Mechanical characterization and puncture resistance of 3D ‐printed PLA lattice structures
The increasing application of additivcly manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their mechanical behavior, particularly with complex lattice structures. Polylactic acid (PLA), a popular biopolymer in additive manufacturing, exhibits...
Saved in:
Published in | Polymer engineering and science Vol. 64; no. 10; pp. 5006 - 5021 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Newtown
Society of Plastics Engineers, Inc
01.10.2024
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increasing application of additivcly manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their mechanical behavior, particularly with complex lattice structures. Polylactic acid (PLA), a popular biopolymer in additive manufacturing, exhibits mechanical characteristics highly dependent on its structural design. This research investigates the quasi-static puncture failure analysis and mechanical characteristics of additively manufactured (AM) polylactic acid (PIA) materials with various lattice structures. The mechanical behavior, including tensile strength, flexural properties, interlaminar shear strength (ILSS), Izod impact resistance, and quasi-static punch shear strength (QS-PSS), was investigated following the respective ASTM protocols. Results indicate a 6% increase in tensile strength, to ca. 28 MPa, for the triangular PLA lattice structure compared with plain lattice structures. In the flexural test, the hexagonal structure showed a 13% increase in bending strength, to ca. 45 MPa, compared with the plain structure. Additionally, the hexagonal PLA lattice structure exhibited a 24% increase in shear strength, to approximately 8 MPa, over the plain lattice structure in the interlaminar shear strength analysis. In the Izod impact analysis, the plain lattice structure demonstrated a 17% increase in impact strength, to ca. 278 J/m, compared with the circular structure. A stainless- steel hemispherical indenter was employed to investigate the quasi-static punch shear behavior (QS-PSS) of different lattice structures. The triangular structure displayed increased total energy absorption capacity and specific energy absorption of ca. 19 J and 0.529 J/g, respectively, compared with other lattice structures. These results are important for the creation of additively manufactured PLA lattice structures, improving the puncture resistance of advanced composites. |
---|---|
AbstractList | The increasing application of additivcly manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their mechanical behavior, particularly with complex lattice structures. Polylactic acid (PLA), a popular biopolymer in additive manufacturing, exhibits mechanical characteristics highly dependent on its structural design. This research investigates the quasi-static puncture failure analysis and mechanical characteristics of additively manufactured (AM) polylactic acid (PIA) materials with various lattice structures. The mechanical behavior, including tensile strength, flexural properties, interlaminar shear strength (ILSS), Izod impact resistance, and quasi-static punch shear strength (QS-PSS), was investigated following the respective ASTM protocols. Results indicate a 6% increase in tensile strength, to ca. 28 MPa, for the triangular PLA lattice structure compared with plain lattice structures. In the flexural test, the hexagonal structure showed a 13% increase in bending strength, to ca. 45 MPa, compared with the plain structure. Additionally, the hexagonal PLA lattice structure exhibited a 24% increase in shear strength, to approximately 8 MPa, over the plain lattice structure in the interlaminar shear strength analysis. In the Izod impact analysis, the plain lattice structure demonstrated a 17% increase in impact strength, to ca. 278 J/m, compared with the circular structure. A stainless- steel hemispherical indenter was employed to investigate the quasi-static punch shear behavior (QS-PSS) of different lattice structures. The triangular structure displayed increased total energy absorption capacity and specific energy absorption of ca. 19 J and 0.529 J/g, respectively, compared with other lattice structures. These results are important for the creation of additively manufactured PLA lattice structures, improving the puncture resistance of advanced composites. The increasing application of additively manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their mechanical behavior, particularly with complex lattice structures. Polylactic acid (PLA), a popular biopolymer in additive manufacturing, exhibits mechanical characteristics highly dependent on its structural design. This research investigates the quasi‐static puncture failure analysis and mechanical characteristics of additively manufactured (AM) polylactic acid (PLA) materials with various lattice structures. The mechanical behavior, including tensile strength, flexural properties, interlaminar shear strength (ILSS), Izod impact resistance, and quasi‐static punch shear strength (QS‐PSS), was investigated following the respective ASTM protocols. Results indicate a 6% increase in tensile strength, to ca. 28 MPa, for the triangular PLA lattice structure compared with plain lattice structures. In the flexural test, the hexagonal structure showed a 13% increase in bending strength, to ca. 45 MPa, compared with the plain structure. Additionally, the hexagonal PLA lattice structure exhibited a 24% increase in shear strength, to approximately 8 MPa, over the plain lattice structure in the interlaminar shear strength analysis. In the Izod impact analysis, the plain lattice structure demonstrated a 17% increase in impact strength, to ca. 278 J/m, compared with the circular structure. A stainless‐steel hemispherical indenter was employed to investigate the quasi‐static punch shear behavior (QS‐PSS) of different lattice structures. The triangular structure displayed increased total energy absorption capacity and specific energy absorption of ca. 19 J and 0.529 J/g, respectively, compared with other lattice structures. These results are important for the creation of additively manufactured PLA lattice structures, improving the puncture resistance of advanced composites.HighlightsPolylactic acid (PLA) lattice structures were fabricated.Plain, circular, triangular, and hexagonal lattice structures were investigated.Lattice structures were used as reinforcements.The triangular structure demonstrated improved strength.The triangular structure reduced crack formation and propagation. The increasing application of additivcly manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their mechanical behavior, particularly with complex lattice structures. Polylactic acid (PLA), a popular biopolymer in additive manufacturing, exhibits mechanical characteristics highly dependent on its structural design. This research investigates the quasi-static puncture failure analysis and mechanical characteristics of additively manufactured (AM) polylactic acid (PIA) materials with various lattice structures. The mechanical behavior, including tensile strength, flexural properties, interlaminar shear strength (ILSS), Izod impact resistance, and quasi-static punch shear strength (QS-PSS), was investigated following the respective ASTM protocols. Results indicate a 6% increase in tensile strength, to ca. 28 MPa, for the triangular PLA lattice structure compared with plain lattice structures. In the flexural test, the hexagonal structure showed a 13% increase in bending strength, to ca. 45 MPa, compared with the plain structure. Additionally, the hexagonal PLA lattice structure exhibited a 24% increase in shear strength, to approximately 8 MPa, over the plain lattice structure in the interlaminar shear strength analysis. In the Izod impact analysis, the plain lattice structure demonstrated a 17% increase in impact strength, to ca. 278 J/m, compared with the circular structure. A stainless- steel hemispherical indenter was employed to investigate the quasi-static punch shear behavior (QS-PSS) of different lattice structures. The triangular structure displayed increased total energy absorption capacity and specific energy absorption of ca. 19 J and 0.529 J/g, respectively, compared with other lattice structures. These results are important for the creation of additively manufactured PLA lattice structures, improving the puncture resistance of advanced composites. Highlights * Polylactic acid (PLA) lattice structures were fabricated. * Plain, circular, triangular, and hexagonal lattice structures were investigated. * Lattice structures were used as reinforcements. * The triangular structure demonstrated improved strength. * The triangular structure reduced crack formation and propagation. KEYWORDS additive manufacturing (AM), hemispherical indenter, lattice structures, mechanical characterization, polylactic acid (PLA), quasi-static punch shear analysis |
Audience | Academic |
Author | Murugaiyan, Thiyagu Mani, Megavannan Shanmugam, Vigneshwaran |
Author_xml | – sequence: 1 givenname: Megavannan orcidid: 0000-0003-2585-7505 surname: Mani fullname: Mani, Megavannan organization: Department of Mechanical Engineering Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India – sequence: 2 givenname: Thiyagu surname: Murugaiyan fullname: Murugaiyan, Thiyagu organization: Department of Mechanical Engineering Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India – sequence: 3 givenname: Vigneshwaran orcidid: 0000-0002-5247-3390 surname: Shanmugam fullname: Shanmugam, Vigneshwaran organization: Department of Mechanical Engineering Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India |
BookMark | eNptktFOHCEUhonRpKv2om9A4lWTzgoDw8DlxlprssZG26teEIY5s2JmmS0wSdsrH6HP6JOIaxO7zYQEyOH7DwfOf4j2_eABoXeUzCkh5ekG_LwUUtV7aEYrLotSML6PZoSwsmBSyjfoMMZ7kllWqRn6fgX2znhnTY_zJhibILjfJrnBY-NbvBm9TWMAHCC6mIy3gIcOs4_48eHPJjifoMVflgvcm5RcPowpjFtFPEYHnekjvP27HqFvn86_nn0ultcXl2eLZWE5Y6noSKXAdEQ2ggsKQHhZkqYVkhMFsiGWiRagaSpuSmtbwYhSpqtVXRnFLTfsCJ285N2E4ccIMen7YQw-X6kZpVVNCav5K7UyPWjnuyHl165dtHohqRKKEVFlqpigVuAhmD5_dedyeIefT_B5tLB2dlLwfkeQmQQ_08qMMerL25td9sM_bDNG5yHmKbrVXYovkqnUNgwxBuh07s_ahF-aEv3sDp3dobfuyOzpf6x1adv1XL_rJxRPjp69YQ |
CitedBy_id | crossref_primary_10_1002_eng2_70026 crossref_primary_10_1016_j_rineng_2024_103263 |
Cites_doi | 10.1080/15376494.2022.2032496 10.1007/s11665‐018‐3810‐z 10.1016/j.coco.2022.101396 10.1016/j.engfailanal.2023.107574 10.1080/15376494.2023.2188324 10.1016/j.ijimpeng.2023.104640 10.1002/pc.27221 10.1002/pc.28106 10.1016/j.prostr.2023.07.079 10.1177/00219983231197351 10.3390/ma16145023 10.1016/j.jcomc.2020.100076 10.1108/ijsi‐06‐2023‐0052 10.1016/j.msea.2021.141749 10.1002/pc.28133 10.1016/j.jmapro.2023.10.018 10.1007/s10924‐024‐03203‐x 10.1007/s00170‐023‐11435‐9 10.1016/j.cirpj.2023.08.006 10.3390/polym15214283 10.1016/j.tws.2023.111539 10.1080/15376494.2023.2214552 10.1016/j.tws.2022.110213 10.1007/s40964‐020‐00148‐0 10.1080/2374068X.2024.2307075 10.1515/mt‐2022‐0401 10.1016/j.polymertesting.2023.108191 10.1080/15376494.2024.2332480 10.3390/ma13081924 10.1557/s43579‐023‐00329‐2 10.1016/j.jmrt.2023.06.175 10.1016/j.jallcom.2021.160724 10.3390/polym14214595 10.1016/j.spinee.2023.06.226 10.1016/j.engfailanal.2022.106214 10.1177/07316844241243149 10.1177/10996362221127965 10.1002/pc.27231 10.1089/3dp.2023.0188 10.1002/pc.27027 10.3390/cryst13040626 10.1177/08927057231185711 10.1002/pc.27749 10.1177/08927057221089832 10.1016/j.prostr.2023.06.036 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 Society of Plastics Engineers, Inc. 2024 Society of Plastics Engineers |
Copyright_xml | – notice: COPYRIGHT 2024 Society of Plastics Engineers, Inc. – notice: 2024 Society of Plastics Engineers |
DBID | AAYXX CITATION N95 ISR 7SR 8FD JG9 |
DOI | 10.1002/pen.26897 |
DatabaseName | CrossRef Gale Business: Insights Gale In Context: Science Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1548-2634 |
EndPage | 5021 |
ExternalDocumentID | A819693065 10_1002_pen_26897 |
GroupedDBID | -~X .-4 .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8FE 8FG 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDEX ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAAKF BAFTC BDRZF BENPR BES BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CITATION CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IAO IEA IOF ISR ITC IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M2Q M6K M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N95 N9A NDZJH NEJ NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PHGZM PHGZT PQQKQ PROAC PTHSS PV9 Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWL RX1 RXW RYL RZL S0X SAMSI SUPJJ TUS U5U UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XV2 ZE2 ZY4 ZZTAW ~02 ~IA ~WT 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c433t-f059eaf08b6461ee04220bd68409e8b0c36deebb54a2ccd63099af7975a94c4a3 |
ISSN | 0032-3888 |
IngestDate | Fri Jul 25 19:13:51 EDT 2025 Tue Jun 17 22:02:30 EDT 2025 Fri Jun 13 00:00:07 EDT 2025 Tue Jun 10 21:00:22 EDT 2025 Fri Jun 27 05:24:03 EDT 2025 Fri May 23 02:37:34 EDT 2025 Tue Jul 01 02:34:01 EDT 2025 Thu Apr 24 23:07:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c433t-f059eaf08b6461ee04220bd68409e8b0c36deebb54a2ccd63099af7975a94c4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5247-3390 0000-0003-2585-7505 |
PQID | 3115710374 |
PQPubID | 41843 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3115710374 gale_infotracmisc_A819693065 gale_infotracgeneralonefile_A819693065 gale_infotracacademiconefile_A819693065 gale_incontextgauss_ISR_A819693065 gale_businessinsightsgauss_A819693065 crossref_primary_10_1002_pen_26897 crossref_citationtrail_10_1002_pen_26897 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-00 20241001 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-00 |
PublicationDecade | 2020 |
PublicationPlace | Newtown |
PublicationPlace_xml | – name: Newtown |
PublicationTitle | Polymer engineering and science |
PublicationYear | 2024 |
Publisher | Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: Society of Plastics Engineers, Inc – name: Blackwell Publishing Ltd |
References | e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – ident: e_1_2_10_22_1 doi: 10.1080/15376494.2022.2032496 – ident: e_1_2_10_38_1 doi: 10.1007/s11665‐018‐3810‐z – ident: e_1_2_10_4_1 doi: 10.1016/j.coco.2022.101396 – ident: e_1_2_10_10_1 doi: 10.1016/j.engfailanal.2023.107574 – ident: e_1_2_10_21_1 doi: 10.1080/15376494.2023.2188324 – ident: e_1_2_10_36_1 doi: 10.1016/j.ijimpeng.2023.104640 – ident: e_1_2_10_16_1 doi: 10.1002/pc.27221 – ident: e_1_2_10_8_1 doi: 10.1002/pc.28106 – ident: e_1_2_10_20_1 doi: 10.1016/j.prostr.2023.07.079 – ident: e_1_2_10_24_1 doi: 10.1177/00219983231197351 – ident: e_1_2_10_25_1 doi: 10.3390/ma16145023 – ident: e_1_2_10_35_1 doi: 10.1016/j.jcomc.2020.100076 – ident: e_1_2_10_45_1 doi: 10.1108/ijsi‐06‐2023‐0052 – ident: e_1_2_10_14_1 doi: 10.1016/j.msea.2021.141749 – ident: e_1_2_10_7_1 doi: 10.1002/pc.28133 – ident: e_1_2_10_6_1 doi: 10.1016/j.jmapro.2023.10.018 – ident: e_1_2_10_37_1 doi: 10.1007/s10924‐024‐03203‐x – ident: e_1_2_10_29_1 doi: 10.1007/s00170‐023‐11435‐9 – ident: e_1_2_10_19_1 doi: 10.1016/j.cirpj.2023.08.006 – ident: e_1_2_10_17_1 doi: 10.3390/polym15214283 – ident: e_1_2_10_42_1 doi: 10.1016/j.tws.2023.111539 – ident: e_1_2_10_18_1 doi: 10.1080/15376494.2023.2214552 – ident: e_1_2_10_34_1 doi: 10.1016/j.tws.2022.110213 – ident: e_1_2_10_28_1 doi: 10.1007/s40964‐020‐00148‐0 – ident: e_1_2_10_40_1 doi: 10.1080/2374068X.2024.2307075 – ident: e_1_2_10_44_1 doi: 10.1515/mt‐2022‐0401 – ident: e_1_2_10_41_1 doi: 10.1016/j.polymertesting.2023.108191 – ident: e_1_2_10_43_1 doi: 10.1080/15376494.2024.2332480 – ident: e_1_2_10_30_1 doi: 10.3390/ma13081924 – ident: e_1_2_10_39_1 doi: 10.1557/s43579‐023‐00329‐2 – ident: e_1_2_10_15_1 doi: 10.1016/j.jmrt.2023.06.175 – ident: e_1_2_10_9_1 doi: 10.1016/j.jallcom.2021.160724 – ident: e_1_2_10_31_1 doi: 10.3390/polym14214595 – ident: e_1_2_10_5_1 doi: 10.1016/j.spinee.2023.06.226 – ident: e_1_2_10_26_1 doi: 10.1016/j.engfailanal.2022.106214 – ident: e_1_2_10_46_1 doi: 10.1177/07316844241243149 – ident: e_1_2_10_33_1 doi: 10.1177/10996362221127965 – ident: e_1_2_10_2_1 doi: 10.1002/pc.27231 – ident: e_1_2_10_3_1 doi: 10.1089/3dp.2023.0188 – ident: e_1_2_10_11_1 doi: 10.1002/pc.27027 – ident: e_1_2_10_32_1 doi: 10.3390/cryst13040626 – ident: e_1_2_10_12_1 doi: 10.1177/08927057231185711 – ident: e_1_2_10_13_1 doi: 10.1002/pc.27749 – ident: e_1_2_10_23_1 doi: 10.1177/08927057221089832 – ident: e_1_2_10_27_1 doi: 10.1016/j.prostr.2023.06.036 |
SSID | ssj0002359 |
Score | 2.448354 |
Snippet | The increasing application of additivcly manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their... The increasing application of additively manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 5006 |
SubjectTerms | 3D printing Acid resistance Additive manufacturing Analysis Bend strength Biomedical engineering Biomedical materials Biopolymers Energy absorption Failure analysis Hexagonal lattice Impact analysis Impact resistance Impact strength Interfacial shear strength Mechanical engineering Mechanical properties Polylactic acid Shear strength Specific energy Stainless steels Structural design Tensile strength |
Title | Mechanical characterization and puncture resistance of 3D ‐printed PLA lattice structures |
URI | https://www.proquest.com/docview/3115710374 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcgAOCAqIQkEW4iVFDhvv2rGPUUOVQlNFfaCKi7Xeh1spdSqcCJUTV278Rn4Js971CywEXKzInjj2zre7M5OZbxB6DnoWoYp8NxkJ3cKMY5dJiWHiKTLUJrsS2lGcHQTTE_ru1D_t9b41spbWq2TAv3TWlfyPVuEc6FVXyf6DZqubwgn4DPqFI2gYjn-l45nUdbuG46MiXjZ1lYYAADat4h8C8Km1nagnMRiHZFKlOOiwnrY55_vj_oKtdCZc31DKwtfypuU6Xy6uLuSnvqwJDIvfsFtoHdkuekT1ZzJlYKRnNfhApeuUnV_Zfshn8CldVwEeeI8LuFyg88N5Cgvw2Wd4o6wZlfBold_WGX000bQ6T6lYionnktD09BtIu_pSUHBgo5t2eTYk5yUMcWOx9TEOGhu3j02t9W-bgiGZvZTZwAtCkw3cJt6ejo_i-WQ33t87eH8NXffA49DNMCaHNROZR3zjSdmnLkmqsPemunHLtOne4Aur5fgOum3dDWdssHMX9WS2iW7slF3-NtGtBiHlPfSxRpTzK6Ic0LZTIsqpEeUslUMmP75-t1hyAEuOxZJTY-k-Otl9e7wzdW33DZdTQlauAsNbMoXDJKDBEOYv9TycCE0OFMkwwZwEQsok8SnzOBcBAV-DqVE08llEOWXkAdrIlpl8iJyhGIFEQpWIFGWcJziMhIKzgdAev9hCr8uBi7mlptcdUhaxIdX2YhjjuBjjLfSsEr00fCxdQi_06Me2jyscch3pylO2zvN4HGpKKHCVfbhZIad5UDKdaGUE9o4OW0KvrJBawkNxZutW4NU0dVpL8mVLMjXE8V2C2y1BUDlvXy5RE9vVJo8LVixd1Esf_fnyY3SznpDbaAP0LJ-A4bxKnhaQ_gkZccpK |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+characterization+and+puncture+resistance+of+3D%E2%80%90printed+PLA+lattice+structures&rft.jtitle=Polymer+engineering+and+science&rft.au=Mani%2C+Megavannan&rft.au=Murugaiyan%2C+Thiyagu&rft.au=Shanmugam%2C+Vigneshwaran&rft.date=2024-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=64&rft.issue=10&rft.spage=5006&rft.epage=5021&rft_id=info:doi/10.1002%2Fpen.26897&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon |