Gas exchange model using heterogeneous diffusivity to study internal browning in ‘Conference’ pear
Internal gas gradients in pear fruit during controlled atmosphere storage depend on the effective gas diffusivity of the tissue. The diffusivity varies over the fruit organ due to the heterogeneous tissue microstructure across the fruit. This study implemented effective diffusivity maps reflecting t...
Saved in:
Published in | Postharvest biology and technology Vol. 191; p. 111985 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.09.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Internal gas gradients in pear fruit during controlled atmosphere storage depend on the effective gas diffusivity of the tissue. The diffusivity varies over the fruit organ due to the heterogeneous tissue microstructure across the fruit. This study implemented effective diffusivity maps reflecting the heterogeneous structure to predict internal gas gradients and relate the result to the occurrence of internal browning. Diffusivity maps of different pears were calculated from X-ray CT based porosity maps. Internal oxygen (O2), carbon dioxide (CO2) and respiratory quotient (RQ) levels were computed using a reaction-diffusion model incorporating the heterogeneous effective diffusivity map. Critical O2 and RQ levels for the shift from respiration to fermentation were defined based on the respiratory-fermentative energy balance of the cells. The model was indirectly validated by comparing RQ level contours with non-destructive 3D images of the internal browning of the pears after storage at 1.0 kPa and 0.5 kPa O2, combined with 0.7 kPa CO2 at 1 °C. The distribution of the internal gas concentrations and RQ was affected by the heterogeneity of the diffusivity. The results also confirmed the incidence of internal browning when the O2 and RQ were under or above critical O2 and RQ limits, respectively. The fermentation process was indicated to be dominant when the tissue’s RQ limit (RQ*) went above 2.12 (or at 0.044 kPa O2). The tissue volumes where O2 and RQ levels were critical corresponded reasonably well to browning-affected tissues of pears with different shapes. The pear with more shallow gas gradients showed less symptoms of browning.
•Pear tissue microstructure was imaged using X-ray CT.•Heterogeneous gas diffusivity maps were derived from spatial porosity profiles.•Internal gas concentrations in pear were computed using heterogeneous diffusivity.•Pear tissue subject to energy deficiency corresponded to actual browning patches. |
---|---|
AbstractList | Internal gas gradients in pear fruit during controlled atmosphere storage depend on the effective gas diffusivity of the tissue. The diffusivity varies over the fruit organ due to the heterogeneous tissue microstructure across the fruit. This study implemented effective diffusivity maps reflecting the heterogeneous structure to predict internal gas gradients and relate the result to the occurrence of internal browning. Diffusivity maps of different pears were calculated from X-ray CT based porosity maps. Internal oxygen (O2), carbon dioxide (CO2) and respiratory quotient (RQ) levels were computed using a reaction-diffusion model incorporating the heterogeneous effective diffusivity map. Critical O2 and RQ levels for the shift from respiration to fermentation were defined based on the respiratory-fermentative energy balance of the cells. The model was indirectly validated by comparing RQ level contours with non-destructive 3D images of the internal browning of the pears after storage at 1.0 kPa and 0.5 kPa O2, combined with 0.7 kPa CO2 at 1 °C. The distribution of the internal gas concentrations and RQ was affected by the heterogeneity of the diffusivity. The results also confirmed the incidence of internal browning when the O2 and RQ were under or above critical O2 and RQ limits, respectively. The fermentation process was indicated to be dominant when the tissue's RQ limit (RQ*) went above 2.12 (or at 0.044 kPa O2). The tissue volumes where O2 and RQ levels were critical corresponded reasonably well to browning-affected tissues of pears with different shapes. The pear with more shallow gas gradients showed less symptoms of browning. Internal gas gradients in pear fruit during controlled atmosphere storage depend on the effective gas diffusivity of the tissue. The diffusivity varies over the fruit organ due to the heterogeneous tissue microstructure across the fruit. This study implemented effective diffusivity maps reflecting the heterogeneous structure to predict internal gas gradients and relate the result to the occurrence of internal browning. Diffusivity maps of different pears were calculated from X-ray CT based porosity maps. Internal oxygen (O₂), carbon dioxide (CO₂) and respiratory quotient (RQ) levels were computed using a reaction-diffusion model incorporating the heterogeneous effective diffusivity map. Critical O₂ and RQ levels for the shift from respiration to fermentation were defined based on the respiratory-fermentative energy balance of the cells. The model was indirectly validated by comparing RQ level contours with non-destructive 3D images of the internal browning of the pears after storage at 1.0 kPa and 0.5 kPa O₂, combined with 0.7 kPa CO₂ at 1 °C. The distribution of the internal gas concentrations and RQ was affected by the heterogeneity of the diffusivity. The results also confirmed the incidence of internal browning when the O₂ and RQ were under or above critical O₂ and RQ limits, respectively. The fermentation process was indicated to be dominant when the tissue’s RQ limit (RQ*) went above 2.12 (or at 0.044 kPa O₂). The tissue volumes where O₂ and RQ levels were critical corresponded reasonably well to browning-affected tissues of pears with different shapes. The pear with more shallow gas gradients showed less symptoms of browning. Internal gas gradients in pear fruit during controlled atmosphere storage depend on the effective gas diffusivity of the tissue. The diffusivity varies over the fruit organ due to the heterogeneous tissue microstructure across the fruit. This study implemented effective diffusivity maps reflecting the heterogeneous structure to predict internal gas gradients and relate the result to the occurrence of internal browning. Diffusivity maps of different pears were calculated from X-ray CT based porosity maps. Internal oxygen (O2), carbon dioxide (CO2) and respiratory quotient (RQ) levels were computed using a reaction-diffusion model incorporating the heterogeneous effective diffusivity map. Critical O2 and RQ levels for the shift from respiration to fermentation were defined based on the respiratory-fermentative energy balance of the cells. The model was indirectly validated by comparing RQ level contours with non-destructive 3D images of the internal browning of the pears after storage at 1.0 kPa and 0.5 kPa O2, combined with 0.7 kPa CO2 at 1 °C. The distribution of the internal gas concentrations and RQ was affected by the heterogeneity of the diffusivity. The results also confirmed the incidence of internal browning when the O2 and RQ were under or above critical O2 and RQ limits, respectively. The fermentation process was indicated to be dominant when the tissue’s RQ limit (RQ*) went above 2.12 (or at 0.044 kPa O2). The tissue volumes where O2 and RQ levels were critical corresponded reasonably well to browning-affected tissues of pears with different shapes. The pear with more shallow gas gradients showed less symptoms of browning. •Pear tissue microstructure was imaged using X-ray CT.•Heterogeneous gas diffusivity maps were derived from spatial porosity profiles.•Internal gas concentrations in pear were computed using heterogeneous diffusivity.•Pear tissue subject to energy deficiency corresponded to actual browning patches. |
ArticleNumber | 111985 |
Author | Josipovic, Iván Nugraha, Bayu Verlinden, Bert E. Boone, Matthieu Verreydt, Celine Nicolaï, Bart M. Verboven, Pieter |
Author_xml | – sequence: 1 givenname: Bayu surname: Nugraha fullname: Nugraha, Bayu organization: BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium – sequence: 2 givenname: Pieter surname: Verboven fullname: Verboven, Pieter email: pieter.verboven@kuleuven.be organization: BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium – sequence: 3 givenname: Bert E. surname: Verlinden fullname: Verlinden, Bert E. organization: Flanders Centre of Postharvest Technology, Willem de Croylaan 42, 3001 Leuven, Belgium – sequence: 4 givenname: Celine surname: Verreydt fullname: Verreydt, Celine organization: BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium – sequence: 5 givenname: Matthieu surname: Boone fullname: Boone, Matthieu organization: Centre for X-ray Tomography – UGCT, Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium – sequence: 6 givenname: Iván surname: Josipovic fullname: Josipovic, Iván organization: Centre for X-ray Tomography – UGCT, Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium – sequence: 7 givenname: Bart M. surname: Nicolaï fullname: Nicolaï, Bart M. organization: BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium |
BookMark | eNqNkc1uEzEUha2qSE0L72DEhs0E_4xnxiuEIvojVWJT1pbHvk4cTexgewLZ9THg9foknSEsUFddXenqO0c651yi8xADIPSekiUltPm0Xe5jLhudDr2PS0YYW1JKZSfO0IJ2La8YF805WhDJRCUYrS_QZc5bQogQolsgd6Mzhl9mo8Ma8C5aGPCYfVjjDRRIcQ0B4pix9c5N_4MvR1wizmW0R-zDhAQ94D7Fn2EW-YCfHn-vYnCQIBh4evyD96DTW_TG6SHDu3_3Cn2__vqwuq3uv93crb7cV6bmvFQAlru2kUA6kE3tOt5T3lrNOhDACW2NkF1PaM-ht6KWTrZaWuNk14JuRc2v0MeT7z7FHyPkonY-GxgG_TeGYk0rREtrKif0wwt0G8c5zUxJwqayGjpRn0-USTHnBE4ZX3TxMZSk_aAoUfMOaqv-20HNO6jTDpODfOGwT36n0_FV2tVJC1NnBw9JZePnXq1PYIqy0b_C5RnNB7Bh |
CitedBy_id | crossref_primary_10_1093_plphys_kiae174 crossref_primary_10_1016_j_postharvbio_2024_112802 crossref_primary_10_1080_10408398_2024_2384650 crossref_primary_10_1016_j_postharvbio_2024_112903 crossref_primary_10_1016_j_foodcont_2024_110970 crossref_primary_10_1016_j_tifs_2023_104291 crossref_primary_10_1186_s13007_024_01137_y crossref_primary_10_1093_jxb_erad230 crossref_primary_10_1016_j_postharvbio_2022_112216 |
Cites_doi | 10.1016/j.postharvbio.2019.05.004 10.1093/jxb/ers114 10.1016/j.postharvbio.2006.08.008 10.1016/0925-5214(93)90061-7 10.1016/j.jfoodeng.2017.10.021 10.1007/s11947-010-0503-5 10.13031/2013.2712 10.1093/jxb/erq026 10.3390/plants7040078 10.1016/j.postharvbio.2019.111104 10.1016/S0022-3697(01)00159-7 10.1093/jxb/ery039 10.1201/9780203910092.ch2 10.1016/S0925-5214(03)00061-9 10.1016/j.jplph.2010.11.004 10.1016/j.postharvbio.2019.111014 10.1016/j.postharvbio.2012.12.014 10.1016/S0925-5214(01)00113-2 10.1042/bst0311095 10.1016/S0925-5214(03)00062-0 10.1016/j.postharvbio.2021.111464 10.1016/S0925-5214(00)00114-9 10.1016/j.jfoodeng.2015.07.003 10.1016/S0730-725X(03)00105-X 10.1016/j.mri.2015.02.014 10.21273/JASHS.123.1.115 10.1016/S0925-5214(02)00212-0 10.1016/j.jfoodeng.2021.110640 10.1016/S0925-5214(01)00188-0 10.1104/pp.120.1.293 10.1016/j.postharvbio.2006.04.002 10.1016/j.postharvbio.2016.12.009 10.1016/S0925-5214(96)00029-4 10.1016/j.foodchem.2016.08.009 10.1016/S1474-6670(17)44023-7 10.1016/S0925-5214(98)00058-1 10.1016/0925-5214(96)00064-6 10.1016/j.postharvbio.2015.12.019 10.1016/0925-5214(96)80995-1 10.1016/0925-5214(93)90060-G 10.21273/JASHS.115.5.793 10.1016/S1369-5266(03)00038-4 10.1016/j.postharvbio.2009.07.011 10.1016/S0925-5214(02)00198-9 10.1016/S0925-5214(02)00251-X 10.4067/S0718-58392015000300007 10.3389/fpls.2019.01384 10.1104/pp.87.3.571 10.1371/journal.pcbi.1000023 10.1093/jxb/ery031 10.1146/annurev.arplant.48.1.223 10.1016/j.postharvbio.2018.12.016 10.1016/S0925-5214(03)00099-1 10.1104/pp.110.169391 10.1093/jxb/erl198 10.1016/j.mri.2010.06.028 10.1590/0103-9016-2013-0429 10.1016/S0378-3812(00)00350-2 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Sep 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Sep 2022 |
DBID | AAYXX CITATION 7QR 7SS 7T7 7U9 8FD C1K FR3 H94 P64 7S9 L.6 |
DOI | 10.1016/j.postharvbio.2022.111985 |
DatabaseName | CrossRef Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 1873-2356 |
ExternalDocumentID | 10_1016_j_postharvbio_2022_111985 S0925521422001533 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SES SEW SPCBC SSA SSZ T5K WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QR 7SS 7T7 7U9 8FD C1K EFKBS FR3 H94 P64 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-eed3f769e08e964f83b137da28e5e3017c598b01b3ebd549f97a9dcf987ea7543 |
IEDL.DBID | .~1 |
ISSN | 0925-5214 |
IngestDate | Fri Jul 11 00:45:45 EDT 2025 Wed Aug 13 07:34:03 EDT 2025 Tue Jul 01 04:29:54 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Fri Feb 23 02:39:44 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Controlled atmosphere storage Oxygen Carbon dioxide Hypoxia Respiratory quotient X-ray CT Respiration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-eed3f769e08e964f83b137da28e5e3017c598b01b3ebd549f97a9dcf987ea7543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://biblio.ugent.be/publication/8755292/file/8755293.pdf |
PQID | 2690252161 |
PQPubID | 2045416 |
ParticipantIDs | proquest_miscellaneous_2675571419 proquest_journals_2690252161 crossref_citationtrail_10_1016_j_postharvbio_2022_111985 crossref_primary_10_1016_j_postharvbio_2022_111985 elsevier_sciencedirect_doi_10_1016_j_postharvbio_2022_111985 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Postharvest biology and technology |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Hertog, Peppelenbos, Evelo, Tijskens (bib17) 1998; 14 Masschaele, Dierick, Loo, Van, Boone (bib35) 2013 Lammertyn, Scheerlinck, Verlinden, Schotsmans, Nicolaï (bib30) 2001; 23 Peppelenbos, Leven, Van (bib40) 1996; 7 Schouten, Prange, Verschoor, Lammers, Oosterhaven (bib49) 1998; 31 Ho, Verboven, Verlinden, Schenk, Nicolaï (bib23) 2013; 78 Gupta, Teja, Chai, Zhu (bib16) 2000; 170 Nugraha, Verboven, Janssen, Wang, Nicolaï (bib38) 2019; 150 Drew (bib11) 1997; 48 Kader, A., Saltveit, M., 2002. Respiration and Gas Exchange, in: Bartz, J. (Ed.), Postharvest Physiology and Pathology of Vegetables. CRC Press. Bessemans, Verboven, Verlinden, Janssens, Hertog, Nicolaï (bib3) 2020; 162 Toro, Pinto (bib52) 2015; 75 . Mditshwa, Fawole, Vries, van der Merwe, Crouch, Opara (bib36) 2017; 127 Lammertyn, Dresselaers, Hecke, Van, Jancso (bib34) 2003; 29 Rajapakse, Banks, Hewett, Cleland (bib44) 1990; 115 Kalnin, Kotomin, Maier (bib28) 2002; 63 Rawyler, Pavelic, Gianinazzi, Oberson, Braendle (bib45) 1999; 120 Beaudry (bib1) 1993; 3 Prange, DeLong, Leyte, Harrison (bib43) 2002; 24 Ho, Verboven, Verlinden, Nicolaï (bib21) 2010; 61 Xiao, Rogiers, Sadras, Tyerman (bib58) 2018; 69 Lammertyn, Scheerlinck, Jancso, Verlinden, Nicolaï (bib31) 2003; 30 Saquet, Streif, Bangerth (bib48) 2003; 30 Ho, Rogge, Verboven, Verlinden, Nicolaï (bib24) 2016; 176 Ho, Hertog, Verboven, Ambaw, Rogge, Verlinden, Nicolaï (bib25) 2018; 69 Yearsley, Banks, Ganesh, Cleland (bib59) 1996; 8 Gran, Beaudry (bib15) 1993; 3 Ho, Verlinden, Verboven, Vandewalle, Leuven, Computing, Leuven (bib19) 2006; 57 Peppelenbos, Tijskens, van ’t Leven, Wilkinson (bib41) 1996; 9 van Dongen, Gupta, Ramírez-Aguilar, Araújo, Nunes-Nesi, Fernie (bib53) 2011; 168 Saenmuang, Al-Haq, Samarakoon, Makino, Kawagoe, Oshita (bib47) 2012; 5 Lammertyn, Dresselaers, Van Hecke, Jancsók, Wevers, Nicolaï (bib33) 2003; 21 Ho, Verboven, Verlinden, Lammertyn, Vandewalle, Nicolaï (bib20) 2008; 4 Musse, De Guio, Quellec, Cambert, Challois, Davenel (bib37) 2010; 28 Ho, Verboven, Verlinden, Herremans, Wevers, Carmeliet, Nicolaï (bib22) 2011; 155 Schotsmans, Verlinden, Lammertyn, Nicolaı̈ (bib50) 2003; 29 Tanaka, Imamura, Tanaka, Uchino (bib51) 2018; 221 Franck, Lammertyn, Ho, Verboven, Verlinden, Nicolaï (bib13) 2007; 43 Wright, DeLong, Harrison, Gunawardena, Prange (bib57) 2010; 55 Both, Thewes, Brackmann, de Oliveira Anese, de Freitas Ferreira, Wagner (bib5) 2017; 215 Winisdorffer, Musse, Quellec, Devaux, Lahaye, Mariette (bib56) 2015; 33 Lammertyn, Scheerlinck, Jancso, Verlinden, Nicolaï (bib32) 2003; 30 Lammertyn, Aerts, Verlinden, Schotsmans, Nicolaı̈ (bib29) 2000; 20 Boeckx, Pols, Hertog, Nicolaï (bib4) 2019; 10 Chigwaya, Karuppanapandian, Schoeman, Viljoen, Crouch, Nugraha, Verboven, Nicolaï, Crouch (bib7) 2021; 174 Edward, Roberts, Atwell (bib12) 2012; 63 Brady, Romani (bib6) 1988; 87 Weber, Brackmann, Both, Pavanello, Anese, de, Thewes (bib55) 2015; 72 Geigenberger (bib14) 2003; 6 Janssen, Verboven, Nugraha, Wang, Boone, Josipovic, Nicolaï (bib26) 2020; 159 Perez, Beaudry (bib42) 1998; 123 Veltman, Lenthéric, Van der Plas, Peppelenbos (bib54) 2003; 28 Bessemans, Verboven, Verlinden, Nicolaï (bib2) 2016; 115 Cukrov, Zermiani, Brizzolara, Cestaro, Licausi, Luchinat, Santucci, Tenori, Van Veen, Zuccolo, Ruperti, Tonutti (bib9) 2016 Ho, Verlinden, Verboven, Nicola (bib18) 2006; 41 Nugraha, Verboven, Janssen, Hertog, Boone, Josipovic, Nicolaï (bib39) 2021; 306 Rich (bib46) 2003; 31 Cukrov (bib8) 2018; 7 Zhang, Bunn (bib60) 2000; 43 Delele, Bessemans, Gruyters, Rogge, Janssen, Verlinden, Smeets, Ramon, Verboven, Nicolai (bib10) 2019; 156 Chigwaya (10.1016/j.postharvbio.2022.111985_bib7) 2021; 174 Geigenberger (10.1016/j.postharvbio.2022.111985_bib14) 2003; 6 Bessemans (10.1016/j.postharvbio.2022.111985_bib3) 2020; 162 Yearsley (10.1016/j.postharvbio.2022.111985_bib59) 1996; 8 Peppelenbos (10.1016/j.postharvbio.2022.111985_bib40) 1996; 7 Wright (10.1016/j.postharvbio.2022.111985_bib57) 2010; 55 Schotsmans (10.1016/j.postharvbio.2022.111985_bib50) 2003; 29 Ho (10.1016/j.postharvbio.2022.111985_bib24) 2016; 176 Veltman (10.1016/j.postharvbio.2022.111985_bib54) 2003; 28 Cukrov (10.1016/j.postharvbio.2022.111985_bib9) 2016 Lammertyn (10.1016/j.postharvbio.2022.111985_bib31) 2003; 30 Ho (10.1016/j.postharvbio.2022.111985_bib25) 2018; 69 Gupta (10.1016/j.postharvbio.2022.111985_bib16) 2000; 170 Ho (10.1016/j.postharvbio.2022.111985_bib20) 2008; 4 Hertog (10.1016/j.postharvbio.2022.111985_bib17) 1998; 14 Ho (10.1016/j.postharvbio.2022.111985_bib23) 2013; 78 Mditshwa (10.1016/j.postharvbio.2022.111985_bib36) 2017; 127 Toro (10.1016/j.postharvbio.2022.111985_bib52) 2015; 75 Prange (10.1016/j.postharvbio.2022.111985_bib43) 2002; 24 Cukrov (10.1016/j.postharvbio.2022.111985_bib8) 2018; 7 Schouten (10.1016/j.postharvbio.2022.111985_bib49) 1998; 31 Rich (10.1016/j.postharvbio.2022.111985_bib46) 2003; 31 Boeckx (10.1016/j.postharvbio.2022.111985_bib4) 2019; 10 Brady (10.1016/j.postharvbio.2022.111985_bib6) 1988; 87 Lammertyn (10.1016/j.postharvbio.2022.111985_bib34) 2003; 29 Nugraha (10.1016/j.postharvbio.2022.111985_bib38) 2019; 150 Winisdorffer (10.1016/j.postharvbio.2022.111985_bib56) 2015; 33 Franck (10.1016/j.postharvbio.2022.111985_bib13) 2007; 43 Both (10.1016/j.postharvbio.2022.111985_bib5) 2017; 215 Zhang (10.1016/j.postharvbio.2022.111985_bib60) 2000; 43 10.1016/j.postharvbio.2022.111985_bib27 Ho (10.1016/j.postharvbio.2022.111985_bib21) 2010; 61 Nugraha (10.1016/j.postharvbio.2022.111985_bib39) 2021; 306 Perez (10.1016/j.postharvbio.2022.111985_bib42) 1998; 123 Saquet (10.1016/j.postharvbio.2022.111985_bib48) 2003; 30 Drew (10.1016/j.postharvbio.2022.111985_bib11) 1997; 48 Ho (10.1016/j.postharvbio.2022.111985_bib19) 2006; 57 Delele (10.1016/j.postharvbio.2022.111985_bib10) 2019; 156 Lammertyn (10.1016/j.postharvbio.2022.111985_bib29) 2000; 20 van Dongen (10.1016/j.postharvbio.2022.111985_bib53) 2011; 168 Peppelenbos (10.1016/j.postharvbio.2022.111985_bib41) 1996; 9 Weber (10.1016/j.postharvbio.2022.111985_bib55) 2015; 72 Rawyler (10.1016/j.postharvbio.2022.111985_bib45) 1999; 120 Ho (10.1016/j.postharvbio.2022.111985_bib22) 2011; 155 Rajapakse (10.1016/j.postharvbio.2022.111985_bib44) 1990; 115 Xiao (10.1016/j.postharvbio.2022.111985_bib58) 2018; 69 Janssen (10.1016/j.postharvbio.2022.111985_bib26) 2020; 159 Bessemans (10.1016/j.postharvbio.2022.111985_bib2) 2016; 115 Gran (10.1016/j.postharvbio.2022.111985_bib15) 1993; 3 Lammertyn (10.1016/j.postharvbio.2022.111985_bib33) 2003; 21 Kalnin (10.1016/j.postharvbio.2022.111985_bib28) 2002; 63 Edward (10.1016/j.postharvbio.2022.111985_bib12) 2012; 63 Musse (10.1016/j.postharvbio.2022.111985_bib37) 2010; 28 Tanaka (10.1016/j.postharvbio.2022.111985_bib51) 2018; 221 Lammertyn (10.1016/j.postharvbio.2022.111985_bib32) 2003; 30 Masschaele (10.1016/j.postharvbio.2022.111985_bib35) 2013 Beaudry (10.1016/j.postharvbio.2022.111985_bib1) 1993; 3 Ho (10.1016/j.postharvbio.2022.111985_bib18) 2006; 41 Saenmuang (10.1016/j.postharvbio.2022.111985_bib47) 2012; 5 Lammertyn (10.1016/j.postharvbio.2022.111985_bib30) 2001; 23 |
References_xml | – volume: 7 start-page: 78 year: 2018 ident: bib8 article-title: Progress toward understanding the molecular basis of fruit response to hypoxia publication-title: Plants – volume: 29 start-page: 155 year: 2003 end-page: 166 ident: bib50 article-title: Simultaneous measurement of oxygen and carbon dioxide diffusivity in pear fruit tissue publication-title: Postharvest Biol. Technol. – volume: 10 year: 2019 ident: bib4 article-title: Regulation of the central carbon metabolism in apple fruit exposed to postharvest low-oxygen stress publication-title: Front. Plant Sci. – volume: 31 start-page: 25 year: 1998 end-page: 29 ident: bib49 article-title: Improvement of quality of Elstar Apples by dynamic control of ULO conditions publication-title: IFAC Proceedings – volume: 168 start-page: 1434 year: 2011 end-page: 1443 ident: bib53 article-title: Regulation of respiration in plants: a role for alternative metabolic pathways publication-title: J. Plant Physiol. – volume: 156 year: 2019 ident: bib10 article-title: Spatial distribution of gas concentrations and RQ in a controlled atmosphere storage container with pear fruit in very low oxygen conditions publication-title: Postharvest Biol. Technol. – volume: 120 start-page: 293 year: 1999 end-page: 300 ident: bib45 article-title: Membrane lipid integrity relies on a threshold of ATP production rate in potato cell cultures submitted to anoxia publication-title: Plant Physiol. – volume: 221 start-page: 151 year: 2018 end-page: 157 ident: bib51 article-title: Determination of thermal diffusivity of persimmon fl esh tissue using three-dimensional structure model based on X-ray computed tomography publication-title: J. Food Eng. – volume: 23 start-page: 93 year: 2001 end-page: 104 ident: bib30 article-title: Simultaneous determination of oxygen diffusivity and respiration in pear skin and tissue publication-title: Postharvest Biol. Technol. – volume: 8 start-page: 95 year: 1996 end-page: 109 ident: bib59 article-title: Determination of lower oxygen limits for apple fruit publication-title: Postharvest Biol. Technol. – volume: 174 year: 2021 ident: bib7 article-title: X-ray CT and porosity mapping to determine the effect of ‘Fuji’ apple morphological and microstructural properties on the incidence of CO publication-title: Postharvest Biol. Technol. – volume: 306 year: 2021 ident: bib39 article-title: Oxygen diffusivity mapping of fruit and vegetables based on X-ray CT publication-title: J. Food Eng. – volume: 7 start-page: 27 year: 1996 end-page: 40 ident: bib40 article-title: Evaluation of four types of inhibition for modelling the influence of carbon dioxide on oxygen consumption of fruits and vegetables publication-title: Postharvest Biol. Technol. – volume: 20 start-page: 25 year: 2000 end-page: 37 ident: bib29 article-title: Logistic regression analysis of factors influencing core breakdown in ‘Conference’ pears publication-title: Postharvest Biol. Technol. – volume: 57 start-page: 4215 year: 2006 end-page: 4224 ident: bib19 article-title: A permeation – diffusion – reaction model of gas transport in cellular tissue of plant materials publication-title: J. Exp. Bot. – volume: 31 start-page: 1095 year: 2003 end-page: 1105 ident: bib46 article-title: The molecular machinery of Keilin’s respiratory chain publication-title: Biochem. Soc. Trans. – reference: Kader, A., Saltveit, M., 2002. Respiration and Gas Exchange, in: Bartz, J. (Ed.), Postharvest Physiology and Pathology of Vegetables. CRC Press. 〈 – reference: 〉. – volume: 30 start-page: 43 year: 2003 end-page: 55 ident: bib32 article-title: A respiration-diffusion model for ‘Conference’ pears II: simulations and relation to core breakdown publication-title: Postharvest Biol. Technol. – volume: 150 start-page: 80 year: 2019 end-page: 88 ident: bib38 article-title: Postharvest biology and technology non-destructive porosity mapping of fruit and vegetables using X-ray CT publication-title: Postharvest Biol. Technol. – volume: 78 start-page: 103 year: 2013 end-page: 112 ident: bib23 article-title: Controlled atmosphere storage may lead to local ATP deficiency in apple publication-title: Postharvest Biol. Technol. – volume: 63 start-page: 449 year: 2002 end-page: 456 ident: bib28 article-title: Calculations of the effective diffusion coefficient for inhomogeneous media publication-title: J. Phys. Chem. Solids – volume: 5 start-page: 1950 year: 2012 end-page: 1962 ident: bib47 article-title: Evaluation of models for spinach respiratory metabolism under low oxygen atmospheres publication-title: Food Bioprocess Technol. – volume: 41 start-page: 113 year: 2006 end-page: 120 ident: bib18 article-title: Gas diffusion properties at different positions in the pear publication-title: Postharvest Biol. Technol. – volume: 28 start-page: 1525 year: 2010 end-page: 1534 ident: bib37 article-title: Quantification of microporosity in fruit by MRI at various magnetic fields: comparison with X-ray microtomography publication-title: Magn. Reson. Imaging – volume: 61 start-page: 2071 year: 2010 end-page: 2081 ident: bib21 article-title: A model for gas transport in pear fruit at multiple scales publication-title: J. Exp. Bot. – volume: 75 start-page: 57 year: 2015 end-page: 70 ident: bib52 article-title: Plant respiration under low oxygen publication-title: Chil. J. Agric. Res. – year: 2013 ident: bib35 article-title: HECTOR: A 240kV micro-CT setup optimized for research 012012 – volume: 14 start-page: 335 year: 1998 end-page: 349 ident: bib17 article-title: A dynamic and generic model of gas exchange of respiring produce: the effects of oxygen, carbon dioxide and temperature publication-title: Postharvest Biol. Technol. – volume: 43 start-page: 1 year: 2007 end-page: 13 ident: bib13 article-title: Browning disorders in pear fruit publication-title: Postharvest Biol. Technol. – volume: 9 start-page: 283 year: 1996 end-page: 295 ident: bib41 article-title: Modelling oxidative and fermentative carbon dioxide production of fruits and vegetables publication-title: Postharvest Biol. Technol. – volume: 24 start-page: 201 year: 2002 end-page: 205 ident: bib43 article-title: Oxygen concentration affects chlorophyll fluorescence in chlorophyll-containing fruit publication-title: Postharvest Biol. Technol. – volume: 69 start-page: 2049 year: 2018 end-page: 2060 ident: bib25 article-title: Down-regulation of respiration in pear fruit depends on temperature publication-title: J. Exp. Bot. – volume: 28 start-page: 295 year: 2003 end-page: 302 ident: bib54 article-title: Internal browning in pear fruit ( publication-title: Postharvest Biol. Technol. – volume: 159 year: 2020 ident: bib26 article-title: 3D pore structure analysis of intact ‘Braeburn’ apples using X-ray micro-CT publication-title: Postharvest Biol. Technol. – volume: 29 start-page: 19 year: 2003 end-page: 28 ident: bib34 article-title: Analysis of the time course of core breakdown in ‘Conference’ pears by means of MRI and X-ray CT publication-title: Postharvest Biol. Technol. – volume: 72 start-page: 28 year: 2015 end-page: 33 ident: bib55 article-title: Respiratory quotient: innovative method for monitoring ‘Royal Gala’ apple storage in a dynamic controlled atmosphere publication-title: Sci. Agric. – volume: 176 start-page: 77 year: 2016 end-page: 87 ident: bib24 article-title: Stochastic modelling for virtual engineering of controlled atmosphere storage of fruit publication-title: J. Food Eng. – volume: 6 start-page: 247 year: 2003 end-page: 256 ident: bib14 article-title: Response of plant metabolism to too little oxygen publication-title: Current Opinion in Plant Biology – volume: 4 start-page: 13 year: 2008 ident: bib20 article-title: A continuum model for metabolic gas exchange in pear fruit publication-title: PLoS Comput. Biol. – volume: 127 start-page: 27 year: 2017 end-page: 34 ident: bib36 article-title: Minimum exposure period for dynamic controlled atmospheres to control superficial scald in ‘Granny Smith’ apples for long distance supply chains publication-title: Postharvest Biol. Technol. – start-page: 7 year: 2016 ident: bib9 article-title: Extreme hypoxic conditions induce selective molecular responses and metabolic reset in detached apple fruit publication-title: Front. Plant Sci. – volume: 21 start-page: 805 year: 2003 end-page: 815 ident: bib33 article-title: MRI and X-ray CT study of spatial distribution of core breakdown in ‘Conference’ pears publication-title: Magn. Reson. Imaging – volume: 87 start-page: 571 year: 1988 end-page: 576 ident: bib6 article-title: Respiration and protein synthesis in nongrowing cultured pear fruit cells in response to ethylene and modified atmospheres: a model system for fruits postharvest publication-title: Plant Physiol. – volume: 3 start-page: 249 year: 1993 end-page: 258 ident: bib1 article-title: Effect of carbon dioxide partial pressure on blueberry fruit respiration and respiratory quotient publication-title: Postharvest Biol. Technol. – volume: 162 year: 2020 ident: bib3 article-title: Apparent respiratory quotient observed in headspace of static respirometers underestimates cellular respiratory quotient of pear fruit publication-title: Postharvest Biol. Technol. – volume: 123 start-page: 115 year: 1998 end-page: 118 ident: bib42 article-title: Fractional surface coating modifies gas diffusion and ripening in bananas publication-title: J. Am. Soc. Hort. Sci. – volume: 215 start-page: 483 year: 2017 end-page: 492 ident: bib5 article-title: Effects of dynamic controlled atmosphere by respiratory quotient on some quality parameters and volatile profile of ‘Royal Gala’ apple after long-term storage publication-title: Food Chem. – volume: 48 start-page: 223 year: 1997 end-page: 250 ident: bib11 article-title: Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia publication-title: Annu. Rev. Plant. Physiol. Plant. Mol. Biol. – volume: 55 start-page: 21 year: 2010 end-page: 28 ident: bib57 article-title: The effect of temperature and other factors on chlorophyll a fluorescence and the lower oxygen limit in apples ( publication-title: Postharvest Biol. Technol. – volume: 115 start-page: 793 year: 1990 end-page: 797 ident: bib44 article-title: Development of oxygen concentration gradients in flesh tissues of bulky plant organs publication-title: jashs – volume: 170 start-page: 183 year: 2000 end-page: 192 ident: bib16 article-title: Henry’s constants of n-alkanols (methanol through publication-title: Fluid Phase Equilibria – volume: 63 start-page: 4389 year: 2012 end-page: 4402 ident: bib12 article-title: Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis publication-title: J. Exp. Bot. – volume: 155 start-page: 1158 year: 2011 end-page: 1168 ident: bib22 article-title: A three-dimensional multiscale model for gas exchange in fruit publication-title: Plant Physiol. – volume: 69 start-page: 2071 year: 2018 end-page: 2083 ident: bib58 article-title: Hypoxia in grape berries: the role of seed respiration and lenticels on the berry pedicel and the possible link to cell death publication-title: J. Exp. Bot. – volume: 115 start-page: 91 year: 2016 end-page: 102 ident: bib2 article-title: A novel type of dynamic controlled atmosphere storage based on the respiratory quotient (RQ-DCA) publication-title: Postharvest Biol. Technol. – volume: 3 start-page: 259 year: 1993 end-page: 267 ident: bib15 article-title: Determination of the low oxygen limit for several commercial apple cultivars by respiratory quotient breakpoint publication-title: Postharvest Biol. Technol. – volume: 43 start-page: 359 year: 2000 end-page: 363 ident: bib60 article-title: Oxygen diffusivities of apple flesh and skin publication-title: Trans. ASAE – volume: 30 start-page: 29 year: 2003 end-page: 42 ident: bib31 article-title: A respiration-diffusion model for ‘Conference’ pears I: model development and validation publication-title: Postharvest Biol. Technol. – volume: 33 start-page: 671 year: 2015 end-page: 680 ident: bib56 article-title: MRI investigation of subcellular water compartmentalization and gas distribution in apples Parenchyma Seeds Vascular publication-title: Magn. Reson. Imaging – volume: 30 start-page: 123 year: 2003 end-page: 132 ident: bib48 article-title: Energy metabolism and membrane lipid alterations in relation to brown heart development in ‘Conference’ pears during delayed controlled atmosphere storage publication-title: Postharvest Biol. Technol. – volume: 156 year: 2019 ident: 10.1016/j.postharvbio.2022.111985_bib10 article-title: Spatial distribution of gas concentrations and RQ in a controlled atmosphere storage container with pear fruit in very low oxygen conditions publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2019.05.004 – volume: 63 start-page: 4389 year: 2012 ident: 10.1016/j.postharvbio.2022.111985_bib12 article-title: Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers114 – volume: 43 start-page: 1 year: 2007 ident: 10.1016/j.postharvbio.2022.111985_bib13 article-title: Browning disorders in pear fruit publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2006.08.008 – volume: 3 start-page: 259 year: 1993 ident: 10.1016/j.postharvbio.2022.111985_bib15 article-title: Determination of the low oxygen limit for several commercial apple cultivars by respiratory quotient breakpoint publication-title: Postharvest Biol. Technol. doi: 10.1016/0925-5214(93)90061-7 – volume: 221 start-page: 151 year: 2018 ident: 10.1016/j.postharvbio.2022.111985_bib51 article-title: Determination of thermal diffusivity of persimmon fl esh tissue using three-dimensional structure model based on X-ray computed tomography publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2017.10.021 – volume: 5 start-page: 1950 year: 2012 ident: 10.1016/j.postharvbio.2022.111985_bib47 article-title: Evaluation of models for spinach respiratory metabolism under low oxygen atmospheres publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-010-0503-5 – volume: 43 start-page: 359 year: 2000 ident: 10.1016/j.postharvbio.2022.111985_bib60 article-title: Oxygen diffusivities of apple flesh and skin publication-title: Trans. ASAE doi: 10.13031/2013.2712 – volume: 61 start-page: 2071 year: 2010 ident: 10.1016/j.postharvbio.2022.111985_bib21 article-title: A model for gas transport in pear fruit at multiple scales publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq026 – volume: 7 start-page: 78 year: 2018 ident: 10.1016/j.postharvbio.2022.111985_bib8 article-title: Progress toward understanding the molecular basis of fruit response to hypoxia publication-title: Plants doi: 10.3390/plants7040078 – volume: 162 year: 2020 ident: 10.1016/j.postharvbio.2022.111985_bib3 article-title: Apparent respiratory quotient observed in headspace of static respirometers underestimates cellular respiratory quotient of pear fruit publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2019.111104 – volume: 63 start-page: 449 year: 2002 ident: 10.1016/j.postharvbio.2022.111985_bib28 article-title: Calculations of the effective diffusion coefficient for inhomogeneous media publication-title: J. Phys. Chem. Solids doi: 10.1016/S0022-3697(01)00159-7 – volume: 69 start-page: 2071 year: 2018 ident: 10.1016/j.postharvbio.2022.111985_bib58 article-title: Hypoxia in grape berries: the role of seed respiration and lenticels on the berry pedicel and the possible link to cell death publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery039 – ident: 10.1016/j.postharvbio.2022.111985_bib27 doi: 10.1201/9780203910092.ch2 – volume: 30 start-page: 29 year: 2003 ident: 10.1016/j.postharvbio.2022.111985_bib31 article-title: A respiration-diffusion model for ‘Conference’ pears I: model development and validation publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(03)00061-9 – volume: 168 start-page: 1434 year: 2011 ident: 10.1016/j.postharvbio.2022.111985_bib53 article-title: Regulation of respiration in plants: a role for alternative metabolic pathways publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2010.11.004 – volume: 159 year: 2020 ident: 10.1016/j.postharvbio.2022.111985_bib26 article-title: 3D pore structure analysis of intact ‘Braeburn’ apples using X-ray micro-CT publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2019.111014 – volume: 78 start-page: 103 year: 2013 ident: 10.1016/j.postharvbio.2022.111985_bib23 article-title: Controlled atmosphere storage may lead to local ATP deficiency in apple publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2012.12.014 – volume: 23 start-page: 93 year: 2001 ident: 10.1016/j.postharvbio.2022.111985_bib30 article-title: Simultaneous determination of oxygen diffusivity and respiration in pear skin and tissue publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(01)00113-2 – volume: 31 start-page: 1095 year: 2003 ident: 10.1016/j.postharvbio.2022.111985_bib46 article-title: The molecular machinery of Keilin’s respiratory chain publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0311095 – volume: 30 start-page: 43 year: 2003 ident: 10.1016/j.postharvbio.2022.111985_bib32 article-title: A respiration-diffusion model for ‘Conference’ pears II: simulations and relation to core breakdown publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(03)00062-0 – volume: 174 year: 2021 ident: 10.1016/j.postharvbio.2022.111985_bib7 article-title: X-ray CT and porosity mapping to determine the effect of ‘Fuji’ apple morphological and microstructural properties on the incidence of CO2 induced internal browning publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2021.111464 – volume: 20 start-page: 25 year: 2000 ident: 10.1016/j.postharvbio.2022.111985_bib29 article-title: Logistic regression analysis of factors influencing core breakdown in ‘Conference’ pears publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(00)00114-9 – volume: 176 start-page: 77 year: 2016 ident: 10.1016/j.postharvbio.2022.111985_bib24 article-title: Stochastic modelling for virtual engineering of controlled atmosphere storage of fruit publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2015.07.003 – volume: 21 start-page: 805 year: 2003 ident: 10.1016/j.postharvbio.2022.111985_bib33 article-title: MRI and X-ray CT study of spatial distribution of core breakdown in ‘Conference’ pears publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(03)00105-X – volume: 33 start-page: 671 year: 2015 ident: 10.1016/j.postharvbio.2022.111985_bib56 article-title: MRI investigation of subcellular water compartmentalization and gas distribution in apples Parenchyma Seeds Vascular publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2015.02.014 – volume: 123 start-page: 115 year: 1998 ident: 10.1016/j.postharvbio.2022.111985_bib42 article-title: Fractional surface coating modifies gas diffusion and ripening in bananas publication-title: J. Am. Soc. Hort. Sci. doi: 10.21273/JASHS.123.1.115 – volume: 29 start-page: 19 year: 2003 ident: 10.1016/j.postharvbio.2022.111985_bib34 article-title: Analysis of the time course of core breakdown in ‘Conference’ pears by means of MRI and X-ray CT publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(02)00212-0 – volume: 306 year: 2021 ident: 10.1016/j.postharvbio.2022.111985_bib39 article-title: Oxygen diffusivity mapping of fruit and vegetables based on X-ray CT publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2021.110640 – volume: 24 start-page: 201 year: 2002 ident: 10.1016/j.postharvbio.2022.111985_bib43 article-title: Oxygen concentration affects chlorophyll fluorescence in chlorophyll-containing fruit publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(01)00188-0 – year: 2013 ident: 10.1016/j.postharvbio.2022.111985_bib35 – volume: 120 start-page: 293 year: 1999 ident: 10.1016/j.postharvbio.2022.111985_bib45 article-title: Membrane lipid integrity relies on a threshold of ATP production rate in potato cell cultures submitted to anoxia publication-title: Plant Physiol. doi: 10.1104/pp.120.1.293 – volume: 41 start-page: 113 year: 2006 ident: 10.1016/j.postharvbio.2022.111985_bib18 article-title: Gas diffusion properties at different positions in the pear publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2006.04.002 – volume: 127 start-page: 27 year: 2017 ident: 10.1016/j.postharvbio.2022.111985_bib36 article-title: Minimum exposure period for dynamic controlled atmospheres to control superficial scald in ‘Granny Smith’ apples for long distance supply chains publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2016.12.009 – volume: 9 start-page: 283 year: 1996 ident: 10.1016/j.postharvbio.2022.111985_bib41 article-title: Modelling oxidative and fermentative carbon dioxide production of fruits and vegetables publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(96)00029-4 – volume: 215 start-page: 483 year: 2017 ident: 10.1016/j.postharvbio.2022.111985_bib5 article-title: Effects of dynamic controlled atmosphere by respiratory quotient on some quality parameters and volatile profile of ‘Royal Gala’ apple after long-term storage publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.08.009 – volume: 31 start-page: 25 year: 1998 ident: 10.1016/j.postharvbio.2022.111985_bib49 article-title: Improvement of quality of Elstar Apples by dynamic control of ULO conditions publication-title: IFAC Proceedings doi: 10.1016/S1474-6670(17)44023-7 – volume: 14 start-page: 335 year: 1998 ident: 10.1016/j.postharvbio.2022.111985_bib17 article-title: A dynamic and generic model of gas exchange of respiring produce: the effects of oxygen, carbon dioxide and temperature publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(98)00058-1 – volume: 8 start-page: 95 year: 1996 ident: 10.1016/j.postharvbio.2022.111985_bib59 article-title: Determination of lower oxygen limits for apple fruit publication-title: Postharvest Biol. Technol. doi: 10.1016/0925-5214(96)00064-6 – volume: 115 start-page: 91 year: 2016 ident: 10.1016/j.postharvbio.2022.111985_bib2 article-title: A novel type of dynamic controlled atmosphere storage based on the respiratory quotient (RQ-DCA) publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2015.12.019 – volume: 7 start-page: 27 year: 1996 ident: 10.1016/j.postharvbio.2022.111985_bib40 article-title: Evaluation of four types of inhibition for modelling the influence of carbon dioxide on oxygen consumption of fruits and vegetables publication-title: Postharvest Biol. Technol. doi: 10.1016/0925-5214(96)80995-1 – volume: 3 start-page: 249 year: 1993 ident: 10.1016/j.postharvbio.2022.111985_bib1 article-title: Effect of carbon dioxide partial pressure on blueberry fruit respiration and respiratory quotient publication-title: Postharvest Biol. Technol. doi: 10.1016/0925-5214(93)90060-G – start-page: 7 year: 2016 ident: 10.1016/j.postharvbio.2022.111985_bib9 article-title: Extreme hypoxic conditions induce selective molecular responses and metabolic reset in detached apple fruit publication-title: Front. Plant Sci. – volume: 115 start-page: 793 year: 1990 ident: 10.1016/j.postharvbio.2022.111985_bib44 article-title: Development of oxygen concentration gradients in flesh tissues of bulky plant organs publication-title: jashs doi: 10.21273/JASHS.115.5.793 – volume: 6 start-page: 247 year: 2003 ident: 10.1016/j.postharvbio.2022.111985_bib14 article-title: Response of plant metabolism to too little oxygen publication-title: Current Opinion in Plant Biology doi: 10.1016/S1369-5266(03)00038-4 – volume: 55 start-page: 21 year: 2010 ident: 10.1016/j.postharvbio.2022.111985_bib57 article-title: The effect of temperature and other factors on chlorophyll a fluorescence and the lower oxygen limit in apples (Malus domestica) publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2009.07.011 – volume: 28 start-page: 295 year: 2003 ident: 10.1016/j.postharvbio.2022.111985_bib54 article-title: Internal browning in pear fruit (Pyrus communis L. cv Conference) may be a result of a limited availability of energy and antioxidants publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(02)00198-9 – volume: 29 start-page: 155 year: 2003 ident: 10.1016/j.postharvbio.2022.111985_bib50 article-title: Simultaneous measurement of oxygen and carbon dioxide diffusivity in pear fruit tissue publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(02)00251-X – volume: 75 start-page: 57 year: 2015 ident: 10.1016/j.postharvbio.2022.111985_bib52 article-title: Plant respiration under low oxygen publication-title: Chil. J. Agric. Res. doi: 10.4067/S0718-58392015000300007 – volume: 10 year: 2019 ident: 10.1016/j.postharvbio.2022.111985_bib4 article-title: Regulation of the central carbon metabolism in apple fruit exposed to postharvest low-oxygen stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01384 – volume: 87 start-page: 571 year: 1988 ident: 10.1016/j.postharvbio.2022.111985_bib6 article-title: Respiration and protein synthesis in nongrowing cultured pear fruit cells in response to ethylene and modified atmospheres: a model system for fruits postharvest publication-title: Plant Physiol. doi: 10.1104/pp.87.3.571 – volume: 4 start-page: 13 year: 2008 ident: 10.1016/j.postharvbio.2022.111985_bib20 article-title: A continuum model for metabolic gas exchange in pear fruit publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000023 – volume: 69 start-page: 2049 year: 2018 ident: 10.1016/j.postharvbio.2022.111985_bib25 article-title: Down-regulation of respiration in pear fruit depends on temperature publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery031 – volume: 48 start-page: 223 year: 1997 ident: 10.1016/j.postharvbio.2022.111985_bib11 article-title: Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia publication-title: Annu. Rev. Plant. Physiol. Plant. Mol. Biol. doi: 10.1146/annurev.arplant.48.1.223 – volume: 150 start-page: 80 year: 2019 ident: 10.1016/j.postharvbio.2022.111985_bib38 article-title: Postharvest biology and technology non-destructive porosity mapping of fruit and vegetables using X-ray CT publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2018.12.016 – volume: 30 start-page: 123 year: 2003 ident: 10.1016/j.postharvbio.2022.111985_bib48 article-title: Energy metabolism and membrane lipid alterations in relation to brown heart development in ‘Conference’ pears during delayed controlled atmosphere storage publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(03)00099-1 – volume: 155 start-page: 1158 year: 2011 ident: 10.1016/j.postharvbio.2022.111985_bib22 article-title: A three-dimensional multiscale model for gas exchange in fruit publication-title: Plant Physiol. doi: 10.1104/pp.110.169391 – volume: 57 start-page: 4215 year: 2006 ident: 10.1016/j.postharvbio.2022.111985_bib19 article-title: A permeation – diffusion – reaction model of gas transport in cellular tissue of plant materials publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl198 – volume: 28 start-page: 1525 year: 2010 ident: 10.1016/j.postharvbio.2022.111985_bib37 article-title: Quantification of microporosity in fruit by MRI at various magnetic fields: comparison with X-ray microtomography publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2010.06.028 – volume: 72 start-page: 28 year: 2015 ident: 10.1016/j.postharvbio.2022.111985_bib55 article-title: Respiratory quotient: innovative method for monitoring ‘Royal Gala’ apple storage in a dynamic controlled atmosphere publication-title: Sci. Agric. doi: 10.1590/0103-9016-2013-0429 – volume: 170 start-page: 183 year: 2000 ident: 10.1016/j.postharvbio.2022.111985_bib16 article-title: Henry’s constants of n-alkanols (methanol through n-hexanol) in water at temperatures between 40 °C and 90 °C publication-title: Fluid Phase Equilibria doi: 10.1016/S0378-3812(00)00350-2 |
SSID | ssj0005558 |
Score | 2.4343264 |
Snippet | Internal gas gradients in pear fruit during controlled atmosphere storage depend on the effective gas diffusivity of the tissue. The diffusivity varies over... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111985 |
SubjectTerms | Browning Carbon dioxide Computed tomography Controlled atmosphere storage Diffusivity Energy balance Fermentation Fruits Gas exchange Heterogeneity Heterogeneous structure Hypoxia microstructure Oxygen Pears Porosity Quotients Respiration Respiratory quotient Tissues X-ray CT |
Title | Gas exchange model using heterogeneous diffusivity to study internal browning in ‘Conference’ pear |
URI | https://dx.doi.org/10.1016/j.postharvbio.2022.111985 https://www.proquest.com/docview/2690252161 https://www.proquest.com/docview/2675571419 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LahsxcAgJlOZQ2qalblOjQK4b2ytpJUEvJiR1a5pD0pDcxGotJRuMbext6an4M5rfy5dkZh-OW3oI5LRodwaE5r2aB8C-H6FqlDqJOFcqElQmY1zgUexk1g0h06Ks4_52kgzOxddLebkBh00tDKVV1rq_0umltq7fdOrT7MzyvHPWNegOU8cwSgtCr4Uq2IUiLj_4vZbmIcsZnQQcEfQz2HvI8ZpNF8V1Ov_pcqoDjGNSIIbGKv_fRv2jrUsTdPwSXtS-I-tX23sFG37yGrb7V_O6f4bH1Vp_wR0In9MF87-q4l5WDr1hlOh-xa4pC2aKzOMx8mc0JQXf0xgJVkxZ2XKW5dW_wjFzFKkTUj5hd8s_DzWCd8tbNkNJeQPnx0ffDwdRPVghygTnRYR2kQeVGN_V3iQiaO56XI3SWHvpUeJVJo123Z7j3o0wgAxGpWaUBaOVT5UU_C1sTqYT_w6YwhPD4NyooKVAvY-EloojkE-NUCptgW6O0mZ113EafjG2TXrZjV2jgiUq2IoKLYhXqLOq9cZjkD419LJ_8ZFFE_EY9N2GxrYW5oWNE7qLjdE3bsHe6jOKId2tpCWhEEZJqXqiZ94_bQcf4DmtqjS2Xdgs5j_8R_R7CtcuGbsNW_0vw8EJPYenF8N7lVMJNQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB61QYL2gHiqKQFcieuSZG2vbYlLFRECpL3QSr1Z642dLqqSKNlWnFB-Bvy9_hJm9tEGxKFSj2vPSJbH8_B6Zj6Ad36CplHqJOJcqUhQmYxxgUexk1kvhEyLso776DgZnYovZ_JsCwZNLQylVda2v7LppbWuR7r1bnYXed791jMYDlPHMEoLwqhlGx4IVF-CMXj_cyPPQ5YgnUQdEflDOLhN8lrMV8V5urxyORUCxjFZEEO4yv93Uv-Y69IHDZ_A4zp4ZIfV-p7Clp89g93D6bJuoOHxa6PB4HMIn9IV8z-q6l5Wot4wynSfsnNKg5nj6fF49WcEk4LjhCPBijkre86yvPpZeMEcXdWJKZ-x6_Wv2yLB6_VvtkBVeQGnw48ng1FUIytEmeC8iNAx8qAS43vam0QEzV2fq0kaay89qrzKpNGu13fcuwneIINRqZlkwWjlUyUFfwmt2Xzm94Ap3DG8nRsVtBRo-FHSUnEk8qkRSqVt0M1W2qxuO07oFxe2yS_7bjekYEkKtpJCG-Ib1kXVe-MuTB8aedm_DpJFH3EX9k4jY1tr88rGCT3Gxhgct-HgZhr1kB5X0lJQSKOkVH3RN_v3W8FbeDQ6ORrb8efjr69gh2aqnLYOtIrlpX-NQVDh3pSH_A88jwkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas+exchange+model+using+heterogeneous+diffusivity+to+study+internal+browning+in+%E2%80%98Conference%E2%80%99+pear&rft.jtitle=Postharvest+biology+and+technology&rft.au=Nugraha%2C+Bayu&rft.au=Verboven%2C+Pieter&rft.au=Verlinden%2C+Bert+E&rft.au=Verreydt%2C+Celine&rft.date=2022-09-01&rft.issn=0925-5214&rft.volume=191+p.111985-&rft_id=info:doi/10.1016%2Fj.postharvbio.2022.111985&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5214&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5214&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5214&client=summon |