Assessing sorption of fluoroquinolone antibiotics in soils from a Kd compilation based on pure organic and mineral components
The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance genes. Understanding their sorption behavior in soils is important to predict subsequent FQ (bio) availability. Here, FQ sorption in pure soil...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 280; p. 116535 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.07.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance genes. Understanding their sorption behavior in soils is important to predict subsequent FQ (bio) availability. Here, FQ sorption in pure soil organic (i.e., humic substances) and mineral (i.e., metal oxides; phyllosilicates) components is evaluated through a solid-liquid distribution coefficient (Kd (FQ)) dataset consisting of 243 entries originated from 80 different studies, to elucidate their respective contribution to the overall Kd (FQ) in bulk soils. First, different factors affecting FQ sorption and desorption in each of these soil phases are critically discussed. The strong role of pH in Kd (FQ), due to the simultaneous effect on both FQ speciation and surface charge changes, encouraged the derivation of normalized sorption coefficients for the cationic, zwitterionic and anionic FQ species in humic substances and in different phyllosilicates. Kd (FQ) in metal oxides revealed a key role of metal nature and material specific surface area due to complexation sorption mechanisms at neutral pH. Cumulative distribution functions (CDF) were applied to each dataset to establish a sorption affinity range for each phase and to derive best estimate Kd (FQ) values for those materials where normalized sorption coefficients to FQ species were unavailable. The data analysis conducted in the different soil phases set the basis for a Kd (FQ) prediction model, which combined the respective sorption affinity of each phase for FQ and phase abundance in soil to estimate Kd (FQ) in bulk soils. The model was subsequently validated with sorption data in well characterized soils compiled from the literature.
•Sorption parameters of FQ in soil components are compiled from the literature.•pH-dependent normalized sorption coefficients for different FQ species and soil components are derived.•Sorption in metal oxides is ruled by complexation stability and specific surface area.•The sorption affinity in the different soil components is ranked through cumulative distribution functions.•Combining sorption affinity and abundance of soil components led to a good Kd (FQ) estimation. |
---|---|
AbstractList | The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance genes. Understanding their sorption behavior in soils is important to predict subsequent FQ (bio) availability. Here, FQ sorption in pure soil organic (i.e., humic substances) and mineral (i.e., metal oxides; phyllosilicates) components is evaluated through a solid-liquid distribution coefficient (Kd (FQ)) dataset consisting of 243 entries originated from 80 different studies, to elucidate their respective contribution to the overall Kd (FQ) in bulk soils. First, different factors affecting FQ sorption and desorption in each of these soil phases are critically discussed. The strong role of pH in Kd (FQ), due to the simultaneous effect on both FQ speciation and surface charge changes, encouraged the derivation of normalized sorption coefficients for the cationic, zwitterionic and anionic FQ species in humic substances and in different phyllosilicates. Kd (FQ) in metal oxides revealed a key role of metal nature and material specific surface area due to complexation sorption mechanisms at neutral pH. Cumulative distribution functions (CDF) were applied to each dataset to establish a sorption affinity range for each phase and to derive best estimate Kd (FQ) values for those materials where normalized sorption coefficients to FQ species were unavailable. The data analysis conducted in the different soil phases set the basis for a Kd (FQ) prediction model, which combined the respective sorption affinity of each phase for FQ and phase abundance in soil to estimate Kd (FQ) in bulk soils. The model was subsequently validated with sorption data in well characterized soils compiled from the literature. The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance genes. Understanding their sorption behavior in soils is important to predict subsequent FQ (bio) availability. Here, FQ sorption in pure soil organic (i.e., humic substances) and mineral (i.e., metal oxides; phyllosilicates) components is evaluated through a solid-liquid distribution coefficient (Kd (FQ)) dataset consisting of 243 entries originated from 80 different studies, to elucidate their respective contribution to the overall Kd (FQ) in bulk soils. First, different factors affecting FQ sorption and desorption in each of these soil phases are critically discussed. The strong role of pH in Kd (FQ), due to the simultaneous effect on both FQ speciation and surface charge changes, encouraged the derivation of normalized sorption coefficients for the cationic, zwitterionic and anionic FQ species in humic substances and in different phyllosilicates. Kd (FQ) in metal oxides revealed a key role of metal nature and material specific surface area due to complexation sorption mechanisms at neutral pH. Cumulative distribution functions (CDF) were applied to each dataset to establish a sorption affinity range for each phase and to derive best estimate Kd (FQ) values for those materials where normalized sorption coefficients to FQ species were unavailable. The data analysis conducted in the different soil phases set the basis for a Kd (FQ) prediction model, which combined the respective sorption affinity of each phase for FQ and phase abundance in soil to estimate Kd (FQ) in bulk soils. The model was subsequently validated with sorption data in well characterized soils compiled from the literature.The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance genes. Understanding their sorption behavior in soils is important to predict subsequent FQ (bio) availability. Here, FQ sorption in pure soil organic (i.e., humic substances) and mineral (i.e., metal oxides; phyllosilicates) components is evaluated through a solid-liquid distribution coefficient (Kd (FQ)) dataset consisting of 243 entries originated from 80 different studies, to elucidate their respective contribution to the overall Kd (FQ) in bulk soils. First, different factors affecting FQ sorption and desorption in each of these soil phases are critically discussed. The strong role of pH in Kd (FQ), due to the simultaneous effect on both FQ speciation and surface charge changes, encouraged the derivation of normalized sorption coefficients for the cationic, zwitterionic and anionic FQ species in humic substances and in different phyllosilicates. Kd (FQ) in metal oxides revealed a key role of metal nature and material specific surface area due to complexation sorption mechanisms at neutral pH. Cumulative distribution functions (CDF) were applied to each dataset to establish a sorption affinity range for each phase and to derive best estimate Kd (FQ) values for those materials where normalized sorption coefficients to FQ species were unavailable. The data analysis conducted in the different soil phases set the basis for a Kd (FQ) prediction model, which combined the respective sorption affinity of each phase for FQ and phase abundance in soil to estimate Kd (FQ) in bulk soils. The model was subsequently validated with sorption data in well characterized soils compiled from the literature. The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance genes. Understanding their sorption behavior in soils is important to predict subsequent FQ (bio) availability. Here, FQ sorption in pure soil organic (i.e., humic substances) and mineral (i.e., metal oxides; phyllosilicates) components is evaluated through a solid-liquid distribution coefficient (Kd (FQ)) dataset consisting of 243 entries originated from 80 different studies, to elucidate their respective contribution to the overall Kd (FQ) in bulk soils. First, different factors affecting FQ sorption and desorption in each of these soil phases are critically discussed. The strong role of pH in Kd (FQ), due to the simultaneous effect on both FQ speciation and surface charge changes, encouraged the derivation of normalized sorption coefficients for the cationic, zwitterionic and anionic FQ species in humic substances and in different phyllosilicates. Kd (FQ) in metal oxides revealed a key role of metal nature and material specific surface area due to complexation sorption mechanisms at neutral pH. Cumulative distribution functions (CDF) were applied to each dataset to establish a sorption affinity range for each phase and to derive best estimate Kd (FQ) values for those materials where normalized sorption coefficients to FQ species were unavailable. The data analysis conducted in the different soil phases set the basis for a Kd (FQ) prediction model, which combined the respective sorption affinity of each phase for FQ and phase abundance in soil to estimate Kd (FQ) in bulk soils. The model was subsequently validated with sorption data in well characterized soils compiled from the literature. •Sorption parameters of FQ in soil components are compiled from the literature.•pH-dependent normalized sorption coefficients for different FQ species and soil components are derived.•Sorption in metal oxides is ruled by complexation stability and specific surface area.•The sorption affinity in the different soil components is ranked through cumulative distribution functions.•Combining sorption affinity and abundance of soil components led to a good Kd (FQ) estimation. |
ArticleNumber | 116535 |
Author | Vidal, Miquel Rigol, Anna Fabregat-Palau, Joel Grathwohl, Peter |
Author_xml | – sequence: 1 givenname: Joel surname: Fabregat-Palau fullname: Fabregat-Palau, Joel email: joel.fabregat-palau@uni-tuebingen.de organization: Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany – sequence: 2 givenname: Anna surname: Rigol fullname: Rigol, Anna organization: Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain – sequence: 3 givenname: Peter surname: Grathwohl fullname: Grathwohl, Peter organization: Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany – sequence: 4 givenname: Miquel surname: Vidal fullname: Vidal, Miquel organization: Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain |
BookMark | eNqFkc2OFCEUhYkZE3tG38AFSzfVXn6KajYmk4mOEydxo2tCwa0JHQpKqJ7Ehe8u3WVc6gpCzvm4555rcpVyQkLeMtgzYOr9cY8uY3rec-Byz5jqRf-C7Bho6Lhk8orsgMmhUz0Tr8h1rUcAEND3O_LrtlasNaQnWnNZ1pATzROd4imX_OMUUo7tL2rTGsaQ1-AqDalJQ6x0Knmmln7x1OV5CdFe3KOt6Gm7LKeCNJcnm4JrAE_nkLDYeFE3aFrra_JysrHimz_nDfn-6eO3u8_d49f7h7vbx85JIdZuYoPmWoxjz-0A2g9KOhBcD9Ipbx2TatSuJULP0KGarJ8OgxSa4zD1nHlxQx42rs_2aJYSZlt-mmyDuTy0IY0tLVxEwzQctNNKMIfSc681Hz2XDpkTo_XQWO821nJeENbVzKE6jNEmzKdqBAfgSsqD-r8U1KCZBCGaVG5SV3KtBae_UzIw55LN0Wwlm3PJZiu52T5sNmzbew5YTHUBk0MfCrq1xQv_BvwGw3i1WA |
Cites_doi | 10.1021/acs.est.5b02851 10.1016/j.jhazmat.2012.12.032 10.1016/j.tim.2014.04.007 10.1016/j.jcis.2004.08.150 10.1016/j.chemosphere.2006.08.024 10.1016/j.jes.2018.04.016 10.1016/j.scitotenv.2014.02.041 10.1021/es051109f 10.1021/acs.est.7b02317 10.1016/j.ecoenv.2019.04.002 10.1021/es202487h 10.1016/j.ecoenv.2015.09.019 10.1016/j.ccr.2018.05.019 10.1016/j.chemosphere.2017.10.092 10.1016/S1002-0160(19)60831-3 10.1016/j.chemosphere.2012.04.064 10.1016/j.jhazmat.2015.10.012 10.1021/jf960215l 10.1021/es302097k 10.1016/j.chemosphere.2014.06.008 10.1016/j.jseaes.2013.04.025 10.1021/acs.est.7b04849 10.1007/s11356-017-9210-3 10.1016/j.envres.2022.114071 10.1016/j.ecoenv.2016.05.030 10.1039/C7RA06231A 10.1016/j.cej.2018.05.051 10.1016/j.envpol.2011.09.040 10.1016/j.clay.2011.06.014 10.1016/j.chemosphere.2009.08.003 10.1007/s11356-017-0038-7 10.1016/j.jece.2013.11.017 10.1016/j.jhazmat.2010.11.076 10.1016/j.jenvman.2011.12.036 10.1016/j.ecoenv.2019.110131 10.1897/08-059.1 10.1016/j.ecoenv.2023.115175 10.1016/j.scitotenv.2015.12.023 10.1787/9789264069602-en 10.1007/s13738-016-0878-y 10.1016/j.chemosphere.2013.03.018 10.1007/s11356-019-06164-0 10.1021/es061921y 10.1016/S0021-9673(99)00079-5 10.1007/s11270-018-3821-2 10.1007/s12665-019-8641-1 10.1016/j.envpol.2012.07.037 10.1007/s11595-012-0495-2 10.1016/0043-1354(84)90124-6 10.1007/s11356-019-04515-5 10.1016/j.scitotenv.2014.08.075 10.1016/j.jgar.2019.07.031 10.1016/j.geoderma.2010.02.003 10.1016/j.jcis.2017.11.020 10.1016/j.scitotenv.2022.153707 10.1016/j.jhazmat.2023.133283 10.1016/j.envpol.2014.10.029 10.1021/es902902c 10.1016/j.clay.2015.05.010 10.1016/j.jcis.2014.04.034 10.1016/j.ecoenv.2019.03.075 10.1007/s11356-014-3351-4 10.1039/C6NJ00207B 10.1016/j.colsurfb.2013.09.056 10.1016/j.ecoenv.2020.111345 10.3390/agronomy11061067 10.1016/j.envpol.2019.113180 10.1016/j.clay.2010.08.001 10.1021/es000917y 10.1016/j.jcis.2012.01.016 10.1016/j.envpol.2019.02.077 10.1016/j.watres.2012.10.010 10.1016/j.geoderma.2009.03.007 10.1016/j.watres.2006.02.003 10.1016/j.clay.2016.12.002 10.1016/j.colsurfb.2011.07.011 10.1039/jr9530003192 10.1002/etc.19 10.1016/j.chemosphere.2010.06.012 10.1016/j.scitotenv.2014.07.130 10.1016/j.jseaes.2013.02.032 10.1016/j.colsurfa.2022.129422 10.1002/etc.2214 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 DOA |
DOI | 10.1016/j.ecoenv.2024.116535 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
ExternalDocumentID | oai_doaj_org_article_19089c9631ce4d2d992bd24ce1c3bad0 10_1016_j_ecoenv_2024_116535 S0147651324006110 |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKOC AALRI AAOAW AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADVLN AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K ZU3 ~G- 29G 53G AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ H~9 R2- SEN SSH VH1 WUQ XPP ZMT ZXP ~KM 7X8 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c433t-f179293bb52a709d764c032974c6dac146b9c003ed1ece6fadf874392e7f521d3 |
IEDL.DBID | .~1 |
ISSN | 0147-6513 1090-2414 |
IngestDate | Wed Aug 27 01:16:14 EDT 2025 Fri Jul 11 17:21:09 EDT 2025 Fri Jul 11 08:41:14 EDT 2025 Tue Jul 01 02:09:18 EDT 2025 Sat Aug 03 15:31:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fluoroquinolones Sorption Metal oxides Soil Humic substances Phyllosilicate minerals |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-f179293bb52a709d764c032974c6dac146b9c003ed1ece6fadf874392e7f521d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0147651324006110 |
PQID | 3067914033 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19089c9631ce4d2d992bd24ce1c3bad0 proquest_miscellaneous_3200264486 proquest_miscellaneous_3067914033 crossref_primary_10_1016_j_ecoenv_2024_116535 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2024_116535 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-15 |
PublicationDateYYYYMMDD | 2024-07-15 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Najafpoor, Nemati Sani, Alidadi, Yazdani, Navaei Fezabady, Taghavi (bib42) 2019; 33 Rakshit, Sarkar, Elzinga, Punamiya, Datta (bib55) 2013; 246 – 247 Rivagli, Pastorello, Sturini, Maraschi, Speltini, Zampori, Setti, Malavasi, Profumo (bib60) 2014; 2 Van, Yidana, Smooker, Coloe (bib72) 2020; 20 Hanamoto, Ogawa (bib26) 2019; 255 Irving, Williams (bib27) 1953; 637 Septian, Oh, Shin (bib63) 2018; 40 Wang, Zhang, Feng, Hua, Li, Zhang, Guo (bib79) 2022; 823 Zhu, Yang, Lu, Qi, Zhang, Wang, Qi, Chen (bib95) 2020; 205 Gan, Wei, Xiong, Cheng (bib21) 2018; 349 . Lützhøft, Vaes, Freidig, Halling-Sørensen, Hermens (bib37) 2000; 34 Zhao, Liu, Wang, Dong (bib90) 2019; 26 Carmosini, Lee (bib7) 2009; 77 Leal, Alleoni, Tornisielo, Regitano (bib29) 2013; 92 Vasudevan, Bruland, Torrance, Upchurch, Mackay (bib74) 2009; 151 B Zhang, Huang (bib87) 2007; 66 Yan, Hu, Jing (bib85) 2012; 372 Ukalska-Jaruga, Bejger, Debaene, Smreczak (bib69) 2021; 11 Ding, Li, He, Ou, Huang, Yin, Yang, Wu, He, Liu (bib14) 2024; 465 Zhao, Hu, Yang, Cai, Wang, Xie (bib92) 2019; 248 Aristilde, Sposito (bib5) 2013; 32 Zhu, Yang, Shan, Han, Shao, Tian (bib94) 2018; 229 Wang, Ma, Liu, Zhang, Pan (bib76) 2017; 24 Fries, Crouzet, Michel, Togola (bib20) 2016; 563 – 564 Yao, Li, Li, Shen, Feng, Zhou, Wang (bib86) 2020; 190 Du, Zhao, Wang, Xie, Zhu, Chen (bib15) 2019; 177 Paul, MacHesky, Strathmann (bib48) 2012; 46 Liu, Lu, Liu, Meng, Zheng (bib35) 2017; 7 Gu, Karthikeyan (bib25) 2005; 39 Shao, Pan, Wang, Liu, Gan, Li, Liao, Yang, Yang, Huang, Geng, Pan, Liu, Zhu, Tao (bib64) 2023; 249 Li, Bi, Chen (bib31) 2017; 228 Aristilde, Sposito (bib3) 2008; 27 Ramírez-Guinart, Kaplan, Rigol, Vidal (bib56) 2022; 222 Fabregat-Palau, Rigol, Yu, Vidal (bib18) 2023; 10 Fabregat-Palau, Yu, Zeng, Vidal, Rigol (bib17) 2022; 861 Wu, Li, Hong, Li, Jiang (bib84) 2012; 47 Zhao, Zhang, Zhang, Lei, Ma, Ma, Song (bib91) 2017; 51 Gong, Liu, He, Wang, Dai (bib22) 2012; 89 Accsessed 27th Jan. 2024. Liu, Wu, Yu, Li, Gong, Zhu, Dang, Yang (bib34) 2017; 137 Goyne, Chorover, Kubicki, Zimmerman, Brantley (bib23) 2005; 283 Teixidó, Pignatello, Beltrán, Granados, Peccia (bib67) 2011; 45 Peruchi, Fostier, Rath (bib52) 2015; 119 Moradi, Haji Shabani, Dadfarnia, Emami (bib41) 2016; 13 Riaz, Mahmood, Khalid, Rashid, Ahmed Siddique, Kamal, Coyne (bib58) 2018; 191 Cheng, Hanna (bib11) 2018; 52 Pei, Shan, Zhang, Kong, Wen, Zhang, Zheng, Xie, Janssens (bib51) 2011; 186 Wu, Li, Hong, Yin, Tie (bib82) 2010; 50 Lorphensri, Intravijit, Sabatini, Kibbey, Osathaphan, Saiwan (bib36) 2006; 40 Pei, Shan, Kong, Wen, Owens (bib50) 2010; 44 Nowara, Burhenne, Spiteller (bib43) 1997; 45 Chen, Xu, Zheng, Wei, Farooq, Lu, Chen, Qi (bib10) 2022; 648 Van Doorslaer, Dewulf, Van Langenhove, Demeestere (bib73) 2014; 500 – 501 E49-A54F-950F3200B970. Trivedi, Vasudevan (bib68) 2007; 41 Singaraj, Mahanty, Balachandran, Padmaprabha (bib65) 2019; 26 Paul, Liu, Machesky, Strathmann (bib49) 2014; 428 Zhang, Liu, Song, Fang, Wang, Zhao, Li, Li, Byun, Guo, Li (bib88) 2022; 231 Zhou, Chen, Wu, Liang, Zhang, Li, Pan (bib93) 2014; 497 – 498 Antilen, Bustos, Ramirez, Canales, Faundez, Escudey, Pizarro (bib2) 2016; 40 Cuprys, Pulicharla, Kaur Brar, Drogui, Verma, Surampalli (bib13) 2018; 376 Schmitt-Kopplin, Burhenne, Freitag, Spiteller, Kettrup (bib62) 1999; 837 Martínez-Mejía, Sato, Rath (bib40) 2017; 24 Blanchard, Maunaye, Martin (bib6) 1984; 18 Chang, Jiang, Li, Kuo, Wu, Jean, Lv (bib8) 2016; 303 Roca, Baschini, Sapag (bib61) 2015; 114 Wang, Liang, Li, Yang, Zhang, Liao, Pan (bib78) 2015; 196 Okaikue-Woodi, Kelch, Schmidt, Martinez, Youngman, Aristide (bib45) 2018; 513 Graouer-Bacart, Sayen, Guillin (bib24) 2015; 122 Alvarez-Esmorís, Rodríguez-López, Núñez-Delgado, Álvarez-Rodriguez, Fernández-Calviño, Arias-Estévez (bib1) 2022; 214 Pan, Qiu, Wu, Zhang, Peng, Wu, Xing (bib47) 2012; 161 Chen, Liu, Tartakevosky, Li (bib9) 2016; 133 Fang, Chen, Li, Ye, Shi, Sharma, Sakar, Shaheen, Lee, Xiao, Chen (bib19) 2023; 262 OECD, 2000. OECD 106 Adsorption - Desorption Using a Batch Equilibrium Method. OECD Guideline for the Testing of Chemicals. Li, Bi (bib30) 2019; 78 Li, Hong, Liao, Ackley, Schulz, Macdonald, Mihelich, Emard (bib33) 2011; 88 Qin, Liu, Wang, Weng, Li (bib54) 2014; 116 WHO (bib80) 2017; 32 Pan, Wang, Wu, Li, Zhang, Xiao (bib46) 2012; 171 Wang, Li, Jiang (bib77) 2011; 53 USEPA, 2009. Guidance on the Development, Evaluation, and Application of Environmental Models. U.S. Environmental Protection Agency. EPA/100/K-09/003. papers2://publication/uuid/06FC4BA9-AC Li, Bi, Chen (bib32) 2019; 178 Tan, Guo, Gu, Gu (bib66) 2015; 22 USEPA, 2007. Foundations and Frameworks for Human Microbial Risk Assessment. Center for Risk Science and Public Health School of Public Health and Health Services, The George Washinton University Medical Center, Washinton DC. U.S. Environmental Protection Agency. Wu, Li, Hong (bib83) 2012; 27 EMA, 2019. European Medicines Agency, Science Medicines Health. EMA/175398/2019. Wan, Li, Hong, Wu (bib75) 2013; 77 Zhang, Zhao, Dong, Huang (bib89) 2012; 102 Aristilde, Sposito (bib4) 2010; 29 Jacobson, Fan (bib28) 2019; 76 Redgrave, Sutton, Webber, Piddock (bib57) 2014; 22 Martin, Shchukarev, Hanna, Boily (bib39) 2015; 49 Conkle, Lattao, White, Cook (bib12) 2010; 80 Lv, Pearce, Gleason, Liao, Macwilliams, Li (bib38) 2013; 77 Riaz, Mahmood, Qingxiang, Yasir, Rashid, Coyn, D'angelo (bib59) 2019; 29 Pibryl (bib53) 2010; 156 Wu, Li, Liao, Sun, Peng, Zhang, Pan (bib81) 2014; 481 Fabregat-Palau (10.1016/j.ecoenv.2024.116535_bib17) 2022; 861 Tan (10.1016/j.ecoenv.2024.116535_bib66) 2015; 22 Zhu (10.1016/j.ecoenv.2024.116535_bib94) 2018; 229 Gan (10.1016/j.ecoenv.2024.116535_bib21) 2018; 349 Aristilde (10.1016/j.ecoenv.2024.116535_bib5) 2013; 32 Fries (10.1016/j.ecoenv.2024.116535_bib20) 2016; 563 – 564 10.1016/j.ecoenv.2024.116535_bib44 Okaikue-Woodi (10.1016/j.ecoenv.2024.116535_bib45) 2018; 513 Vasudevan (10.1016/j.ecoenv.2024.116535_bib74) 2009; 151 Liu (10.1016/j.ecoenv.2024.116535_bib34) 2017; 137 Ramírez-Guinart (10.1016/j.ecoenv.2024.116535_bib56) 2022; 222 Zhao (10.1016/j.ecoenv.2024.116535_bib90) 2019; 26 Irving (10.1016/j.ecoenv.2024.116535_bib27) 1953; 637 Martin (10.1016/j.ecoenv.2024.116535_bib39) 2015; 49 Wu (10.1016/j.ecoenv.2024.116535_bib84) 2012; 47 Alvarez-Esmorís (10.1016/j.ecoenv.2024.116535_bib1) 2022; 214 Pibryl (10.1016/j.ecoenv.2024.116535_bib53) 2010; 156 Riaz (10.1016/j.ecoenv.2024.116535_bib58) 2018; 191 Zhou (10.1016/j.ecoenv.2024.116535_bib93) 2014; 497 – 498 Cuprys (10.1016/j.ecoenv.2024.116535_bib13) 2018; 376 Peruchi (10.1016/j.ecoenv.2024.116535_bib52) 2015; 119 Zhang (10.1016/j.ecoenv.2024.116535_bib87) 2007; 66 Chen (10.1016/j.ecoenv.2024.116535_bib10) 2022; 648 WHO (10.1016/j.ecoenv.2024.116535_bib80) 2017; 32 Wu (10.1016/j.ecoenv.2024.116535_bib82) 2010; 50 Rivagli (10.1016/j.ecoenv.2024.116535_bib60) 2014; 2 Pan (10.1016/j.ecoenv.2024.116535_bib47) 2012; 161 10.1016/j.ecoenv.2024.116535_bib16 Hanamoto (10.1016/j.ecoenv.2024.116535_bib26) 2019; 255 Pei (10.1016/j.ecoenv.2024.116535_bib51) 2011; 186 Wang (10.1016/j.ecoenv.2024.116535_bib76) 2017; 24 Moradi (10.1016/j.ecoenv.2024.116535_bib41) 2016; 13 Lützhøft (10.1016/j.ecoenv.2024.116535_bib37) 2000; 34 Wu (10.1016/j.ecoenv.2024.116535_bib83) 2012; 27 Zhao (10.1016/j.ecoenv.2024.116535_bib91) 2017; 51 Nowara (10.1016/j.ecoenv.2024.116535_bib43) 1997; 45 Ukalska-Jaruga (10.1016/j.ecoenv.2024.116535_bib69) 2021; 11 Wang (10.1016/j.ecoenv.2024.116535_bib77) 2011; 53 Trivedi (10.1016/j.ecoenv.2024.116535_bib68) 2007; 41 Teixidó (10.1016/j.ecoenv.2024.116535_bib67) 2011; 45 Chang (10.1016/j.ecoenv.2024.116535_bib8) 2016; 303 Riaz (10.1016/j.ecoenv.2024.116535_bib59) 2019; 29 Ding (10.1016/j.ecoenv.2024.116535_bib14) 2024; 465 Pan (10.1016/j.ecoenv.2024.116535_bib46) 2012; 171 Chen (10.1016/j.ecoenv.2024.116535_bib9) 2016; 133 Wan (10.1016/j.ecoenv.2024.116535_bib75) 2013; 77 Shao (10.1016/j.ecoenv.2024.116535_bib64) 2023; 249 Najafpoor (10.1016/j.ecoenv.2024.116535_bib42) 2019; 33 Rakshit (10.1016/j.ecoenv.2024.116535_bib55) 2013; 246 – 247 Fabregat-Palau (10.1016/j.ecoenv.2024.116535_bib18) 2023; 10 Qin (10.1016/j.ecoenv.2024.116535_bib54) 2014; 116 Du (10.1016/j.ecoenv.2024.116535_bib15) 2019; 177 Gong (10.1016/j.ecoenv.2024.116535_bib22) 2012; 89 Yao (10.1016/j.ecoenv.2024.116535_bib86) 2020; 190 Pei (10.1016/j.ecoenv.2024.116535_bib50) 2010; 44 Lv (10.1016/j.ecoenv.2024.116535_bib38) 2013; 77 Conkle (10.1016/j.ecoenv.2024.116535_bib12) 2010; 80 Wang (10.1016/j.ecoenv.2024.116535_bib78) 2015; 196 Antilen (10.1016/j.ecoenv.2024.116535_bib2) 2016; 40 Fang (10.1016/j.ecoenv.2024.116535_bib19) 2023; 262 Roca (10.1016/j.ecoenv.2024.116535_bib61) 2015; 114 Schmitt-Kopplin (10.1016/j.ecoenv.2024.116535_bib62) 1999; 837 Carmosini (10.1016/j.ecoenv.2024.116535_bib7) 2009; 77 Singaraj (10.1016/j.ecoenv.2024.116535_bib65) 2019; 26 Van (10.1016/j.ecoenv.2024.116535_bib72) 2020; 20 Li (10.1016/j.ecoenv.2024.116535_bib31) 2017; 228 Graouer-Bacart (10.1016/j.ecoenv.2024.116535_bib24) 2015; 122 Redgrave (10.1016/j.ecoenv.2024.116535_bib57) 2014; 22 Wu (10.1016/j.ecoenv.2024.116535_bib81) 2014; 481 Zhang (10.1016/j.ecoenv.2024.116535_bib88) 2022; 231 Cheng (10.1016/j.ecoenv.2024.116535_bib11) 2018; 52 Yan (10.1016/j.ecoenv.2024.116535_bib85) 2012; 372 Blanchard (10.1016/j.ecoenv.2024.116535_bib6) 1984; 18 Septian (10.1016/j.ecoenv.2024.116535_bib63) 2018; 40 Li (10.1016/j.ecoenv.2024.116535_bib33) 2011; 88 Jacobson (10.1016/j.ecoenv.2024.116535_bib28) 2019; 76 Van Doorslaer (10.1016/j.ecoenv.2024.116535_bib73) 2014; 500 – 501 Gu (10.1016/j.ecoenv.2024.116535_bib25) 2005; 39 Paul (10.1016/j.ecoenv.2024.116535_bib49) 2014; 428 Zhang (10.1016/j.ecoenv.2024.116535_bib89) 2012; 102 Zhao (10.1016/j.ecoenv.2024.116535_bib92) 2019; 248 Martínez-Mejía (10.1016/j.ecoenv.2024.116535_bib40) 2017; 24 Liu (10.1016/j.ecoenv.2024.116535_bib35) 2017; 7 Goyne (10.1016/j.ecoenv.2024.116535_bib23) 2005; 283 10.1016/j.ecoenv.2024.116535_bib70 10.1016/j.ecoenv.2024.116535_bib71 Paul (10.1016/j.ecoenv.2024.116535_bib48) 2012; 46 Li (10.1016/j.ecoenv.2024.116535_bib32) 2019; 178 Wang (10.1016/j.ecoenv.2024.116535_bib79) 2022; 823 Leal (10.1016/j.ecoenv.2024.116535_bib29) 2013; 92 Aristilde (10.1016/j.ecoenv.2024.116535_bib3) 2008; 27 Zhu (10.1016/j.ecoenv.2024.116535_bib95) 2020; 205 Aristilde (10.1016/j.ecoenv.2024.116535_bib4) 2010; 29 Li (10.1016/j.ecoenv.2024.116535_bib30) 2019; 78 Lorphensri (10.1016/j.ecoenv.2024.116535_bib36) 2006; 40 |
References_xml | – volume: 22 start-page: 438 year: 2014 end-page: 445 ident: bib57 article-title: Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success publication-title: Trends Microbiol. – volume: 22 start-page: 609 year: 2015 end-page: 617 ident: bib66 article-title: Effects of metal Cations and Fulvic acid on the adsorption of ciprofloxacin onto goethite publication-title: Environ. Sci. Pollut. Res. – reference: . Accsessed 27th Jan. 2024. – volume: 40 start-page: 1 year: 2018 end-page: 14 ident: bib63 article-title: Sorption of antibiotics onto montmorillonite and kaolinite: competition modelling publication-title: Environ. Technol. – volume: 481 start-page: 209 year: 2014 end-page: 216 ident: bib81 article-title: Co-sorption of ofloxacin and Cu(II) in soils before and after organic matter removal publication-title: Sci. Total Environ. – volume: 40 start-page: 1481 year: 2006 end-page: 1491 ident: bib36 article-title: Sorption of acetaminophen, 17α-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic medium publication-title: Water Res. – volume: 29 start-page: 676 year: 2019 end-page: 680 ident: bib59 article-title: Sorption and desorption behavior of fluoroquinolone antibiotics in an agricultural soil publication-title: Pedosphere – reference: E49-A54F-950F3200B970. – volume: 7 start-page: 50449 year: 2017 end-page: 50458 ident: bib35 article-title: Adsorption of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) by humic acid (HA): characteristics and mechanism publication-title: RSC Adv. – volume: 41 start-page: 3153 year: 2007 end-page: 3158 ident: bib68 article-title: Spectroscopic investigation of ciprofloxacin speciation at the goethite-water interface publication-title: Environ. Sci. Technol. – volume: 13 start-page: 1617 year: 2016 end-page: 1627 ident: bib41 article-title: Effective removal of ciprofloxacin from aqueous solutions using magnetic metal–organic framework sorbents: mechanisms, isotherms and kinetics publication-title: J. Iran. Chem. Soc. – volume: 39 start-page: 9166 year: 2005 end-page: 9173 ident: bib25 article-title: Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides publication-title: Environ. Sci. Technol. – volume: 133 start-page: 18 year: 2016 end-page: 24 ident: bib9 article-title: Risk assessment of three fluoroquinolone antibiotics in the groundwater recharge system publication-title: Ecotoxicol. Environ. Saf. – volume: 177 start-page: 117 year: 2019 end-page: 123 ident: bib15 article-title: Presence and environmental risk assessment of selected antibiotics in coastal water adjacent to mariculture areas in the Bohai Sea publication-title: Ecotox. Environ. Saf. – volume: 50 start-page: 204 year: 2010 end-page: 211 ident: bib82 article-title: Adsorption and intercation of ciprofloxacin on montmorillonite publication-title: Appl. Clay Sci. – volume: 823 year: 2022 ident: bib79 article-title: The pH dependence and role of fluorinated substituent of enoxacin binding to ferrihydrite publication-title: Sci. Total Environ. – volume: 231 year: 2022 ident: bib88 article-title: The exposure levels and health risk assessment of antibiotics in urine and its association with platelet mitochondrial DNA methylation in adults from Tianjin, China: a preliminary study publication-title: Ecotoxicol. Enviorn. Saf. – reference: USEPA, 2007. Foundations and Frameworks for Human Microbial Risk Assessment. Center for Risk Science and Public Health School of Public Health and Health Services, The George Washinton University Medical Center, Washinton DC. U.S. Environmental Protection Agency. – volume: 376 start-page: 46 year: 2018 end-page: 61 ident: bib13 article-title: Fluoroquinolones metal complexation and its environmental impacts publication-title: Coord. Chem. Rev. – volume: 122 start-page: 470 year: 2015 end-page: 476 ident: bib24 article-title: Adsorption of enrofloxacin in presence of Zn (II) on a calcareous soil publication-title: Ecotoxicol. Environ. Saf. – volume: 249 year: 2023 ident: bib64 article-title: Association between antibiotic exposure and the risk of infertility in women of childbearing age: a case-control study publication-title: Ecotoxicol. Envion. Saf. – volume: 119 start-page: 310 year: 2015 end-page: 317 ident: bib52 article-title: Sorption of norfloxacin in soils: analytical method, kinetics and Freundlich isotherms publication-title: Chemosphere – volume: 77 start-page: 281 year: 2013 end-page: 286 ident: bib38 article-title: Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin publication-title: J. Asian Earth Sci. – volume: 11 start-page: 1067 year: 2021 ident: bib69 article-title: Characterization of soil organic matter individual fractions (fulvic acids, humic acids and humin) by spectroscopic and electrochemical techniques in agricultural soils publication-title: Agronomy – volume: 32 start-page: 1467 year: 2013 end-page: 1478 ident: bib5 article-title: Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances publication-title: Environ. Toxicol. Chem. – volume: 53 start-page: 723 year: 2011 end-page: 728 ident: bib77 article-title: Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals publication-title: Appl. Clay Sci. – volume: 77 start-page: 813 year: 2009 end-page: 820 ident: bib7 article-title: Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials publication-title: Chemosphere – volume: 33 year: 2019 ident: bib42 article-title: Optimization of ciprofloxacin adsorption from synthetic wastewaters using γ-Al2O3 nanoparticles: an experimental design based on response surface methodology publication-title: Colloids Inter. Sci. Comm. – volume: 114 start-page: 69 year: 2015 end-page: 76 ident: bib61 article-title: Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite publication-title: Appl. Clay Sci. – volume: 861 year: 2022 ident: bib17 article-title: Deriving parametric and probabilistic K publication-title: Sci. Total Environ. – volume: 27 start-page: 2304 year: 2008 end-page: 2310 ident: bib3 article-title: Molecular modeling of metal complexation by a fluoroquinolone antibiotic publication-title: Environ. Toxicol. Chem. – volume: 2 start-page: 738 year: 2014 end-page: 744 ident: bib60 article-title: Clay minerals for adsorption of veterinary FQs: behavior and modeling publication-title: J. Environ. Chem. Eng. – volume: 29 start-page: 90 year: 2010 end-page: 98 ident: bib4 article-title: Binding of ciprofloxacin by humic substances: a molecular dynamics study publication-title: Environ. Toxicol. Chem. – volume: 178 start-page: 43 year: 2019 end-page: 50 ident: bib32 article-title: Effects of dissolved humic acid on fluoroquinolones sorption and retention to kaolinite publication-title: Ecotoxicol. Environ. Saf. – volume: 80 start-page: 1353 year: 2010 end-page: 1359 ident: bib12 article-title: Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil publication-title: Chemosphere – volume: 372 start-page: 141 year: 2012 end-page: 147 ident: bib85 article-title: Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid publication-title: J. Colloid Interface Sci. – volume: 283 start-page: 160 year: 2005 end-page: 170 ident: bib23 article-title: Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica publication-title: J. Colloid Interface Sci. – volume: 88 start-page: 339 year: 2011 end-page: 344 ident: bib33 article-title: A mechanistic study of ciprofloxacin removal by kaolinite publication-title: Colloids Surf. B – volume: 77 start-page: 287 year: 2013 end-page: 294 ident: bib75 article-title: Enrofloxacin uptake and retention on different types of clays publication-title: J. Asian Earth Sci. – volume: 497 – 498 start-page: 665 year: 2014 end-page: 670 ident: bib93 article-title: Ofloxacin sorption in soils after long-term tillage: the contribution of organic and mineral compositions publication-title: Sci. Total Environ. – volume: 563 – 564 start-page: 971 year: 2016 end-page: 976 ident: bib20 article-title: Interactions of ciprofloxacin (CIP), titanium dioxide (TiO2) nanoparticles and natural organic matter (NOM) in aqueous suspensions publication-title: Sci. Total Environ. – volume: 51 start-page: 13659 year: 2017 end-page: 13667 ident: bib91 article-title: Cation–Pi Interaction: a Key force for sorption of fluoroquinolone antibiotics on pyrogenic carbonaceous materials publication-title: Environ. Sci. Technol. – volume: 10 year: 2023 ident: bib18 article-title: Using a batch test to derive sorption data of fluoroquinolones in humic acids publication-title: Methods X – volume: 24 start-page: 23834 year: 2017 end-page: 23842 ident: bib76 article-title: Co-contaminant effects on ofloxacin adsorption onto activated carbon, graphite, and humic acid publication-title: Environ. Sci. Pollut. Res. – volume: 648 year: 2022 ident: bib10 article-title: The mechanisms involved into the inhibitory effects of ionic liquids chemistry on adsorption performance of ciprofloxacin onto inorganic minerals publication-title: Colloids Surf. A – volume: 49 start-page: 12197 year: 2015 end-page: 12205 ident: bib39 article-title: Kinetics and mechanisms of Ciprofloxacin oxidation on hematite surfaces publication-title: Environ. Sci. Technol. – volume: 255 year: 2019 ident: bib26 article-title: Predicting the sorption of azithromycin and levofloxacin to sediments from mineral and organic components publication-title: Environ. Pollut. – volume: 76 start-page: 133 year: 2019 end-page: 141 ident: bib28 article-title: Evaluation of natural goethite on the removal of arsenate and selenite from water publication-title: J. Environ. Sci. – volume: 465 year: 2024 ident: bib14 article-title: Urban agglomerations as an environmental dimension of antibiotics transmission through the "One Health" lens publication-title: J. Hazard. Mat. – volume: 27 start-page: 516 year: 2012 end-page: 522 ident: bib83 article-title: Influence of types and charges of exchangable cations on Ciprofloxacin sorption by Montmorillonite publication-title: J. Wuhan. Univ. Technol. Mater. Sci. Ed. – volume: 45 start-page: 10020 year: 2011 end-page: 10027 ident: bib67 article-title: Speciation of the ionizable antibiotic sulfamethazine on black carbon (Biochar) publication-title: Environ. Sci. Technol. – volume: 89 start-page: 825 year: 2012 end-page: 831 ident: bib22 article-title: Quantitatively modeling soil-water distribution coefficients of three antibiotics using soil physicochemical properties publication-title: Chemosphere – volume: 24 start-page: 15995 year: 2017 end-page: 16006 ident: bib40 article-title: Sorption mechanism of enrofloxacin on humic acids extracted from Brazilian soils publication-title: Environ. Sci. Pollut. Res. – volume: 349 start-page: 1 year: 2018 end-page: 16 ident: bib21 article-title: Impact of post-processing modes of precursor on adsorption and photocatalytic capability of mesoporous TiO2 nanocrystallite aggregates towards ciprofloxacin removal publication-title: Chem. Eng. J. – volume: 246 – 247 start-page: 221 year: 2013 end-page: 226 ident: bib55 article-title: Mechanisms of ciprofloxacin removal by nano-sized magnetite publication-title: J. Hazard. Mater. – volume: 26 start-page: 10685 year: 2019 end-page: 10694 ident: bib90 article-title: Sorption of copper and norfloxacin onto humic acid: effects of pH, ionic strength, and foreign ions publication-title: Environ. Sci. Pollut. Res. – reference: B– – volume: 222 year: 2022 ident: bib56 article-title: Deriving probabilistic soil distribution coefficients (Kd). Part 1: general approach to decreasing and descriving variability and example using uranium Kd values publication-title: J. Environ. Radioac. – volume: 45 start-page: 1459 year: 1997 end-page: 1463 ident: bib43 article-title: Binding of fluoroquinolone carboxylic acid derivatives to clay minerals publication-title: J. Agric. Food Chem. – volume: 116 start-page: 591 year: 2014 end-page: 596 ident: bib54 article-title: Adsorption of levofloxacin onto goethite: effects of pH, calcium and phosphate publication-title: Colloids Surf. B – volume: 20 start-page: 170 year: 2020 end-page: 177 ident: bib72 article-title: Antibiotic use in food animals worldwide, with a focus on Africa: pluses and minuses publication-title: J. Glob. Antimicrob. Resist. – volume: 32 start-page: 76 year: 2017 end-page: 77 ident: bib80 article-title: Global Priority list of antibiotic-resistance bacteria to guide research, discovery, and development of new antibiotics. World Health Organization, Geneva publication-title: J. Med. Soc. – volume: 500 – 501 start-page: 250 year: 2014 end-page: 269 ident: bib73 article-title: Fluoroquinolone antibiotics: an emerging class of environmental micropollutants publication-title: Sci. Total Environ. – volume: 156 start-page: 75 year: 2010 end-page: 83 ident: bib53 article-title: A critical review of the conventional SOC to SOM conversion factor publication-title: Geoderma – volume: 837 start-page: 253 year: 1999 end-page: 265 ident: bib62 article-title: Development of capillary electrophopresis methods for the analysis of fluoroquinolones and application to the study of the influence of humic substances on their photodegradation in aqueous phase publication-title: J. Chromatogr. A – volume: 18 start-page: 1501 year: 1984 end-page: 1507 ident: bib6 article-title: Removal of heavy metals from waters by means of natural zeolites publication-title: Water Res. – volume: 229 year: 2018 ident: bib94 article-title: The Influence of Humification Degree of Humic Acid on Its Sorption of Norfloxacin during sewage sludge composting publication-title: Water Air Soil Pollut. – volume: 214 year: 2022 ident: bib1 article-title: Influence of pH on the adsorption-desorption of doxycycline, enrofloxacin, and sulfamethoxypyridazine in soils with var iable surface charge publication-title: Environ. Res. – volume: 303 start-page: 55 year: 2016 end-page: 63 ident: bib8 article-title: Interaction of ciprofloxacin and probe compounds with palygorskite PFl-1 publication-title: J. Hazard. Mater. – volume: 102 start-page: 165 year: 2012 end-page: 172 ident: bib89 article-title: Sorption of norfloxacin onto humic acid extracted from weathered coal publication-title: J. Environ. Manag. – volume: 262 year: 2023 ident: bib19 article-title: A comprehensive and global evaluation of residual antibiotics in agricultural soils: accumulation, potential ecological risks, and attenuation strategies publication-title: Ecotoxicol. Environ. Saf. – volume: 637 start-page: 3192 year: 1953 end-page: 3210 ident: bib27 article-title: The stability of transition metal complexes publication-title: J. Chem. Soc. – reference: OECD, 2000. OECD 106 Adsorption - Desorption Using a Batch Equilibrium Method. OECD Guideline for the Testing of Chemicals. – volume: 26 start-page: 30044 year: 2019 end-page: 30054 ident: bib65 article-title: Adsorption and desorption of chromium with humic acid coated iron oxide nanoparticles publication-title: Environ. Sci. Pollut. R. – volume: 513 start-page: 367 year: 2018 end-page: 378 ident: bib45 article-title: Structures and mechanisms in clay nanopore trapping of structurally-different fluoroquinolone antimicrobials publication-title: J. Colloid Inter. Sci. – volume: 137 start-page: 160 year: 2017 end-page: 167 ident: bib34 article-title: Preparation and characterization of organo-vermiculite based on phosphatidylcholine and adsorption of two typical antibiotics publication-title: Appl. Clay Sci. – volume: 47 start-page: 259 year: 2012 end-page: 268 ident: bib84 article-title: Desorption of ciprofloxacin from clay mineral surfaces publication-title: Water Res. – volume: 46 start-page: 11896 year: 2012 end-page: 11904 ident: bib48 article-title: Surface complexation of the zwitterionic fluoroquinolone antibiotic ofloxacin to nano-anatase TiO2 photocatalyst surfaces publication-title: Environ. Sci. Technol. – volume: 190 year: 2020 ident: bib86 article-title: Prevalence of fluoroquinolone, macrolide and sulfonamide-related resistance genes in landfills from East China, mainly driven by MGEs publication-title: Ecotoxicol. Environ. Saf. – volume: 78 start-page: 630 year: 2019 ident: bib30 article-title: Different surface complexation patterns of gatifloxacin at typical iron mineral/water interfaces publication-title: Environ. Earth Sci. – volume: 171 start-page: 185 year: 2012 end-page: 190 ident: bib46 article-title: Sorption kinetics of ofloxacin in soils and mineral particles publication-title: Environ. Pollut. – volume: 428 start-page: 63 year: 2014 end-page: 72 ident: bib49 article-title: Adsorption of zwitterionic fluoroquinolone antibacterials to goethite: a charge distribution-multisite complexation model publication-title: J. Colloid Interface Sci. – volume: 248 start-page: 815 year: 2019 end-page: 822 ident: bib92 article-title: Noncovalent interactions between fluoroquinolone antibiotics with dissolved organic matter: a 1H NMR binding site study and multi-spectroscopic methods publication-title: Environ. Pollut. – volume: 92 start-page: 979 year: 2013 end-page: 985 ident: bib29 article-title: Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils publication-title: Chemosphere – volume: 40 start-page: 7132 year: 2016 end-page: 7139 ident: bib2 article-title: Electrochemical evaluation of ciprofloxacin adsorption on soil organic matter publication-title: N. J. Chem. – volume: 205 year: 2020 ident: bib95 article-title: Effect of phosphate on the adsorption of antibiotics onto iron oxide minerals: comparison between tetracycline and ciprofloxacin publication-title: Ecotox. Environ. Saf. – volume: 34 start-page: 4989 year: 2000 end-page: 4994 ident: bib37 article-title: Influence of pH and other modifying factors on the distribution behavior of 4-quinolones to solid phases and humic acids studied by “negligible-depletion” SPME-HPLC publication-title: Environ. Sci. Technol. – volume: 186 start-page: 842 year: 2011 end-page: 848 ident: bib51 article-title: Insight to ternary complexes of co-adsorption of norfloxacin and Cu(II) onto montmorillonite at different pH using EXAFS publication-title: J. Hazard. Mater. – reference: USEPA, 2009. Guidance on the Development, Evaluation, and Application of Environmental Models. U.S. Environmental Protection Agency. EPA/100/K-09/003. papers2://publication/uuid/06FC4BA9-AC – volume: 161 start-page: 76 year: 2012 end-page: 82 ident: bib47 article-title: The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction publication-title: Environ. Pollut. – volume: 196 start-page: 379 year: 2015 end-page: 385 ident: bib78 article-title: Quantifying the dynamic fluorescence quenching of phenanthrene and ofloxacin by dissolved humic acids publication-title: Environ. Pollut. – volume: 44 start-page: 915 year: 2010 end-page: 920 ident: bib50 article-title: Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH publication-title: Environ. Sci. Technol. – volume: 191 start-page: 704 year: 2018 end-page: 720 ident: bib58 article-title: Fluoroquinolones (FQs) in the environment: a review on their abundance, sorption and toxicity in soil publication-title: Chemosphere – reference: . – volume: 151 start-page: 68 year: 2009 end-page: 76 ident: bib74 article-title: pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption publication-title: Geoderma – volume: 52 start-page: 467 year: 2018 end-page: 473 ident: bib11 article-title: Influence of magnetite stoichiometry on the binding of emerging organic contaminants publication-title: Environ. Sci. Technol. – volume: 66 start-page: 1502 year: 2007 end-page: 1512 ident: bib87 article-title: Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite publication-title: Chemosphere – volume: 228 start-page: 1 year: 2017 end-page: 10 ident: bib31 article-title: Sorption Behavior of Ofloxacin to Kaolinite: effects of pH, ionic strength, and Cu(II) publication-title: Water Air Soil Pollut. – reference: EMA, 2019. European Medicines Agency, Science Medicines Health. EMA/175398/2019. – volume: 49 start-page: 12197 issue: 20 year: 2015 ident: 10.1016/j.ecoenv.2024.116535_bib39 article-title: Kinetics and mechanisms of Ciprofloxacin oxidation on hematite surfaces publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02851 – volume: 246 – 247 start-page: 221 year: 2013 ident: 10.1016/j.ecoenv.2024.116535_bib55 article-title: Mechanisms of ciprofloxacin removal by nano-sized magnetite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.12.032 – volume: 22 start-page: 438 issue: 8 year: 2014 ident: 10.1016/j.ecoenv.2024.116535_bib57 article-title: Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success publication-title: Trends Microbiol. doi: 10.1016/j.tim.2014.04.007 – volume: 283 start-page: 160 issue: 1 year: 2005 ident: 10.1016/j.ecoenv.2024.116535_bib23 article-title: Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.08.150 – volume: 249 year: 2023 ident: 10.1016/j.ecoenv.2024.116535_bib64 article-title: Association between antibiotic exposure and the risk of infertility in women of childbearing age: a case-control study publication-title: Ecotoxicol. Envion. Saf. – volume: 66 start-page: 1502 issue: 8 year: 2007 ident: 10.1016/j.ecoenv.2024.116535_bib87 article-title: Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.08.024 – volume: 76 start-page: 133 year: 2019 ident: 10.1016/j.ecoenv.2024.116535_bib28 article-title: Evaluation of natural goethite on the removal of arsenate and selenite from water publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2018.04.016 – volume: 481 start-page: 209 year: 2014 ident: 10.1016/j.ecoenv.2024.116535_bib81 article-title: Co-sorption of ofloxacin and Cu(II) in soils before and after organic matter removal publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.02.041 – volume: 39 start-page: 9166 issue: 23 year: 2005 ident: 10.1016/j.ecoenv.2024.116535_bib25 article-title: Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides publication-title: Environ. Sci. Technol. doi: 10.1021/es051109f – volume: 51 start-page: 13659 issue: 23 year: 2017 ident: 10.1016/j.ecoenv.2024.116535_bib91 article-title: Cation–Pi Interaction: a Key force for sorption of fluoroquinolone antibiotics on pyrogenic carbonaceous materials publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02317 – volume: 178 start-page: 43 year: 2019 ident: 10.1016/j.ecoenv.2024.116535_bib32 article-title: Effects of dissolved humic acid on fluoroquinolones sorption and retention to kaolinite publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.04.002 – volume: 45 start-page: 10020 issue: 23 year: 2011 ident: 10.1016/j.ecoenv.2024.116535_bib67 article-title: Speciation of the ionizable antibiotic sulfamethazine on black carbon (Biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es202487h – volume: 122 start-page: 470 year: 2015 ident: 10.1016/j.ecoenv.2024.116535_bib24 article-title: Adsorption of enrofloxacin in presence of Zn (II) on a calcareous soil publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2015.09.019 – volume: 222 year: 2022 ident: 10.1016/j.ecoenv.2024.116535_bib56 article-title: Deriving probabilistic soil distribution coefficients (Kd). Part 1: general approach to decreasing and descriving variability and example using uranium Kd values publication-title: J. Environ. Radioac. – volume: 376 start-page: 46 year: 2018 ident: 10.1016/j.ecoenv.2024.116535_bib13 article-title: Fluoroquinolones metal complexation and its environmental impacts publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.05.019 – volume: 191 start-page: 704 year: 2018 ident: 10.1016/j.ecoenv.2024.116535_bib58 article-title: Fluoroquinolones (FQs) in the environment: a review on their abundance, sorption and toxicity in soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.10.092 – volume: 29 start-page: 676 issue: 5 year: 2019 ident: 10.1016/j.ecoenv.2024.116535_bib59 article-title: Sorption and desorption behavior of fluoroquinolone antibiotics in an agricultural soil publication-title: Pedosphere doi: 10.1016/S1002-0160(19)60831-3 – volume: 89 start-page: 825 issue: 7 year: 2012 ident: 10.1016/j.ecoenv.2024.116535_bib22 article-title: Quantitatively modeling soil-water distribution coefficients of three antibiotics using soil physicochemical properties publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.04.064 – volume: 303 start-page: 55 year: 2016 ident: 10.1016/j.ecoenv.2024.116535_bib8 article-title: Interaction of ciprofloxacin and probe compounds with palygorskite PFl-1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.10.012 – volume: 45 start-page: 1459 issue: 4 year: 1997 ident: 10.1016/j.ecoenv.2024.116535_bib43 article-title: Binding of fluoroquinolone carboxylic acid derivatives to clay minerals publication-title: J. Agric. Food Chem. doi: 10.1021/jf960215l – volume: 46 start-page: 11896 issue: 21 year: 2012 ident: 10.1016/j.ecoenv.2024.116535_bib48 article-title: Surface complexation of the zwitterionic fluoroquinolone antibiotic ofloxacin to nano-anatase TiO2 photocatalyst surfaces publication-title: Environ. Sci. Technol. doi: 10.1021/es302097k – volume: 119 start-page: 310 year: 2015 ident: 10.1016/j.ecoenv.2024.116535_bib52 article-title: Sorption of norfloxacin in soils: analytical method, kinetics and Freundlich isotherms publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.06.008 – volume: 77 start-page: 281 year: 2013 ident: 10.1016/j.ecoenv.2024.116535_bib38 article-title: Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2013.04.025 – volume: 52 start-page: 467 issue: 2 year: 2018 ident: 10.1016/j.ecoenv.2024.116535_bib11 article-title: Influence of magnetite stoichiometry on the binding of emerging organic contaminants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04849 – volume: 24 start-page: 15995 issue: 19 year: 2017 ident: 10.1016/j.ecoenv.2024.116535_bib40 article-title: Sorption mechanism of enrofloxacin on humic acids extracted from Brazilian soils publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9210-3 – volume: 214 year: 2022 ident: 10.1016/j.ecoenv.2024.116535_bib1 article-title: Influence of pH on the adsorption-desorption of doxycycline, enrofloxacin, and sulfamethoxypyridazine in soils with var iable surface charge publication-title: Environ. Res. doi: 10.1016/j.envres.2022.114071 – volume: 133 start-page: 18 year: 2016 ident: 10.1016/j.ecoenv.2024.116535_bib9 article-title: Risk assessment of three fluoroquinolone antibiotics in the groundwater recharge system publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2016.05.030 – volume: 7 start-page: 50449 issue: 80 year: 2017 ident: 10.1016/j.ecoenv.2024.116535_bib35 article-title: Adsorption of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) by humic acid (HA): characteristics and mechanism publication-title: RSC Adv. doi: 10.1039/C7RA06231A – volume: 349 start-page: 1 year: 2018 ident: 10.1016/j.ecoenv.2024.116535_bib21 article-title: Impact of post-processing modes of precursor on adsorption and photocatalytic capability of mesoporous TiO2 nanocrystallite aggregates towards ciprofloxacin removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.051 – volume: 161 start-page: 76 year: 2012 ident: 10.1016/j.ecoenv.2024.116535_bib47 article-title: The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.09.040 – volume: 53 start-page: 723 issue: 4 year: 2011 ident: 10.1016/j.ecoenv.2024.116535_bib77 article-title: Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2011.06.014 – volume: 77 start-page: 813 issue: 6 year: 2009 ident: 10.1016/j.ecoenv.2024.116535_bib7 article-title: Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.08.003 – volume: 24 start-page: 23834 year: 2017 ident: 10.1016/j.ecoenv.2024.116535_bib76 article-title: Co-contaminant effects on ofloxacin adsorption onto activated carbon, graphite, and humic acid publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0038-7 – volume: 2 start-page: 738 issue: 1 year: 2014 ident: 10.1016/j.ecoenv.2024.116535_bib60 article-title: Clay minerals for adsorption of veterinary FQs: behavior and modeling publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2013.11.017 – volume: 186 start-page: 842 issue: 1 year: 2011 ident: 10.1016/j.ecoenv.2024.116535_bib51 article-title: Insight to ternary complexes of co-adsorption of norfloxacin and Cu(II) onto montmorillonite at different pH using EXAFS publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.11.076 – volume: 102 start-page: 165 year: 2012 ident: 10.1016/j.ecoenv.2024.116535_bib89 article-title: Sorption of norfloxacin onto humic acid extracted from weathered coal publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2011.12.036 – volume: 861 year: 2022 ident: 10.1016/j.ecoenv.2024.116535_bib17 article-title: Deriving parametric and probabilistic Kd values for fluoroquinolones in soils publication-title: Sci. Total Environ. – volume: 190 year: 2020 ident: 10.1016/j.ecoenv.2024.116535_bib86 article-title: Prevalence of fluoroquinolone, macrolide and sulfonamide-related resistance genes in landfills from East China, mainly driven by MGEs publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.110131 – volume: 27 start-page: 2304 issue: 11 year: 2008 ident: 10.1016/j.ecoenv.2024.116535_bib3 article-title: Molecular modeling of metal complexation by a fluoroquinolone antibiotic publication-title: Environ. Toxicol. Chem. doi: 10.1897/08-059.1 – volume: 262 year: 2023 ident: 10.1016/j.ecoenv.2024.116535_bib19 article-title: A comprehensive and global evaluation of residual antibiotics in agricultural soils: accumulation, potential ecological risks, and attenuation strategies publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2023.115175 – volume: 563 – 564 start-page: 971 year: 2016 ident: 10.1016/j.ecoenv.2024.116535_bib20 article-title: Interactions of ciprofloxacin (CIP), titanium dioxide (TiO2) nanoparticles and natural organic matter (NOM) in aqueous suspensions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.12.023 – ident: 10.1016/j.ecoenv.2024.116535_bib44 doi: 10.1787/9789264069602-en – volume: 13 start-page: 1617 issue: 9 year: 2016 ident: 10.1016/j.ecoenv.2024.116535_bib41 article-title: Effective removal of ciprofloxacin from aqueous solutions using magnetic metal–organic framework sorbents: mechanisms, isotherms and kinetics publication-title: J. Iran. Chem. Soc. doi: 10.1007/s13738-016-0878-y – volume: 92 start-page: 979 issue: 8 year: 2013 ident: 10.1016/j.ecoenv.2024.116535_bib29 article-title: Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.03.018 – volume: 26 start-page: 30044 year: 2019 ident: 10.1016/j.ecoenv.2024.116535_bib65 article-title: Adsorption and desorption of chromium with humic acid coated iron oxide nanoparticles publication-title: Environ. Sci. Pollut. R. doi: 10.1007/s11356-019-06164-0 – volume: 41 start-page: 3153 issue: 9 year: 2007 ident: 10.1016/j.ecoenv.2024.116535_bib68 article-title: Spectroscopic investigation of ciprofloxacin speciation at the goethite-water interface publication-title: Environ. Sci. Technol. doi: 10.1021/es061921y – volume: 837 start-page: 253 issue: 1-2 year: 1999 ident: 10.1016/j.ecoenv.2024.116535_bib62 article-title: Development of capillary electrophopresis methods for the analysis of fluoroquinolones and application to the study of the influence of humic substances on their photodegradation in aqueous phase publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(99)00079-5 – volume: 33 year: 2019 ident: 10.1016/j.ecoenv.2024.116535_bib42 article-title: Optimization of ciprofloxacin adsorption from synthetic wastewaters using γ-Al2O3 nanoparticles: an experimental design based on response surface methodology publication-title: Colloids Inter. Sci. Comm. – volume: 229 issue: 5 year: 2018 ident: 10.1016/j.ecoenv.2024.116535_bib94 article-title: The Influence of Humification Degree of Humic Acid on Its Sorption of Norfloxacin during sewage sludge composting publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-018-3821-2 – volume: 78 start-page: 630 year: 2019 ident: 10.1016/j.ecoenv.2024.116535_bib30 article-title: Different surface complexation patterns of gatifloxacin at typical iron mineral/water interfaces publication-title: Environ. Earth Sci. doi: 10.1007/s12665-019-8641-1 – volume: 231 year: 2022 ident: 10.1016/j.ecoenv.2024.116535_bib88 article-title: The exposure levels and health risk assessment of antibiotics in urine and its association with platelet mitochondrial DNA methylation in adults from Tianjin, China: a preliminary study publication-title: Ecotoxicol. Enviorn. Saf. – volume: 171 start-page: 185 year: 2012 ident: 10.1016/j.ecoenv.2024.116535_bib46 article-title: Sorption kinetics of ofloxacin in soils and mineral particles publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2012.07.037 – ident: 10.1016/j.ecoenv.2024.116535_bib70 – volume: 27 start-page: 516 issue: 3 year: 2012 ident: 10.1016/j.ecoenv.2024.116535_bib83 article-title: Influence of types and charges of exchangable cations on Ciprofloxacin sorption by Montmorillonite publication-title: J. Wuhan. Univ. Technol. Mater. Sci. Ed. doi: 10.1007/s11595-012-0495-2 – volume: 18 start-page: 1501 issue: 12 year: 1984 ident: 10.1016/j.ecoenv.2024.116535_bib6 article-title: Removal of heavy metals from waters by means of natural zeolites publication-title: Water Res. doi: 10.1016/0043-1354(84)90124-6 – volume: 228 start-page: 1 issue: 46 year: 2017 ident: 10.1016/j.ecoenv.2024.116535_bib31 article-title: Sorption Behavior of Ofloxacin to Kaolinite: effects of pH, ionic strength, and Cu(II) publication-title: Water Air Soil Pollut. – volume: 26 start-page: 10685 issue: 11 year: 2019 ident: 10.1016/j.ecoenv.2024.116535_bib90 article-title: Sorption of copper and norfloxacin onto humic acid: effects of pH, ionic strength, and foreign ions publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-04515-5 – volume: 500 – 501 start-page: 250 year: 2014 ident: 10.1016/j.ecoenv.2024.116535_bib73 article-title: Fluoroquinolone antibiotics: an emerging class of environmental micropollutants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.08.075 – volume: 20 start-page: 170 year: 2020 ident: 10.1016/j.ecoenv.2024.116535_bib72 article-title: Antibiotic use in food animals worldwide, with a focus on Africa: pluses and minuses publication-title: J. Glob. Antimicrob. Resist. doi: 10.1016/j.jgar.2019.07.031 – ident: 10.1016/j.ecoenv.2024.116535_bib16 – volume: 156 start-page: 75 issue: 3-4 year: 2010 ident: 10.1016/j.ecoenv.2024.116535_bib53 article-title: A critical review of the conventional SOC to SOM conversion factor publication-title: Geoderma doi: 10.1016/j.geoderma.2010.02.003 – volume: 513 start-page: 367 year: 2018 ident: 10.1016/j.ecoenv.2024.116535_bib45 article-title: Structures and mechanisms in clay nanopore trapping of structurally-different fluoroquinolone antimicrobials publication-title: J. Colloid Inter. Sci. doi: 10.1016/j.jcis.2017.11.020 – volume: 823 year: 2022 ident: 10.1016/j.ecoenv.2024.116535_bib79 article-title: The pH dependence and role of fluorinated substituent of enoxacin binding to ferrihydrite publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.153707 – volume: 32 start-page: 76 issue: 1 year: 2017 ident: 10.1016/j.ecoenv.2024.116535_bib80 article-title: Global Priority list of antibiotic-resistance bacteria to guide research, discovery, and development of new antibiotics. World Health Organization, Geneva publication-title: J. Med. Soc. – volume: 465 year: 2024 ident: 10.1016/j.ecoenv.2024.116535_bib14 article-title: Urban agglomerations as an environmental dimension of antibiotics transmission through the "One Health" lens publication-title: J. Hazard. Mat. doi: 10.1016/j.jhazmat.2023.133283 – volume: 196 start-page: 379 year: 2015 ident: 10.1016/j.ecoenv.2024.116535_bib78 article-title: Quantifying the dynamic fluorescence quenching of phenanthrene and ofloxacin by dissolved humic acids publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2014.10.029 – volume: 44 start-page: 915 issue: 3 year: 2010 ident: 10.1016/j.ecoenv.2024.116535_bib50 article-title: Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH publication-title: Environ. Sci. Technol. doi: 10.1021/es902902c – volume: 114 start-page: 69 year: 2015 ident: 10.1016/j.ecoenv.2024.116535_bib61 article-title: Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2015.05.010 – volume: 428 start-page: 63 year: 2014 ident: 10.1016/j.ecoenv.2024.116535_bib49 article-title: Adsorption of zwitterionic fluoroquinolone antibacterials to goethite: a charge distribution-multisite complexation model publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2014.04.034 – volume: 177 start-page: 117 year: 2019 ident: 10.1016/j.ecoenv.2024.116535_bib15 article-title: Presence and environmental risk assessment of selected antibiotics in coastal water adjacent to mariculture areas in the Bohai Sea publication-title: Ecotox. Environ. Saf. doi: 10.1016/j.ecoenv.2019.03.075 – volume: 22 start-page: 609 issue: 1 year: 2015 ident: 10.1016/j.ecoenv.2024.116535_bib66 article-title: Effects of metal Cations and Fulvic acid on the adsorption of ciprofloxacin onto goethite publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3351-4 – volume: 40 start-page: 7132 year: 2016 ident: 10.1016/j.ecoenv.2024.116535_bib2 article-title: Electrochemical evaluation of ciprofloxacin adsorption on soil organic matter publication-title: N. J. Chem. doi: 10.1039/C6NJ00207B – volume: 116 start-page: 591 year: 2014 ident: 10.1016/j.ecoenv.2024.116535_bib54 article-title: Adsorption of levofloxacin onto goethite: effects of pH, calcium and phosphate publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2013.09.056 – volume: 205 year: 2020 ident: 10.1016/j.ecoenv.2024.116535_bib95 article-title: Effect of phosphate on the adsorption of antibiotics onto iron oxide minerals: comparison between tetracycline and ciprofloxacin publication-title: Ecotox. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111345 – volume: 11 start-page: 1067 issue: 6 year: 2021 ident: 10.1016/j.ecoenv.2024.116535_bib69 article-title: Characterization of soil organic matter individual fractions (fulvic acids, humic acids and humin) by spectroscopic and electrochemical techniques in agricultural soils publication-title: Agronomy doi: 10.3390/agronomy11061067 – volume: 255 year: 2019 ident: 10.1016/j.ecoenv.2024.116535_bib26 article-title: Predicting the sorption of azithromycin and levofloxacin to sediments from mineral and organic components publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113180 – volume: 50 start-page: 204 year: 2010 ident: 10.1016/j.ecoenv.2024.116535_bib82 article-title: Adsorption and intercation of ciprofloxacin on montmorillonite publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2010.08.001 – volume: 34 start-page: 4989 issue: 23 year: 2000 ident: 10.1016/j.ecoenv.2024.116535_bib37 article-title: Influence of pH and other modifying factors on the distribution behavior of 4-quinolones to solid phases and humic acids studied by “negligible-depletion” SPME-HPLC publication-title: Environ. Sci. Technol. doi: 10.1021/es000917y – volume: 372 start-page: 141 issue: 1 year: 2012 ident: 10.1016/j.ecoenv.2024.116535_bib85 article-title: Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.01.016 – volume: 248 start-page: 815 year: 2019 ident: 10.1016/j.ecoenv.2024.116535_bib92 article-title: Noncovalent interactions between fluoroquinolone antibiotics with dissolved organic matter: a 1H NMR binding site study and multi-spectroscopic methods publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.02.077 – volume: 47 start-page: 259 issue: 1 year: 2012 ident: 10.1016/j.ecoenv.2024.116535_bib84 article-title: Desorption of ciprofloxacin from clay mineral surfaces publication-title: Water Res. doi: 10.1016/j.watres.2012.10.010 – ident: 10.1016/j.ecoenv.2024.116535_bib71 – volume: 151 start-page: 68 year: 2009 ident: 10.1016/j.ecoenv.2024.116535_bib74 article-title: pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption publication-title: Geoderma doi: 10.1016/j.geoderma.2009.03.007 – volume: 40 start-page: 1481 issue: 7 year: 2006 ident: 10.1016/j.ecoenv.2024.116535_bib36 article-title: Sorption of acetaminophen, 17α-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic medium publication-title: Water Res. doi: 10.1016/j.watres.2006.02.003 – volume: 10 year: 2023 ident: 10.1016/j.ecoenv.2024.116535_bib18 article-title: Using a batch test to derive sorption data of fluoroquinolones in humic acids publication-title: Methods X – volume: 137 start-page: 160 year: 2017 ident: 10.1016/j.ecoenv.2024.116535_bib34 article-title: Preparation and characterization of organo-vermiculite based on phosphatidylcholine and adsorption of two typical antibiotics publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2016.12.002 – volume: 88 start-page: 339 issue: 1 year: 2011 ident: 10.1016/j.ecoenv.2024.116535_bib33 article-title: A mechanistic study of ciprofloxacin removal by kaolinite publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2011.07.011 – volume: 637 start-page: 3192 year: 1953 ident: 10.1016/j.ecoenv.2024.116535_bib27 article-title: The stability of transition metal complexes publication-title: J. Chem. Soc. doi: 10.1039/jr9530003192 – volume: 29 start-page: 90 issue: 1 year: 2010 ident: 10.1016/j.ecoenv.2024.116535_bib4 article-title: Binding of ciprofloxacin by humic substances: a molecular dynamics study publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.19 – volume: 80 start-page: 1353 issue: 11 year: 2010 ident: 10.1016/j.ecoenv.2024.116535_bib12 article-title: Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.06.012 – volume: 40 start-page: 1 issue: 22 year: 2018 ident: 10.1016/j.ecoenv.2024.116535_bib63 article-title: Sorption of antibiotics onto montmorillonite and kaolinite: competition modelling publication-title: Environ. Technol. – volume: 497 – 498 start-page: 665 year: 2014 ident: 10.1016/j.ecoenv.2024.116535_bib93 article-title: Ofloxacin sorption in soils after long-term tillage: the contribution of organic and mineral compositions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.07.130 – volume: 77 start-page: 287 year: 2013 ident: 10.1016/j.ecoenv.2024.116535_bib75 article-title: Enrofloxacin uptake and retention on different types of clays publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2013.02.032 – volume: 648 year: 2022 ident: 10.1016/j.ecoenv.2024.116535_bib10 article-title: The mechanisms involved into the inhibitory effects of ionic liquids chemistry on adsorption performance of ciprofloxacin onto inorganic minerals publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2022.129422 – volume: 32 start-page: 1467 issue: 7 year: 2013 ident: 10.1016/j.ecoenv.2024.116535_bib5 article-title: Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.2214 |
SSID | ssj0003055 |
Score | 2.4399655 |
Snippet | The presence of fluoroquinolone (FQ) antibiotics in soils may cause a threat to human health due to overexposure and the generation of antibiotic resistance... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 116535 |
SubjectTerms | antibiotic resistance cumulative distribution data collection desorption ecotoxicology Fluoroquinolones human health Humic substances Metal oxides Phyllosilicate minerals Soil Sorption species surface area zwitterions |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA8iCAWR-lrxWZUUvKa-3WSzm2MVRVrak4K3kE9Y0V15H4IH__fOJLutetBLb8sS8jXJTH6TyW8IOULMFaKNrLLKM9FYw6wykdnGuJm3QfDkcPv1W15ciR_X1fWzVF8YE5bpgfPEHRd4MeVgmRQuCF96pUrrS-FC4bg1PqF1sHkjmBp0MPJY5eDFmsmq4OOjuRTZBbgudA-ADUvxDdlnUqq3f0Ypcfe_sE2vtHQyPecfydZwZqTfc1-3yVroJmTjLPFNP07IZna90fyi6BN5yhe5YJPoop8nlUD7SOPtqscGWvSkd4HClLa27ZGmmbYdFG1vFxRfm1BDf3qKseZtDpSjaOo8hY_71TzQnAjKQQWe3rWJtTqVhkq75eIzuTo_uzy9YEOWBeYE50sWYUuCzbe2Kk09U76Wws14CTjDSW8caFKrHMxo8EVwQUbjY4Mopgx1BNvv-Q5Z76CFXUKjEtw0tZPS10IWxlruGsOrwqiZV42cEjZOs77PZBp6jDK70VksGsWis1im5ARl8bcsUmGnHzBQPSwQ_d4CmZJ6lKQeThX5tABVte80_3UUvIZNhzcppgv9aqERZylkOuRvlMHwF0S_cu9_DOML-YBdQ7dyUe2T9eV8FQ7gPLS0h2np_wGFoAoN priority: 102 providerName: Directory of Open Access Journals |
Title | Assessing sorption of fluoroquinolone antibiotics in soils from a Kd compilation based on pure organic and mineral components |
URI | https://dx.doi.org/10.1016/j.ecoenv.2024.116535 https://www.proquest.com/docview/3067914033 https://www.proquest.com/docview/3200264486 https://doaj.org/article/19089c9631ce4d2d992bd24ce1c3bad0 |
Volume | 280 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lRRBEalU8rUcEX7e3u8lmN49taTkt9slC30I-IVJ3j_sQfNC_3Zlk11IfFHy7C0Oym8nOZCa_-YWQ9xhz-WBC0RjpCt4ZXRipQ2E6bUtnPGcp4fbpWixv-Mfb5naPnE-1MAirHG1_tunJWo8ti3E2F6sYFwhLakVTIaMcOKVUZsWhBdb0yc97mAcyWmUYY1ug9FQ-lzBeEOH5_htEiTU_QR6adOnbvXtKLP4PvNQf9jo5octD8nTcPdLT_IDPyJ7vj8iji8Q8_f2IPMlJOJpri56TH_lIF7wT3QzrZBzoEGi42w04QMSceu8pTG40cUDCZhp7EI13G4p1J1TTK0cRdR4zZI6i03MUfqx2a0_zlVAWOnD0a0z81UkaOu23mxfk5vLi8_myGO9bKCxnbFsE-DjB-xvT1LotpWsFtyWrIeKwwmkLNtVICzPqXeWtF0G70GE8U_s2wC7AsZdkv4cRXhEaJGe6a60QruWi0sYw22nWVFqWTnZiRoppmtUq02qoCW_2RWW1KFSLymqZkTPUxW9ZJMVODfCialwVqsIzTAsWpbKeu9pJWRtXc-sry4x25Yy0kybVgzUGXcV_DP9uUryCzw_PVHTvh91GYcQlkfOQ_UUGgTAYB4vX__0Eb8hj_IdZ5ao5Jvvb9c6_he3Q1szTep-Tg9MPV8vreUoq_AJciA0g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhQ2mhlDZt6aYvFXp11w9Zto5pSNh0kz0lkJvQE1QSe9lHoYf8985Idkp6aKE3I8uSPCPNaEYznwj5jDaX89pntRY2Y61WmRbKZ7pVJrfasSo63C6WfH7Fvl3X13vkeMyFwbDKQfYnmR6l9VAyG6g5W4Uww7CkhtcFIsqBUsI0q31Ep6onZP_obDFf3gtkBLVKkYxNhh-MGXQxzAuMPNf9AEOxZF8Qiibe-_ZbQ0Ug_weK6g-RHfXQ6XPybNhA0qM0xhdkz3UH5NFJBJ_-eUCeJj8cTelFL8ldOtUFBUU3_TrKB9p76m92PXYQ0K3eOQr0DTr0iNlMQwdVw82GYuoJVXRhKQaehxQ1R1HvWQoPq93a0XQrlIEGLL0NEcI61oZGu-3mFbk6Pbk8nmfDlQuZYVW1zTysT9gAaF2XqsmFbTgzeVWC0WG4VQbEqhYGKOps4YzjXlnfoklTusbDRsBWr8mkgx7eEOoFq1TbGM5tw3ihtK5Mq6q6UCK3ouVTko1klquErCHHkLPvMrFFIltkYsuUfEVe3NdFXOxYAD8qh4khCzzGNCBUCuOYLa0QpbYlM64wlVY2n5Jm5KR8MM2gqfCP7j-NjJewAvFYRXWu320kGl0CYQ-rv9TBWBg0hfnhf4_gI3k8v7w4l-dny8Vb8gTfoJO5qN-RyXa9c-9hd7TVH4bZ_wszVg7c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+sorption+of+fluoroquinolone+antibiotics+in+soils+from+a+Kd+compilation+based+on+pure+organic+and+mineral+components&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Fabregat-Palau%2C+Joel&rft.au=Rigol%2C+Anna&rft.au=Grathwohl%2C+Peter&rft.au=Vidal%2C+Miquel&rft.date=2024-07-15&rft.issn=1090-2414&rft.eissn=1090-2414&rft.volume=280&rft.spage=116535&rft_id=info:doi/10.1016%2Fj.ecoenv.2024.116535&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |