Mechanical characterization and puncture resistance of 3D ‐printed PLA lattice structures

The increasing application of additivcly manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their mechanical behavior, particularly with complex lattice structures. Polylactic acid (PLA), a popular biopolymer in additive manufacturing, exhibits...

Full description

Saved in:
Bibliographic Details
Published inPolymer engineering and science Vol. 64; no. 10; pp. 5006 - 5021
Main Authors Mani, Megavannan, Murugaiyan, Thiyagu, Shanmugam, Vigneshwaran
Format Journal Article
LanguageEnglish
Published Newtown Society of Plastics Engineers, Inc 01.10.2024
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing application of additivcly manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their mechanical behavior, particularly with complex lattice structures. Polylactic acid (PLA), a popular biopolymer in additive manufacturing, exhibits mechanical characteristics highly dependent on its structural design. This research investigates the quasi-static puncture failure analysis and mechanical characteristics of additively manufactured (AM) polylactic acid (PIA) materials with various lattice structures. The mechanical behavior, including tensile strength, flexural properties, interlaminar shear strength (ILSS), Izod impact resistance, and quasi-static punch shear strength (QS-PSS), was investigated following the respective ASTM protocols. Results indicate a 6% increase in tensile strength, to ca. 28 MPa, for the triangular PLA lattice structure compared with plain lattice structures. In the flexural test, the hexagonal structure showed a 13% increase in bending strength, to ca. 45 MPa, compared with the plain structure. Additionally, the hexagonal PLA lattice structure exhibited a 24% increase in shear strength, to approximately 8 MPa, over the plain lattice structure in the interlaminar shear strength analysis. In the Izod impact analysis, the plain lattice structure demonstrated a 17% increase in impact strength, to ca. 278 J/m, compared with the circular structure. A stainless- steel hemispherical indenter was employed to investigate the quasi-static punch shear behavior (QS-PSS) of different lattice structures. The triangular structure displayed increased total energy absorption capacity and specific energy absorption of ca. 19 J and 0.529 J/g, respectively, compared with other lattice structures. These results are important for the creation of additively manufactured PLA lattice structures, improving the puncture resistance of advanced composites.
AbstractList The increasing application of additivcly manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their mechanical behavior, particularly with complex lattice structures. Polylactic acid (PLA), a popular biopolymer in additive manufacturing, exhibits mechanical characteristics highly dependent on its structural design. This research investigates the quasi-static puncture failure analysis and mechanical characteristics of additively manufactured (AM) polylactic acid (PIA) materials with various lattice structures. The mechanical behavior, including tensile strength, flexural properties, interlaminar shear strength (ILSS), Izod impact resistance, and quasi-static punch shear strength (QS-PSS), was investigated following the respective ASTM protocols. Results indicate a 6% increase in tensile strength, to ca. 28 MPa, for the triangular PLA lattice structure compared with plain lattice structures. In the flexural test, the hexagonal structure showed a 13% increase in bending strength, to ca. 45 MPa, compared with the plain structure. Additionally, the hexagonal PLA lattice structure exhibited a 24% increase in shear strength, to approximately 8 MPa, over the plain lattice structure in the interlaminar shear strength analysis. In the Izod impact analysis, the plain lattice structure demonstrated a 17% increase in impact strength, to ca. 278 J/m, compared with the circular structure. A stainless- steel hemispherical indenter was employed to investigate the quasi-static punch shear behavior (QS-PSS) of different lattice structures. The triangular structure displayed increased total energy absorption capacity and specific energy absorption of ca. 19 J and 0.529 J/g, respectively, compared with other lattice structures. These results are important for the creation of additively manufactured PLA lattice structures, improving the puncture resistance of advanced composites.
The increasing application of additively manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their mechanical behavior, particularly with complex lattice structures. Polylactic acid (PLA), a popular biopolymer in additive manufacturing, exhibits mechanical characteristics highly dependent on its structural design. This research investigates the quasi‐static puncture failure analysis and mechanical characteristics of additively manufactured (AM) polylactic acid (PLA) materials with various lattice structures. The mechanical behavior, including tensile strength, flexural properties, interlaminar shear strength (ILSS), Izod impact resistance, and quasi‐static punch shear strength (QS‐PSS), was investigated following the respective ASTM protocols. Results indicate a 6% increase in tensile strength, to ca. 28 MPa, for the triangular PLA lattice structure compared with plain lattice structures. In the flexural test, the hexagonal structure showed a 13% increase in bending strength, to ca. 45 MPa, compared with the plain structure. Additionally, the hexagonal PLA lattice structure exhibited a 24% increase in shear strength, to approximately 8 MPa, over the plain lattice structure in the interlaminar shear strength analysis. In the Izod impact analysis, the plain lattice structure demonstrated a 17% increase in impact strength, to ca. 278 J/m, compared with the circular structure. A stainless‐steel hemispherical indenter was employed to investigate the quasi‐static punch shear behavior (QS‐PSS) of different lattice structures. The triangular structure displayed increased total energy absorption capacity and specific energy absorption of ca. 19 J and 0.529 J/g, respectively, compared with other lattice structures. These results are important for the creation of additively manufactured PLA lattice structures, improving the puncture resistance of advanced composites.HighlightsPolylactic acid (PLA) lattice structures were fabricated.Plain, circular, triangular, and hexagonal lattice structures were investigated.Lattice structures were used as reinforcements.The triangular structure demonstrated improved strength.The triangular structure reduced crack formation and propagation.
The increasing application of additivcly manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their mechanical behavior, particularly with complex lattice structures. Polylactic acid (PLA), a popular biopolymer in additive manufacturing, exhibits mechanical characteristics highly dependent on its structural design. This research investigates the quasi-static puncture failure analysis and mechanical characteristics of additively manufactured (AM) polylactic acid (PIA) materials with various lattice structures. The mechanical behavior, including tensile strength, flexural properties, interlaminar shear strength (ILSS), Izod impact resistance, and quasi-static punch shear strength (QS-PSS), was investigated following the respective ASTM protocols. Results indicate a 6% increase in tensile strength, to ca. 28 MPa, for the triangular PLA lattice structure compared with plain lattice structures. In the flexural test, the hexagonal structure showed a 13% increase in bending strength, to ca. 45 MPa, compared with the plain structure. Additionally, the hexagonal PLA lattice structure exhibited a 24% increase in shear strength, to approximately 8 MPa, over the plain lattice structure in the interlaminar shear strength analysis. In the Izod impact analysis, the plain lattice structure demonstrated a 17% increase in impact strength, to ca. 278 J/m, compared with the circular structure. A stainless- steel hemispherical indenter was employed to investigate the quasi-static punch shear behavior (QS-PSS) of different lattice structures. The triangular structure displayed increased total energy absorption capacity and specific energy absorption of ca. 19 J and 0.529 J/g, respectively, compared with other lattice structures. These results are important for the creation of additively manufactured PLA lattice structures, improving the puncture resistance of advanced composites. Highlights * Polylactic acid (PLA) lattice structures were fabricated. * Plain, circular, triangular, and hexagonal lattice structures were investigated. * Lattice structures were used as reinforcements. * The triangular structure demonstrated improved strength. * The triangular structure reduced crack formation and propagation. KEYWORDS additive manufacturing (AM), hemispherical indenter, lattice structures, mechanical characterization, polylactic acid (PLA), quasi-static punch shear analysis
Audience Academic
Author Murugaiyan, Thiyagu
Mani, Megavannan
Shanmugam, Vigneshwaran
Author_xml – sequence: 1
  givenname: Megavannan
  orcidid: 0000-0003-2585-7505
  surname: Mani
  fullname: Mani, Megavannan
  organization: Department of Mechanical Engineering Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
– sequence: 2
  givenname: Thiyagu
  surname: Murugaiyan
  fullname: Murugaiyan, Thiyagu
  organization: Department of Mechanical Engineering Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
– sequence: 3
  givenname: Vigneshwaran
  orcidid: 0000-0002-5247-3390
  surname: Shanmugam
  fullname: Shanmugam, Vigneshwaran
  organization: Department of Mechanical Engineering Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
BookMark eNptktFOHCEUhonRpKv2om9A4lWTzgoDw8DlxlprssZG26teEIY5s2JmmS0wSdsrH6HP6JOIaxO7zYQEyOH7DwfOf4j2_eABoXeUzCkh5ekG_LwUUtV7aEYrLotSML6PZoSwsmBSyjfoMMZ7kllWqRn6fgX2znhnTY_zJhibILjfJrnBY-NbvBm9TWMAHCC6mIy3gIcOs4_48eHPJjifoMVflgvcm5RcPowpjFtFPEYHnekjvP27HqFvn86_nn0ultcXl2eLZWE5Y6noSKXAdEQ2ggsKQHhZkqYVkhMFsiGWiRagaSpuSmtbwYhSpqtVXRnFLTfsCJ285N2E4ccIMen7YQw-X6kZpVVNCav5K7UyPWjnuyHl165dtHohqRKKEVFlqpigVuAhmD5_dedyeIefT_B5tLB2dlLwfkeQmQQ_08qMMerL25td9sM_bDNG5yHmKbrVXYovkqnUNgwxBuh07s_ahF-aEv3sDp3dobfuyOzpf6x1adv1XL_rJxRPjp69YQ
CitedBy_id crossref_primary_10_1002_eng2_70026
crossref_primary_10_1016_j_rineng_2024_103263
Cites_doi 10.1080/15376494.2022.2032496
10.1007/s11665‐018‐3810‐z
10.1016/j.coco.2022.101396
10.1016/j.engfailanal.2023.107574
10.1080/15376494.2023.2188324
10.1016/j.ijimpeng.2023.104640
10.1002/pc.27221
10.1002/pc.28106
10.1016/j.prostr.2023.07.079
10.1177/00219983231197351
10.3390/ma16145023
10.1016/j.jcomc.2020.100076
10.1108/ijsi‐06‐2023‐0052
10.1016/j.msea.2021.141749
10.1002/pc.28133
10.1016/j.jmapro.2023.10.018
10.1007/s10924‐024‐03203‐x
10.1007/s00170‐023‐11435‐9
10.1016/j.cirpj.2023.08.006
10.3390/polym15214283
10.1016/j.tws.2023.111539
10.1080/15376494.2023.2214552
10.1016/j.tws.2022.110213
10.1007/s40964‐020‐00148‐0
10.1080/2374068X.2024.2307075
10.1515/mt‐2022‐0401
10.1016/j.polymertesting.2023.108191
10.1080/15376494.2024.2332480
10.3390/ma13081924
10.1557/s43579‐023‐00329‐2
10.1016/j.jmrt.2023.06.175
10.1016/j.jallcom.2021.160724
10.3390/polym14214595
10.1016/j.spinee.2023.06.226
10.1016/j.engfailanal.2022.106214
10.1177/07316844241243149
10.1177/10996362221127965
10.1002/pc.27231
10.1089/3dp.2023.0188
10.1002/pc.27027
10.3390/cryst13040626
10.1177/08927057231185711
10.1002/pc.27749
10.1177/08927057221089832
10.1016/j.prostr.2023.06.036
ContentType Journal Article
Copyright COPYRIGHT 2024 Society of Plastics Engineers, Inc.
2024 Society of Plastics Engineers
Copyright_xml – notice: COPYRIGHT 2024 Society of Plastics Engineers, Inc.
– notice: 2024 Society of Plastics Engineers
DBID AAYXX
CITATION
N95
ISR
7SR
8FD
JG9
DOI 10.1002/pen.26897
DatabaseName CrossRef
Gale Business: Insights
Gale In Context: Science
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList

Materials Research Database



DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1548-2634
EndPage 5021
ExternalDocumentID A819693065
10_1002_pen_26897
GroupedDBID -~X
.-4
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8FE
8FG
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDEX
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAAKF
BAFTC
BDRZF
BENPR
BES
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CITATION
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IAO
IEA
IOF
ISR
ITC
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M2Q
M6K
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N95
N9A
NDZJH
NEJ
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
PV9
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWL
RX1
RXW
RYL
RZL
S0X
SAMSI
SUPJJ
TUS
U5U
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
XV2
ZE2
ZY4
ZZTAW
~02
~IA
~WT
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c433t-f059eaf08b6461ee04220bd68409e8b0c36deebb54a2ccd63099af7975a94c4a3
ISSN 0032-3888
IngestDate Fri Jul 25 19:13:51 EDT 2025
Tue Jun 17 22:02:30 EDT 2025
Fri Jun 13 00:00:07 EDT 2025
Tue Jun 10 21:00:22 EDT 2025
Fri Jun 27 05:24:03 EDT 2025
Fri May 23 02:37:34 EDT 2025
Tue Jul 01 02:34:01 EDT 2025
Thu Apr 24 23:07:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c433t-f059eaf08b6461ee04220bd68409e8b0c36deebb54a2ccd63099af7975a94c4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5247-3390
0000-0003-2585-7505
PQID 3115710374
PQPubID 41843
PageCount 16
ParticipantIDs proquest_journals_3115710374
gale_infotracmisc_A819693065
gale_infotracgeneralonefile_A819693065
gale_infotracacademiconefile_A819693065
gale_incontextgauss_ISR_A819693065
gale_businessinsightsgauss_A819693065
crossref_primary_10_1002_pen_26897
crossref_citationtrail_10_1002_pen_26897
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-00
PublicationDecade 2020
PublicationPlace Newtown
PublicationPlace_xml – name: Newtown
PublicationTitle Polymer engineering and science
PublicationYear 2024
Publisher Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Publisher_xml – name: Society of Plastics Engineers, Inc
– name: Blackwell Publishing Ltd
References e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – ident: e_1_2_10_22_1
  doi: 10.1080/15376494.2022.2032496
– ident: e_1_2_10_38_1
  doi: 10.1007/s11665‐018‐3810‐z
– ident: e_1_2_10_4_1
  doi: 10.1016/j.coco.2022.101396
– ident: e_1_2_10_10_1
  doi: 10.1016/j.engfailanal.2023.107574
– ident: e_1_2_10_21_1
  doi: 10.1080/15376494.2023.2188324
– ident: e_1_2_10_36_1
  doi: 10.1016/j.ijimpeng.2023.104640
– ident: e_1_2_10_16_1
  doi: 10.1002/pc.27221
– ident: e_1_2_10_8_1
  doi: 10.1002/pc.28106
– ident: e_1_2_10_20_1
  doi: 10.1016/j.prostr.2023.07.079
– ident: e_1_2_10_24_1
  doi: 10.1177/00219983231197351
– ident: e_1_2_10_25_1
  doi: 10.3390/ma16145023
– ident: e_1_2_10_35_1
  doi: 10.1016/j.jcomc.2020.100076
– ident: e_1_2_10_45_1
  doi: 10.1108/ijsi‐06‐2023‐0052
– ident: e_1_2_10_14_1
  doi: 10.1016/j.msea.2021.141749
– ident: e_1_2_10_7_1
  doi: 10.1002/pc.28133
– ident: e_1_2_10_6_1
  doi: 10.1016/j.jmapro.2023.10.018
– ident: e_1_2_10_37_1
  doi: 10.1007/s10924‐024‐03203‐x
– ident: e_1_2_10_29_1
  doi: 10.1007/s00170‐023‐11435‐9
– ident: e_1_2_10_19_1
  doi: 10.1016/j.cirpj.2023.08.006
– ident: e_1_2_10_17_1
  doi: 10.3390/polym15214283
– ident: e_1_2_10_42_1
  doi: 10.1016/j.tws.2023.111539
– ident: e_1_2_10_18_1
  doi: 10.1080/15376494.2023.2214552
– ident: e_1_2_10_34_1
  doi: 10.1016/j.tws.2022.110213
– ident: e_1_2_10_28_1
  doi: 10.1007/s40964‐020‐00148‐0
– ident: e_1_2_10_40_1
  doi: 10.1080/2374068X.2024.2307075
– ident: e_1_2_10_44_1
  doi: 10.1515/mt‐2022‐0401
– ident: e_1_2_10_41_1
  doi: 10.1016/j.polymertesting.2023.108191
– ident: e_1_2_10_43_1
  doi: 10.1080/15376494.2024.2332480
– ident: e_1_2_10_30_1
  doi: 10.3390/ma13081924
– ident: e_1_2_10_39_1
  doi: 10.1557/s43579‐023‐00329‐2
– ident: e_1_2_10_15_1
  doi: 10.1016/j.jmrt.2023.06.175
– ident: e_1_2_10_9_1
  doi: 10.1016/j.jallcom.2021.160724
– ident: e_1_2_10_31_1
  doi: 10.3390/polym14214595
– ident: e_1_2_10_5_1
  doi: 10.1016/j.spinee.2023.06.226
– ident: e_1_2_10_26_1
  doi: 10.1016/j.engfailanal.2022.106214
– ident: e_1_2_10_46_1
  doi: 10.1177/07316844241243149
– ident: e_1_2_10_33_1
  doi: 10.1177/10996362221127965
– ident: e_1_2_10_2_1
  doi: 10.1002/pc.27231
– ident: e_1_2_10_3_1
  doi: 10.1089/3dp.2023.0188
– ident: e_1_2_10_11_1
  doi: 10.1002/pc.27027
– ident: e_1_2_10_32_1
  doi: 10.3390/cryst13040626
– ident: e_1_2_10_12_1
  doi: 10.1177/08927057231185711
– ident: e_1_2_10_13_1
  doi: 10.1002/pc.27749
– ident: e_1_2_10_23_1
  doi: 10.1177/08927057221089832
– ident: e_1_2_10_27_1
  doi: 10.1016/j.prostr.2023.06.036
SSID ssj0002359
Score 2.448354
Snippet The increasing application of additivcly manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their...
The increasing application of additively manufactured (AM) materials in engineering and biomedical fields highlights the necessity of understanding their...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 5006
SubjectTerms 3D printing
Acid resistance
Additive manufacturing
Analysis
Bend strength
Biomedical engineering
Biomedical materials
Biopolymers
Energy absorption
Failure analysis
Hexagonal lattice
Impact analysis
Impact resistance
Impact strength
Interfacial shear strength
Mechanical engineering
Mechanical properties
Polylactic acid
Shear strength
Specific energy
Stainless steels
Structural design
Tensile strength
Title Mechanical characterization and puncture resistance of 3D ‐printed PLA lattice structures
URI https://www.proquest.com/docview/3115710374
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcgAOCAqIQkEW4iVFDhvv2rGPUUOVQlNFfaCKi7Xeh1spdSqcCJUTV278Rn4Js971CywEXKzInjj2zre7M5OZbxB6DnoWoYp8NxkJ3cKMY5dJiWHiKTLUJrsS2lGcHQTTE_ru1D_t9b41spbWq2TAv3TWlfyPVuEc6FVXyf6DZqubwgn4DPqFI2gYjn-l45nUdbuG46MiXjZ1lYYAADat4h8C8Km1nagnMRiHZFKlOOiwnrY55_vj_oKtdCZc31DKwtfypuU6Xy6uLuSnvqwJDIvfsFtoHdkuekT1ZzJlYKRnNfhApeuUnV_Zfshn8CldVwEeeI8LuFyg88N5Cgvw2Wd4o6wZlfBold_WGX000bQ6T6lYionnktD09BtIu_pSUHBgo5t2eTYk5yUMcWOx9TEOGhu3j02t9W-bgiGZvZTZwAtCkw3cJt6ejo_i-WQ33t87eH8NXffA49DNMCaHNROZR3zjSdmnLkmqsPemunHLtOne4Aur5fgOum3dDWdssHMX9WS2iW7slF3-NtGtBiHlPfSxRpTzK6Ic0LZTIsqpEeUslUMmP75-t1hyAEuOxZJTY-k-Otl9e7wzdW33DZdTQlauAsNbMoXDJKDBEOYv9TycCE0OFMkwwZwEQsok8SnzOBcBAV-DqVE08llEOWXkAdrIlpl8iJyhGIFEQpWIFGWcJziMhIKzgdAev9hCr8uBi7mlptcdUhaxIdX2YhjjuBjjLfSsEr00fCxdQi_06Me2jyscch3pylO2zvN4HGpKKHCVfbhZIad5UDKdaGUE9o4OW0KvrJBawkNxZutW4NU0dVpL8mVLMjXE8V2C2y1BUDlvXy5RE9vVJo8LVixd1Esf_fnyY3SznpDbaAP0LJ-A4bxKnhaQ_gkZccpK
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+characterization+and+puncture+resistance+of+3D%E2%80%90printed+PLA+lattice+structures&rft.jtitle=Polymer+engineering+and+science&rft.au=Mani%2C+Megavannan&rft.au=Murugaiyan%2C+Thiyagu&rft.au=Shanmugam%2C+Vigneshwaran&rft.date=2024-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=64&rft.issue=10&rft.spage=5006&rft.epage=5021&rft_id=info:doi/10.1002%2Fpen.26897&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon