Assessing sorption of fluoroquinolone antibiotics in soils from a Kd compilation based on pure organic and mineral components

The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance genes. Understanding their sorption behavior in soils is important to predict subsequent FQ (bio) availability. Here, FQ sorption in pure soil...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 280; p. 116535
Main Authors Fabregat-Palau, Joel, Rigol, Anna, Grathwohl, Peter, Vidal, Miquel
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.07.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance genes. Understanding their sorption behavior in soils is important to predict subsequent FQ (bio) availability. Here, FQ sorption in pure soil organic (i.e., humic substances) and mineral (i.e., metal oxides; phyllosilicates) components is evaluated through a solid-liquid distribution coefficient (Kd (FQ)) dataset consisting of 243 entries originated from 80 different studies, to elucidate their respective contribution to the overall Kd (FQ) in bulk soils. First, different factors affecting FQ sorption and desorption in each of these soil phases are critically discussed. The strong role of pH in Kd (FQ), due to the simultaneous effect on both FQ speciation and surface charge changes, encouraged the derivation of normalized sorption coefficients for the cationic, zwitterionic and anionic FQ species in humic substances and in different phyllosilicates. Kd (FQ) in metal oxides revealed a key role of metal nature and material specific surface area due to complexation sorption mechanisms at neutral pH. Cumulative distribution functions (CDF) were applied to each dataset to establish a sorption affinity range for each phase and to derive best estimate Kd (FQ) values for those materials where normalized sorption coefficients to FQ species were unavailable. The data analysis conducted in the different soil phases set the basis for a Kd (FQ) prediction model, which combined the respective sorption affinity of each phase for FQ and phase abundance in soil to estimate Kd (FQ) in bulk soils. The model was subsequently validated with sorption data in well characterized soils compiled from the literature. •Sorption parameters of FQ in soil components are compiled from the literature.•pH-dependent normalized sorption coefficients for different FQ species and soil components are derived.•Sorption in metal oxides is ruled by complexation stability and specific surface area.•The sorption affinity in the different soil components is ranked through cumulative distribution functions.•Combining sorption affinity and abundance of soil components led to a good Kd (FQ) estimation.
AbstractList The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance genes. Understanding their sorption behavior in soils is important to predict subsequent FQ (bio) availability. Here, FQ sorption in pure soil organic (i.e., humic substances) and mineral (i.e., metal oxides; phyllosilicates) components is evaluated through a solid-liquid distribution coefficient (Kd (FQ)) dataset consisting of 243 entries originated from 80 different studies, to elucidate their respective contribution to the overall Kd (FQ) in bulk soils. First, different factors affecting FQ sorption and desorption in each of these soil phases are critically discussed. The strong role of pH in Kd (FQ), due to the simultaneous effect on both FQ speciation and surface charge changes, encouraged the derivation of normalized sorption coefficients for the cationic, zwitterionic and anionic FQ species in humic substances and in different phyllosilicates. Kd (FQ) in metal oxides revealed a key role of metal nature and material specific surface area due to complexation sorption mechanisms at neutral pH. Cumulative distribution functions (CDF) were applied to each dataset to establish a sorption affinity range for each phase and to derive best estimate Kd (FQ) values for those materials where normalized sorption coefficients to FQ species were unavailable. The data analysis conducted in the different soil phases set the basis for a Kd (FQ) prediction model, which combined the respective sorption affinity of each phase for FQ and phase abundance in soil to estimate Kd (FQ) in bulk soils. The model was subsequently validated with sorption data in well characterized soils compiled from the literature.
The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance genes. Understanding their sorption behavior in soils is important to predict subsequent FQ (bio) availability. Here, FQ sorption in pure soil organic (i.e., humic substances) and mineral (i.e., metal oxides; phyllosilicates) components is evaluated through a solid-liquid distribution coefficient (Kd (FQ)) dataset consisting of 243 entries originated from 80 different studies, to elucidate their respective contribution to the overall Kd (FQ) in bulk soils. First, different factors affecting FQ sorption and desorption in each of these soil phases are critically discussed. The strong role of pH in Kd (FQ), due to the simultaneous effect on both FQ speciation and surface charge changes, encouraged the derivation of normalized sorption coefficients for the cationic, zwitterionic and anionic FQ species in humic substances and in different phyllosilicates. Kd (FQ) in metal oxides revealed a key role of metal nature and material specific surface area due to complexation sorption mechanisms at neutral pH. Cumulative distribution functions (CDF) were applied to each dataset to establish a sorption affinity range for each phase and to derive best estimate Kd (FQ) values for those materials where normalized sorption coefficients to FQ species were unavailable. The data analysis conducted in the different soil phases set the basis for a Kd (FQ) prediction model, which combined the respective sorption affinity of each phase for FQ and phase abundance in soil to estimate Kd (FQ) in bulk soils. The model was subsequently validated with sorption data in well characterized soils compiled from the literature.The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance genes. Understanding their sorption behavior in soils is important to predict subsequent FQ (bio) availability. Here, FQ sorption in pure soil organic (i.e., humic substances) and mineral (i.e., metal oxides; phyllosilicates) components is evaluated through a solid-liquid distribution coefficient (Kd (FQ)) dataset consisting of 243 entries originated from 80 different studies, to elucidate their respective contribution to the overall Kd (FQ) in bulk soils. First, different factors affecting FQ sorption and desorption in each of these soil phases are critically discussed. The strong role of pH in Kd (FQ), due to the simultaneous effect on both FQ speciation and surface charge changes, encouraged the derivation of normalized sorption coefficients for the cationic, zwitterionic and anionic FQ species in humic substances and in different phyllosilicates. Kd (FQ) in metal oxides revealed a key role of metal nature and material specific surface area due to complexation sorption mechanisms at neutral pH. Cumulative distribution functions (CDF) were applied to each dataset to establish a sorption affinity range for each phase and to derive best estimate Kd (FQ) values for those materials where normalized sorption coefficients to FQ species were unavailable. The data analysis conducted in the different soil phases set the basis for a Kd (FQ) prediction model, which combined the respective sorption affinity of each phase for FQ and phase abundance in soil to estimate Kd (FQ) in bulk soils. The model was subsequently validated with sorption data in well characterized soils compiled from the literature.
The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance genes. Understanding their sorption behavior in soils is important to predict subsequent FQ (bio) availability. Here, FQ sorption in pure soil organic (i.e., humic substances) and mineral (i.e., metal oxides; phyllosilicates) components is evaluated through a solid-liquid distribution coefficient (Kd (FQ)) dataset consisting of 243 entries originated from 80 different studies, to elucidate their respective contribution to the overall Kd (FQ) in bulk soils. First, different factors affecting FQ sorption and desorption in each of these soil phases are critically discussed. The strong role of pH in Kd (FQ), due to the simultaneous effect on both FQ speciation and surface charge changes, encouraged the derivation of normalized sorption coefficients for the cationic, zwitterionic and anionic FQ species in humic substances and in different phyllosilicates. Kd (FQ) in metal oxides revealed a key role of metal nature and material specific surface area due to complexation sorption mechanisms at neutral pH. Cumulative distribution functions (CDF) were applied to each dataset to establish a sorption affinity range for each phase and to derive best estimate Kd (FQ) values for those materials where normalized sorption coefficients to FQ species were unavailable. The data analysis conducted in the different soil phases set the basis for a Kd (FQ) prediction model, which combined the respective sorption affinity of each phase for FQ and phase abundance in soil to estimate Kd (FQ) in bulk soils. The model was subsequently validated with sorption data in well characterized soils compiled from the literature. •Sorption parameters of FQ in soil components are compiled from the literature.•pH-dependent normalized sorption coefficients for different FQ species and soil components are derived.•Sorption in metal oxides is ruled by complexation stability and specific surface area.•The sorption affinity in the different soil components is ranked through cumulative distribution functions.•Combining sorption affinity and abundance of soil components led to a good Kd (FQ) estimation.
ArticleNumber 116535
Author Vidal, Miquel
Rigol, Anna
Fabregat-Palau, Joel
Grathwohl, Peter
Author_xml – sequence: 1
  givenname: Joel
  surname: Fabregat-Palau
  fullname: Fabregat-Palau, Joel
  email: joel.fabregat-palau@uni-tuebingen.de
  organization: Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
– sequence: 2
  givenname: Anna
  surname: Rigol
  fullname: Rigol, Anna
  organization: Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
– sequence: 3
  givenname: Peter
  surname: Grathwohl
  fullname: Grathwohl, Peter
  organization: Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
– sequence: 4
  givenname: Miquel
  surname: Vidal
  fullname: Vidal, Miquel
  organization: Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
BookMark eNqFkc2OFCEUhYkZE3tG38AFSzfVXn6KajYmk4mOEydxo2tCwa0JHQpKqJ7Ehe8u3WVc6gpCzvm4555rcpVyQkLeMtgzYOr9cY8uY3rec-Byz5jqRf-C7Bho6Lhk8orsgMmhUz0Tr8h1rUcAEND3O_LrtlasNaQnWnNZ1pATzROd4imX_OMUUo7tL2rTGsaQ1-AqDalJQ6x0Knmmln7x1OV5CdFe3KOt6Gm7LKeCNJcnm4JrAE_nkLDYeFE3aFrra_JysrHimz_nDfn-6eO3u8_d49f7h7vbx85JIdZuYoPmWoxjz-0A2g9KOhBcD9Ipbx2TatSuJULP0KGarJ8OgxSa4zD1nHlxQx42rs_2aJYSZlt-mmyDuTy0IY0tLVxEwzQctNNKMIfSc681Hz2XDpkTo_XQWO821nJeENbVzKE6jNEmzKdqBAfgSsqD-r8U1KCZBCGaVG5SV3KtBae_UzIw55LN0Wwlm3PJZiu52T5sNmzbew5YTHUBk0MfCrq1xQv_BvwGw3i1WA
Cites_doi 10.1021/acs.est.5b02851
10.1016/j.jhazmat.2012.12.032
10.1016/j.tim.2014.04.007
10.1016/j.jcis.2004.08.150
10.1016/j.chemosphere.2006.08.024
10.1016/j.jes.2018.04.016
10.1016/j.scitotenv.2014.02.041
10.1021/es051109f
10.1021/acs.est.7b02317
10.1016/j.ecoenv.2019.04.002
10.1021/es202487h
10.1016/j.ecoenv.2015.09.019
10.1016/j.ccr.2018.05.019
10.1016/j.chemosphere.2017.10.092
10.1016/S1002-0160(19)60831-3
10.1016/j.chemosphere.2012.04.064
10.1016/j.jhazmat.2015.10.012
10.1021/jf960215l
10.1021/es302097k
10.1016/j.chemosphere.2014.06.008
10.1016/j.jseaes.2013.04.025
10.1021/acs.est.7b04849
10.1007/s11356-017-9210-3
10.1016/j.envres.2022.114071
10.1016/j.ecoenv.2016.05.030
10.1039/C7RA06231A
10.1016/j.cej.2018.05.051
10.1016/j.envpol.2011.09.040
10.1016/j.clay.2011.06.014
10.1016/j.chemosphere.2009.08.003
10.1007/s11356-017-0038-7
10.1016/j.jece.2013.11.017
10.1016/j.jhazmat.2010.11.076
10.1016/j.jenvman.2011.12.036
10.1016/j.ecoenv.2019.110131
10.1897/08-059.1
10.1016/j.ecoenv.2023.115175
10.1016/j.scitotenv.2015.12.023
10.1787/9789264069602-en
10.1007/s13738-016-0878-y
10.1016/j.chemosphere.2013.03.018
10.1007/s11356-019-06164-0
10.1021/es061921y
10.1016/S0021-9673(99)00079-5
10.1007/s11270-018-3821-2
10.1007/s12665-019-8641-1
10.1016/j.envpol.2012.07.037
10.1007/s11595-012-0495-2
10.1016/0043-1354(84)90124-6
10.1007/s11356-019-04515-5
10.1016/j.scitotenv.2014.08.075
10.1016/j.jgar.2019.07.031
10.1016/j.geoderma.2010.02.003
10.1016/j.jcis.2017.11.020
10.1016/j.scitotenv.2022.153707
10.1016/j.jhazmat.2023.133283
10.1016/j.envpol.2014.10.029
10.1021/es902902c
10.1016/j.clay.2015.05.010
10.1016/j.jcis.2014.04.034
10.1016/j.ecoenv.2019.03.075
10.1007/s11356-014-3351-4
10.1039/C6NJ00207B
10.1016/j.colsurfb.2013.09.056
10.1016/j.ecoenv.2020.111345
10.3390/agronomy11061067
10.1016/j.envpol.2019.113180
10.1016/j.clay.2010.08.001
10.1021/es000917y
10.1016/j.jcis.2012.01.016
10.1016/j.envpol.2019.02.077
10.1016/j.watres.2012.10.010
10.1016/j.geoderma.2009.03.007
10.1016/j.watres.2006.02.003
10.1016/j.clay.2016.12.002
10.1016/j.colsurfb.2011.07.011
10.1039/jr9530003192
10.1002/etc.19
10.1016/j.chemosphere.2010.06.012
10.1016/j.scitotenv.2014.07.130
10.1016/j.jseaes.2013.02.032
10.1016/j.colsurfa.2022.129422
10.1002/etc.2214
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
DOA
DOI 10.1016/j.ecoenv.2024.116535
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
ExternalDocumentID oai_doaj_org_article_19089c9631ce4d2d992bd24ce1c3bad0
10_1016_j_ecoenv_2024_116535
S0147651324006110
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADVLN
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
ZU3
~G-
29G
53G
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
H~9
R2-
SEN
SSH
VH1
WUQ
XPP
ZMT
ZXP
~KM
7X8
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c433t-f179293bb52a709d764c032974c6dac146b9c003ed1ece6fadf874392e7f521d3
IEDL.DBID .~1
ISSN 0147-6513
1090-2414
IngestDate Wed Aug 27 01:16:14 EDT 2025
Fri Jul 11 17:21:09 EDT 2025
Fri Jul 11 08:41:14 EDT 2025
Tue Jul 01 02:09:18 EDT 2025
Sat Aug 03 15:31:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fluoroquinolones
Sorption
Metal oxides
Soil
Humic substances
Phyllosilicate minerals
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-f179293bb52a709d764c032974c6dac146b9c003ed1ece6fadf874392e7f521d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0147651324006110
PQID 3067914033
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_19089c9631ce4d2d992bd24ce1c3bad0
proquest_miscellaneous_3200264486
proquest_miscellaneous_3067914033
crossref_primary_10_1016_j_ecoenv_2024_116535
elsevier_sciencedirect_doi_10_1016_j_ecoenv_2024_116535
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-15
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Ecotoxicology and environmental safety
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Najafpoor, Nemati Sani, Alidadi, Yazdani, Navaei Fezabady, Taghavi (bib42) 2019; 33
Rakshit, Sarkar, Elzinga, Punamiya, Datta (bib55) 2013; 246 – 247
Rivagli, Pastorello, Sturini, Maraschi, Speltini, Zampori, Setti, Malavasi, Profumo (bib60) 2014; 2
Van, Yidana, Smooker, Coloe (bib72) 2020; 20
Hanamoto, Ogawa (bib26) 2019; 255
Irving, Williams (bib27) 1953; 637
Septian, Oh, Shin (bib63) 2018; 40
Wang, Zhang, Feng, Hua, Li, Zhang, Guo (bib79) 2022; 823
Zhu, Yang, Lu, Qi, Zhang, Wang, Qi, Chen (bib95) 2020; 205
Gan, Wei, Xiong, Cheng (bib21) 2018; 349
.
Lützhøft, Vaes, Freidig, Halling-Sørensen, Hermens (bib37) 2000; 34
Zhao, Liu, Wang, Dong (bib90) 2019; 26
Carmosini, Lee (bib7) 2009; 77
Leal, Alleoni, Tornisielo, Regitano (bib29) 2013; 92
Vasudevan, Bruland, Torrance, Upchurch, Mackay (bib74) 2009; 151
B
Zhang, Huang (bib87) 2007; 66
Yan, Hu, Jing (bib85) 2012; 372
Ukalska-Jaruga, Bejger, Debaene, Smreczak (bib69) 2021; 11
Ding, Li, He, Ou, Huang, Yin, Yang, Wu, He, Liu (bib14) 2024; 465
Zhao, Hu, Yang, Cai, Wang, Xie (bib92) 2019; 248
Aristilde, Sposito (bib5) 2013; 32
Zhu, Yang, Shan, Han, Shao, Tian (bib94) 2018; 229
Wang, Ma, Liu, Zhang, Pan (bib76) 2017; 24
Fries, Crouzet, Michel, Togola (bib20) 2016; 563 – 564
Yao, Li, Li, Shen, Feng, Zhou, Wang (bib86) 2020; 190
Du, Zhao, Wang, Xie, Zhu, Chen (bib15) 2019; 177
Paul, MacHesky, Strathmann (bib48) 2012; 46
Liu, Lu, Liu, Meng, Zheng (bib35) 2017; 7
Gu, Karthikeyan (bib25) 2005; 39
Shao, Pan, Wang, Liu, Gan, Li, Liao, Yang, Yang, Huang, Geng, Pan, Liu, Zhu, Tao (bib64) 2023; 249
Li, Bi, Chen (bib31) 2017; 228
Aristilde, Sposito (bib3) 2008; 27
Ramírez-Guinart, Kaplan, Rigol, Vidal (bib56) 2022; 222
Fabregat-Palau, Rigol, Yu, Vidal (bib18) 2023; 10
Fabregat-Palau, Yu, Zeng, Vidal, Rigol (bib17) 2022; 861
Wu, Li, Hong, Li, Jiang (bib84) 2012; 47
Zhao, Zhang, Zhang, Lei, Ma, Ma, Song (bib91) 2017; 51
Gong, Liu, He, Wang, Dai (bib22) 2012; 89
Accsessed 27th Jan. 2024.
Liu, Wu, Yu, Li, Gong, Zhu, Dang, Yang (bib34) 2017; 137
Goyne, Chorover, Kubicki, Zimmerman, Brantley (bib23) 2005; 283
Teixidó, Pignatello, Beltrán, Granados, Peccia (bib67) 2011; 45
Peruchi, Fostier, Rath (bib52) 2015; 119
Moradi, Haji Shabani, Dadfarnia, Emami (bib41) 2016; 13
Riaz, Mahmood, Khalid, Rashid, Ahmed Siddique, Kamal, Coyne (bib58) 2018; 191
Cheng, Hanna (bib11) 2018; 52
Pei, Shan, Zhang, Kong, Wen, Zhang, Zheng, Xie, Janssens (bib51) 2011; 186
Wu, Li, Hong, Yin, Tie (bib82) 2010; 50
Lorphensri, Intravijit, Sabatini, Kibbey, Osathaphan, Saiwan (bib36) 2006; 40
Pei, Shan, Kong, Wen, Owens (bib50) 2010; 44
Nowara, Burhenne, Spiteller (bib43) 1997; 45
Chen, Xu, Zheng, Wei, Farooq, Lu, Chen, Qi (bib10) 2022; 648
Van Doorslaer, Dewulf, Van Langenhove, Demeestere (bib73) 2014; 500 – 501
E49-A54F-950F3200B970.
Trivedi, Vasudevan (bib68) 2007; 41
Singaraj, Mahanty, Balachandran, Padmaprabha (bib65) 2019; 26
Paul, Liu, Machesky, Strathmann (bib49) 2014; 428
Zhang, Liu, Song, Fang, Wang, Zhao, Li, Li, Byun, Guo, Li (bib88) 2022; 231
Zhou, Chen, Wu, Liang, Zhang, Li, Pan (bib93) 2014; 497 – 498
Antilen, Bustos, Ramirez, Canales, Faundez, Escudey, Pizarro (bib2) 2016; 40
Cuprys, Pulicharla, Kaur Brar, Drogui, Verma, Surampalli (bib13) 2018; 376
Schmitt-Kopplin, Burhenne, Freitag, Spiteller, Kettrup (bib62) 1999; 837
Martínez-Mejía, Sato, Rath (bib40) 2017; 24
Blanchard, Maunaye, Martin (bib6) 1984; 18
Chang, Jiang, Li, Kuo, Wu, Jean, Lv (bib8) 2016; 303
Roca, Baschini, Sapag (bib61) 2015; 114
Wang, Liang, Li, Yang, Zhang, Liao, Pan (bib78) 2015; 196
Okaikue-Woodi, Kelch, Schmidt, Martinez, Youngman, Aristide (bib45) 2018; 513
Graouer-Bacart, Sayen, Guillin (bib24) 2015; 122
Alvarez-Esmorís, Rodríguez-López, Núñez-Delgado, Álvarez-Rodriguez, Fernández-Calviño, Arias-Estévez (bib1) 2022; 214
Pan, Qiu, Wu, Zhang, Peng, Wu, Xing (bib47) 2012; 161
Chen, Liu, Tartakevosky, Li (bib9) 2016; 133
Fang, Chen, Li, Ye, Shi, Sharma, Sakar, Shaheen, Lee, Xiao, Chen (bib19) 2023; 262
OECD, 2000. OECD 106 Adsorption - Desorption Using a Batch Equilibrium Method. OECD Guideline for the Testing of Chemicals.
Li, Bi (bib30) 2019; 78
Li, Hong, Liao, Ackley, Schulz, Macdonald, Mihelich, Emard (bib33) 2011; 88
Qin, Liu, Wang, Weng, Li (bib54) 2014; 116
WHO (bib80) 2017; 32
Pan, Wang, Wu, Li, Zhang, Xiao (bib46) 2012; 171
Wang, Li, Jiang (bib77) 2011; 53
USEPA, 2009. Guidance on the Development, Evaluation, and Application of Environmental Models. U.S. Environmental Protection Agency. EPA/100/K-09/003. papers2://publication/uuid/06FC4BA9-AC
Li, Bi, Chen (bib32) 2019; 178
Tan, Guo, Gu, Gu (bib66) 2015; 22
USEPA, 2007. Foundations and Frameworks for Human Microbial Risk Assessment. Center for Risk Science and Public Health School of Public Health and Health Services, The George Washinton University Medical Center, Washinton DC. U.S. Environmental Protection Agency.
Wu, Li, Hong (bib83) 2012; 27
EMA, 2019. European Medicines Agency, Science Medicines Health. EMA/175398/2019.
Wan, Li, Hong, Wu (bib75) 2013; 77
Zhang, Zhao, Dong, Huang (bib89) 2012; 102
Aristilde, Sposito (bib4) 2010; 29
Jacobson, Fan (bib28) 2019; 76
Redgrave, Sutton, Webber, Piddock (bib57) 2014; 22
Martin, Shchukarev, Hanna, Boily (bib39) 2015; 49
Conkle, Lattao, White, Cook (bib12) 2010; 80
Lv, Pearce, Gleason, Liao, Macwilliams, Li (bib38) 2013; 77
Riaz, Mahmood, Qingxiang, Yasir, Rashid, Coyn, D'angelo (bib59) 2019; 29
Pibryl (bib53) 2010; 156
Wu, Li, Liao, Sun, Peng, Zhang, Pan (bib81) 2014; 481
Fabregat-Palau (10.1016/j.ecoenv.2024.116535_bib17) 2022; 861
Tan (10.1016/j.ecoenv.2024.116535_bib66) 2015; 22
Zhu (10.1016/j.ecoenv.2024.116535_bib94) 2018; 229
Gan (10.1016/j.ecoenv.2024.116535_bib21) 2018; 349
Aristilde (10.1016/j.ecoenv.2024.116535_bib5) 2013; 32
Fries (10.1016/j.ecoenv.2024.116535_bib20) 2016; 563 – 564
10.1016/j.ecoenv.2024.116535_bib44
Okaikue-Woodi (10.1016/j.ecoenv.2024.116535_bib45) 2018; 513
Vasudevan (10.1016/j.ecoenv.2024.116535_bib74) 2009; 151
Liu (10.1016/j.ecoenv.2024.116535_bib34) 2017; 137
Ramírez-Guinart (10.1016/j.ecoenv.2024.116535_bib56) 2022; 222
Zhao (10.1016/j.ecoenv.2024.116535_bib90) 2019; 26
Irving (10.1016/j.ecoenv.2024.116535_bib27) 1953; 637
Martin (10.1016/j.ecoenv.2024.116535_bib39) 2015; 49
Wu (10.1016/j.ecoenv.2024.116535_bib84) 2012; 47
Alvarez-Esmorís (10.1016/j.ecoenv.2024.116535_bib1) 2022; 214
Pibryl (10.1016/j.ecoenv.2024.116535_bib53) 2010; 156
Riaz (10.1016/j.ecoenv.2024.116535_bib58) 2018; 191
Zhou (10.1016/j.ecoenv.2024.116535_bib93) 2014; 497 – 498
Cuprys (10.1016/j.ecoenv.2024.116535_bib13) 2018; 376
Peruchi (10.1016/j.ecoenv.2024.116535_bib52) 2015; 119
Zhang (10.1016/j.ecoenv.2024.116535_bib87) 2007; 66
Chen (10.1016/j.ecoenv.2024.116535_bib10) 2022; 648
WHO (10.1016/j.ecoenv.2024.116535_bib80) 2017; 32
Wu (10.1016/j.ecoenv.2024.116535_bib82) 2010; 50
Rivagli (10.1016/j.ecoenv.2024.116535_bib60) 2014; 2
Pan (10.1016/j.ecoenv.2024.116535_bib47) 2012; 161
10.1016/j.ecoenv.2024.116535_bib16
Hanamoto (10.1016/j.ecoenv.2024.116535_bib26) 2019; 255
Pei (10.1016/j.ecoenv.2024.116535_bib51) 2011; 186
Wang (10.1016/j.ecoenv.2024.116535_bib76) 2017; 24
Moradi (10.1016/j.ecoenv.2024.116535_bib41) 2016; 13
Lützhøft (10.1016/j.ecoenv.2024.116535_bib37) 2000; 34
Wu (10.1016/j.ecoenv.2024.116535_bib83) 2012; 27
Zhao (10.1016/j.ecoenv.2024.116535_bib91) 2017; 51
Nowara (10.1016/j.ecoenv.2024.116535_bib43) 1997; 45
Ukalska-Jaruga (10.1016/j.ecoenv.2024.116535_bib69) 2021; 11
Wang (10.1016/j.ecoenv.2024.116535_bib77) 2011; 53
Trivedi (10.1016/j.ecoenv.2024.116535_bib68) 2007; 41
Teixidó (10.1016/j.ecoenv.2024.116535_bib67) 2011; 45
Chang (10.1016/j.ecoenv.2024.116535_bib8) 2016; 303
Riaz (10.1016/j.ecoenv.2024.116535_bib59) 2019; 29
Ding (10.1016/j.ecoenv.2024.116535_bib14) 2024; 465
Pan (10.1016/j.ecoenv.2024.116535_bib46) 2012; 171
Chen (10.1016/j.ecoenv.2024.116535_bib9) 2016; 133
Wan (10.1016/j.ecoenv.2024.116535_bib75) 2013; 77
Shao (10.1016/j.ecoenv.2024.116535_bib64) 2023; 249
Najafpoor (10.1016/j.ecoenv.2024.116535_bib42) 2019; 33
Rakshit (10.1016/j.ecoenv.2024.116535_bib55) 2013; 246 – 247
Fabregat-Palau (10.1016/j.ecoenv.2024.116535_bib18) 2023; 10
Qin (10.1016/j.ecoenv.2024.116535_bib54) 2014; 116
Du (10.1016/j.ecoenv.2024.116535_bib15) 2019; 177
Gong (10.1016/j.ecoenv.2024.116535_bib22) 2012; 89
Yao (10.1016/j.ecoenv.2024.116535_bib86) 2020; 190
Pei (10.1016/j.ecoenv.2024.116535_bib50) 2010; 44
Lv (10.1016/j.ecoenv.2024.116535_bib38) 2013; 77
Conkle (10.1016/j.ecoenv.2024.116535_bib12) 2010; 80
Wang (10.1016/j.ecoenv.2024.116535_bib78) 2015; 196
Antilen (10.1016/j.ecoenv.2024.116535_bib2) 2016; 40
Fang (10.1016/j.ecoenv.2024.116535_bib19) 2023; 262
Roca (10.1016/j.ecoenv.2024.116535_bib61) 2015; 114
Schmitt-Kopplin (10.1016/j.ecoenv.2024.116535_bib62) 1999; 837
Carmosini (10.1016/j.ecoenv.2024.116535_bib7) 2009; 77
Singaraj (10.1016/j.ecoenv.2024.116535_bib65) 2019; 26
Van (10.1016/j.ecoenv.2024.116535_bib72) 2020; 20
Li (10.1016/j.ecoenv.2024.116535_bib31) 2017; 228
Graouer-Bacart (10.1016/j.ecoenv.2024.116535_bib24) 2015; 122
Redgrave (10.1016/j.ecoenv.2024.116535_bib57) 2014; 22
Wu (10.1016/j.ecoenv.2024.116535_bib81) 2014; 481
Zhang (10.1016/j.ecoenv.2024.116535_bib88) 2022; 231
Cheng (10.1016/j.ecoenv.2024.116535_bib11) 2018; 52
Yan (10.1016/j.ecoenv.2024.116535_bib85) 2012; 372
Blanchard (10.1016/j.ecoenv.2024.116535_bib6) 1984; 18
Septian (10.1016/j.ecoenv.2024.116535_bib63) 2018; 40
Li (10.1016/j.ecoenv.2024.116535_bib33) 2011; 88
Jacobson (10.1016/j.ecoenv.2024.116535_bib28) 2019; 76
Van Doorslaer (10.1016/j.ecoenv.2024.116535_bib73) 2014; 500 – 501
Gu (10.1016/j.ecoenv.2024.116535_bib25) 2005; 39
Paul (10.1016/j.ecoenv.2024.116535_bib49) 2014; 428
Zhang (10.1016/j.ecoenv.2024.116535_bib89) 2012; 102
Zhao (10.1016/j.ecoenv.2024.116535_bib92) 2019; 248
Martínez-Mejía (10.1016/j.ecoenv.2024.116535_bib40) 2017; 24
Liu (10.1016/j.ecoenv.2024.116535_bib35) 2017; 7
Goyne (10.1016/j.ecoenv.2024.116535_bib23) 2005; 283
10.1016/j.ecoenv.2024.116535_bib70
10.1016/j.ecoenv.2024.116535_bib71
Paul (10.1016/j.ecoenv.2024.116535_bib48) 2012; 46
Li (10.1016/j.ecoenv.2024.116535_bib32) 2019; 178
Wang (10.1016/j.ecoenv.2024.116535_bib79) 2022; 823
Leal (10.1016/j.ecoenv.2024.116535_bib29) 2013; 92
Aristilde (10.1016/j.ecoenv.2024.116535_bib3) 2008; 27
Zhu (10.1016/j.ecoenv.2024.116535_bib95) 2020; 205
Aristilde (10.1016/j.ecoenv.2024.116535_bib4) 2010; 29
Li (10.1016/j.ecoenv.2024.116535_bib30) 2019; 78
Lorphensri (10.1016/j.ecoenv.2024.116535_bib36) 2006; 40
References_xml – volume: 22
  start-page: 438
  year: 2014
  end-page: 445
  ident: bib57
  article-title: Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success
  publication-title: Trends Microbiol.
– volume: 22
  start-page: 609
  year: 2015
  end-page: 617
  ident: bib66
  article-title: Effects of metal Cations and Fulvic acid on the adsorption of ciprofloxacin onto goethite
  publication-title: Environ. Sci. Pollut. Res.
– reference: . Accsessed 27th Jan. 2024.
– volume: 40
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib63
  article-title: Sorption of antibiotics onto montmorillonite and kaolinite: competition modelling
  publication-title: Environ. Technol.
– volume: 481
  start-page: 209
  year: 2014
  end-page: 216
  ident: bib81
  article-title: Co-sorption of ofloxacin and Cu(II) in soils before and after organic matter removal
  publication-title: Sci. Total Environ.
– volume: 40
  start-page: 1481
  year: 2006
  end-page: 1491
  ident: bib36
  article-title: Sorption of acetaminophen, 17α-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic medium
  publication-title: Water Res.
– volume: 29
  start-page: 676
  year: 2019
  end-page: 680
  ident: bib59
  article-title: Sorption and desorption behavior of fluoroquinolone antibiotics in an agricultural soil
  publication-title: Pedosphere
– reference: E49-A54F-950F3200B970.
– volume: 7
  start-page: 50449
  year: 2017
  end-page: 50458
  ident: bib35
  article-title: Adsorption of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) by humic acid (HA): characteristics and mechanism
  publication-title: RSC Adv.
– volume: 41
  start-page: 3153
  year: 2007
  end-page: 3158
  ident: bib68
  article-title: Spectroscopic investigation of ciprofloxacin speciation at the goethite-water interface
  publication-title: Environ. Sci. Technol.
– volume: 13
  start-page: 1617
  year: 2016
  end-page: 1627
  ident: bib41
  article-title: Effective removal of ciprofloxacin from aqueous solutions using magnetic metal–organic framework sorbents: mechanisms, isotherms and kinetics
  publication-title: J. Iran. Chem. Soc.
– volume: 39
  start-page: 9166
  year: 2005
  end-page: 9173
  ident: bib25
  article-title: Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides
  publication-title: Environ. Sci. Technol.
– volume: 133
  start-page: 18
  year: 2016
  end-page: 24
  ident: bib9
  article-title: Risk assessment of three fluoroquinolone antibiotics in the groundwater recharge system
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 177
  start-page: 117
  year: 2019
  end-page: 123
  ident: bib15
  article-title: Presence and environmental risk assessment of selected antibiotics in coastal water adjacent to mariculture areas in the Bohai Sea
  publication-title: Ecotox. Environ. Saf.
– volume: 50
  start-page: 204
  year: 2010
  end-page: 211
  ident: bib82
  article-title: Adsorption and intercation of ciprofloxacin on montmorillonite
  publication-title: Appl. Clay Sci.
– volume: 823
  year: 2022
  ident: bib79
  article-title: The pH dependence and role of fluorinated substituent of enoxacin binding to ferrihydrite
  publication-title: Sci. Total Environ.
– volume: 231
  year: 2022
  ident: bib88
  article-title: The exposure levels and health risk assessment of antibiotics in urine and its association with platelet mitochondrial DNA methylation in adults from Tianjin, China: a preliminary study
  publication-title: Ecotoxicol. Enviorn. Saf.
– reference: USEPA, 2007. Foundations and Frameworks for Human Microbial Risk Assessment. Center for Risk Science and Public Health School of Public Health and Health Services, The George Washinton University Medical Center, Washinton DC. U.S. Environmental Protection Agency.
– volume: 376
  start-page: 46
  year: 2018
  end-page: 61
  ident: bib13
  article-title: Fluoroquinolones metal complexation and its environmental impacts
  publication-title: Coord. Chem. Rev.
– volume: 122
  start-page: 470
  year: 2015
  end-page: 476
  ident: bib24
  article-title: Adsorption of enrofloxacin in presence of Zn (II) on a calcareous soil
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 249
  year: 2023
  ident: bib64
  article-title: Association between antibiotic exposure and the risk of infertility in women of childbearing age: a case-control study
  publication-title: Ecotoxicol. Envion. Saf.
– volume: 119
  start-page: 310
  year: 2015
  end-page: 317
  ident: bib52
  article-title: Sorption of norfloxacin in soils: analytical method, kinetics and Freundlich isotherms
  publication-title: Chemosphere
– volume: 77
  start-page: 281
  year: 2013
  end-page: 286
  ident: bib38
  article-title: Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin
  publication-title: J. Asian Earth Sci.
– volume: 11
  start-page: 1067
  year: 2021
  ident: bib69
  article-title: Characterization of soil organic matter individual fractions (fulvic acids, humic acids and humin) by spectroscopic and electrochemical techniques in agricultural soils
  publication-title: Agronomy
– volume: 32
  start-page: 1467
  year: 2013
  end-page: 1478
  ident: bib5
  article-title: Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances
  publication-title: Environ. Toxicol. Chem.
– volume: 53
  start-page: 723
  year: 2011
  end-page: 728
  ident: bib77
  article-title: Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals
  publication-title: Appl. Clay Sci.
– volume: 77
  start-page: 813
  year: 2009
  end-page: 820
  ident: bib7
  article-title: Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials
  publication-title: Chemosphere
– volume: 33
  year: 2019
  ident: bib42
  article-title: Optimization of ciprofloxacin adsorption from synthetic wastewaters using γ-Al2O3 nanoparticles: an experimental design based on response surface methodology
  publication-title: Colloids Inter. Sci. Comm.
– volume: 114
  start-page: 69
  year: 2015
  end-page: 76
  ident: bib61
  article-title: Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite
  publication-title: Appl. Clay Sci.
– volume: 861
  year: 2022
  ident: bib17
  article-title: Deriving parametric and probabilistic K
  publication-title: Sci. Total Environ.
– volume: 27
  start-page: 2304
  year: 2008
  end-page: 2310
  ident: bib3
  article-title: Molecular modeling of metal complexation by a fluoroquinolone antibiotic
  publication-title: Environ. Toxicol. Chem.
– volume: 2
  start-page: 738
  year: 2014
  end-page: 744
  ident: bib60
  article-title: Clay minerals for adsorption of veterinary FQs: behavior and modeling
  publication-title: J. Environ. Chem. Eng.
– volume: 29
  start-page: 90
  year: 2010
  end-page: 98
  ident: bib4
  article-title: Binding of ciprofloxacin by humic substances: a molecular dynamics study
  publication-title: Environ. Toxicol. Chem.
– volume: 178
  start-page: 43
  year: 2019
  end-page: 50
  ident: bib32
  article-title: Effects of dissolved humic acid on fluoroquinolones sorption and retention to kaolinite
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 80
  start-page: 1353
  year: 2010
  end-page: 1359
  ident: bib12
  article-title: Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil
  publication-title: Chemosphere
– volume: 372
  start-page: 141
  year: 2012
  end-page: 147
  ident: bib85
  article-title: Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid
  publication-title: J. Colloid Interface Sci.
– volume: 283
  start-page: 160
  year: 2005
  end-page: 170
  ident: bib23
  article-title: Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica
  publication-title: J. Colloid Interface Sci.
– volume: 88
  start-page: 339
  year: 2011
  end-page: 344
  ident: bib33
  article-title: A mechanistic study of ciprofloxacin removal by kaolinite
  publication-title: Colloids Surf. B
– volume: 77
  start-page: 287
  year: 2013
  end-page: 294
  ident: bib75
  article-title: Enrofloxacin uptake and retention on different types of clays
  publication-title: J. Asian Earth Sci.
– volume: 497 – 498
  start-page: 665
  year: 2014
  end-page: 670
  ident: bib93
  article-title: Ofloxacin sorption in soils after long-term tillage: the contribution of organic and mineral compositions
  publication-title: Sci. Total Environ.
– volume: 563 – 564
  start-page: 971
  year: 2016
  end-page: 976
  ident: bib20
  article-title: Interactions of ciprofloxacin (CIP), titanium dioxide (TiO2) nanoparticles and natural organic matter (NOM) in aqueous suspensions
  publication-title: Sci. Total Environ.
– volume: 51
  start-page: 13659
  year: 2017
  end-page: 13667
  ident: bib91
  article-title: Cation–Pi Interaction: a Key force for sorption of fluoroquinolone antibiotics on pyrogenic carbonaceous materials
  publication-title: Environ. Sci. Technol.
– volume: 10
  year: 2023
  ident: bib18
  article-title: Using a batch test to derive sorption data of fluoroquinolones in humic acids
  publication-title: Methods X
– volume: 24
  start-page: 23834
  year: 2017
  end-page: 23842
  ident: bib76
  article-title: Co-contaminant effects on ofloxacin adsorption onto activated carbon, graphite, and humic acid
  publication-title: Environ. Sci. Pollut. Res.
– volume: 648
  year: 2022
  ident: bib10
  article-title: The mechanisms involved into the inhibitory effects of ionic liquids chemistry on adsorption performance of ciprofloxacin onto inorganic minerals
  publication-title: Colloids Surf. A
– volume: 49
  start-page: 12197
  year: 2015
  end-page: 12205
  ident: bib39
  article-title: Kinetics and mechanisms of Ciprofloxacin oxidation on hematite surfaces
  publication-title: Environ. Sci. Technol.
– volume: 255
  year: 2019
  ident: bib26
  article-title: Predicting the sorption of azithromycin and levofloxacin to sediments from mineral and organic components
  publication-title: Environ. Pollut.
– volume: 76
  start-page: 133
  year: 2019
  end-page: 141
  ident: bib28
  article-title: Evaluation of natural goethite on the removal of arsenate and selenite from water
  publication-title: J. Environ. Sci.
– volume: 465
  year: 2024
  ident: bib14
  article-title: Urban agglomerations as an environmental dimension of antibiotics transmission through the "One Health" lens
  publication-title: J. Hazard. Mat.
– volume: 27
  start-page: 516
  year: 2012
  end-page: 522
  ident: bib83
  article-title: Influence of types and charges of exchangable cations on Ciprofloxacin sorption by Montmorillonite
  publication-title: J. Wuhan. Univ. Technol. Mater. Sci. Ed.
– volume: 45
  start-page: 10020
  year: 2011
  end-page: 10027
  ident: bib67
  article-title: Speciation of the ionizable antibiotic sulfamethazine on black carbon (Biochar)
  publication-title: Environ. Sci. Technol.
– volume: 89
  start-page: 825
  year: 2012
  end-page: 831
  ident: bib22
  article-title: Quantitatively modeling soil-water distribution coefficients of three antibiotics using soil physicochemical properties
  publication-title: Chemosphere
– volume: 24
  start-page: 15995
  year: 2017
  end-page: 16006
  ident: bib40
  article-title: Sorption mechanism of enrofloxacin on humic acids extracted from Brazilian soils
  publication-title: Environ. Sci. Pollut. Res.
– volume: 349
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib21
  article-title: Impact of post-processing modes of precursor on adsorption and photocatalytic capability of mesoporous TiO2 nanocrystallite aggregates towards ciprofloxacin removal
  publication-title: Chem. Eng. J.
– volume: 246 – 247
  start-page: 221
  year: 2013
  end-page: 226
  ident: bib55
  article-title: Mechanisms of ciprofloxacin removal by nano-sized magnetite
  publication-title: J. Hazard. Mater.
– volume: 26
  start-page: 10685
  year: 2019
  end-page: 10694
  ident: bib90
  article-title: Sorption of copper and norfloxacin onto humic acid: effects of pH, ionic strength, and foreign ions
  publication-title: Environ. Sci. Pollut. Res.
– reference: B–
– volume: 222
  year: 2022
  ident: bib56
  article-title: Deriving probabilistic soil distribution coefficients (Kd). Part 1: general approach to decreasing and descriving variability and example using uranium Kd values
  publication-title: J. Environ. Radioac.
– volume: 45
  start-page: 1459
  year: 1997
  end-page: 1463
  ident: bib43
  article-title: Binding of fluoroquinolone carboxylic acid derivatives to clay minerals
  publication-title: J. Agric. Food Chem.
– volume: 116
  start-page: 591
  year: 2014
  end-page: 596
  ident: bib54
  article-title: Adsorption of levofloxacin onto goethite: effects of pH, calcium and phosphate
  publication-title: Colloids Surf. B
– volume: 20
  start-page: 170
  year: 2020
  end-page: 177
  ident: bib72
  article-title: Antibiotic use in food animals worldwide, with a focus on Africa: pluses and minuses
  publication-title: J. Glob. Antimicrob. Resist.
– volume: 32
  start-page: 76
  year: 2017
  end-page: 77
  ident: bib80
  article-title: Global Priority list of antibiotic-resistance bacteria to guide research, discovery, and development of new antibiotics. World Health Organization, Geneva
  publication-title: J. Med. Soc.
– volume: 500 – 501
  start-page: 250
  year: 2014
  end-page: 269
  ident: bib73
  article-title: Fluoroquinolone antibiotics: an emerging class of environmental micropollutants
  publication-title: Sci. Total Environ.
– volume: 156
  start-page: 75
  year: 2010
  end-page: 83
  ident: bib53
  article-title: A critical review of the conventional SOC to SOM conversion factor
  publication-title: Geoderma
– volume: 837
  start-page: 253
  year: 1999
  end-page: 265
  ident: bib62
  article-title: Development of capillary electrophopresis methods for the analysis of fluoroquinolones and application to the study of the influence of humic substances on their photodegradation in aqueous phase
  publication-title: J. Chromatogr. A
– volume: 18
  start-page: 1501
  year: 1984
  end-page: 1507
  ident: bib6
  article-title: Removal of heavy metals from waters by means of natural zeolites
  publication-title: Water Res.
– volume: 229
  year: 2018
  ident: bib94
  article-title: The Influence of Humification Degree of Humic Acid on Its Sorption of Norfloxacin during sewage sludge composting
  publication-title: Water Air Soil Pollut.
– volume: 214
  year: 2022
  ident: bib1
  article-title: Influence of pH on the adsorption-desorption of doxycycline, enrofloxacin, and sulfamethoxypyridazine in soils with var iable surface charge
  publication-title: Environ. Res.
– volume: 303
  start-page: 55
  year: 2016
  end-page: 63
  ident: bib8
  article-title: Interaction of ciprofloxacin and probe compounds with palygorskite PFl-1
  publication-title: J. Hazard. Mater.
– volume: 102
  start-page: 165
  year: 2012
  end-page: 172
  ident: bib89
  article-title: Sorption of norfloxacin onto humic acid extracted from weathered coal
  publication-title: J. Environ. Manag.
– volume: 262
  year: 2023
  ident: bib19
  article-title: A comprehensive and global evaluation of residual antibiotics in agricultural soils: accumulation, potential ecological risks, and attenuation strategies
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 637
  start-page: 3192
  year: 1953
  end-page: 3210
  ident: bib27
  article-title: The stability of transition metal complexes
  publication-title: J. Chem. Soc.
– reference: OECD, 2000. OECD 106 Adsorption - Desorption Using a Batch Equilibrium Method. OECD Guideline for the Testing of Chemicals.
– volume: 26
  start-page: 30044
  year: 2019
  end-page: 30054
  ident: bib65
  article-title: Adsorption and desorption of chromium with humic acid coated iron oxide nanoparticles
  publication-title: Environ. Sci. Pollut. R.
– volume: 513
  start-page: 367
  year: 2018
  end-page: 378
  ident: bib45
  article-title: Structures and mechanisms in clay nanopore trapping of structurally-different fluoroquinolone antimicrobials
  publication-title: J. Colloid Inter. Sci.
– volume: 137
  start-page: 160
  year: 2017
  end-page: 167
  ident: bib34
  article-title: Preparation and characterization of organo-vermiculite based on phosphatidylcholine and adsorption of two typical antibiotics
  publication-title: Appl. Clay Sci.
– volume: 47
  start-page: 259
  year: 2012
  end-page: 268
  ident: bib84
  article-title: Desorption of ciprofloxacin from clay mineral surfaces
  publication-title: Water Res.
– volume: 46
  start-page: 11896
  year: 2012
  end-page: 11904
  ident: bib48
  article-title: Surface complexation of the zwitterionic fluoroquinolone antibiotic ofloxacin to nano-anatase TiO2 photocatalyst surfaces
  publication-title: Environ. Sci. Technol.
– volume: 190
  year: 2020
  ident: bib86
  article-title: Prevalence of fluoroquinolone, macrolide and sulfonamide-related resistance genes in landfills from East China, mainly driven by MGEs
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 78
  start-page: 630
  year: 2019
  ident: bib30
  article-title: Different surface complexation patterns of gatifloxacin at typical iron mineral/water interfaces
  publication-title: Environ. Earth Sci.
– volume: 171
  start-page: 185
  year: 2012
  end-page: 190
  ident: bib46
  article-title: Sorption kinetics of ofloxacin in soils and mineral particles
  publication-title: Environ. Pollut.
– volume: 428
  start-page: 63
  year: 2014
  end-page: 72
  ident: bib49
  article-title: Adsorption of zwitterionic fluoroquinolone antibacterials to goethite: a charge distribution-multisite complexation model
  publication-title: J. Colloid Interface Sci.
– volume: 248
  start-page: 815
  year: 2019
  end-page: 822
  ident: bib92
  article-title: Noncovalent interactions between fluoroquinolone antibiotics with dissolved organic matter: a 1H NMR binding site study and multi-spectroscopic methods
  publication-title: Environ. Pollut.
– volume: 92
  start-page: 979
  year: 2013
  end-page: 985
  ident: bib29
  article-title: Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils
  publication-title: Chemosphere
– volume: 40
  start-page: 7132
  year: 2016
  end-page: 7139
  ident: bib2
  article-title: Electrochemical evaluation of ciprofloxacin adsorption on soil organic matter
  publication-title: N. J. Chem.
– volume: 205
  year: 2020
  ident: bib95
  article-title: Effect of phosphate on the adsorption of antibiotics onto iron oxide minerals: comparison between tetracycline and ciprofloxacin
  publication-title: Ecotox. Environ. Saf.
– volume: 34
  start-page: 4989
  year: 2000
  end-page: 4994
  ident: bib37
  article-title: Influence of pH and other modifying factors on the distribution behavior of 4-quinolones to solid phases and humic acids studied by “negligible-depletion” SPME-HPLC
  publication-title: Environ. Sci. Technol.
– volume: 186
  start-page: 842
  year: 2011
  end-page: 848
  ident: bib51
  article-title: Insight to ternary complexes of co-adsorption of norfloxacin and Cu(II) onto montmorillonite at different pH using EXAFS
  publication-title: J. Hazard. Mater.
– reference: USEPA, 2009. Guidance on the Development, Evaluation, and Application of Environmental Models. U.S. Environmental Protection Agency. EPA/100/K-09/003. papers2://publication/uuid/06FC4BA9-AC
– volume: 161
  start-page: 76
  year: 2012
  end-page: 82
  ident: bib47
  article-title: The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction
  publication-title: Environ. Pollut.
– volume: 196
  start-page: 379
  year: 2015
  end-page: 385
  ident: bib78
  article-title: Quantifying the dynamic fluorescence quenching of phenanthrene and ofloxacin by dissolved humic acids
  publication-title: Environ. Pollut.
– volume: 44
  start-page: 915
  year: 2010
  end-page: 920
  ident: bib50
  article-title: Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH
  publication-title: Environ. Sci. Technol.
– volume: 191
  start-page: 704
  year: 2018
  end-page: 720
  ident: bib58
  article-title: Fluoroquinolones (FQs) in the environment: a review on their abundance, sorption and toxicity in soil
  publication-title: Chemosphere
– reference: .
– volume: 151
  start-page: 68
  year: 2009
  end-page: 76
  ident: bib74
  article-title: pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption
  publication-title: Geoderma
– volume: 52
  start-page: 467
  year: 2018
  end-page: 473
  ident: bib11
  article-title: Influence of magnetite stoichiometry on the binding of emerging organic contaminants
  publication-title: Environ. Sci. Technol.
– volume: 66
  start-page: 1502
  year: 2007
  end-page: 1512
  ident: bib87
  article-title: Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite
  publication-title: Chemosphere
– volume: 228
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib31
  article-title: Sorption Behavior of Ofloxacin to Kaolinite: effects of pH, ionic strength, and Cu(II)
  publication-title: Water Air Soil Pollut.
– reference: EMA, 2019. European Medicines Agency, Science Medicines Health. EMA/175398/2019.
– volume: 49
  start-page: 12197
  issue: 20
  year: 2015
  ident: 10.1016/j.ecoenv.2024.116535_bib39
  article-title: Kinetics and mechanisms of Ciprofloxacin oxidation on hematite surfaces
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b02851
– volume: 246 – 247
  start-page: 221
  year: 2013
  ident: 10.1016/j.ecoenv.2024.116535_bib55
  article-title: Mechanisms of ciprofloxacin removal by nano-sized magnetite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.12.032
– volume: 22
  start-page: 438
  issue: 8
  year: 2014
  ident: 10.1016/j.ecoenv.2024.116535_bib57
  article-title: Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2014.04.007
– volume: 283
  start-page: 160
  issue: 1
  year: 2005
  ident: 10.1016/j.ecoenv.2024.116535_bib23
  article-title: Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.08.150
– volume: 249
  year: 2023
  ident: 10.1016/j.ecoenv.2024.116535_bib64
  article-title: Association between antibiotic exposure and the risk of infertility in women of childbearing age: a case-control study
  publication-title: Ecotoxicol. Envion. Saf.
– volume: 66
  start-page: 1502
  issue: 8
  year: 2007
  ident: 10.1016/j.ecoenv.2024.116535_bib87
  article-title: Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.08.024
– volume: 76
  start-page: 133
  year: 2019
  ident: 10.1016/j.ecoenv.2024.116535_bib28
  article-title: Evaluation of natural goethite on the removal of arsenate and selenite from water
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2018.04.016
– volume: 481
  start-page: 209
  year: 2014
  ident: 10.1016/j.ecoenv.2024.116535_bib81
  article-title: Co-sorption of ofloxacin and Cu(II) in soils before and after organic matter removal
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.02.041
– volume: 39
  start-page: 9166
  issue: 23
  year: 2005
  ident: 10.1016/j.ecoenv.2024.116535_bib25
  article-title: Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es051109f
– volume: 51
  start-page: 13659
  issue: 23
  year: 2017
  ident: 10.1016/j.ecoenv.2024.116535_bib91
  article-title: Cation–Pi Interaction: a Key force for sorption of fluoroquinolone antibiotics on pyrogenic carbonaceous materials
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02317
– volume: 178
  start-page: 43
  year: 2019
  ident: 10.1016/j.ecoenv.2024.116535_bib32
  article-title: Effects of dissolved humic acid on fluoroquinolones sorption and retention to kaolinite
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.04.002
– volume: 45
  start-page: 10020
  issue: 23
  year: 2011
  ident: 10.1016/j.ecoenv.2024.116535_bib67
  article-title: Speciation of the ionizable antibiotic sulfamethazine on black carbon (Biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202487h
– volume: 122
  start-page: 470
  year: 2015
  ident: 10.1016/j.ecoenv.2024.116535_bib24
  article-title: Adsorption of enrofloxacin in presence of Zn (II) on a calcareous soil
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2015.09.019
– volume: 222
  year: 2022
  ident: 10.1016/j.ecoenv.2024.116535_bib56
  article-title: Deriving probabilistic soil distribution coefficients (Kd). Part 1: general approach to decreasing and descriving variability and example using uranium Kd values
  publication-title: J. Environ. Radioac.
– volume: 376
  start-page: 46
  year: 2018
  ident: 10.1016/j.ecoenv.2024.116535_bib13
  article-title: Fluoroquinolones metal complexation and its environmental impacts
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.05.019
– volume: 191
  start-page: 704
  year: 2018
  ident: 10.1016/j.ecoenv.2024.116535_bib58
  article-title: Fluoroquinolones (FQs) in the environment: a review on their abundance, sorption and toxicity in soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.10.092
– volume: 29
  start-page: 676
  issue: 5
  year: 2019
  ident: 10.1016/j.ecoenv.2024.116535_bib59
  article-title: Sorption and desorption behavior of fluoroquinolone antibiotics in an agricultural soil
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(19)60831-3
– volume: 89
  start-page: 825
  issue: 7
  year: 2012
  ident: 10.1016/j.ecoenv.2024.116535_bib22
  article-title: Quantitatively modeling soil-water distribution coefficients of three antibiotics using soil physicochemical properties
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.04.064
– volume: 303
  start-page: 55
  year: 2016
  ident: 10.1016/j.ecoenv.2024.116535_bib8
  article-title: Interaction of ciprofloxacin and probe compounds with palygorskite PFl-1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.10.012
– volume: 45
  start-page: 1459
  issue: 4
  year: 1997
  ident: 10.1016/j.ecoenv.2024.116535_bib43
  article-title: Binding of fluoroquinolone carboxylic acid derivatives to clay minerals
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf960215l
– volume: 46
  start-page: 11896
  issue: 21
  year: 2012
  ident: 10.1016/j.ecoenv.2024.116535_bib48
  article-title: Surface complexation of the zwitterionic fluoroquinolone antibiotic ofloxacin to nano-anatase TiO2 photocatalyst surfaces
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302097k
– volume: 119
  start-page: 310
  year: 2015
  ident: 10.1016/j.ecoenv.2024.116535_bib52
  article-title: Sorption of norfloxacin in soils: analytical method, kinetics and Freundlich isotherms
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.06.008
– volume: 77
  start-page: 281
  year: 2013
  ident: 10.1016/j.ecoenv.2024.116535_bib38
  article-title: Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2013.04.025
– volume: 52
  start-page: 467
  issue: 2
  year: 2018
  ident: 10.1016/j.ecoenv.2024.116535_bib11
  article-title: Influence of magnetite stoichiometry on the binding of emerging organic contaminants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04849
– volume: 24
  start-page: 15995
  issue: 19
  year: 2017
  ident: 10.1016/j.ecoenv.2024.116535_bib40
  article-title: Sorption mechanism of enrofloxacin on humic acids extracted from Brazilian soils
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9210-3
– volume: 214
  year: 2022
  ident: 10.1016/j.ecoenv.2024.116535_bib1
  article-title: Influence of pH on the adsorption-desorption of doxycycline, enrofloxacin, and sulfamethoxypyridazine in soils with var iable surface charge
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.114071
– volume: 133
  start-page: 18
  year: 2016
  ident: 10.1016/j.ecoenv.2024.116535_bib9
  article-title: Risk assessment of three fluoroquinolone antibiotics in the groundwater recharge system
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2016.05.030
– volume: 7
  start-page: 50449
  issue: 80
  year: 2017
  ident: 10.1016/j.ecoenv.2024.116535_bib35
  article-title: Adsorption of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) by humic acid (HA): characteristics and mechanism
  publication-title: RSC Adv.
  doi: 10.1039/C7RA06231A
– volume: 349
  start-page: 1
  year: 2018
  ident: 10.1016/j.ecoenv.2024.116535_bib21
  article-title: Impact of post-processing modes of precursor on adsorption and photocatalytic capability of mesoporous TiO2 nanocrystallite aggregates towards ciprofloxacin removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.051
– volume: 161
  start-page: 76
  year: 2012
  ident: 10.1016/j.ecoenv.2024.116535_bib47
  article-title: The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.09.040
– volume: 53
  start-page: 723
  issue: 4
  year: 2011
  ident: 10.1016/j.ecoenv.2024.116535_bib77
  article-title: Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2011.06.014
– volume: 77
  start-page: 813
  issue: 6
  year: 2009
  ident: 10.1016/j.ecoenv.2024.116535_bib7
  article-title: Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.08.003
– volume: 24
  start-page: 23834
  year: 2017
  ident: 10.1016/j.ecoenv.2024.116535_bib76
  article-title: Co-contaminant effects on ofloxacin adsorption onto activated carbon, graphite, and humic acid
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-0038-7
– volume: 2
  start-page: 738
  issue: 1
  year: 2014
  ident: 10.1016/j.ecoenv.2024.116535_bib60
  article-title: Clay minerals for adsorption of veterinary FQs: behavior and modeling
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2013.11.017
– volume: 186
  start-page: 842
  issue: 1
  year: 2011
  ident: 10.1016/j.ecoenv.2024.116535_bib51
  article-title: Insight to ternary complexes of co-adsorption of norfloxacin and Cu(II) onto montmorillonite at different pH using EXAFS
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.11.076
– volume: 102
  start-page: 165
  year: 2012
  ident: 10.1016/j.ecoenv.2024.116535_bib89
  article-title: Sorption of norfloxacin onto humic acid extracted from weathered coal
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2011.12.036
– volume: 861
  year: 2022
  ident: 10.1016/j.ecoenv.2024.116535_bib17
  article-title: Deriving parametric and probabilistic Kd values for fluoroquinolones in soils
  publication-title: Sci. Total Environ.
– volume: 190
  year: 2020
  ident: 10.1016/j.ecoenv.2024.116535_bib86
  article-title: Prevalence of fluoroquinolone, macrolide and sulfonamide-related resistance genes in landfills from East China, mainly driven by MGEs
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.110131
– volume: 27
  start-page: 2304
  issue: 11
  year: 2008
  ident: 10.1016/j.ecoenv.2024.116535_bib3
  article-title: Molecular modeling of metal complexation by a fluoroquinolone antibiotic
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/08-059.1
– volume: 262
  year: 2023
  ident: 10.1016/j.ecoenv.2024.116535_bib19
  article-title: A comprehensive and global evaluation of residual antibiotics in agricultural soils: accumulation, potential ecological risks, and attenuation strategies
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2023.115175
– volume: 563 – 564
  start-page: 971
  year: 2016
  ident: 10.1016/j.ecoenv.2024.116535_bib20
  article-title: Interactions of ciprofloxacin (CIP), titanium dioxide (TiO2) nanoparticles and natural organic matter (NOM) in aqueous suspensions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.12.023
– ident: 10.1016/j.ecoenv.2024.116535_bib44
  doi: 10.1787/9789264069602-en
– volume: 13
  start-page: 1617
  issue: 9
  year: 2016
  ident: 10.1016/j.ecoenv.2024.116535_bib41
  article-title: Effective removal of ciprofloxacin from aqueous solutions using magnetic metal–organic framework sorbents: mechanisms, isotherms and kinetics
  publication-title: J. Iran. Chem. Soc.
  doi: 10.1007/s13738-016-0878-y
– volume: 92
  start-page: 979
  issue: 8
  year: 2013
  ident: 10.1016/j.ecoenv.2024.116535_bib29
  article-title: Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.03.018
– volume: 26
  start-page: 30044
  year: 2019
  ident: 10.1016/j.ecoenv.2024.116535_bib65
  article-title: Adsorption and desorption of chromium with humic acid coated iron oxide nanoparticles
  publication-title: Environ. Sci. Pollut. R.
  doi: 10.1007/s11356-019-06164-0
– volume: 41
  start-page: 3153
  issue: 9
  year: 2007
  ident: 10.1016/j.ecoenv.2024.116535_bib68
  article-title: Spectroscopic investigation of ciprofloxacin speciation at the goethite-water interface
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061921y
– volume: 837
  start-page: 253
  issue: 1-2
  year: 1999
  ident: 10.1016/j.ecoenv.2024.116535_bib62
  article-title: Development of capillary electrophopresis methods for the analysis of fluoroquinolones and application to the study of the influence of humic substances on their photodegradation in aqueous phase
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(99)00079-5
– volume: 33
  year: 2019
  ident: 10.1016/j.ecoenv.2024.116535_bib42
  article-title: Optimization of ciprofloxacin adsorption from synthetic wastewaters using γ-Al2O3 nanoparticles: an experimental design based on response surface methodology
  publication-title: Colloids Inter. Sci. Comm.
– volume: 229
  issue: 5
  year: 2018
  ident: 10.1016/j.ecoenv.2024.116535_bib94
  article-title: The Influence of Humification Degree of Humic Acid on Its Sorption of Norfloxacin during sewage sludge composting
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-018-3821-2
– volume: 78
  start-page: 630
  year: 2019
  ident: 10.1016/j.ecoenv.2024.116535_bib30
  article-title: Different surface complexation patterns of gatifloxacin at typical iron mineral/water interfaces
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-019-8641-1
– volume: 231
  year: 2022
  ident: 10.1016/j.ecoenv.2024.116535_bib88
  article-title: The exposure levels and health risk assessment of antibiotics in urine and its association with platelet mitochondrial DNA methylation in adults from Tianjin, China: a preliminary study
  publication-title: Ecotoxicol. Enviorn. Saf.
– volume: 171
  start-page: 185
  year: 2012
  ident: 10.1016/j.ecoenv.2024.116535_bib46
  article-title: Sorption kinetics of ofloxacin in soils and mineral particles
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2012.07.037
– ident: 10.1016/j.ecoenv.2024.116535_bib70
– volume: 27
  start-page: 516
  issue: 3
  year: 2012
  ident: 10.1016/j.ecoenv.2024.116535_bib83
  article-title: Influence of types and charges of exchangable cations on Ciprofloxacin sorption by Montmorillonite
  publication-title: J. Wuhan. Univ. Technol. Mater. Sci. Ed.
  doi: 10.1007/s11595-012-0495-2
– volume: 18
  start-page: 1501
  issue: 12
  year: 1984
  ident: 10.1016/j.ecoenv.2024.116535_bib6
  article-title: Removal of heavy metals from waters by means of natural zeolites
  publication-title: Water Res.
  doi: 10.1016/0043-1354(84)90124-6
– volume: 228
  start-page: 1
  issue: 46
  year: 2017
  ident: 10.1016/j.ecoenv.2024.116535_bib31
  article-title: Sorption Behavior of Ofloxacin to Kaolinite: effects of pH, ionic strength, and Cu(II)
  publication-title: Water Air Soil Pollut.
– volume: 26
  start-page: 10685
  issue: 11
  year: 2019
  ident: 10.1016/j.ecoenv.2024.116535_bib90
  article-title: Sorption of copper and norfloxacin onto humic acid: effects of pH, ionic strength, and foreign ions
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-04515-5
– volume: 500 – 501
  start-page: 250
  year: 2014
  ident: 10.1016/j.ecoenv.2024.116535_bib73
  article-title: Fluoroquinolone antibiotics: an emerging class of environmental micropollutants
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.08.075
– volume: 20
  start-page: 170
  year: 2020
  ident: 10.1016/j.ecoenv.2024.116535_bib72
  article-title: Antibiotic use in food animals worldwide, with a focus on Africa: pluses and minuses
  publication-title: J. Glob. Antimicrob. Resist.
  doi: 10.1016/j.jgar.2019.07.031
– ident: 10.1016/j.ecoenv.2024.116535_bib16
– volume: 156
  start-page: 75
  issue: 3-4
  year: 2010
  ident: 10.1016/j.ecoenv.2024.116535_bib53
  article-title: A critical review of the conventional SOC to SOM conversion factor
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.02.003
– volume: 513
  start-page: 367
  year: 2018
  ident: 10.1016/j.ecoenv.2024.116535_bib45
  article-title: Structures and mechanisms in clay nanopore trapping of structurally-different fluoroquinolone antimicrobials
  publication-title: J. Colloid Inter. Sci.
  doi: 10.1016/j.jcis.2017.11.020
– volume: 823
  year: 2022
  ident: 10.1016/j.ecoenv.2024.116535_bib79
  article-title: The pH dependence and role of fluorinated substituent of enoxacin binding to ferrihydrite
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153707
– volume: 32
  start-page: 76
  issue: 1
  year: 2017
  ident: 10.1016/j.ecoenv.2024.116535_bib80
  article-title: Global Priority list of antibiotic-resistance bacteria to guide research, discovery, and development of new antibiotics. World Health Organization, Geneva
  publication-title: J. Med. Soc.
– volume: 465
  year: 2024
  ident: 10.1016/j.ecoenv.2024.116535_bib14
  article-title: Urban agglomerations as an environmental dimension of antibiotics transmission through the "One Health" lens
  publication-title: J. Hazard. Mat.
  doi: 10.1016/j.jhazmat.2023.133283
– volume: 196
  start-page: 379
  year: 2015
  ident: 10.1016/j.ecoenv.2024.116535_bib78
  article-title: Quantifying the dynamic fluorescence quenching of phenanthrene and ofloxacin by dissolved humic acids
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2014.10.029
– volume: 44
  start-page: 915
  issue: 3
  year: 2010
  ident: 10.1016/j.ecoenv.2024.116535_bib50
  article-title: Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902902c
– volume: 114
  start-page: 69
  year: 2015
  ident: 10.1016/j.ecoenv.2024.116535_bib61
  article-title: Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2015.05.010
– volume: 428
  start-page: 63
  year: 2014
  ident: 10.1016/j.ecoenv.2024.116535_bib49
  article-title: Adsorption of zwitterionic fluoroquinolone antibacterials to goethite: a charge distribution-multisite complexation model
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.04.034
– volume: 177
  start-page: 117
  year: 2019
  ident: 10.1016/j.ecoenv.2024.116535_bib15
  article-title: Presence and environmental risk assessment of selected antibiotics in coastal water adjacent to mariculture areas in the Bohai Sea
  publication-title: Ecotox. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.03.075
– volume: 22
  start-page: 609
  issue: 1
  year: 2015
  ident: 10.1016/j.ecoenv.2024.116535_bib66
  article-title: Effects of metal Cations and Fulvic acid on the adsorption of ciprofloxacin onto goethite
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3351-4
– volume: 40
  start-page: 7132
  year: 2016
  ident: 10.1016/j.ecoenv.2024.116535_bib2
  article-title: Electrochemical evaluation of ciprofloxacin adsorption on soil organic matter
  publication-title: N. J. Chem.
  doi: 10.1039/C6NJ00207B
– volume: 116
  start-page: 591
  year: 2014
  ident: 10.1016/j.ecoenv.2024.116535_bib54
  article-title: Adsorption of levofloxacin onto goethite: effects of pH, calcium and phosphate
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2013.09.056
– volume: 205
  year: 2020
  ident: 10.1016/j.ecoenv.2024.116535_bib95
  article-title: Effect of phosphate on the adsorption of antibiotics onto iron oxide minerals: comparison between tetracycline and ciprofloxacin
  publication-title: Ecotox. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111345
– volume: 11
  start-page: 1067
  issue: 6
  year: 2021
  ident: 10.1016/j.ecoenv.2024.116535_bib69
  article-title: Characterization of soil organic matter individual fractions (fulvic acids, humic acids and humin) by spectroscopic and electrochemical techniques in agricultural soils
  publication-title: Agronomy
  doi: 10.3390/agronomy11061067
– volume: 255
  year: 2019
  ident: 10.1016/j.ecoenv.2024.116535_bib26
  article-title: Predicting the sorption of azithromycin and levofloxacin to sediments from mineral and organic components
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113180
– volume: 50
  start-page: 204
  year: 2010
  ident: 10.1016/j.ecoenv.2024.116535_bib82
  article-title: Adsorption and intercation of ciprofloxacin on montmorillonite
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2010.08.001
– volume: 34
  start-page: 4989
  issue: 23
  year: 2000
  ident: 10.1016/j.ecoenv.2024.116535_bib37
  article-title: Influence of pH and other modifying factors on the distribution behavior of 4-quinolones to solid phases and humic acids studied by “negligible-depletion” SPME-HPLC
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es000917y
– volume: 372
  start-page: 141
  issue: 1
  year: 2012
  ident: 10.1016/j.ecoenv.2024.116535_bib85
  article-title: Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.01.016
– volume: 248
  start-page: 815
  year: 2019
  ident: 10.1016/j.ecoenv.2024.116535_bib92
  article-title: Noncovalent interactions between fluoroquinolone antibiotics with dissolved organic matter: a 1H NMR binding site study and multi-spectroscopic methods
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.02.077
– volume: 47
  start-page: 259
  issue: 1
  year: 2012
  ident: 10.1016/j.ecoenv.2024.116535_bib84
  article-title: Desorption of ciprofloxacin from clay mineral surfaces
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.10.010
– ident: 10.1016/j.ecoenv.2024.116535_bib71
– volume: 151
  start-page: 68
  year: 2009
  ident: 10.1016/j.ecoenv.2024.116535_bib74
  article-title: pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.03.007
– volume: 40
  start-page: 1481
  issue: 7
  year: 2006
  ident: 10.1016/j.ecoenv.2024.116535_bib36
  article-title: Sorption of acetaminophen, 17α-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic medium
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.02.003
– volume: 10
  year: 2023
  ident: 10.1016/j.ecoenv.2024.116535_bib18
  article-title: Using a batch test to derive sorption data of fluoroquinolones in humic acids
  publication-title: Methods X
– volume: 137
  start-page: 160
  year: 2017
  ident: 10.1016/j.ecoenv.2024.116535_bib34
  article-title: Preparation and characterization of organo-vermiculite based on phosphatidylcholine and adsorption of two typical antibiotics
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2016.12.002
– volume: 88
  start-page: 339
  issue: 1
  year: 2011
  ident: 10.1016/j.ecoenv.2024.116535_bib33
  article-title: A mechanistic study of ciprofloxacin removal by kaolinite
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2011.07.011
– volume: 637
  start-page: 3192
  year: 1953
  ident: 10.1016/j.ecoenv.2024.116535_bib27
  article-title: The stability of transition metal complexes
  publication-title: J. Chem. Soc.
  doi: 10.1039/jr9530003192
– volume: 29
  start-page: 90
  issue: 1
  year: 2010
  ident: 10.1016/j.ecoenv.2024.116535_bib4
  article-title: Binding of ciprofloxacin by humic substances: a molecular dynamics study
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.19
– volume: 80
  start-page: 1353
  issue: 11
  year: 2010
  ident: 10.1016/j.ecoenv.2024.116535_bib12
  article-title: Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.06.012
– volume: 40
  start-page: 1
  issue: 22
  year: 2018
  ident: 10.1016/j.ecoenv.2024.116535_bib63
  article-title: Sorption of antibiotics onto montmorillonite and kaolinite: competition modelling
  publication-title: Environ. Technol.
– volume: 497 – 498
  start-page: 665
  year: 2014
  ident: 10.1016/j.ecoenv.2024.116535_bib93
  article-title: Ofloxacin sorption in soils after long-term tillage: the contribution of organic and mineral compositions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.07.130
– volume: 77
  start-page: 287
  year: 2013
  ident: 10.1016/j.ecoenv.2024.116535_bib75
  article-title: Enrofloxacin uptake and retention on different types of clays
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2013.02.032
– volume: 648
  year: 2022
  ident: 10.1016/j.ecoenv.2024.116535_bib10
  article-title: The mechanisms involved into the inhibitory effects of ionic liquids chemistry on adsorption performance of ciprofloxacin onto inorganic minerals
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2022.129422
– volume: 32
  start-page: 1467
  issue: 7
  year: 2013
  ident: 10.1016/j.ecoenv.2024.116535_bib5
  article-title: Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.2214
SSID ssj0003055
Score 2.4399655
Snippet The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 116535
SubjectTerms antibiotic resistance
cumulative distribution
data collection
desorption
ecotoxicology
Fluoroquinolones
human health
Humic substances
Metal oxides
Phyllosilicate minerals
Soil
Sorption
species
surface area
zwitterions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA8iCAWR-lrxWZUUvKa-3WSzm2MVRVrak4K3kE9Y0V15H4IH__fOJLutetBLb8sS8jXJTH6TyW8IOULMFaKNrLLKM9FYw6wykdnGuJm3QfDkcPv1W15ciR_X1fWzVF8YE5bpgfPEHRd4MeVgmRQuCF96pUrrS-FC4bg1PqF1sHkjmBp0MPJY5eDFmsmq4OOjuRTZBbgudA-ADUvxDdlnUqq3f0Ypcfe_sE2vtHQyPecfydZwZqTfc1-3yVroJmTjLPFNP07IZna90fyi6BN5yhe5YJPoop8nlUD7SOPtqscGWvSkd4HClLa27ZGmmbYdFG1vFxRfm1BDf3qKseZtDpSjaOo8hY_71TzQnAjKQQWe3rWJtTqVhkq75eIzuTo_uzy9YEOWBeYE50sWYUuCzbe2Kk09U76Wws14CTjDSW8caFKrHMxo8EVwQUbjY4Mopgx1BNvv-Q5Z76CFXUKjEtw0tZPS10IWxlruGsOrwqiZV42cEjZOs77PZBp6jDK70VksGsWis1im5ARl8bcsUmGnHzBQPSwQ_d4CmZJ6lKQeThX5tABVte80_3UUvIZNhzcppgv9aqERZylkOuRvlMHwF0S_cu9_DOML-YBdQ7dyUe2T9eV8FQ7gPLS0h2np_wGFoAoN
  priority: 102
  providerName: Directory of Open Access Journals
Title Assessing sorption of fluoroquinolone antibiotics in soils from a Kd compilation based on pure organic and mineral components
URI https://dx.doi.org/10.1016/j.ecoenv.2024.116535
https://www.proquest.com/docview/3067914033
https://www.proquest.com/docview/3200264486
https://doaj.org/article/19089c9631ce4d2d992bd24ce1c3bad0
Volume 280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lRRBEalU8rUcEX7e3u8lmN49taTkt9slC30I-IVJ3j_sQfNC_3Zlk11IfFHy7C0Oym8nOZCa_-YWQ9xhz-WBC0RjpCt4ZXRipQ2E6bUtnPGcp4fbpWixv-Mfb5naPnE-1MAirHG1_tunJWo8ti3E2F6sYFwhLakVTIaMcOKVUZsWhBdb0yc97mAcyWmUYY1ug9FQ-lzBeEOH5_htEiTU_QR6adOnbvXtKLP4PvNQf9jo5octD8nTcPdLT_IDPyJ7vj8iji8Q8_f2IPMlJOJpri56TH_lIF7wT3QzrZBzoEGi42w04QMSceu8pTG40cUDCZhp7EI13G4p1J1TTK0cRdR4zZI6i03MUfqx2a0_zlVAWOnD0a0z81UkaOu23mxfk5vLi8_myGO9bKCxnbFsE-DjB-xvT1LotpWsFtyWrIeKwwmkLNtVICzPqXeWtF0G70GE8U_s2wC7AsZdkv4cRXhEaJGe6a60QruWi0sYw22nWVFqWTnZiRoppmtUq02qoCW_2RWW1KFSLymqZkTPUxW9ZJMVODfCialwVqsIzTAsWpbKeu9pJWRtXc-sry4x25Yy0kybVgzUGXcV_DP9uUryCzw_PVHTvh91GYcQlkfOQ_UUGgTAYB4vX__0Eb8hj_IdZ5ao5Jvvb9c6_he3Q1szTep-Tg9MPV8vreUoq_AJciA0g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhQ2mhlDZt6aYvFXp11w9Zto5pSNh0kz0lkJvQE1QSe9lHoYf8985Idkp6aKE3I8uSPCPNaEYznwj5jDaX89pntRY2Y61WmRbKZ7pVJrfasSo63C6WfH7Fvl3X13vkeMyFwbDKQfYnmR6l9VAyG6g5W4Uww7CkhtcFIsqBUsI0q31Ep6onZP_obDFf3gtkBLVKkYxNhh-MGXQxzAuMPNf9AEOxZF8Qiibe-_ZbQ0Ug_weK6g-RHfXQ6XPybNhA0qM0xhdkz3UH5NFJBJ_-eUCeJj8cTelFL8ldOtUFBUU3_TrKB9p76m92PXYQ0K3eOQr0DTr0iNlMQwdVw82GYuoJVXRhKQaehxQ1R1HvWQoPq93a0XQrlIEGLL0NEcI61oZGu-3mFbk6Pbk8nmfDlQuZYVW1zTysT9gAaF2XqsmFbTgzeVWC0WG4VQbEqhYGKOps4YzjXlnfoklTusbDRsBWr8mkgx7eEOoFq1TbGM5tw3ihtK5Mq6q6UCK3ouVTko1klquErCHHkLPvMrFFIltkYsuUfEVe3NdFXOxYAD8qh4khCzzGNCBUCuOYLa0QpbYlM64wlVY2n5Jm5KR8MM2gqfCP7j-NjJewAvFYRXWu320kGl0CYQ-rv9TBWBg0hfnhf4_gI3k8v7w4l-dny8Vb8gTfoJO5qN-RyXa9c-9hd7TVH4bZ_wszVg7c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+sorption+of+fluoroquinolone+antibiotics+in+soils+from+a+Kd+compilation+based+on+pure+organic+and+mineral+components&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Fabregat-Palau%2C+Joel&rft.au=Rigol%2C+Anna&rft.au=Grathwohl%2C+Peter&rft.au=Vidal%2C+Miquel&rft.date=2024-07-15&rft.issn=1090-2414&rft.eissn=1090-2414&rft.volume=280&rft.spage=116535&rft_id=info:doi/10.1016%2Fj.ecoenv.2024.116535&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon