Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber

The perfect control over the constituent and architecture of porous nanomaterials is still a significant challenge in developing high performance electromagnetic wave absorption materials. In this work, we have designed and prepared a novel lightweight electromagnetic wave absorption material with t...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 167; pp. 485 - 494
Main Authors Wang, Yan-Li, Yang, Shu-Hao, Wang, Hui-Ya, Wang, Guang-Sheng, Sun, Xiao-Bo, Yin, Peng-Gang
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.10.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The perfect control over the constituent and architecture of porous nanomaterials is still a significant challenge in developing high performance electromagnetic wave absorption materials. In this work, we have designed and prepared a novel lightweight electromagnetic wave absorption material with the combination of hollow structure and bimetallic constituents by the thermal decomposition of metal−organic framework (MOF) ZIF-67. We found that by introducing additional metal Nickle into the porous Co/C composites, the CoNi/C-800-PVDF nanocomposite could yield an excellent reflection loss of −61.02 dB at 13.68 GHz and simultaneously possess effective absorbing bandwidth of 5.2 GHz with lower filler loading as 10 wt%, which corresponding to a less absorber thickness of 2 mm. These results demonstrate that the synergistic effects between the bimetallic components and hollow structure of novel CoNi/C composite optimize impedance matching, and thus improve the absorption performance greatly. The properties of specific surface area, interface polarization, dipole polarization, ferromagnetic resonance, eddy current loss and multiple scattering are investigated to further explain the high performance of materials. [Display omitted] •Hollow porous structure bimetallic carbon-based nanocomposite (CoNi/C) with excellent electromagnetic wave absorption properties was successfully synthesized.•An excellent reflection loss (RL) of −61.02 dB at 13.68 GHz with a low filler loading (10 wt%) and ultra-thin thickness (2.00 mm).•Effective absorption bandwidth (<−10 dB) up to 5.2 GHz under a single thickness (2.00 mm).
AbstractList The perfect control over the constituent and architecture of porous nanomaterials is still a significant challenge in developing high performance electromagnetic wave absorption materials. In this work, we have designed and prepared a novel lightweight electromagnetic wave absorption material with the combination of hollow structure and bimetallic constituents by the thermal decomposition of metal−organic framework (MOF) ZIF-67. We found that by introducing additional metal Nickle into the porous Co/C composites, the CoNi/C-800-PVDF nanocomposite could yield an excellent reflection loss of −61.02 dB at 13.68 GHz and simultaneously possess effective absorbing bandwidth of 5.2 GHz with lower filler loading as 10 wt%, which corresponding to a less absorber thickness of 2 mm. These results demonstrate that the synergistic effects between the bimetallic components and hollow structure of novel CoNi/C composite optimize impedance matching, and thus improve the absorption performance greatly. The properties of specific surface area, interface polarization, dipole polarization, ferromagnetic resonance, eddy current loss and multiple scattering are investigated to further explain the high performance of materials.
The perfect control over the constituent and architecture of porous nanomaterials is still a significant challenge in developing high performance electromagnetic wave absorption materials. In this work, we have designed and prepared a novel lightweight electromagnetic wave absorption material with the combination of hollow structure and bimetallic constituents by the thermal decomposition of metal−organic framework (MOF) ZIF-67. We found that by introducing additional metal Nickle into the porous Co/C composites, the CoNi/C-800-PVDF nanocomposite could yield an excellent reflection loss of −61.02 dB at 13.68 GHz and simultaneously possess effective absorbing bandwidth of 5.2 GHz with lower filler loading as 10 wt%, which corresponding to a less absorber thickness of 2 mm. These results demonstrate that the synergistic effects between the bimetallic components and hollow structure of novel CoNi/C composite optimize impedance matching, and thus improve the absorption performance greatly. The properties of specific surface area, interface polarization, dipole polarization, ferromagnetic resonance, eddy current loss and multiple scattering are investigated to further explain the high performance of materials. [Display omitted] •Hollow porous structure bimetallic carbon-based nanocomposite (CoNi/C) with excellent electromagnetic wave absorption properties was successfully synthesized.•An excellent reflection loss (RL) of −61.02 dB at 13.68 GHz with a low filler loading (10 wt%) and ultra-thin thickness (2.00 mm).•Effective absorption bandwidth (<−10 dB) up to 5.2 GHz under a single thickness (2.00 mm).
Author Yin, Peng-Gang
Wang, Guang-Sheng
Wang, Yan-Li
Sun, Xiao-Bo
Yang, Shu-Hao
Wang, Hui-Ya
Author_xml – sequence: 1
  givenname: Yan-Li
  surname: Wang
  fullname: Wang, Yan-Li
– sequence: 2
  givenname: Shu-Hao
  surname: Yang
  fullname: Yang, Shu-Hao
– sequence: 3
  givenname: Hui-Ya
  surname: Wang
  fullname: Wang, Hui-Ya
– sequence: 4
  givenname: Guang-Sheng
  surname: Wang
  fullname: Wang, Guang-Sheng
  email: wanggsh@buaa.edu.cn
– sequence: 5
  givenname: Xiao-Bo
  surname: Sun
  fullname: Sun, Xiao-Bo
  email: sunxb@buaa.edu.cn
– sequence: 6
  givenname: Peng-Gang
  surname: Yin
  fullname: Yin, Peng-Gang
BookMark eNqFkc1rHCEYxqWk0E3a_6AHoZdeZuLXzDo9FMrSNIV8XNqzOPqauszoVt1dmr8-DttTDomIL8LvedDnOUdnIQZA6CMlLSW0v9y2RqcxhpYRRlrSt4SKN2hF5Zo3XA70DK0IIbLpGePv0HnO23oVkooVeryO0xSPeBdT3Ge8iXf-coNNnHcx-wI46BBnXSB5PWVs6zyAxS7FGd_eX2XsYsLgnDceQsE6WDz5hz_lCMuJYQJTKqsfAhRv8FEfAOsxxzRCeo_eumoKH_7PC_T76vuvzXVzc__j5-bbTWME56Vxaz6sOWHODsteg9RGS2alBSd7cEMPzAzcjUAHIrXQ1tCRUkHHzsrRCX6BPp98dyn-3UMuavbZwDTpAPXPinUdHeqSC_rpGbqN-xTq6xQTHR-oIB2p1JcTZVLMOYFTxhddfAwlaT8pStRSi9qqUy1qqUWRXtVaqlg8E--Sn3X695rs60kGNamDh6TyErkB61PNWNnoXzZ4Ai0XrfM
CitedBy_id crossref_primary_10_1016_j_jcis_2023_11_153
crossref_primary_10_1016_j_jallcom_2024_176150
crossref_primary_10_1016_j_carbon_2020_10_039
crossref_primary_10_1007_s40820_021_00658_8
crossref_primary_10_1016_j_cej_2023_143763
crossref_primary_10_1016_j_apt_2021_10_010
crossref_primary_10_1016_j_jallcom_2022_164844
crossref_primary_10_1016_j_cej_2022_136394
crossref_primary_10_1016_j_materresbull_2023_112652
crossref_primary_10_1016_j_jmmm_2021_167990
crossref_primary_10_1016_j_matchemphys_2020_124169
crossref_primary_10_1016_j_synthmet_2023_117307
crossref_primary_10_1021_acs_inorgchem_3c02210
crossref_primary_10_1007_s10854_024_12148_9
crossref_primary_10_1016_j_cej_2024_157770
crossref_primary_10_1007_s10854_021_06397_1
crossref_primary_10_1016_j_carbon_2021_04_050
crossref_primary_10_1016_j_carbon_2022_10_043
crossref_primary_10_1016_j_jcis_2023_02_115
crossref_primary_10_1080_19475411_2022_2070681
crossref_primary_10_1016_j_cej_2022_134655
crossref_primary_10_1016_j_nanoms_2024_12_008
crossref_primary_10_1016_j_jcis_2023_07_054
crossref_primary_10_1016_j_jmst_2022_04_049
crossref_primary_10_1007_s40820_021_00734_z
crossref_primary_10_1016_j_carbon_2023_118280
crossref_primary_10_1007_s10853_024_09370_5
crossref_primary_10_1016_j_coco_2020_100492
crossref_primary_10_1016_j_coco_2021_100993
crossref_primary_10_1007_s12274_022_4411_6
crossref_primary_10_1016_j_cej_2023_144841
crossref_primary_10_1021_acsami_0c15771
crossref_primary_10_1016_j_compositesa_2021_106772
crossref_primary_10_1016_j_matchemphys_2021_124457
crossref_primary_10_1007_s12613_024_3025_2
crossref_primary_10_1039_D4TA06005A
crossref_primary_10_1016_j_apt_2020_12_002
crossref_primary_10_1039_D1TC04881C
crossref_primary_10_1002_aelm_202100121
crossref_primary_10_1016_j_jallcom_2023_171796
crossref_primary_10_1016_j_jmst_2022_04_031
crossref_primary_10_1016_j_compscitech_2022_109428
crossref_primary_10_3390_nano14181531
crossref_primary_10_1177_00219983231184017
crossref_primary_10_1016_j_jcis_2021_11_166
crossref_primary_10_1016_j_jallcom_2024_175973
crossref_primary_10_1021_acsaelm_1c00940
crossref_primary_10_1016_j_apsusc_2021_151789
crossref_primary_10_1016_j_optcom_2025_131494
crossref_primary_10_1007_s12613_022_2520_6
crossref_primary_10_1016_j_ceramint_2024_03_039
crossref_primary_10_1007_s11664_021_09035_y
crossref_primary_10_1016_j_carbon_2023_03_021
crossref_primary_10_1016_j_jcis_2021_10_006
crossref_primary_10_1016_j_solidstatesciences_2021_106775
crossref_primary_10_1016_j_compscitech_2023_110050
crossref_primary_10_1016_j_materresbull_2024_112911
crossref_primary_10_1016_j_jmst_2021_02_011
crossref_primary_10_1007_s10854_021_06906_2
crossref_primary_10_1016_j_jcis_2021_12_051
crossref_primary_10_1016_j_cej_2021_133865
crossref_primary_10_1016_j_jmst_2022_04_026
crossref_primary_10_2139_ssrn_4132137
crossref_primary_10_1016_j_jcis_2023_07_072
crossref_primary_10_1016_j_ceramint_2021_05_151
crossref_primary_10_1016_j_sna_2023_114645
crossref_primary_10_1016_j_jcis_2022_09_043
crossref_primary_10_1016_j_cej_2023_147413
crossref_primary_10_1002_smll_202402438
crossref_primary_10_1016_j_carbon_2023_118047
crossref_primary_10_1016_j_mssp_2023_107557
crossref_primary_10_1016_j_synthmet_2023_117334
crossref_primary_10_1002_smll_202206323
crossref_primary_10_1021_acsanm_3c06218
crossref_primary_10_1016_j_jmmm_2021_168250
crossref_primary_10_1021_acsanm_2c01215
crossref_primary_10_1016_j_carbon_2020_10_070
crossref_primary_10_1016_j_cej_2023_145224
crossref_primary_10_1007_s10853_023_09057_3
crossref_primary_10_1016_j_carbon_2021_11_044
crossref_primary_10_1039_D4TA05222F
crossref_primary_10_1016_j_carbon_2021_11_043
crossref_primary_10_1016_j_optmat_2022_113332
crossref_primary_10_2139_ssrn_3933562
crossref_primary_10_1007_s12274_022_5263_9
crossref_primary_10_1016_j_jcis_2023_06_042
crossref_primary_10_1016_j_jallcom_2021_161097
crossref_primary_10_1016_j_apsusc_2021_151334
crossref_primary_10_1021_acsanm_2c01544
crossref_primary_10_1016_j_colsurfa_2024_133694
crossref_primary_10_1016_j_jallcom_2023_170017
crossref_primary_10_1016_j_jcis_2021_08_206
crossref_primary_10_1007_s10854_023_11004_6
crossref_primary_10_1016_j_jcis_2021_11_110
crossref_primary_10_1007_s40820_021_00773_6
crossref_primary_10_1016_j_ceramint_2024_11_003
crossref_primary_10_1007_s00339_023_06992_5
crossref_primary_10_1016_j_carbon_2021_06_028
crossref_primary_10_1016_j_diamond_2024_110893
crossref_primary_10_1016_j_jallcom_2021_160556
crossref_primary_10_1016_j_jallcom_2022_165866
crossref_primary_10_1016_j_powtec_2024_120132
crossref_primary_10_2139_ssrn_4199855
crossref_primary_10_1016_j_carbon_2023_118506
crossref_primary_10_1016_j_carbon_2023_04_003
crossref_primary_10_1016_j_jallcom_2024_177955
crossref_primary_10_1016_j_jcis_2021_05_015
crossref_primary_10_1021_acsami_1c05007
crossref_primary_10_3390_coatings12010062
crossref_primary_10_1016_j_carbon_2023_01_056
crossref_primary_10_1016_j_carbon_2022_12_004
crossref_primary_10_1016_j_cjche_2021_12_031
crossref_primary_10_1016_j_jcis_2021_07_085
crossref_primary_10_1016_j_apsusc_2022_156219
crossref_primary_10_1016_j_carbon_2021_12_025
crossref_primary_10_1021_acsami_1c21396
crossref_primary_10_1016_j_mtcomm_2024_110483
crossref_primary_10_1016_j_jallcom_2021_162964
crossref_primary_10_1002_cjoc_202200691
crossref_primary_10_1016_j_jmmm_2022_169391
crossref_primary_10_1039_D3TC02072J
crossref_primary_10_1016_j_carbon_2021_05_028
crossref_primary_10_1039_D4TC02284J
crossref_primary_10_1021_acsaelm_4c00830
crossref_primary_10_1016_j_ceramint_2022_07_007
crossref_primary_10_1016_j_apsusc_2024_160283
crossref_primary_10_1016_j_apt_2022_103854
crossref_primary_10_1016_j_carbon_2021_02_060
crossref_primary_10_1016_j_jmst_2021_05_066
crossref_primary_10_1016_j_nanoms_2024_10_011
crossref_primary_10_1021_acs_chemmater_0c04734
crossref_primary_10_1590_1980_5373_mr_2022_0157
crossref_primary_10_1039_D1TA05181D
crossref_primary_10_1039_D1TC00841B
crossref_primary_10_1016_j_cej_2024_150649
crossref_primary_10_1016_j_mtcomm_2024_108171
crossref_primary_10_1016_j_carbon_2024_118823
crossref_primary_10_1016_j_carbon_2024_119114
crossref_primary_10_1016_j_cej_2024_151856
crossref_primary_10_1016_j_jcis_2021_01_013
crossref_primary_10_1016_j_jmmm_2022_170253
crossref_primary_10_1007_s42114_024_00890_x
crossref_primary_10_1021_acs_jpcc_2c06747
crossref_primary_10_1002_smll_202403689
crossref_primary_10_1016_j_carbon_2021_05_022
crossref_primary_10_1016_j_colsurfa_2023_133025
crossref_primary_10_1016_j_solidstatesciences_2022_106886
crossref_primary_10_1002_smsc_202100077
crossref_primary_10_1016_j_mtphys_2023_101126
crossref_primary_10_1039_D3NR03837H
crossref_primary_10_1021_acs_langmuir_3c03425
crossref_primary_10_1016_j_jcis_2022_02_104
crossref_primary_10_2139_ssrn_3950121
crossref_primary_10_1016_j_cej_2021_129960
crossref_primary_10_1016_j_compscitech_2022_109524
crossref_primary_10_1016_j_mtchem_2023_101840
crossref_primary_10_1007_s42114_021_00277_2
crossref_primary_10_1016_j_cej_2021_130725
crossref_primary_10_1021_acsaelm_3c00718
crossref_primary_10_1039_D2CE00578F
crossref_primary_10_1016_j_mseb_2024_117741
crossref_primary_10_1007_s40820_022_00804_w
crossref_primary_10_1016_j_jcis_2023_05_049
crossref_primary_10_1016_j_ceramint_2024_12_137
crossref_primary_10_2139_ssrn_4125219
crossref_primary_10_1007_s40820_022_00841_5
crossref_primary_10_1016_j_jmmm_2023_170405
crossref_primary_10_1016_j_diamond_2021_108669
crossref_primary_10_1016_j_jallcom_2023_172117
crossref_primary_10_1016_j_synthmet_2021_116731
crossref_primary_10_1016_j_jallcom_2021_159811
crossref_primary_10_1039_D1RA01880A
crossref_primary_10_1016_j_mtcomm_2021_102190
crossref_primary_10_1016_j_jallcom_2023_172594
crossref_primary_10_1016_j_jallcom_2022_166758
crossref_primary_10_1016_j_jallcom_2022_167726
crossref_primary_10_1016_j_isci_2023_107132
crossref_primary_10_1039_D3CP05641D
crossref_primary_10_1088_1361_665X_acf53d
crossref_primary_10_1002_smll_202204649
crossref_primary_10_1016_j_compositesb_2020_108491
crossref_primary_10_1016_j_jmmm_2025_172835
crossref_primary_10_1016_j_mtphys_2022_100950
crossref_primary_10_1016_j_jmst_2021_07_003
crossref_primary_10_1039_D1NR01607E
crossref_primary_10_1016_j_jallcom_2023_170742
crossref_primary_10_1021_acsanm_2c01993
crossref_primary_10_1016_j_ceramint_2025_01_320
crossref_primary_10_1016_j_carbon_2021_06_073
crossref_primary_10_1016_j_colsurfa_2024_135964
crossref_primary_10_1007_s40145_022_0624_0
crossref_primary_10_1016_j_carbon_2021_12_100
crossref_primary_10_1016_S1872_5805_22_60624_3
crossref_primary_10_1080_15583724_2020_1870490
crossref_primary_10_1016_j_carbon_2021_09_047
crossref_primary_10_1016_j_jmmm_2022_170348
crossref_primary_10_1016_j_apsusc_2021_150190
crossref_primary_10_1016_j_ceramint_2021_02_030
crossref_primary_10_1016_j_jallcom_2023_170829
crossref_primary_10_1016_j_vacuum_2023_112156
crossref_primary_10_3390_nano12162876
crossref_primary_10_1016_j_cej_2021_132253
crossref_primary_10_1111_jace_18220
crossref_primary_10_1016_j_cej_2021_133586
crossref_primary_10_1016_j_jcis_2023_12_132
crossref_primary_10_1016_j_ccr_2022_214429
crossref_primary_10_1016_j_carbon_2021_10_025
crossref_primary_10_1016_j_carbon_2022_08_090
crossref_primary_10_1016_j_jallcom_2024_174151
crossref_primary_10_1016_j_ecmx_2023_100515
crossref_primary_10_1039_D1TC00371B
crossref_primary_10_1007_s10854_023_10164_9
crossref_primary_10_1016_j_jcis_2023_05_197
crossref_primary_10_1016_j_compositesb_2021_109306
crossref_primary_10_1016_j_jallcom_2024_177092
crossref_primary_10_1016_j_jmst_2022_06_013
crossref_primary_10_1016_j_carbon_2020_08_057
crossref_primary_10_1007_s40820_021_00727_y
crossref_primary_10_1016_j_jclepro_2023_140118
crossref_primary_10_1016_j_compositesa_2024_108154
crossref_primary_10_1016_j_cej_2021_130079
crossref_primary_10_1016_j_jallcom_2021_162194
crossref_primary_10_1016_j_jcis_2022_08_082
crossref_primary_10_1007_s42114_022_00514_2
crossref_primary_10_1016_j_synthmet_2021_116716
crossref_primary_10_1021_acsami_2c13064
crossref_primary_10_1016_j_carbon_2022_04_042
crossref_primary_10_1016_j_jcis_2022_07_048
crossref_primary_10_1016_j_jallcom_2020_157706
crossref_primary_10_1016_j_ceramint_2025_01_222
crossref_primary_10_1080_19475411_2022_2095456
crossref_primary_10_1016_j_mtcomm_2023_107893
crossref_primary_10_1016_j_ceramint_2024_05_263
crossref_primary_10_1016_j_jallcom_2021_162343
crossref_primary_10_1002_advs_202204151
crossref_primary_10_1016_j_carbon_2024_119604
crossref_primary_10_1016_j_cej_2021_133919
crossref_primary_10_1016_j_carbon_2021_08_025
crossref_primary_10_1016_j_jcis_2021_11_197
crossref_primary_10_1016_j_carbon_2024_119289
crossref_primary_10_1016_j_jmmm_2023_171373
crossref_primary_10_1016_j_mtphys_2022_100801
crossref_primary_10_1016_j_carbon_2022_01_032
crossref_primary_10_2139_ssrn_3999204
crossref_primary_10_1016_j_mtphys_2023_101178
crossref_primary_10_1002_adem_202000827
crossref_primary_10_2139_ssrn_4196733
crossref_primary_10_1016_j_cej_2022_136475
crossref_primary_10_1007_s40195_021_01334_x
crossref_primary_10_1016_j_ijhydene_2022_04_036
crossref_primary_10_1016_j_jmst_2021_07_055
crossref_primary_10_1016_j_ceramint_2021_10_052
crossref_primary_10_1039_D2NR02490J
crossref_primary_10_1016_j_jcis_2023_03_194
crossref_primary_10_1016_j_diamond_2023_110499
crossref_primary_10_1016_j_ceramint_2024_09_039
crossref_primary_10_1039_D2TC02356C
crossref_primary_10_1039_D0TC05811D
crossref_primary_10_1007_s40097_022_00499_w
crossref_primary_10_1016_j_carbon_2023_118228
crossref_primary_10_1016_j_synthmet_2023_117354
crossref_primary_10_1016_j_carbon_2023_118587
crossref_primary_10_1016_j_isci_2023_107975
crossref_primary_10_1016_j_matchemphys_2021_124530
crossref_primary_10_1016_j_jcis_2022_06_156
crossref_primary_10_1039_D2TA02520E
crossref_primary_10_1039_D3CP01275A
crossref_primary_10_1016_j_materresbull_2025_113319
crossref_primary_10_1016_j_colsurfa_2024_135372
crossref_primary_10_1002_adfm_202212861
crossref_primary_10_1016_j_compositesa_2021_106451
crossref_primary_10_1016_j_cej_2022_140506
crossref_primary_10_1002_adfm_202302003
crossref_primary_10_1007_s10854_021_05523_3
crossref_primary_10_1007_s10853_022_07202_y
crossref_primary_10_1016_j_cej_2024_154854
crossref_primary_10_1002_adem_202100964
crossref_primary_10_1016_j_carbon_2022_10_015
crossref_primary_10_1016_j_mtcomm_2025_111689
crossref_primary_10_1016_j_carbon_2021_10_077
crossref_primary_10_1016_j_apsusc_2023_156910
crossref_primary_10_1016_j_ceramint_2022_03_093
crossref_primary_10_1007_s40820_021_00704_5
crossref_primary_10_1039_D2RA04764K
crossref_primary_10_1016_j_jcis_2023_08_195
crossref_primary_10_1039_D3TA04087A
crossref_primary_10_1007_s42114_024_01209_6
crossref_primary_10_1016_j_jmst_2021_06_021
crossref_primary_10_1002_smll_202101393
crossref_primary_10_1016_j_cej_2024_156589
crossref_primary_10_1016_j_jallcom_2023_170993
crossref_primary_10_1016_j_jallcom_2023_170992
crossref_primary_10_2139_ssrn_3974044
crossref_primary_10_1021_acsanm_3c01007
crossref_primary_10_1140_epjp_s13360_022_02680_0
crossref_primary_10_1016_j_mtcomm_2024_109520
crossref_primary_10_1016_j_jcis_2021_05_184
crossref_primary_10_1007_s10854_023_11633_x
crossref_primary_10_1007_s12274_022_4390_7
crossref_primary_10_1016_j_micromeso_2024_113323
crossref_primary_10_1016_j_jpowsour_2025_236230
crossref_primary_10_1016_j_mtchem_2024_102398
crossref_primary_10_1021_acsanm_3c04196
crossref_primary_10_1016_j_carbon_2022_05_041
crossref_primary_10_1007_s40820_021_00646_y
crossref_primary_10_1016_j_jmst_2024_06_018
crossref_primary_10_1016_j_cej_2021_130796
crossref_primary_10_1016_j_cej_2022_138442
crossref_primary_10_1002_sstr_202200219
crossref_primary_10_1016_j_jmst_2022_07_004
crossref_primary_10_1007_s10854_024_14123_w
crossref_primary_10_2139_ssrn_3929268
crossref_primary_10_1007_s42114_024_01077_0
crossref_primary_10_1016_j_jpcs_2021_110222
crossref_primary_10_1016_j_ceramint_2023_02_253
crossref_primary_10_1016_j_carbon_2025_120241
crossref_primary_10_1016_j_cej_2022_138205
crossref_primary_10_1016_j_jallcom_2023_173359
crossref_primary_10_1002_crat_202200200
crossref_primary_10_1016_j_jmst_2023_11_023
crossref_primary_10_1021_acsami_2c19926
Cites_doi 10.1021/acsami.8b00965
10.1016/j.ceramint.2019.08.173
10.1021/acsami.7b13063
10.1039/C9RA10327A
10.1021/ja960746q
10.1088/1361-6463/ab7df1
10.1016/j.carbon.2018.10.027
10.1016/j.jallcom.2020.155345
10.1088/1361-6528/ab31bf
10.1021/acsami.9b08525
10.1021/acssuschemeng.9b02913
10.1021/acsami.6b00264
10.1039/C5TC02063H
10.1016/j.jallcom.2017.09.082
10.1016/j.cej.2017.06.006
10.1016/j.jcis.2018.12.111
10.1021/acs.jpcc.9b06753
10.1021/acsami.9b23255
10.1007/s10854-019-01558-9
10.1021/acsanm.8b00703
10.1016/j.carbon.2018.09.006
10.1016/j.compositesb.2019.107283
10.1016/j.msec.2019.110132
10.1021/acsami.5b03177
10.1016/j.carbon.2019.06.064
10.1021/acssuschemeng.8b03683
10.1016/j.apsusc.2018.08.121
10.1039/C8TC04984J
10.1002/ppsc.201700006
10.1016/j.matlet.2018.12.001
10.1016/j.electacta.2018.11.074
10.1016/j.jcis.2020.04.099
10.1016/j.jcis.2019.12.107
10.1016/j.carbon.2018.06.009
10.1016/j.cej.2018.12.172
10.1016/j.coco.2020.02.010
10.1016/j.jcis.2019.10.015
10.1021/jacs.5b02465
10.1021/acsami.8b09093
10.1039/C5EE02903A
10.1021/acs.iecr.8b01324
10.1021/acs.jpcc.7b04230
10.1016/j.carbon.2019.01.028
10.1021/acssuschemeng.8b01270
10.1016/j.jallcom.2018.09.142
10.1016/j.compositesb.2019.01.008
10.1039/C8TC02127A
10.1016/j.compositesb.2019.02.054
10.1016/j.jallcom.2019.151837
10.1016/j.cej.2017.09.174
10.1021/acsanm.8b01203
10.1021/acsanm.8b01326
10.1021/acssuschemeng.8b01332
10.1016/j.ceramint.2019.03.052
10.1007/s12274-016-1290-8
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Oct 15, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 15, 2020
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.carbon.2020.06.014
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
EndPage 494
ExternalDocumentID 10_1016_j_carbon_2020_06_014
S0008622320305777
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
XPP
ZMT
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
IHE
R2-
RIG
SEW
SMS
WUQ
7SR
8FD
JG9
SSH
7S9
L.6
ID FETCH-LOGICAL-c433t-f7397302fd9fd9f7e8aca82d8def86ef96e2c93fbe1908a4adc1b1141b5d8bf43
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Jul 11 00:43:20 EDT 2025
Mon Jul 14 09:35:21 EDT 2025
Tue Aug 05 03:08:27 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Fri Feb 23 02:49:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bimetallic carbon-based nanocomposites
Microwave absorption
Impedance matching
Hollow porous structure
Metal−organic framework (MOF)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-f7397302fd9fd9f7e8aca82d8def86ef96e2c93fbe1908a4adc1b1141b5d8bf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2453914050
PQPubID 2045273
PageCount 10
ParticipantIDs proquest_miscellaneous_2551999984
proquest_journals_2453914050
crossref_citationtrail_10_1016_j_carbon_2020_06_014
crossref_primary_10_1016_j_carbon_2020_06_014
elsevier_sciencedirect_doi_10_1016_j_carbon_2020_06_014
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Sun, Shao, Zhang, Jiang, Ge, Lou, Lin, Zhang, Wu, Dong, Guo (bib32) 2020; 565
Wang, Wang, Shi (bib41) 2018; 57
Fan, Jiang, Xin, Zhang, Fu, Xie, Fan, Jiang, Xin, Cheng, Liu, Qu, Sun, Fan (bib56) 2019; 7
Zhou, Wu, Yan (bib22) 2018; 1
Wu, Cheng, Yang, Jia, Wu, Yang, Li, Guo, Lv (bib60) 2018; 333
Ran, Guo, Liu, Peng, Gao, Gao (bib48) 2019; 30
Chen, Luo, Liu, Tai, Lin, Murugadoss, Lin, Wang, Guo, Wang (bib30) 2020; 12
Yan, Wang, Wu, Huo, Duan (bib50) 2019; 30
Wang, Wen, Bai, Liu, Yang (bib64) 2019; 540
Kim, Lee, Lee, Park, Jung, Lee (bib20) 2019; 361
Song, Wang, Wang, Lin, Wei, Murugadoss, Wu, Guo, Ding, Wei (bib34) 2020; 559
Shi, Qi, Ma, Sun, Xiao, Wei, Huang, Liu, Li, Dong, Fan, Guo (bib29) 2019; 105
Ji, Huang, Yin, Zhao, Cheng, He, Li, He, Liu (bib5) 2018; 1
Hu, Han, Yu, Wang, Lou (bib24) 2016; 9
Wei, Wang, Li, Cui, Zhao, Chu, Wei, Wang, Pan, Li, Zhang, Liu, Wei, Guo (bib14) 2020; 6
Quan, Liang, Ji, Cheng, Liu, Ma (bib53) 2017; 728
Zhou, Jia, Feng, Qu, Wang, Liu, Wang, Wu (bib57) 2020; 575
Huang, Ji, Chen, Li, He, Cheng, He, Liu, Liu (bib3) 2019; 163
Liang, Quan, Chen, Gu, Zhang, Ji (bib21) 2018; 1
Imran, Zhang (bib31) 2020; 53
Liao, Matsagar, Wu (bib23) 2018; 6
Su, Wang, Zhang, Zhang, Wu, Dai, Zou, Shao (bib2) 2019; 239
Li, Han, Ma, Liu, Wang, Xu, Li, Du (bib9) 2018; 6
Feng, Hou, Jia, Wu (bib59) 2020; 10
Wu, Liu, Zeng, Cui, Zhao, Li, Tong (bib18) 2016; 8
Wu, Xu, Wang, Wang, Liu, Liu, Qian, Liu, Gao, Guo (bib16) 2019; 145
Lü, Wang, Li, Lin, Jiang, Xie, Kuang, Zheng (bib35) 2015; 7
Zhao, Deng, Zhang, Liang, Fan, Bai, Shao, Park (bib13) 2018; 3
Wu, Tan, Tian, Hu, Wang, Su, Li (bib4) 2017; 121
Wang, Guan, Qiu, Zhu, Pan, Yu, Zhang (bib40) 2017; 326
Liu, Tan, Yang, Ji (bib61) 2018; 138
Yu, Yang, Cheng, Cao (bib27) 2018; 3
Fan, Jiang, Hou, Deng, Liu, Zhang, Zhang, Fan (bib55) 2020; 835
Liu, Qiao, Zhang, Xu, Wu, Lv, Liu (bib46) 2019; 43
Wang, Zeng, Cao (bib28) 2018; 1
Ran, Guo, Zhong, Fu (bib52) 2019; 773
Liang, Quan, Sun, Ji, Zhang, Ma, Li, Zhang, Du (bib36) 2017; 34
Liu, Gao, Wang, Luo (bib49) 2019; 11
Wang, Chen, Tian, Li, Zhou, Duan, Liu (bib37) 2018; 10
Zhao, Li, Guo, Zhang, Zhang, Hou, Ding, Fan, Guo (bib17) 2019; 45
Wu, Liu, Xu, Liu, Liu, Liu, Zhang, Xie, Guo (bib8) 2019; 7
Liang, Wang (bib19) 2017; 9
Yaghi, Li, Groy (bib25) 1996; 118
Arief, Bhattacharje, PrakashO, Sahu, Suwas, Bose (bib47) 2019; 177
Sun, Dong, Wang, Wang, Fan, Hou, An, Dong, Fan, Guo (bib54) 2019; 123
Chen, Zhao, Wang, Peng, Liu, Zhang, Gu, Guo (bib7) 2019; 45
Idrees, Liu, Batool, Luo, Liang, Xu, Steven, Kong (bib26) 2019; 6
Yan, Huang, Chen, Liu, Liu (bib44) 2019; 152
Hu, Guan, Xia, Lou (bib43) 2015; 137
Xie, Li, He, Dang, Lin, Fan, Hou, Liu, Zhang, Ma, Guo (bib15) 2018; 6
Zhao, Cheng, Lv, Ji, Du (bib51) 2019; 142
Wang, Murugadoss, Kong, He, Mai, Angaiah, Guo (bib6) 2018; 140
Zhang, Jia, Feng, Zhou, Zhang, Wang, Liu, Wu (bib58) 2020; 19
Pan, Wang, GuO, Yu (bib62) 2017; 10
Liu, Chen, Xie, Qiu, Dong (bib45) 2019; 809
Wang, Bai, Wen, Du, Lin (bib10) 2019; 166
Zhang, Zhang, Zhu, Cheng, Qiu, Qi (bib1) 2019; 463
Jing, He, Zhang, Yang, Zhao (bib39) 2019; vol. 11
Zhao, Shao, Fan, Zhao, Zhang, Guan, Zhang (bib63) 2015; 3
Li, Lu, Huang, Liu, Zhuang, Zhong (bib42) 2018; 6
Zhang, Wang, Li, Guo, Zhu, Liu, Yin (bib11) 2017; 7
Lyu, Liu, Liu, Liu, Lu, Sun, Fan, Wang, Lu, Guo, Evan (bib12) 2018; 2
Du, Wang, Zhan, Sun, Kang, Jiang, Zhang, Shao, Dong, Liu, Murugadoss, Guo (bib33) 2019; 296
Liao, He, Zhou, Nie, Wang, Hu, Yang, Li, Tong (bib38) 2018; 10
Chen (10.1016/j.carbon.2020.06.014_bib30) 2020; 12
Wang (10.1016/j.carbon.2020.06.014_bib64) 2019; 540
Wu (10.1016/j.carbon.2020.06.014_bib16) 2019; 145
Liao (10.1016/j.carbon.2020.06.014_bib23) 2018; 6
Liu (10.1016/j.carbon.2020.06.014_bib49) 2019; 11
Lü (10.1016/j.carbon.2020.06.014_bib35) 2015; 7
Zhou (10.1016/j.carbon.2020.06.014_bib57) 2020; 575
Huang (10.1016/j.carbon.2020.06.014_bib3) 2019; 163
Wang (10.1016/j.carbon.2020.06.014_bib28) 2018; 1
Zhao (10.1016/j.carbon.2020.06.014_bib13) 2018; 3
Li (10.1016/j.carbon.2020.06.014_bib9) 2018; 6
Su (10.1016/j.carbon.2020.06.014_bib2) 2019; 239
Wang (10.1016/j.carbon.2020.06.014_bib41) 2018; 57
Shi (10.1016/j.carbon.2020.06.014_bib29) 2019; 105
Ran (10.1016/j.carbon.2020.06.014_bib48) 2019; 30
Arief (10.1016/j.carbon.2020.06.014_bib47) 2019; 177
Liang (10.1016/j.carbon.2020.06.014_bib19) 2017; 9
Zhao (10.1016/j.carbon.2020.06.014_bib51) 2019; 142
Zhou (10.1016/j.carbon.2020.06.014_bib22) 2018; 1
Yaghi (10.1016/j.carbon.2020.06.014_bib25) 1996; 118
Sun (10.1016/j.carbon.2020.06.014_bib54) 2019; 123
Xie (10.1016/j.carbon.2020.06.014_bib15) 2018; 6
Zhang (10.1016/j.carbon.2020.06.014_bib58) 2020; 19
Chen (10.1016/j.carbon.2020.06.014_bib7) 2019; 45
Liang (10.1016/j.carbon.2020.06.014_bib36) 2017; 34
Fan (10.1016/j.carbon.2020.06.014_bib56) 2019; 7
Hu (10.1016/j.carbon.2020.06.014_bib24) 2016; 9
Ji (10.1016/j.carbon.2020.06.014_bib5) 2018; 1
Du (10.1016/j.carbon.2020.06.014_bib33) 2019; 296
Lyu (10.1016/j.carbon.2020.06.014_bib12) 2018; 2
Wang (10.1016/j.carbon.2020.06.014_bib10) 2019; 166
Sun (10.1016/j.carbon.2020.06.014_bib32) 2020; 565
Wu (10.1016/j.carbon.2020.06.014_bib18) 2016; 8
Wei (10.1016/j.carbon.2020.06.014_bib14) 2020; 6
Pan (10.1016/j.carbon.2020.06.014_bib62) 2017; 10
Zhao (10.1016/j.carbon.2020.06.014_bib63) 2015; 3
Fan (10.1016/j.carbon.2020.06.014_bib55) 2020; 835
Yu (10.1016/j.carbon.2020.06.014_bib27) 2018; 3
Wang (10.1016/j.carbon.2020.06.014_bib40) 2017; 326
Imran (10.1016/j.carbon.2020.06.014_bib31) 2020; 53
Jing (10.1016/j.carbon.2020.06.014_bib39) 2019; vol. 11
Liu (10.1016/j.carbon.2020.06.014_bib46) 2019; 43
Kim (10.1016/j.carbon.2020.06.014_bib20) 2019; 361
Hu (10.1016/j.carbon.2020.06.014_bib43) 2015; 137
Yan (10.1016/j.carbon.2020.06.014_bib50) 2019; 30
Quan (10.1016/j.carbon.2020.06.014_bib53) 2017; 728
Zhang (10.1016/j.carbon.2020.06.014_bib1) 2019; 463
Yan (10.1016/j.carbon.2020.06.014_bib44) 2019; 152
Wu (10.1016/j.carbon.2020.06.014_bib4) 2017; 121
Li (10.1016/j.carbon.2020.06.014_bib42) 2018; 6
Wu (10.1016/j.carbon.2020.06.014_bib8) 2019; 7
Zhao (10.1016/j.carbon.2020.06.014_bib17) 2019; 45
Wu (10.1016/j.carbon.2020.06.014_bib60) 2018; 333
Zhang (10.1016/j.carbon.2020.06.014_bib11) 2017; 7
Song (10.1016/j.carbon.2020.06.014_bib34) 2020; 559
Liang (10.1016/j.carbon.2020.06.014_bib21) 2018; 1
Liao (10.1016/j.carbon.2020.06.014_bib38) 2018; 10
Feng (10.1016/j.carbon.2020.06.014_bib59) 2020; 10
Ran (10.1016/j.carbon.2020.06.014_bib52) 2019; 773
Liu (10.1016/j.carbon.2020.06.014_bib45) 2019; 809
Wang (10.1016/j.carbon.2020.06.014_bib37) 2018; 10
Wang (10.1016/j.carbon.2020.06.014_bib6) 2018; 140
Idrees (10.1016/j.carbon.2020.06.014_bib26) 2019; 6
Liu (10.1016/j.carbon.2020.06.014_bib61) 2018; 138
References_xml – volume: 137
  start-page: 5590
  year: 2015
  end-page: 5595
  ident: bib43
  article-title: Designed formation of Co
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib14
  article-title: Multifunctions of polymer nanocomposites: environmental remediation, electromagnetic interference shielding, and sensing applications
  publication-title: Chem. Nano Mater.
– volume: 10
  start-page: 10510
  year: 2020
  end-page: 10518
  ident: bib59
  article-title: Synthesis of hierarchical carbon fiber@cobalt ferrite@manganese dioxide composite and its application as microwave absorber
  publication-title: RSC Adv.
– volume: 45
  start-page: 24474
  year: 2019
  end-page: 24486
  ident: bib17
  article-title: Enhanced electromagnetic wave absorbing nickel (oxide)-carbon nanocomposites
  publication-title: Ceram. Int.
– volume: 559
  start-page: 124
  year: 2020
  end-page: 133
  ident: bib34
  article-title: Carbon nitride nanoplatelet photocatalysts heterostructured with B-doped carbon nanodots for enhanced photodegradation of organic pollutants
  publication-title: J. Colloid Interface Sci.
– volume: 43
  start-page: 16546
  year: 2019
  end-page: 16554
  ident: bib46
  article-title: Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties
  publication-title: The Royal Soc. Chem.
– volume: 138
  start-page: 143
  year: 2018
  end-page: 153
  ident: bib61
  article-title: Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss
  publication-title: Carbon
– volume: 145
  start-page: 433
  year: 2019
  end-page: 444
  ident: bib16
  article-title: Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods
  publication-title: Carbon
– volume: 540
  start-page: 30
  year: 2019
  end-page: 38
  ident: bib64
  article-title: Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber
  publication-title: J. Colloid Interface Sci.
– volume: 6
  start-page: 8904
  year: 2018
  end-page: 8913
  ident: bib9
  article-title: MOFs-Derived hollow Co/C microspheres with enhanced microwave absorption performance
  publication-title: ACS Sustain. Chem. Eng.
– volume: 7
  start-page: 13604
  year: 2015
  end-page: 13611
  ident: bib35
  article-title: MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties
  publication-title: Appl. Mater. Interfaces
– volume: vol. 11
  start-page: 39304
  year: 2019
  end-page: 39314
  ident: bib39
  article-title: Trimetallic FeCoNi@C Nanocomposite Hollow Spheres Derived from Metal−organic Frameworks with Superior Electromagnetic Wave Absorption Ability
– volume: 45
  start-page: 11756
  year: 2019
  end-page: 11764
  ident: bib7
  article-title: In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption
  publication-title: Ceram. Int.
– volume: 53
  start-page: 245503
  year: 2020
  ident: bib31
  article-title: Ferromagnetic shape memory Ni-Fe-Ga alloy foams for elastocaloric cooling
  publication-title: J. Phys. D Appl. Phys.
– volume: 333
  start-page: 519
  year: 2018
  end-page: 528
  ident: bib60
  article-title: Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 54
  year: 2018
  end-page: 61
  ident: bib27
  article-title: Zeolitic-imidazolate framework (ZIF)@ZnCo-zif core-shell template-derived Co, N-doped carbon catalysts for oxygen reduction reaction
  publication-title: Eng. Sci.
– volume: 773
  start-page: 423
  year: 2019
  end-page: 431
  ident: bib52
  article-title: In situ growth of BaTiO
  publication-title: J. Alloys Compd.
– volume: 177
  start-page: 107283
  year: 2019
  ident: bib47
  article-title: Tunable CoNi microstructures in flexible multilayered polymer films can shield electromagnetic radiation
  publication-title: Composites Part B
– volume: 809
  start-page: 151837
  year: 2019
  ident: bib45
  article-title: Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology
  publication-title: J. Alloys Compd.
– volume: 57
  start-page: 12478
  year: 2018
  end-page: 12484
  ident: bib41
  article-title: LDH Nanoflower lantern derived from ZIF-67 and its application for adsorptive removal of organics from water
  publication-title: Ind. Eng. Chem. Res.
– volume: 8
  start-page: 7370
  year: 2016
  end-page: 7380
  ident: bib18
  article-title: Facile hydrothermal synthesis of Fe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 40690
  year: 2017
  end-page: 40696
  ident: bib19
  article-title: Controllable fabricating dielectric−dielectric SiC@C core−shell nanowires for high-performance electromagnetic wave attenuation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 835
  start-page: 155345
  year: 2020
  ident: bib55
  article-title: Extremely facile and green synthesis of magnetic carbon composites drawn from natural bulrush for electromagnetic wave absorbing
  publication-title: J. Alloys Compd.
– volume: 19
  start-page: 42
  year: 2020
  end-page: 45
  ident: bib58
  article-title: Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber
  publication-title: Comps. Commun.
– volume: 140
  start-page: 696
  year: 2018
  end-page: 733
  ident: bib6
  article-title: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding
  publication-title: Carbon
– volume: 9
  start-page: 107
  year: 2016
  end-page: 111
  ident: bib24
  article-title: Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co
  publication-title: RSC Energy & Environ. Sci.
– volume: 118
  start-page: 9097
  year: 1996
  end-page: 9101
  ident: bib25
  article-title: Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid
  publication-title: Am. Chem. Soc.
– volume: 142
  start-page: 245
  year: 2019
  end-page: 253
  ident: bib51
  article-title: A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption
  publication-title: Carbon
– volume: 166
  start-page: 464
  year: 2019
  end-page: 471
  ident: bib10
  article-title: Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber
  publication-title: Composites Part B
– volume: 123
  start-page: 23635
  year: 2019
  end-page: 23642
  ident: bib54
  article-title: Tunable negative permittivity in flexible graphene/PDMS metacomposites
  publication-title: J. Phys. Chem. C
– volume: 105
  start-page: 110132
  year: 2019
  ident: bib29
  article-title: S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells
  publication-title: Mater. Sci. Eng. C
– volume: 2
  start-page: 26
  year: 2018
  end-page: 42
  ident: bib12
  article-title: An Overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding
  publication-title: Eng. Sci.
– volume: 10
  start-page: 29136
  year: 2018
  end-page: 29144
  ident: bib38
  article-title: Highly cuboid-shaped heterobimetallic metal−organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 55
  year: 2018
  end-page: 63
  ident: bib28
  article-title: Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/polyaniline composites as high performance supercapacitor materials
  publication-title: Eng. Sci.
– volume: 152
  start-page: 545
  year: 2019
  end-page: 555
  ident: bib44
  article-title: The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers
  publication-title: Carbon
– volume: 121
  start-page: 15784
  year: 2017
  end-page: 15792
  ident: bib4
  article-title: Facile preparation of core−shell Fe
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 22454
  year: 2017
  end-page: 22460
  ident: bib11
  article-title: Facile synthesis of NiS
  publication-title: The Royal Soc. Chem.
– volume: 30
  start-page: 435701
  year: 2019
  ident: bib48
  article-title: Bifunctional catalysts of CoNi nanoparticle-embedded nitrogen-doped carbon nanotubes for rechargeable Zn–air batteries
  publication-title: Nanotechnology
– volume: 11
  start-page: 25624
  year: 2019
  end-page: 25635
  ident: bib49
  article-title: Core−Shell CoNi@graphitic carbon decorated on B,N-Co doped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation
  publication-title: Appl. Mater. Interfaces
– volume: 361
  start-page: 1182
  year: 2019
  end-page: 1189
  ident: bib20
  article-title: Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption
  publication-title: Chem. Eng. J.
– volume: 728
  start-page: 1065
  year: 2017
  end-page: 1075
  ident: bib53
  article-title: Dielectric polarization in electromagnetic wave absorption: review and perspective
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 284
  year: 2017
  end-page: 294
  ident: bib62
  article-title: Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and Polyvinylidene Fluoride
  publication-title: Nano Res.
– volume: 12
  start-page: 13941
  year: 2020
  end-page: 13949
  ident: bib30
  article-title: Boosting multiple interfaces by Co-doped graphene quantum dots for high efficiency and durability perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 34
  start-page: 1700006
  year: 2017
  ident: bib36
  article-title: Multiple interfaces structure derived from metal–organic frameworks for Excellent electromagnetic wave absorption
  publication-title: Pract. Syst. Charact.
– volume: 30
  start-page: 12012
  year: 2019
  end-page: 12022
  ident: bib50
  article-title: MOF-derived graphitized porous carbon/Fe–Fe
  publication-title: Mater. Electron.
– volume: 7
  start-page: 1659
  year: 2019
  end-page: 1669
  ident: bib8
  article-title: Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples
  publication-title: J. Mater. Chem. C
– volume: 1
  start-page: 5179
  year: 2018
  end-page: 5187
  ident: bib22
  article-title: Hierarchical FeCo@MoS
  publication-title: ACS Appl. Nano Mater.
– volume: 1
  start-page: 3935
  year: 2018
  end-page: 3944
  ident: bib5
  article-title: Synthesis and electromagnetic and microwave absorption properties of monodispersive Fe
  publication-title: Appl. Nano Mater.
– volume: 10
  start-page: 11333
  year: 2018
  end-page: 11342
  ident: bib37
  article-title: Porous Co−C core−shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 5712
  year: 2018
  end-page: 5721
  ident: bib21
  article-title: Nano bimetallic @carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications
  publication-title: ACS Appl. Nano Mater.
– volume: 296
  start-page: 907
  year: 2019
  end-page: 915
  ident: bib33
  article-title: Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO
  publication-title: Electrochim. Acta
– volume: 463
  start-page: 182
  year: 2019
  end-page: 189
  ident: bib1
  article-title: Core-shell nanostructured CS/MoS
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 13628
  year: 2018
  end-page: 13643
  ident: bib23
  article-title: Metal−Organic Framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass
  publication-title: ACS Sustain. Chem. Eng.
– volume: 326
  start-page: 945
  year: 2017
  end-page: 955
  ident: bib40
  article-title: Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal–organic framework
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 10862
  year: 2015
  end-page: 10869
  ident: bib63
  article-title: In situ synthesis of novel urchin-like ZnS/Ni
  publication-title: J. Mater. Chem. C
– volume: 163
  start-page: 598
  year: 2019
  end-page: 605
  ident: bib3
  article-title: Broadband microwave absorption of Fe
  publication-title: Composites Part B
– volume: 7
  start-page: 18765
  year: 2019
  end-page: 18774
  ident: bib56
  article-title: Facile synthesis of Fe@Fe
  publication-title: ACS Sustain. Chem. Eng.
– volume: 6
  start-page: 64
  year: 2019
  end-page: 76
  ident: bib26
  article-title: Cobalt-Doping enhancing electrochemical performance of Silicon/Carbon nanocomposite as highly efficient anode materials in Lithium-Ion batteries
  publication-title: Eng. Sci.
– volume: 6
  start-page: 10021
  year: 2018
  end-page: 10029
  ident: bib42
  article-title: ZIF-67 as continuous self-sacrifice template derived NiCo
  publication-title: ACS Sustain. Chem. Eng.
– volume: 565
  start-page: 142
  year: 2020
  end-page: 155
  ident: bib32
  article-title: N self-doped ZnO derived from microwave hydrothermal synthesized zeolitic imidazolate framework-8 toward enhanced photocatalytic degradation of methylene blue
  publication-title: J. Colloid Interface Sci.
– volume: 575
  start-page: 130
  year: 2020
  end-page: 139
  ident: bib57
  article-title: Synthesis of porous carbon embedded with NiCo/CoNiO
  publication-title: J. Colloid Interface Sci.
– volume: 239
  start-page: 136
  year: 2019
  end-page: 139
  ident: bib2
  article-title: Synthesis of core–shell Fe
  publication-title: Mater. Lett.
– volume: 6
  start-page: 8812
  year: 2018
  ident: bib15
  article-title: Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption
  publication-title: J. Mater. Chem. C
– volume: 3
  start-page: 5
  year: 2018
  end-page: 40
  ident: bib13
  article-title: Recent advances on the electromagnetic wave absorption properties of Ni based materials
  publication-title: Eng. Sci.
– volume: 10
  start-page: 11333
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib37
  article-title: Porous Co−C core−shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00965
– volume: 45
  start-page: 24474
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib17
  article-title: Enhanced electromagnetic wave absorbing nickel (oxide)-carbon nanocomposites
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.08.173
– volume: 9
  start-page: 40690
  year: 2017
  ident: 10.1016/j.carbon.2020.06.014_bib19
  article-title: Controllable fabricating dielectric−dielectric SiC@C core−shell nanowires for high-performance electromagnetic wave attenuation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13063
– volume: 10
  start-page: 10510
  year: 2020
  ident: 10.1016/j.carbon.2020.06.014_bib59
  article-title: Synthesis of hierarchical carbon fiber@cobalt ferrite@manganese dioxide composite and its application as microwave absorber
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10327A
– volume: 118
  start-page: 9097
  year: 1996
  ident: 10.1016/j.carbon.2020.06.014_bib25
  article-title: Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid
  publication-title: Am. Chem. Soc.
  doi: 10.1021/ja960746q
– volume: 2
  start-page: 26
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib12
  article-title: An Overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding
  publication-title: Eng. Sci.
– volume: 53
  start-page: 245503
  year: 2020
  ident: 10.1016/j.carbon.2020.06.014_bib31
  article-title: Ferromagnetic shape memory Ni-Fe-Ga alloy foams for elastocaloric cooling
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/ab7df1
– volume: 3
  start-page: 54
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib27
  article-title: Zeolitic-imidazolate framework (ZIF)@ZnCo-zif core-shell template-derived Co, N-doped carbon catalysts for oxygen reduction reaction
  publication-title: Eng. Sci.
– volume: 142
  start-page: 245
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib51
  article-title: A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.10.027
– volume: 835
  start-page: 155345
  year: 2020
  ident: 10.1016/j.carbon.2020.06.014_bib55
  article-title: Extremely facile and green synthesis of magnetic carbon composites drawn from natural bulrush for electromagnetic wave absorbing
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.155345
– volume: 30
  start-page: 435701
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib48
  article-title: Bifunctional catalysts of CoNi nanoparticle-embedded nitrogen-doped carbon nanotubes for rechargeable Zn–air batteries
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab31bf
– volume: 11
  start-page: 25624
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib49
  article-title: Core−Shell CoNi@graphitic carbon decorated on B,N-Co doped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation
  publication-title: Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b08525
– volume: 7
  start-page: 18765
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib56
  article-title: Facile synthesis of Fe@Fe3C/C nanocomposites derived from bulrush for excellent electromagnetic wave-absorbing properties
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02913
– volume: 8
  start-page: 7370
  year: 2016
  ident: 10.1016/j.carbon.2020.06.014_bib18
  article-title: Facile hydrothermal synthesis of Fe3O4/C core−shell nanorings for efficient low-frequency microwave absorption
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00264
– volume: 3
  start-page: 10862
  year: 2015
  ident: 10.1016/j.carbon.2020.06.014_bib63
  article-title: In situ synthesis of novel urchin-like ZnS/Ni3S2@Ni composite with a core–shell structure for efficient electromagnetic absorption
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC02063H
– volume: 1
  start-page: 55
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib28
  article-title: Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/polyaniline composites as high performance supercapacitor materials
  publication-title: Eng. Sci.
– volume: 728
  start-page: 1065
  year: 2017
  ident: 10.1016/j.carbon.2020.06.014_bib53
  article-title: Dielectric polarization in electromagnetic wave absorption: review and perspective
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.09.082
– volume: 326
  start-page: 945
  year: 2017
  ident: 10.1016/j.carbon.2020.06.014_bib40
  article-title: Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal–organic framework
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.06.006
– volume: 540
  start-page: 30
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib64
  article-title: Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.12.111
– volume: 123
  start-page: 23635
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib54
  article-title: Tunable negative permittivity in flexible graphene/PDMS metacomposites
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b06753
– volume: 12
  start-page: 13941
  year: 2020
  ident: 10.1016/j.carbon.2020.06.014_bib30
  article-title: Boosting multiple interfaces by Co-doped graphene quantum dots for high efficiency and durability perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b23255
– volume: 30
  start-page: 12012
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib50
  article-title: MOF-derived graphitized porous carbon/Fe–Fe3C nanocomposites with broadband and enhanced microwave absorption performance
  publication-title: Mater. Electron.
  doi: 10.1007/s10854-019-01558-9
– volume: 1
  start-page: 3935
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib5
  article-title: Synthesis and electromagnetic and microwave absorption properties of monodispersive Fe3O4/α-Fe2O3 composites
  publication-title: Appl. Nano Mater.
  doi: 10.1021/acsanm.8b00703
– volume: 140
  start-page: 696
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib6
  article-title: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.006
– volume: 177
  start-page: 107283
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib47
  article-title: Tunable CoNi microstructures in flexible multilayered polymer films can shield electromagnetic radiation
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2019.107283
– volume: 105
  start-page: 110132
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib29
  article-title: S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.110132
– volume: 7
  start-page: 13604
  year: 2015
  ident: 10.1016/j.carbon.2020.06.014_bib35
  article-title: MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties
  publication-title: Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03177
– volume: 152
  start-page: 545
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib44
  article-title: The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.06.064
– volume: 6
  start-page: 13628
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib23
  article-title: Metal−Organic Framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03683
– volume: 463
  start-page: 182
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib1
  article-title: Core-shell nanostructured CS/MoS2: a promising material for microwave absorption
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.121
– volume: 6
  start-page: 64
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib26
  article-title: Cobalt-Doping enhancing electrochemical performance of Silicon/Carbon nanocomposite as highly efficient anode materials in Lithium-Ion batteries
  publication-title: Eng. Sci.
– volume: 7
  start-page: 1659
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib8
  article-title: Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC04984J
– volume: 34
  start-page: 1700006
  year: 2017
  ident: 10.1016/j.carbon.2020.06.014_bib36
  article-title: Multiple interfaces structure derived from metal–organic frameworks for Excellent electromagnetic wave absorption
  publication-title: Pract. Syst. Charact.
  doi: 10.1002/ppsc.201700006
– volume: vol. 11
  start-page: 39304
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib39
– volume: 239
  start-page: 136
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib2
  article-title: Synthesis of core–shell Fe3O4@ppy/graphite nanosheets composites with enhanced microwave absorption performance
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.12.001
– volume: 296
  start-page: 907
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib33
  article-title: Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.074
– volume: 575
  start-page: 130
  year: 2020
  ident: 10.1016/j.carbon.2020.06.014_bib57
  article-title: Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.04.099
– volume: 565
  start-page: 142
  year: 2020
  ident: 10.1016/j.carbon.2020.06.014_bib32
  article-title: N self-doped ZnO derived from microwave hydrothermal synthesized zeolitic imidazolate framework-8 toward enhanced photocatalytic degradation of methylene blue
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.12.107
– volume: 138
  start-page: 143
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib61
  article-title: Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.06.009
– volume: 361
  start-page: 1182
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib20
  article-title: Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.172
– volume: 19
  start-page: 42
  year: 2020
  ident: 10.1016/j.carbon.2020.06.014_bib58
  article-title: Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber
  publication-title: Comps. Commun.
  doi: 10.1016/j.coco.2020.02.010
– volume: 559
  start-page: 124
  year: 2020
  ident: 10.1016/j.carbon.2020.06.014_bib34
  article-title: Carbon nitride nanoplatelet photocatalysts heterostructured with B-doped carbon nanodots for enhanced photodegradation of organic pollutants
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.10.015
– volume: 137
  start-page: 5590
  year: 2015
  ident: 10.1016/j.carbon.2020.06.014_bib43
  article-title: Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02465
– volume: 7
  start-page: 22454
  year: 2017
  ident: 10.1016/j.carbon.2020.06.014_bib11
  article-title: Facile synthesis of NiS2 @MoS2 core–shell nanospheres for effective enhancement in microwave absorption
  publication-title: The Royal Soc. Chem.
– volume: 10
  start-page: 29136
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib38
  article-title: Highly cuboid-shaped heterobimetallic metal−organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b09093
– volume: 9
  start-page: 107
  year: 2016
  ident: 10.1016/j.carbon.2020.06.014_bib24
  article-title: Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction
  publication-title: RSC Energy & Environ. Sci.
  doi: 10.1039/C5EE02903A
– volume: 57
  start-page: 12478
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib41
  article-title: LDH Nanoflower lantern derived from ZIF-67 and its application for adsorptive removal of organics from water
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b01324
– volume: 121
  start-page: 15784
  year: 2017
  ident: 10.1016/j.carbon.2020.06.014_bib4
  article-title: Facile preparation of core−shell Fe3O4@Polypyrrole composites with superior electromagnetic wave absorption properties
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b04230
– volume: 43
  start-page: 16546
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib46
  article-title: Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties
  publication-title: The Royal Soc. Chem.
– volume: 145
  start-page: 433
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib16
  article-title: Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.028
– volume: 3
  start-page: 5
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib13
  article-title: Recent advances on the electromagnetic wave absorption properties of Ni based materials
  publication-title: Eng. Sci.
– volume: 6
  start-page: 8904
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib9
  article-title: MOFs-Derived hollow Co/C microspheres with enhanced microwave absorption performance
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01270
– volume: 773
  start-page: 423
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib52
  article-title: In situ growth of BaTiO3 nanotube on the surface of reduced graphene oxide: a lightweight electromagnetic absorber
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.09.142
– volume: 163
  start-page: 598
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib3
  article-title: Broadband microwave absorption of Fe3O4@BaTiO3 composites enhanced by interfacial polarization and impedance matching
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2019.01.008
– volume: 6
  start-page: 8812
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib15
  article-title: Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02127A
– volume: 166
  start-page: 464
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib10
  article-title: Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2019.02.054
– volume: 809
  start-page: 151837
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib45
  article-title: Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.151837
– volume: 333
  start-page: 519
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib60
  article-title: Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.174
– volume: 1
  start-page: 5179
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib22
  article-title: Hierarchical FeCo@MoS2 nanoflowers with srong electromagnetic wave absorption and broad bandwidth
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b01203
– volume: 1
  start-page: 5712
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib21
  article-title: Nano bimetallic @carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b01326
– volume: 6
  start-page: 1
  year: 2020
  ident: 10.1016/j.carbon.2020.06.014_bib14
  article-title: Multifunctions of polymer nanocomposites: environmental remediation, electromagnetic interference shielding, and sensing applications
  publication-title: Chem. Nano Mater.
– volume: 6
  start-page: 10021
  year: 2018
  ident: 10.1016/j.carbon.2020.06.014_bib42
  article-title: ZIF-67 as continuous self-sacrifice template derived NiCo2O4/Co,N-CNTs nanocages as efficient bifunctional electrocatalysts for rechargeable Zn−Air batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01332
– volume: 45
  start-page: 11756
  year: 2019
  ident: 10.1016/j.carbon.2020.06.014_bib7
  article-title: In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.03.052
– volume: 10
  start-page: 284
  issue: 1
  year: 2017
  ident: 10.1016/j.carbon.2020.06.014_bib62
  article-title: Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and Polyvinylidene Fluoride
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1290-8
SSID ssj0004814
Score 2.6970778
Snippet The perfect control over the constituent and architecture of porous nanomaterials is still a significant challenge in developing high performance...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 485
SubjectTerms Absorbers
Absorption
Bimetallic carbon-based nanocomposites
Bimetals
carbon
coordination polymers
Current loss
Dipoles
Eddy current testing
Eddy currents
Electromagnetic radiation
Electromagnetics
Ferromagnetic resonance
Ferromagnetism
Graphene
Hollow porous structure
Impedance matching
Iron constituents
Lightweight
Metal-organic frameworks
Metallurgical constituents
Metal−organic framework (MOF)
Microwave absorption
Nanocomposites
Nanomaterials
Polarization
Porous materials
Resonance scattering
surface area
Thermal decomposition
thermal degradation
Title Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber
URI https://dx.doi.org/10.1016/j.carbon.2020.06.014
https://www.proquest.com/docview/2453914050
https://www.proquest.com/docview/2551999984
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9xADB5CekgvpW1aumkaJtCrs35oxuNjMF02DdleEshtmGfZktphd5uFHvLbI_mR0kIJBAzGj8FmJEufPNInxj4LJz0ABjlKVJBANHliXV4kZQSVVkpI0xGYXizk_Aq-XovrHVaPtTCUVjnY_t6md9Z6ODMdZnN6u1xSjS_BcUQEpLNlSRXlACVp-cn9nzQPUD2_Ny3z091j-VyX4-XMyrbEgpqnHYtnBv9zT_8Y6s77zF6zVwNs5Kf9m71hO6F5y_bqsVvbPvs9R4G2W45wGmN5XreL5bTmlDBOWVmBN6ZpEZz2-sY97u-C51Rcwi--zdYcsSsPHZ0EeiFuGs9vKGzfdn9O-dAs56f53lDRI9-au8CNXbcrG1bv2NXsy2U9T4a-ComDotgksUQQUqR59BVtZVDGGZV75UNUMsRKhtxVRbQB0YIyYLzLLMZNmRVe2QjFe7bbtE34wLiUSsZQ5spaCS6trAgAjuqBhTc4YsKKcTq1G0jHqffFjR6zy37oXgiahKApyS6DCUseR932pBtP3F-OktJ_KY9Gv_DEyMNRsHr4eNc6B1FUGHiKdMKOHy-jPGktxTQBxagxEiMCh0rBwbMf_pG9pCPyhJk4ZLub1a_wCSHOxh51OnzEXpyenc8XD2i7_SQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_q9aG-iK2Kp7Vdwddw-djdbB5L8Eht73xpoW_LfspJm5S7swf-9c4km4qCFIRAIJshYWcy85vszG8J-cStcIxBkiN5xRIWdJ4YmxdJGZhMK8mF7glMF0vRXLMvN_xmj9RjLwyWVUbfP_j03lvHK7M4m7P71Qp7fBGOAyJAmy3L8hnZR3YqPiH7Z-cXzfJ3e6QcKL5xpR8Fxg66vszL6rXpkAg1T3siz4z9K0L95av7ADR_SV5E5EjPhpc7JHu-PSIH9bhh2yvyswGddjsKiBrSeVp3y9WsplgzjoVZnra67QCfDiZHHZwfvKPYX0IXX-cbCvCV-p5RAgIR1a2jt5i57_qfpzTul3Onv7XY90h3-sFTbTbd2vj1a3I9_3xVN0ncWiGxrCi2SSgBhxRpHlyFR-mltlrmTjofpPChEj63VRGMB8AgNdPOZgZSp8xwJ01gxRsyabvWvyVUCCmCL3NpjGA2rQz3jFlsCeZOg8SUFON0Kht5x3H7i1s1Fph9V4MSFCpBYZ1dxqYkeZS6H3g3nri_HDWl_rAfBaHhCcnjUbEqfr8blTNeVJB78nRKPj4Ogz5xOUW3HtSoIBlDDodKsnf__fBTctBcLS7V5fny4j15jiMYGDN-TCbb9Q__ARDP1pxEi_4FCwD_1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hollow+porous+CoNi%2FC+composite+nanomaterials+derived+from+MOFs+for+efficient+and+lightweight+electromagnetic+wave+absorber&rft.jtitle=Carbon+%28New+York%29&rft.au=Wang%2C+Yan-Li&rft.au=Yang%2C+Shu-Hao&rft.au=Wang%2C+Hui-Ya&rft.au=Wang%2C+Guang-Sheng&rft.date=2020-10-15&rft.issn=0008-6223&rft.volume=167+p.485-494&rft.spage=485&rft.epage=494&rft_id=info:doi/10.1016%2Fj.carbon.2020.06.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon