-Doping enhancing electrochemical performance of Silicon/Carbon nanocomposite as highly efficient anode materials in Lithium-Ion batteries publication-title: Eng. Sci. – volume: 7 start-page: 1659 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib8 article-title: Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples publication-title: J. Mater. Chem. C doi: 10.1039/C8TC04984J – volume: 34 start-page: 1700006 year: 2017 ident: 10.1016/j.carbon.2020.06.014_bib36 article-title: Multiple interfaces structure derived from metal–organic frameworks for Excellent electromagnetic wave absorption publication-title: Pract. Syst. Charact. doi: 10.1002/ppsc.201700006 – volume: vol. 11 start-page: 39304 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib39 – volume: 239 start-page: 136 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib2 article-title: Synthesis of core–shell Fe3O4@ppy/graphite nanosheets composites with enhanced microwave absorption performance publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.12.001 – volume: 296 start-page: 907 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib33 article-title: Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.074 – volume: 575 start-page: 130 year: 2020 ident: 10.1016/j.carbon.2020.06.014_bib57 article-title: Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.04.099 – volume: 565 start-page: 142 year: 2020 ident: 10.1016/j.carbon.2020.06.014_bib32 article-title: N self-doped ZnO derived from microwave hydrothermal synthesized zeolitic imidazolate framework-8 toward enhanced photocatalytic degradation of methylene blue publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.12.107 – volume: 138 start-page: 143 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib61 article-title: Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss publication-title: Carbon doi: 10.1016/j.carbon.2018.06.009 – volume: 361 start-page: 1182 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib20 article-title: Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.172 – volume: 19 start-page: 42 year: 2020 ident: 10.1016/j.carbon.2020.06.014_bib58 article-title: Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber publication-title: Comps. Commun. doi: 10.1016/j.coco.2020.02.010 – volume: 559 start-page: 124 year: 2020 ident: 10.1016/j.carbon.2020.06.014_bib34 article-title: Carbon nitride nanoplatelet photocatalysts heterostructured with B-doped carbon nanodots for enhanced photodegradation of organic pollutants publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.10.015 – volume: 137 start-page: 5590 year: 2015 ident: 10.1016/j.carbon.2020.06.014_bib43 article-title: Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02465 – volume: 7 start-page: 22454 year: 2017 ident: 10.1016/j.carbon.2020.06.014_bib11 article-title: Facile synthesis of NiS2 @MoS2 core–shell nanospheres for effective enhancement in microwave absorption publication-title: The Royal Soc. Chem. – volume: 10 start-page: 29136 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib38 article-title: Highly cuboid-shaped heterobimetallic metal−organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09093 – volume: 9 start-page: 107 year: 2016 ident: 10.1016/j.carbon.2020.06.014_bib24 article-title: Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction publication-title: RSC Energy & Environ. Sci. doi: 10.1039/C5EE02903A – volume: 57 start-page: 12478 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib41 article-title: LDH Nanoflower lantern derived from ZIF-67 and its application for adsorptive removal of organics from water publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b01324 – volume: 121 start-page: 15784 year: 2017 ident: 10.1016/j.carbon.2020.06.014_bib4 article-title: Facile preparation of core−shell Fe3O4@Polypyrrole composites with superior electromagnetic wave absorption properties publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b04230 – volume: 43 start-page: 16546 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib46 article-title: Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties publication-title: The Royal Soc. Chem. – volume: 145 start-page: 433 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib16 article-title: Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods publication-title: Carbon doi: 10.1016/j.carbon.2019.01.028 – volume: 3 start-page: 5 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib13 article-title: Recent advances on the electromagnetic wave absorption properties of Ni based materials publication-title: Eng. Sci. – volume: 6 start-page: 8904 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib9 article-title: MOFs-Derived hollow Co/C microspheres with enhanced microwave absorption performance publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01270 – volume: 773 start-page: 423 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib52 article-title: In situ growth of BaTiO3 nanotube on the surface of reduced graphene oxide: a lightweight electromagnetic absorber publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.09.142 – volume: 163 start-page: 598 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib3 article-title: Broadband microwave absorption of Fe3O4@BaTiO3 composites enhanced by interfacial polarization and impedance matching publication-title: Composites Part B doi: 10.1016/j.compositesb.2019.01.008 – volume: 6 start-page: 8812 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib15 article-title: Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02127A – volume: 166 start-page: 464 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib10 article-title: Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber publication-title: Composites Part B doi: 10.1016/j.compositesb.2019.02.054 – volume: 809 start-page: 151837 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib45 article-title: Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.151837 – volume: 333 start-page: 519 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib60 article-title: Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.174 – volume: 1 start-page: 5179 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib22 article-title: Hierarchical FeCo@MoS2 nanoflowers with srong electromagnetic wave absorption and broad bandwidth publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b01203 – volume: 1 start-page: 5712 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib21 article-title: Nano bimetallic @carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b01326 – volume: 6 start-page: 1 year: 2020 ident: 10.1016/j.carbon.2020.06.014_bib14 article-title: Multifunctions of polymer nanocomposites: environmental remediation, electromagnetic interference shielding, and sensing applications publication-title: Chem. Nano Mater. – volume: 6 start-page: 10021 year: 2018 ident: 10.1016/j.carbon.2020.06.014_bib42 article-title: ZIF-67 as continuous self-sacrifice template derived NiCo2O4/Co,N-CNTs nanocages as efficient bifunctional electrocatalysts for rechargeable Zn−Air batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01332 – volume: 45 start-page: 11756 year: 2019 ident: 10.1016/j.carbon.2020.06.014_bib7 article-title: In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.03.052 – volume: 10 start-page: 284 issue: 1 year: 2017 ident: 10.1016/j.carbon.2020.06.014_bib62 article-title: Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and Polyvinylidene Fluoride publication-title: Nano Res. doi: 10.1007/s12274-016-1290-8 |
SSID | ssj0004814 |
Score | 2.6970778 |
Snippet | The perfect control over the constituent and architecture of porous nanomaterials is still a significant challenge in developing high performance... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 485 |
SubjectTerms | Absorbers Absorption Bimetallic carbon-based nanocomposites Bimetals carbon coordination polymers Current loss Dipoles Eddy current testing Eddy currents Electromagnetic radiation Electromagnetics Ferromagnetic resonance Ferromagnetism Graphene Hollow porous structure Impedance matching Iron constituents Lightweight Metal-organic frameworks Metallurgical constituents Metal−organic framework (MOF) Microwave absorption Nanocomposites Nanomaterials Polarization Porous materials Resonance scattering surface area Thermal decomposition thermal degradation |
Title | Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber |
URI | https://dx.doi.org/10.1016/j.carbon.2020.06.014 https://www.proquest.com/docview/2453914050 https://www.proquest.com/docview/2551999984 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9xADB5CekgvpW1aumkaJtCrs35oxuNjMF02DdleEshtmGfZktphd5uFHvLbI_mR0kIJBAzGj8FmJEufPNInxj4LJz0ABjlKVJBANHliXV4kZQSVVkpI0xGYXizk_Aq-XovrHVaPtTCUVjnY_t6md9Z6ODMdZnN6u1xSjS_BcUQEpLNlSRXlACVp-cn9nzQPUD2_Ny3z091j-VyX4-XMyrbEgpqnHYtnBv9zT_8Y6s77zF6zVwNs5Kf9m71hO6F5y_bqsVvbPvs9R4G2W45wGmN5XreL5bTmlDBOWVmBN6ZpEZz2-sY97u-C51Rcwi--zdYcsSsPHZ0EeiFuGs9vKGzfdn9O-dAs56f53lDRI9-au8CNXbcrG1bv2NXsy2U9T4a-ComDotgksUQQUqR59BVtZVDGGZV75UNUMsRKhtxVRbQB0YIyYLzLLMZNmRVe2QjFe7bbtE34wLiUSsZQ5spaCS6trAgAjuqBhTc4YsKKcTq1G0jHqffFjR6zy37oXgiahKApyS6DCUseR932pBtP3F-OktJ_KY9Gv_DEyMNRsHr4eNc6B1FUGHiKdMKOHy-jPGktxTQBxagxEiMCh0rBwbMf_pG9pCPyhJk4ZLub1a_wCSHOxh51OnzEXpyenc8XD2i7_SQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_q9aG-iK2Kp7Vdwddw-djdbB5L8Eht73xpoW_LfspJm5S7swf-9c4km4qCFIRAIJshYWcy85vszG8J-cStcIxBkiN5xRIWdJ4YmxdJGZhMK8mF7glMF0vRXLMvN_xmj9RjLwyWVUbfP_j03lvHK7M4m7P71Qp7fBGOAyJAmy3L8hnZR3YqPiH7Z-cXzfJ3e6QcKL5xpR8Fxg66vszL6rXpkAg1T3siz4z9K0L95av7ADR_SV5E5EjPhpc7JHu-PSIH9bhh2yvyswGddjsKiBrSeVp3y9WsplgzjoVZnra67QCfDiZHHZwfvKPYX0IXX-cbCvCV-p5RAgIR1a2jt5i57_qfpzTul3Onv7XY90h3-sFTbTbd2vj1a3I9_3xVN0ncWiGxrCi2SSgBhxRpHlyFR-mltlrmTjofpPChEj63VRGMB8AgNdPOZgZSp8xwJ01gxRsyabvWvyVUCCmCL3NpjGA2rQz3jFlsCeZOg8SUFON0Kht5x3H7i1s1Fph9V4MSFCpBYZ1dxqYkeZS6H3g3nri_HDWl_rAfBaHhCcnjUbEqfr8blTNeVJB78nRKPj4Ogz5xOUW3HtSoIBlDDodKsnf__fBTctBcLS7V5fny4j15jiMYGDN-TCbb9Q__ARDP1pxEi_4FCwD_1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hollow+porous+CoNi%2FC+composite+nanomaterials+derived+from+MOFs+for+efficient+and+lightweight+electromagnetic+wave+absorber&rft.jtitle=Carbon+%28New+York%29&rft.au=Wang%2C+Yan-Li&rft.au=Yang%2C+Shu-Hao&rft.au=Wang%2C+Hui-Ya&rft.au=Wang%2C+Guang-Sheng&rft.date=2020-10-15&rft.issn=0008-6223&rft.volume=167+p.485-494&rft.spage=485&rft.epage=494&rft_id=info:doi/10.1016%2Fj.carbon.2020.06.014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |