MIMO Radar Waveform Design for Multipath Exploitation Using Deep Learning
This paper investigates the design of waveforms for multiple-input multiple-output (MIMO) radar systems that can exploit multipath returns to enhance target detection performance. By making reasonable use of multipath information in the waveform design, MIMO radar can effectively improve the signal-...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 11; p. 2747 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
25.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates the design of waveforms for multiple-input multiple-output (MIMO) radar systems that can exploit multipath returns to enhance target detection performance. By making reasonable use of multipath information in the waveform design, MIMO radar can effectively improve the signal-to-interference and noise ratio (SINR) of the receiver under a constant modulus (CM) constraint. However, optimizing the waveform design under these constraints is a challenging non-linear and non-convex problem that cannot be easily solved using traditional methods. To overcome this challenge, we proposed a novel waveform design method for MIMO radar in multipath scenarios based on deep learning. Specifically, we leveraged the powerful nonlinear fitting ability of neural networks to solve the non-convex optimization problem. First, we constructed a deep residual network and transform the CM constraint into a phase sequence optimization problem. Next, we used the constructed waveform optimization design problem as the loss function of the network. Finally, we used the adaptive moment estimation (Adam) optimizer to train the network. Simulation results demonstrated that our proposed method outperformed existing methods by achieving better SINR values for the receiver. |
---|---|
AbstractList | This paper investigates the design of waveforms for multiple-input multiple-output (MIMO) radar systems that can exploit multipath returns to enhance target detection performance. By making reasonable use of multipath information in the waveform design, MIMO radar can effectively improve the signal-to-interference and noise ratio (SINR) of the receiver under a constant modulus (CM) constraint. However, optimizing the waveform design under these constraints is a challenging non-linear and non-convex problem that cannot be easily solved using traditional methods. To overcome this challenge, we proposed a novel waveform design method for MIMO radar in multipath scenarios based on deep learning. Specifically, we leveraged the powerful nonlinear fitting ability of neural networks to solve the non-convex optimization problem. First, we constructed a deep residual network and transform the CM constraint into a phase sequence optimization problem. Next, we used the constructed waveform optimization design problem as the loss function of the network. Finally, we used the adaptive moment estimation (Adam) optimizer to train the network. Simulation results demonstrated that our proposed method outperformed existing methods by achieving better SINR values for the receiver. |
Audience | Academic |
Author | Xie, Hanfeng Chen, Jinfan Zhang, Yue Sui, Yunfeng Zheng, Zixiang Peng, Xiangyu Mo, Junxian |
Author_xml | – sequence: 1 givenname: Zixiang orcidid: 0009-0002-2410-363X surname: Zheng fullname: Zheng, Zixiang – sequence: 2 givenname: Yue surname: Zhang fullname: Zhang, Yue – sequence: 3 givenname: Xiangyu surname: Peng fullname: Peng, Xiangyu – sequence: 4 givenname: Hanfeng surname: Xie fullname: Xie, Hanfeng – sequence: 5 givenname: Jinfan surname: Chen fullname: Chen, Jinfan – sequence: 6 givenname: Junxian surname: Mo fullname: Mo, Junxian – sequence: 7 givenname: Yunfeng surname: Sui fullname: Sui, Yunfeng |
BookMark | eNptkV1rFDEUhgdpwdr2xl8w4I0IW_M5H5el1rqwS6G0eBnOJCdrltlkTGaL_ntP3aJSTC5yEp73PTm8b6qjmCJW1VvOLqTs2cdcuOZctKp9VZ0I1oqFEr04-qd-XZ2XsmW0pOQ9UyfVcr1c39Z34CDXX-ERfcq7-hOWsIk11fV6P85hgvlbff1jGlOYYQ4p1g8lxA1xONUrhBzpdlYdexgLnj-fp9XD5-v7qy-L1e3N8upytbBKynnhtXeOI0dwYui013IA6JErlB2XPQ790FrfuEEQZtEKDWxgtlHSMdsJJU-r5cHXJdiaKYcd5J8mQTC_H1LeGMhzsCOajqSi0Upy6ZRqxGA5Qyn6pulQKz2Q1_uD15TT9z2W2exCsTiOEDHti5FMMaVboTWh716g27TPkSY1gr7FlGIdI-riQG2A-ofo05zB0na4C5bi8oHeL1tNlj2JSPDhILA5lZLR_5mIM_OUqvmbKsHsBWyfA6EuYfyf5BdAI6Op |
CitedBy_id | crossref_primary_10_3390_rs15153877 crossref_primary_10_3390_rs15174322 crossref_primary_10_3390_rs16040621 crossref_primary_10_3390_s24186074 crossref_primary_10_3390_rs16213986 crossref_primary_10_1109_JSEN_2024_3357891 crossref_primary_10_3390_electronics13173471 crossref_primary_10_3390_rs16152860 |
Cites_doi | 10.1109/TAES.2014.130451 10.3390/rs14174356 10.1109/WiCom.2008.518 10.1109/SAM48682.2020.9104320 10.1109/TSP.2009.2012562 10.1109/26.990911 10.1109/TSP.2013.2278154 10.1109/7.303775 10.1109/TAES.2007.357137 10.1109/78.912915 10.1109/49.806814 10.1109/TAES.2018.2852200 10.1109/TSP.2010.2086448 10.1049/iet-spr.2015.0181 10.23919/JCC.2019.06.007 10.1016/j.sigpro.2017.08.003 10.1109/TSP.2017.2787104 10.1109/TAES.1974.307892 10.1109/TSP.2021.3082460 10.1049/iet-rsn.2012.0081 10.1109/ICCChina.2018.8641214 10.1049/iet-rsn.2020.0059 10.1016/j.sigpro.2017.10.010 10.1109/TAES.2022.3150619 10.1201/9780429499661 10.1109/SAM.2010.5606764 10.1109/TAES.2014.120731 10.1109/LSP.2007.905051 10.1109/CVPR.2016.90 10.1109/MSP.2007.904812 10.1109/RADAR.2014.7060251 10.4218/etrij.2022-0101 10.1109/WDDC.2009.4800358 10.1109/TSP.2014.2388439 10.1109/TSP.2007.894398 10.1109/PROC.1974.9509 10.1109/TSP.2012.2197615 10.1109/TSP.2010.2044834 10.1109/TSP.2009.2025108 10.1109/TSP.2021.3112042 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15112747 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_8a0b2654313d4462bc10e329668e545b A752559404 10_3390_rs15112747 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-f5fdd1e1ead2b85f53baa9e14e38139eb9b7cf6db2dd1cec25a0b0c643d0c8243 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:29:05 EDT 2025 Fri Jul 11 02:04:42 EDT 2025 Fri Jul 25 11:37:36 EDT 2025 Tue Jun 10 20:58:24 EDT 2025 Tue Jul 01 03:11:09 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-f5fdd1e1ead2b85f53baa9e14e38139eb9b7cf6db2dd1cec25a0b0c643d0c8243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0002-2410-363X |
OpenAccessLink | https://doaj.org/article/8a0b2654313d4462bc10e329668e545b |
PQID | 2824044080 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8a0b2654313d4462bc10e329668e545b proquest_miscellaneous_3040457255 proquest_journals_2824044080 gale_infotracacademiconefile_A752559404 crossref_primary_10_3390_rs15112747 crossref_citationtrail_10_3390_rs15112747 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-25 |
PublicationDateYYYYMMDD | 2023-05-25 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Barton (ref_1) 1974; 62 Wang (ref_33) 2012; 60 Sen (ref_38) 2010; 58 Zhao (ref_22) 2019; 16 Raei (ref_18) 2021; 69 Naghsh (ref_31) 2013; 61 ref_14 ref_13 Petrus (ref_25) 2002; 50 Stoica (ref_34) 2009; 57 ref_10 Hayvaci (ref_9) 2013; 7 Tang (ref_27) 2018; 142 Yang (ref_30) 2007; 43 Yu (ref_32) 2017; 144 Xin (ref_5) 2001; 49 ref_19 White (ref_2) 1974; 10 ref_37 Sen (ref_39) 2011; 59 He (ref_35) 2009; 57 Yu (ref_28) 2019; 55 Yu (ref_17) 2022; 58 Aubry (ref_8) 2015; 63 ref_23 ref_45 Yu (ref_7) 2014; 50 Li (ref_36) 2018; 66 ref_44 Stoica (ref_15) 2007; 55 ref_21 ref_43 ref_20 ref_41 Li (ref_12) 2007; 24 Imani (ref_42) 2023; 10 Xu (ref_40) 2021; 69 Stoica (ref_16) 2007; 14 Yilmaz (ref_11) 2020; 14 ref_26 Ertel (ref_24) 1999; 17 Aubry (ref_29) 2014; 50 Kumar (ref_3) 1994; 30 ref_4 ref_6 |
References_xml | – volume: 50 start-page: 2604 year: 2014 ident: ref_7 article-title: MIMO adaptive beamforming for nonseparable multipath clutter mitigation publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2014.130451 – ident: ref_41 doi: 10.3390/rs14174356 – ident: ref_20 doi: 10.1109/WiCom.2008.518 – ident: ref_10 doi: 10.1109/SAM48682.2020.9104320 – volume: 57 start-page: 1415 year: 2009 ident: ref_34 article-title: New Algorithms for Designing Unimodular Sequences with Good Correlation Properties publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2012562 – ident: ref_26 – volume: 50 start-page: 495 year: 2002 ident: ref_25 article-title: Geometrical-based statistical macrocell channel model for mobile environments publication-title: IEEE Trans. Commun. doi: 10.1109/26.990911 – volume: 61 start-page: 5401 year: 2013 ident: ref_31 article-title: Unified Optimization Framework for Multi-Static Radar Code Design Using Information-Theoretic Criteria publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2278154 – volume: 30 start-page: 973 year: 1994 ident: ref_3 article-title: Tracking low elevation targets in the presence of multipath propagation publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.303775 – volume: 43 start-page: 330 year: 2007 ident: ref_30 article-title: MIMO radar waveform design based on mutual information and minimum mean-square error estimation publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2007.357137 – volume: 49 start-page: 710 year: 2001 ident: ref_5 article-title: Linear prediction approach to direction estimation of cyclostationary signals in multipath environment publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.912915 – volume: 17 start-page: 1829 year: 1999 ident: ref_24 article-title: Angle and time of arrival statistics for circular and elliptical scattering model publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/49.806814 – volume: 55 start-page: 356 year: 2019 ident: ref_28 article-title: Constrained Waveform Design for Colocated MIMO Radar With Uncertain Steering Matrices publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2018.2852200 – volume: 59 start-page: 78 year: 2011 ident: ref_39 article-title: Adaptive OFDM radar for target detection in multipath scenarios publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2086448 – volume: 10 start-page: 309 year: 2023 ident: ref_42 article-title: Sequential quasi-convex-based algorithm for waveform design in colocated multiple-input multiple-output radars publication-title: IET Signal Process. doi: 10.1049/iet-spr.2015.0181 – volume: 16 start-page: 80 year: 2019 ident: ref_22 article-title: Neural network and GBSM based time-varying and stochastic channel modeling for 5G millimeter wave communications publication-title: China Commun. doi: 10.23919/JCC.2019.06.007 – volume: 142 start-page: 398 year: 2018 ident: ref_27 article-title: Alternating direction method of multipliers for radar waveform design in spectrally crowded environments publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.08.003 – volume: 66 start-page: 1197 year: 2018 ident: ref_36 article-title: Fast Algorithms for Designing Unimodular Waveform(s) with Good Correlation Properties publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2787104 – volume: 10 start-page: 835 year: 1974 ident: ref_2 article-title: Low-Angle Radar Tracking in the Presence of Multipath publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.1974.307892 – volume: 69 start-page: 3283 year: 2021 ident: ref_18 article-title: Spatial-and range-ISLR trade-off in MIMO radar via waveform correlation optimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3082460 – ident: ref_21 – volume: 7 start-page: 36 year: 2013 ident: ref_9 article-title: Improved detection probability of a radar target in the presence of multipath with prior knowledge of the environment publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2012.0081 – ident: ref_23 doi: 10.1109/ICCChina.2018.8641214 – volume: 14 start-page: 1475 year: 2020 ident: ref_11 article-title: Multipath exploitation radar with adaptive detection in partially homogeneous environments publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2020.0059 – volume: 144 start-page: 145 year: 2017 ident: ref_32 article-title: Constrained Transmit Beampattern Design for Colocated MIMO Radar publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.10.010 – volume: 58 start-page: 2935 year: 2022 ident: ref_17 article-title: Multi-spectrally constrained MIMO radar beampattern design via sequential convex approximation publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2022.3150619 – ident: ref_43 doi: 10.1201/9780429499661 – ident: ref_4 doi: 10.1109/SAM.2010.5606764 – ident: ref_6 – volume: 50 start-page: 1138 year: 2014 ident: ref_29 article-title: Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2014.120731 – volume: 14 start-page: 968 year: 2007 ident: ref_16 article-title: On Parameter Identifiability of MIMO Radar publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2007.905051 – ident: ref_44 doi: 10.1109/CVPR.2016.90 – volume: 24 start-page: 106 year: 2007 ident: ref_12 article-title: MIMO Radar with Colocated Antennas publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2007.904812 – ident: ref_14 doi: 10.1109/RADAR.2014.7060251 – ident: ref_19 doi: 10.4218/etrij.2022-0101 – ident: ref_37 doi: 10.1109/WDDC.2009.4800358 – volume: 63 start-page: 1268 year: 2015 ident: ref_8 article-title: Diffuse Multipath Exploitation for Adaptive Radar Detection publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2388439 – volume: 55 start-page: 4151 year: 2007 ident: ref_15 article-title: On Probing Signal Design For MIMO Radar publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.894398 – volume: 62 start-page: 687 year: 1974 ident: ref_1 article-title: Low-angle radar tracking publication-title: Proc. IEEE doi: 10.1109/PROC.1974.9509 – volume: 60 start-page: 4432 year: 2012 ident: ref_33 article-title: On the Design of Constant Modulus Probing Signals for MIMO Radar publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2197615 – ident: ref_13 – volume: 58 start-page: 3152 year: 2010 ident: ref_38 article-title: OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2044834 – ident: ref_45 – volume: 57 start-page: 4391 year: 2009 ident: ref_35 article-title: Designing Unimodular Sequence Sets with Good Correlations—Including an Application to MIMO Radar publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2025108 – volume: 69 start-page: 5359 year: 2021 ident: ref_40 article-title: MIMO Radar Waveform Design for Multipath Exploitation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3112042 |
SSID | ssj0000331904 |
Score | 2.3814228 |
Snippet | This paper investigates the design of waveforms for multiple-input multiple-output (MIMO) radar systems that can exploit multipath returns to enhance target... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2747 |
SubjectTerms | Algorithms Antennas Artificial intelligence Comparative analysis Convexity Deep learning Design Design and construction Design optimization Design techniques Exploitation Methods MIMO communication MIMO radar multipath exploitation Neural networks Optimization Parameter estimation Radar Radar equipment Radar systems Receivers & amplifiers Remote sensing Signal processing SINR system optimization Target detection Technology application waveform design Waveforms |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxwxDLYoHOgFtQXUAVqlAglxGDGZJMzMqYIWhJB4CIHgFuW5HNDusrsg9d_XzmYXDrS30cSKEsdx7MT2B7BDL0FKqFC2svOl9DGWXXAoy6Yx3kTXmZQUdn5xcHorz-7Vfb5wG-ewyplOTIraDxzdke-jayATPHL1c_hUEmoUva5mCI0PsIQquEXna-no-OLqen7LUgkUsUpO65IK9O_3R2NONkZDeCpvTqJUsP9fajmdNSefYCUbiexwuqqfYSH0v8Byxit_-LMKqHHOL9k1znPE7sxLIMuT_U7BGAy_WUqrJbBhlmLsch1uluIDkC4MWa6r2luD25Pjm1-nZQZFKJ0UYlJGFb3ngaME1LZVUQlrTBe4DHj2ii7YzjYuEkoUkrngamUqWzk0PHzlkIdiHRb7g374Cswa1Uhpu4gN8iA4o3zNI3ZSW6ki5wXszRikXR4pAVc8avQciJn6lZkFbM9ph9M6Ge9SHRGf5xRU2zr9GIx6Om8V3eKAa0p55cKjs1pbx6sgavTL2oD2ni1gl1ZJ0w7E4TiTEwlwUlTLSh82ivwklJYCtmYLqfPWHOtXQSrgx7wZNxW9lJh-GDyPtUDVJlWD3Wz8v4tN-Ej48xROUKstWJyMnsM3tFIm9nsWxb9StubO priority: 102 providerName: ProQuest |
Title | MIMO Radar Waveform Design for Multipath Exploitation Using Deep Learning |
URI | https://www.proquest.com/docview/2824044080 https://www.proquest.com/docview/3040457255 https://doaj.org/article/8a0b2654313d4462bc10e329668e545b |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB619NBeUF-oAbpyRaWqh4j4RZLj8tiiiqUVLYKbZTs2PVQL2l2Q-PfMOGbZQxGXnhLFo8iesechz8wH8JlugrTUoWxU25Wqi7Fsg8e9bGvb2ehbm4rCxsc7h6fq-7k-X4L6opywvj1wz7jtxlZOUAEklx2GLsJ5XgUp0EtvAlp_R9oXbd5SMJV0sMStVam-H6nEuH57OuPkW9SEo7JkgVKj_sfUcbIxo9ewmp1DNuwn9QaehclbeJlxyv_cvgPUNOMf7ATXN2Vn9iaQx8n2UxIGw3eWymkJZJil3Lrcf5ulvACkC1cs91O9eA-no4Pfe4dlBkMovZJyXkYdu44HjpIXrtFRS2dtG7gKaHNlG1zrah8JHQrJfPBCI-Mqjw5HV_lGKLkGK5PLSfgAzFldK-XaiANqJ3irO8Ej_kQ4pSPnBXy9Z5DxeaYEWPHXYMRAzDQPzCxga0F71ffH-CfVLvF5QUE9rdMHlLTJkjZPSbqALyQlQycPp-NtLiDARVEPKzOsNcVHqlIFbN4L0uQjOTMYW6qEr10V8GkxjIeJbkjsJFxez4xElaZ0jb9Z_x8z3oBXhE5PyQZCb8LKfHodPqIPM3cDeN6Mvg3gxXB_fPQLn7sHxz9PBmkT3wFgLvCX |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFTKoVwQT2EosAgQ4mDV3kdtHxAqlJDSpkioFb0t-ywHlIQkBfWn-EZmNuuUA3DrzfKORuvZeXrnAfCMboKUUKFsZedL6WMsu-CQl01jvImuM6kobHS4PTyWH07UyRr86mthKK2y14lJUfuJo3_kWxgayDQeuXo9_V7S1Ci6Xe1HaCzZYj-c_8SQbf5qbxfP9znng3dHb4dlnipQOinEoowqel-HGknIbauiEtaYLtQyoPESXbCdbVykMUsI5oLjylS2cmi5feVwEwLxXoGriKsjiWoH71f_dCqBDF3JZRdUXK-2ZvOaPJqGprf8YffSeIB_GYFk2QY34Hp2SdnOkoduwloY34KNPB396_ltQP02-sg-IVVn7LP5EcjPZbsp9YPhM0tFvDTamKWMvtz1m6VsBIQLU5a7uJ7egeNLIdZdWB9PxuEeMGtUI6XtIi7I7eCM8ryOiIRbqWJdF_CyJ5B2eac0JuObxjiFiKkviFnA0xXsdNmV469Qb4jOKwjqpJ1eTGanOgumbnHDnApsa-ExNObW1VUQHKPANqB3aQt4QaekSd5xO87ksgX8KOqcpXcaRVEZ8mYBm_1B6qwI5vqCbQt4slpGEaZ7GTMOk7O5FqhIpWoQzf3_o3gMG8Oj0YE-2DvcfwDXOPpblMjA1SasL2Zn4SH6Rwv7KDElgy-XLQW_AadhJPU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiKdYKMUIEOKwyq4f3ewBVW3TqKU0VBUVvbm21y4HlIQkBfWv8es643hTDsCtt2h3ZDnjea5n5gN4QzdBSiif92Td5LIJIa-9Q1k2lWlMcLWJTWGHw429E_nxVJ2uwO-2F4bKKlubGA11M3b0jbyLqYGM8MhFN6SyiKP-YHPyIycEKbppbeE0FiJy4C9_Yfo2-7Dfx7N-y_lg98vOXp4QBnInhZjnQYWmKX2J7OS2p4IS1pjal9KjIxO1t7WtXCDIJSRz3nFlCls49OJN4XBDAte9BasVZkVFB1a3d4dHx8svPIVA8S7kYiaqEHXRnc5Kim8qwnL5wwtGsIB_uYTo5wb34V4KUNnWQqIewIofPYQ7CSv92-UjQGt3-JkdI4-n7Kv56SnqZf1YCMLwN4stvQR0zGJ9X5oBzmJtAtL5CUszXc8fw8mNsOsJdEbjkX8KzBpVSWnrgC_khndGNbwMuAi3UoWyzOB9yyDt0k4JNOO7xqyFmKmvmZnB6yXtZDGj469U28TnJQXN1Y4PxtNzndRU93DDnNptS9FgosytKwsvOOaEPY-xps3gHZ2SJu3H7TiTmhjwT9EcLb1VKcrRUFIzWGsPUiezMNPXQpzBq-VrVGi6pTEjP76YaYFmVaoKl3n2_yVewm3UAP1pf3jwHO5yDL6oqoGrNejMpxf-BQZLc7uepJLB2U0rwhX3DCqH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIMO+Radar+Waveform+Design+for+Multipath+Exploitation+Using+Deep+Learning&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zixiang+Zheng&rft.au=Yue+Zhang&rft.au=Xiangyu+Peng&rft.au=Hanfeng+Xie&rft.date=2023-05-25&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=11&rft_id=info:doi/10.3390%2Frs15112747&rft.externalDocID=A752559404 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |