Gas exchange model using heterogeneous diffusivity to study internal browning in ‘Conference’ pear

Internal gas gradients in pear fruit during controlled atmosphere storage depend on the effective gas diffusivity of the tissue. The diffusivity varies over the fruit organ due to the heterogeneous tissue microstructure across the fruit. This study implemented effective diffusivity maps reflecting t...

Full description

Saved in:
Bibliographic Details
Published inPostharvest biology and technology Vol. 191; p. 111985
Main Authors Nugraha, Bayu, Verboven, Pieter, Verlinden, Bert E., Verreydt, Celine, Boone, Matthieu, Josipovic, Iván, Nicolaï, Bart M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Internal gas gradients in pear fruit during controlled atmosphere storage depend on the effective gas diffusivity of the tissue. The diffusivity varies over the fruit organ due to the heterogeneous tissue microstructure across the fruit. This study implemented effective diffusivity maps reflecting the heterogeneous structure to predict internal gas gradients and relate the result to the occurrence of internal browning. Diffusivity maps of different pears were calculated from X-ray CT based porosity maps. Internal oxygen (O2), carbon dioxide (CO2) and respiratory quotient (RQ) levels were computed using a reaction-diffusion model incorporating the heterogeneous effective diffusivity map. Critical O2 and RQ levels for the shift from respiration to fermentation were defined based on the respiratory-fermentative energy balance of the cells. The model was indirectly validated by comparing RQ level contours with non-destructive 3D images of the internal browning of the pears after storage at 1.0 kPa and 0.5 kPa O2, combined with 0.7 kPa CO2 at 1 °C. The distribution of the internal gas concentrations and RQ was affected by the heterogeneity of the diffusivity. The results also confirmed the incidence of internal browning when the O2 and RQ were under or above critical O2 and RQ limits, respectively. The fermentation process was indicated to be dominant when the tissue’s RQ limit (RQ*) went above 2.12 (or at 0.044 kPa O2). The tissue volumes where O2 and RQ levels were critical corresponded reasonably well to browning-affected tissues of pears with different shapes. The pear with more shallow gas gradients showed less symptoms of browning. •Pear tissue microstructure was imaged using X-ray CT.•Heterogeneous gas diffusivity maps were derived from spatial porosity profiles.•Internal gas concentrations in pear were computed using heterogeneous diffusivity.•Pear tissue subject to energy deficiency corresponded to actual browning patches.
AbstractList Internal gas gradients in pear fruit during controlled atmosphere storage depend on the effective gas diffusivity of the tissue. The diffusivity varies over the fruit organ due to the heterogeneous tissue microstructure across the fruit. This study implemented effective diffusivity maps reflecting the heterogeneous structure to predict internal gas gradients and relate the result to the occurrence of internal browning. Diffusivity maps of different pears were calculated from X-ray CT based porosity maps. Internal oxygen (O2), carbon dioxide (CO2) and respiratory quotient (RQ) levels were computed using a reaction-diffusion model incorporating the heterogeneous effective diffusivity map. Critical O2 and RQ levels for the shift from respiration to fermentation were defined based on the respiratory-fermentative energy balance of the cells. The model was indirectly validated by comparing RQ level contours with non-destructive 3D images of the internal browning of the pears after storage at 1.0 kPa and 0.5 kPa O2, combined with 0.7 kPa CO2 at 1 °C. The distribution of the internal gas concentrations and RQ was affected by the heterogeneity of the diffusivity. The results also confirmed the incidence of internal browning when the O2 and RQ were under or above critical O2 and RQ limits, respectively. The fermentation process was indicated to be dominant when the tissue's RQ limit (RQ*) went above 2.12 (or at 0.044 kPa O2). The tissue volumes where O2 and RQ levels were critical corresponded reasonably well to browning-affected tissues of pears with different shapes. The pear with more shallow gas gradients showed less symptoms of browning.
Internal gas gradients in pear fruit during controlled atmosphere storage depend on the effective gas diffusivity of the tissue. The diffusivity varies over the fruit organ due to the heterogeneous tissue microstructure across the fruit. This study implemented effective diffusivity maps reflecting the heterogeneous structure to predict internal gas gradients and relate the result to the occurrence of internal browning. Diffusivity maps of different pears were calculated from X-ray CT based porosity maps. Internal oxygen (O₂), carbon dioxide (CO₂) and respiratory quotient (RQ) levels were computed using a reaction-diffusion model incorporating the heterogeneous effective diffusivity map. Critical O₂ and RQ levels for the shift from respiration to fermentation were defined based on the respiratory-fermentative energy balance of the cells. The model was indirectly validated by comparing RQ level contours with non-destructive 3D images of the internal browning of the pears after storage at 1.0 kPa and 0.5 kPa O₂, combined with 0.7 kPa CO₂ at 1 °C. The distribution of the internal gas concentrations and RQ was affected by the heterogeneity of the diffusivity. The results also confirmed the incidence of internal browning when the O₂ and RQ were under or above critical O₂ and RQ limits, respectively. The fermentation process was indicated to be dominant when the tissue’s RQ limit (RQ*) went above 2.12 (or at 0.044 kPa O₂). The tissue volumes where O₂ and RQ levels were critical corresponded reasonably well to browning-affected tissues of pears with different shapes. The pear with more shallow gas gradients showed less symptoms of browning.
Internal gas gradients in pear fruit during controlled atmosphere storage depend on the effective gas diffusivity of the tissue. The diffusivity varies over the fruit organ due to the heterogeneous tissue microstructure across the fruit. This study implemented effective diffusivity maps reflecting the heterogeneous structure to predict internal gas gradients and relate the result to the occurrence of internal browning. Diffusivity maps of different pears were calculated from X-ray CT based porosity maps. Internal oxygen (O2), carbon dioxide (CO2) and respiratory quotient (RQ) levels were computed using a reaction-diffusion model incorporating the heterogeneous effective diffusivity map. Critical O2 and RQ levels for the shift from respiration to fermentation were defined based on the respiratory-fermentative energy balance of the cells. The model was indirectly validated by comparing RQ level contours with non-destructive 3D images of the internal browning of the pears after storage at 1.0 kPa and 0.5 kPa O2, combined with 0.7 kPa CO2 at 1 °C. The distribution of the internal gas concentrations and RQ was affected by the heterogeneity of the diffusivity. The results also confirmed the incidence of internal browning when the O2 and RQ were under or above critical O2 and RQ limits, respectively. The fermentation process was indicated to be dominant when the tissue’s RQ limit (RQ*) went above 2.12 (or at 0.044 kPa O2). The tissue volumes where O2 and RQ levels were critical corresponded reasonably well to browning-affected tissues of pears with different shapes. The pear with more shallow gas gradients showed less symptoms of browning. •Pear tissue microstructure was imaged using X-ray CT.•Heterogeneous gas diffusivity maps were derived from spatial porosity profiles.•Internal gas concentrations in pear were computed using heterogeneous diffusivity.•Pear tissue subject to energy deficiency corresponded to actual browning patches.
ArticleNumber 111985
Author Josipovic, Iván
Nugraha, Bayu
Verlinden, Bert E.
Boone, Matthieu
Verreydt, Celine
Nicolaï, Bart M.
Verboven, Pieter
Author_xml – sequence: 1
  givenname: Bayu
  surname: Nugraha
  fullname: Nugraha, Bayu
  organization: BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
– sequence: 2
  givenname: Pieter
  surname: Verboven
  fullname: Verboven, Pieter
  email: pieter.verboven@kuleuven.be
  organization: BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
– sequence: 3
  givenname: Bert E.
  surname: Verlinden
  fullname: Verlinden, Bert E.
  organization: Flanders Centre of Postharvest Technology, Willem de Croylaan 42, 3001 Leuven, Belgium
– sequence: 4
  givenname: Celine
  surname: Verreydt
  fullname: Verreydt, Celine
  organization: BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
– sequence: 5
  givenname: Matthieu
  surname: Boone
  fullname: Boone, Matthieu
  organization: Centre for X-ray Tomography – UGCT, Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
– sequence: 6
  givenname: Iván
  surname: Josipovic
  fullname: Josipovic, Iván
  organization: Centre for X-ray Tomography – UGCT, Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
– sequence: 7
  givenname: Bart M.
  surname: Nicolaï
  fullname: Nicolaï, Bart M.
  organization: BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
BookMark eNqNkc1uEzEUha2qSE0L72DEhs0E_4xnxiuEIvojVWJT1pbHvk4cTexgewLZ9THg9foknSEsUFddXenqO0c651yi8xADIPSekiUltPm0Xe5jLhudDr2PS0YYW1JKZSfO0IJ2La8YF805WhDJRCUYrS_QZc5bQogQolsgd6Mzhl9mo8Ma8C5aGPCYfVjjDRRIcQ0B4pix9c5N_4MvR1wizmW0R-zDhAQ94D7Fn2EW-YCfHn-vYnCQIBh4evyD96DTW_TG6SHDu3_3Cn2__vqwuq3uv93crb7cV6bmvFQAlru2kUA6kE3tOt5T3lrNOhDACW2NkF1PaM-ht6KWTrZaWuNk14JuRc2v0MeT7z7FHyPkonY-GxgG_TeGYk0rREtrKif0wwt0G8c5zUxJwqayGjpRn0-USTHnBE4ZX3TxMZSk_aAoUfMOaqv-20HNO6jTDpODfOGwT36n0_FV2tVJC1NnBw9JZePnXq1PYIqy0b_C5RnNB7Bh
CitedBy_id crossref_primary_10_1093_plphys_kiae174
crossref_primary_10_1016_j_postharvbio_2024_112802
crossref_primary_10_1080_10408398_2024_2384650
crossref_primary_10_1016_j_postharvbio_2024_112903
crossref_primary_10_1016_j_foodcont_2024_110970
crossref_primary_10_1016_j_tifs_2023_104291
crossref_primary_10_1186_s13007_024_01137_y
crossref_primary_10_1093_jxb_erad230
crossref_primary_10_1016_j_postharvbio_2022_112216
Cites_doi 10.1016/j.postharvbio.2019.05.004
10.1093/jxb/ers114
10.1016/j.postharvbio.2006.08.008
10.1016/0925-5214(93)90061-7
10.1016/j.jfoodeng.2017.10.021
10.1007/s11947-010-0503-5
10.13031/2013.2712
10.1093/jxb/erq026
10.3390/plants7040078
10.1016/j.postharvbio.2019.111104
10.1016/S0022-3697(01)00159-7
10.1093/jxb/ery039
10.1201/9780203910092.ch2
10.1016/S0925-5214(03)00061-9
10.1016/j.jplph.2010.11.004
10.1016/j.postharvbio.2019.111014
10.1016/j.postharvbio.2012.12.014
10.1016/S0925-5214(01)00113-2
10.1042/bst0311095
10.1016/S0925-5214(03)00062-0
10.1016/j.postharvbio.2021.111464
10.1016/S0925-5214(00)00114-9
10.1016/j.jfoodeng.2015.07.003
10.1016/S0730-725X(03)00105-X
10.1016/j.mri.2015.02.014
10.21273/JASHS.123.1.115
10.1016/S0925-5214(02)00212-0
10.1016/j.jfoodeng.2021.110640
10.1016/S0925-5214(01)00188-0
10.1104/pp.120.1.293
10.1016/j.postharvbio.2006.04.002
10.1016/j.postharvbio.2016.12.009
10.1016/S0925-5214(96)00029-4
10.1016/j.foodchem.2016.08.009
10.1016/S1474-6670(17)44023-7
10.1016/S0925-5214(98)00058-1
10.1016/0925-5214(96)00064-6
10.1016/j.postharvbio.2015.12.019
10.1016/0925-5214(96)80995-1
10.1016/0925-5214(93)90060-G
10.21273/JASHS.115.5.793
10.1016/S1369-5266(03)00038-4
10.1016/j.postharvbio.2009.07.011
10.1016/S0925-5214(02)00198-9
10.1016/S0925-5214(02)00251-X
10.4067/S0718-58392015000300007
10.3389/fpls.2019.01384
10.1104/pp.87.3.571
10.1371/journal.pcbi.1000023
10.1093/jxb/ery031
10.1146/annurev.arplant.48.1.223
10.1016/j.postharvbio.2018.12.016
10.1016/S0925-5214(03)00099-1
10.1104/pp.110.169391
10.1093/jxb/erl198
10.1016/j.mri.2010.06.028
10.1590/0103-9016-2013-0429
10.1016/S0378-3812(00)00350-2
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Sep 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 2022
DBID AAYXX
CITATION
7QR
7SS
7T7
7U9
8FD
C1K
FR3
H94
P64
7S9
L.6
DOI 10.1016/j.postharvbio.2022.111985
DatabaseName CrossRef
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1873-2356
ExternalDocumentID 10_1016_j_postharvbio_2022_111985
S0925521422001533
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QR
7SS
7T7
7U9
8FD
C1K
EFKBS
FR3
H94
P64
7S9
L.6
ID FETCH-LOGICAL-c433t-eed3f769e08e964f83b137da28e5e3017c598b01b3ebd549f97a9dcf987ea7543
IEDL.DBID .~1
ISSN 0925-5214
IngestDate Fri Jul 11 00:45:45 EDT 2025
Wed Aug 13 07:34:03 EDT 2025
Tue Jul 01 04:29:54 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Fri Feb 23 02:39:44 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Controlled atmosphere storage
Oxygen
Carbon dioxide
Hypoxia
Respiratory quotient
X-ray CT
Respiration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-eed3f769e08e964f83b137da28e5e3017c598b01b3ebd549f97a9dcf987ea7543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://biblio.ugent.be/publication/8755292/file/8755293.pdf
PQID 2690252161
PQPubID 2045416
ParticipantIDs proquest_miscellaneous_2675571419
proquest_journals_2690252161
crossref_citationtrail_10_1016_j_postharvbio_2022_111985
crossref_primary_10_1016_j_postharvbio_2022_111985
elsevier_sciencedirect_doi_10_1016_j_postharvbio_2022_111985
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Postharvest biology and technology
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Hertog, Peppelenbos, Evelo, Tijskens (bib17) 1998; 14
Masschaele, Dierick, Loo, Van, Boone (bib35) 2013
Lammertyn, Scheerlinck, Verlinden, Schotsmans, Nicolaï (bib30) 2001; 23
Peppelenbos, Leven, Van (bib40) 1996; 7
Schouten, Prange, Verschoor, Lammers, Oosterhaven (bib49) 1998; 31
Ho, Verboven, Verlinden, Schenk, Nicolaï (bib23) 2013; 78
Gupta, Teja, Chai, Zhu (bib16) 2000; 170
Nugraha, Verboven, Janssen, Wang, Nicolaï (bib38) 2019; 150
Drew (bib11) 1997; 48
Kader, A., Saltveit, M., 2002. Respiration and Gas Exchange, in: Bartz, J. (Ed.), Postharvest Physiology and Pathology of Vegetables. CRC Press.
Bessemans, Verboven, Verlinden, Janssens, Hertog, Nicolaï (bib3) 2020; 162
Toro, Pinto (bib52) 2015; 75
.
Mditshwa, Fawole, Vries, van der Merwe, Crouch, Opara (bib36) 2017; 127
Lammertyn, Dresselaers, Hecke, Van, Jancso (bib34) 2003; 29
Rajapakse, Banks, Hewett, Cleland (bib44) 1990; 115
Kalnin, Kotomin, Maier (bib28) 2002; 63
Rawyler, Pavelic, Gianinazzi, Oberson, Braendle (bib45) 1999; 120
Beaudry (bib1) 1993; 3
Prange, DeLong, Leyte, Harrison (bib43) 2002; 24
Ho, Verboven, Verlinden, Nicolaï (bib21) 2010; 61
Xiao, Rogiers, Sadras, Tyerman (bib58) 2018; 69
Lammertyn, Scheerlinck, Jancso, Verlinden, Nicolaï (bib31) 2003; 30
Saquet, Streif, Bangerth (bib48) 2003; 30
Ho, Rogge, Verboven, Verlinden, Nicolaï (bib24) 2016; 176
Ho, Hertog, Verboven, Ambaw, Rogge, Verlinden, Nicolaï (bib25) 2018; 69
Yearsley, Banks, Ganesh, Cleland (bib59) 1996; 8
Gran, Beaudry (bib15) 1993; 3
Ho, Verlinden, Verboven, Vandewalle, Leuven, Computing, Leuven (bib19) 2006; 57
Peppelenbos, Tijskens, van ’t Leven, Wilkinson (bib41) 1996; 9
van Dongen, Gupta, Ramírez-Aguilar, Araújo, Nunes-Nesi, Fernie (bib53) 2011; 168
Saenmuang, Al-Haq, Samarakoon, Makino, Kawagoe, Oshita (bib47) 2012; 5
Lammertyn, Dresselaers, Van Hecke, Jancsók, Wevers, Nicolaï (bib33) 2003; 21
Ho, Verboven, Verlinden, Lammertyn, Vandewalle, Nicolaï (bib20) 2008; 4
Musse, De Guio, Quellec, Cambert, Challois, Davenel (bib37) 2010; 28
Ho, Verboven, Verlinden, Herremans, Wevers, Carmeliet, Nicolaï (bib22) 2011; 155
Schotsmans, Verlinden, Lammertyn, Nicolaı̈ (bib50) 2003; 29
Tanaka, Imamura, Tanaka, Uchino (bib51) 2018; 221
Franck, Lammertyn, Ho, Verboven, Verlinden, Nicolaï (bib13) 2007; 43
Wright, DeLong, Harrison, Gunawardena, Prange (bib57) 2010; 55
Both, Thewes, Brackmann, de Oliveira Anese, de Freitas Ferreira, Wagner (bib5) 2017; 215
Winisdorffer, Musse, Quellec, Devaux, Lahaye, Mariette (bib56) 2015; 33
Lammertyn, Scheerlinck, Jancso, Verlinden, Nicolaï (bib32) 2003; 30
Lammertyn, Aerts, Verlinden, Schotsmans, Nicolaı̈ (bib29) 2000; 20
Boeckx, Pols, Hertog, Nicolaï (bib4) 2019; 10
Chigwaya, Karuppanapandian, Schoeman, Viljoen, Crouch, Nugraha, Verboven, Nicolaï, Crouch (bib7) 2021; 174
Edward, Roberts, Atwell (bib12) 2012; 63
Brady, Romani (bib6) 1988; 87
Weber, Brackmann, Both, Pavanello, Anese, de, Thewes (bib55) 2015; 72
Geigenberger (bib14) 2003; 6
Janssen, Verboven, Nugraha, Wang, Boone, Josipovic, Nicolaï (bib26) 2020; 159
Perez, Beaudry (bib42) 1998; 123
Veltman, Lenthéric, Van der Plas, Peppelenbos (bib54) 2003; 28
Bessemans, Verboven, Verlinden, Nicolaï (bib2) 2016; 115
Cukrov, Zermiani, Brizzolara, Cestaro, Licausi, Luchinat, Santucci, Tenori, Van Veen, Zuccolo, Ruperti, Tonutti (bib9) 2016
Ho, Verlinden, Verboven, Nicola (bib18) 2006; 41
Nugraha, Verboven, Janssen, Hertog, Boone, Josipovic, Nicolaï (bib39) 2021; 306
Rich (bib46) 2003; 31
Cukrov (bib8) 2018; 7
Zhang, Bunn (bib60) 2000; 43
Delele, Bessemans, Gruyters, Rogge, Janssen, Verlinden, Smeets, Ramon, Verboven, Nicolai (bib10) 2019; 156
Chigwaya (10.1016/j.postharvbio.2022.111985_bib7) 2021; 174
Geigenberger (10.1016/j.postharvbio.2022.111985_bib14) 2003; 6
Bessemans (10.1016/j.postharvbio.2022.111985_bib3) 2020; 162
Yearsley (10.1016/j.postharvbio.2022.111985_bib59) 1996; 8
Peppelenbos (10.1016/j.postharvbio.2022.111985_bib40) 1996; 7
Wright (10.1016/j.postharvbio.2022.111985_bib57) 2010; 55
Schotsmans (10.1016/j.postharvbio.2022.111985_bib50) 2003; 29
Ho (10.1016/j.postharvbio.2022.111985_bib24) 2016; 176
Veltman (10.1016/j.postharvbio.2022.111985_bib54) 2003; 28
Cukrov (10.1016/j.postharvbio.2022.111985_bib9) 2016
Lammertyn (10.1016/j.postharvbio.2022.111985_bib31) 2003; 30
Ho (10.1016/j.postharvbio.2022.111985_bib25) 2018; 69
Gupta (10.1016/j.postharvbio.2022.111985_bib16) 2000; 170
Ho (10.1016/j.postharvbio.2022.111985_bib20) 2008; 4
Hertog (10.1016/j.postharvbio.2022.111985_bib17) 1998; 14
Ho (10.1016/j.postharvbio.2022.111985_bib23) 2013; 78
Mditshwa (10.1016/j.postharvbio.2022.111985_bib36) 2017; 127
Toro (10.1016/j.postharvbio.2022.111985_bib52) 2015; 75
Prange (10.1016/j.postharvbio.2022.111985_bib43) 2002; 24
Cukrov (10.1016/j.postharvbio.2022.111985_bib8) 2018; 7
Schouten (10.1016/j.postharvbio.2022.111985_bib49) 1998; 31
Rich (10.1016/j.postharvbio.2022.111985_bib46) 2003; 31
Boeckx (10.1016/j.postharvbio.2022.111985_bib4) 2019; 10
Brady (10.1016/j.postharvbio.2022.111985_bib6) 1988; 87
Lammertyn (10.1016/j.postharvbio.2022.111985_bib34) 2003; 29
Nugraha (10.1016/j.postharvbio.2022.111985_bib38) 2019; 150
Winisdorffer (10.1016/j.postharvbio.2022.111985_bib56) 2015; 33
Franck (10.1016/j.postharvbio.2022.111985_bib13) 2007; 43
Both (10.1016/j.postharvbio.2022.111985_bib5) 2017; 215
Zhang (10.1016/j.postharvbio.2022.111985_bib60) 2000; 43
10.1016/j.postharvbio.2022.111985_bib27
Ho (10.1016/j.postharvbio.2022.111985_bib21) 2010; 61
Nugraha (10.1016/j.postharvbio.2022.111985_bib39) 2021; 306
Perez (10.1016/j.postharvbio.2022.111985_bib42) 1998; 123
Saquet (10.1016/j.postharvbio.2022.111985_bib48) 2003; 30
Drew (10.1016/j.postharvbio.2022.111985_bib11) 1997; 48
Ho (10.1016/j.postharvbio.2022.111985_bib19) 2006; 57
Delele (10.1016/j.postharvbio.2022.111985_bib10) 2019; 156
Lammertyn (10.1016/j.postharvbio.2022.111985_bib29) 2000; 20
van Dongen (10.1016/j.postharvbio.2022.111985_bib53) 2011; 168
Peppelenbos (10.1016/j.postharvbio.2022.111985_bib41) 1996; 9
Weber (10.1016/j.postharvbio.2022.111985_bib55) 2015; 72
Rawyler (10.1016/j.postharvbio.2022.111985_bib45) 1999; 120
Ho (10.1016/j.postharvbio.2022.111985_bib22) 2011; 155
Rajapakse (10.1016/j.postharvbio.2022.111985_bib44) 1990; 115
Xiao (10.1016/j.postharvbio.2022.111985_bib58) 2018; 69
Janssen (10.1016/j.postharvbio.2022.111985_bib26) 2020; 159
Bessemans (10.1016/j.postharvbio.2022.111985_bib2) 2016; 115
Gran (10.1016/j.postharvbio.2022.111985_bib15) 1993; 3
Lammertyn (10.1016/j.postharvbio.2022.111985_bib33) 2003; 21
Kalnin (10.1016/j.postharvbio.2022.111985_bib28) 2002; 63
Edward (10.1016/j.postharvbio.2022.111985_bib12) 2012; 63
Musse (10.1016/j.postharvbio.2022.111985_bib37) 2010; 28
Tanaka (10.1016/j.postharvbio.2022.111985_bib51) 2018; 221
Lammertyn (10.1016/j.postharvbio.2022.111985_bib32) 2003; 30
Masschaele (10.1016/j.postharvbio.2022.111985_bib35) 2013
Beaudry (10.1016/j.postharvbio.2022.111985_bib1) 1993; 3
Ho (10.1016/j.postharvbio.2022.111985_bib18) 2006; 41
Saenmuang (10.1016/j.postharvbio.2022.111985_bib47) 2012; 5
Lammertyn (10.1016/j.postharvbio.2022.111985_bib30) 2001; 23
References_xml – volume: 7
  start-page: 78
  year: 2018
  ident: bib8
  article-title: Progress toward understanding the molecular basis of fruit response to hypoxia
  publication-title: Plants
– volume: 29
  start-page: 155
  year: 2003
  end-page: 166
  ident: bib50
  article-title: Simultaneous measurement of oxygen and carbon dioxide diffusivity in pear fruit tissue
  publication-title: Postharvest Biol. Technol.
– volume: 10
  year: 2019
  ident: bib4
  article-title: Regulation of the central carbon metabolism in apple fruit exposed to postharvest low-oxygen stress
  publication-title: Front. Plant Sci.
– volume: 31
  start-page: 25
  year: 1998
  end-page: 29
  ident: bib49
  article-title: Improvement of quality of Elstar Apples by dynamic control of ULO conditions
  publication-title: IFAC Proceedings
– volume: 168
  start-page: 1434
  year: 2011
  end-page: 1443
  ident: bib53
  article-title: Regulation of respiration in plants: a role for alternative metabolic pathways
  publication-title: J. Plant Physiol.
– volume: 156
  year: 2019
  ident: bib10
  article-title: Spatial distribution of gas concentrations and RQ in a controlled atmosphere storage container with pear fruit in very low oxygen conditions
  publication-title: Postharvest Biol. Technol.
– volume: 120
  start-page: 293
  year: 1999
  end-page: 300
  ident: bib45
  article-title: Membrane lipid integrity relies on a threshold of ATP production rate in potato cell cultures submitted to anoxia
  publication-title: Plant Physiol.
– volume: 221
  start-page: 151
  year: 2018
  end-page: 157
  ident: bib51
  article-title: Determination of thermal diffusivity of persimmon fl esh tissue using three-dimensional structure model based on X-ray computed tomography
  publication-title: J. Food Eng.
– volume: 23
  start-page: 93
  year: 2001
  end-page: 104
  ident: bib30
  article-title: Simultaneous determination of oxygen diffusivity and respiration in pear skin and tissue
  publication-title: Postharvest Biol. Technol.
– volume: 8
  start-page: 95
  year: 1996
  end-page: 109
  ident: bib59
  article-title: Determination of lower oxygen limits for apple fruit
  publication-title: Postharvest Biol. Technol.
– volume: 174
  year: 2021
  ident: bib7
  article-title: X-ray CT and porosity mapping to determine the effect of ‘Fuji’ apple morphological and microstructural properties on the incidence of CO
  publication-title: Postharvest Biol. Technol.
– volume: 306
  year: 2021
  ident: bib39
  article-title: Oxygen diffusivity mapping of fruit and vegetables based on X-ray CT
  publication-title: J. Food Eng.
– volume: 7
  start-page: 27
  year: 1996
  end-page: 40
  ident: bib40
  article-title: Evaluation of four types of inhibition for modelling the influence of carbon dioxide on oxygen consumption of fruits and vegetables
  publication-title: Postharvest Biol. Technol.
– volume: 20
  start-page: 25
  year: 2000
  end-page: 37
  ident: bib29
  article-title: Logistic regression analysis of factors influencing core breakdown in ‘Conference’ pears
  publication-title: Postharvest Biol. Technol.
– volume: 57
  start-page: 4215
  year: 2006
  end-page: 4224
  ident: bib19
  article-title: A permeation – diffusion – reaction model of gas transport in cellular tissue of plant materials
  publication-title: J. Exp. Bot.
– volume: 31
  start-page: 1095
  year: 2003
  end-page: 1105
  ident: bib46
  article-title: The molecular machinery of Keilin’s respiratory chain
  publication-title: Biochem. Soc. Trans.
– reference: Kader, A., Saltveit, M., 2002. Respiration and Gas Exchange, in: Bartz, J. (Ed.), Postharvest Physiology and Pathology of Vegetables. CRC Press. 〈
– reference: 〉.
– volume: 30
  start-page: 43
  year: 2003
  end-page: 55
  ident: bib32
  article-title: A respiration-diffusion model for ‘Conference’ pears II: simulations and relation to core breakdown
  publication-title: Postharvest Biol. Technol.
– volume: 150
  start-page: 80
  year: 2019
  end-page: 88
  ident: bib38
  article-title: Postharvest biology and technology non-destructive porosity mapping of fruit and vegetables using X-ray CT
  publication-title: Postharvest Biol. Technol.
– volume: 78
  start-page: 103
  year: 2013
  end-page: 112
  ident: bib23
  article-title: Controlled atmosphere storage may lead to local ATP deficiency in apple
  publication-title: Postharvest Biol. Technol.
– volume: 63
  start-page: 449
  year: 2002
  end-page: 456
  ident: bib28
  article-title: Calculations of the effective diffusion coefficient for inhomogeneous media
  publication-title: J. Phys. Chem. Solids
– volume: 5
  start-page: 1950
  year: 2012
  end-page: 1962
  ident: bib47
  article-title: Evaluation of models for spinach respiratory metabolism under low oxygen atmospheres
  publication-title: Food Bioprocess Technol.
– volume: 41
  start-page: 113
  year: 2006
  end-page: 120
  ident: bib18
  article-title: Gas diffusion properties at different positions in the pear
  publication-title: Postharvest Biol. Technol.
– volume: 28
  start-page: 1525
  year: 2010
  end-page: 1534
  ident: bib37
  article-title: Quantification of microporosity in fruit by MRI at various magnetic fields: comparison with X-ray microtomography
  publication-title: Magn. Reson. Imaging
– volume: 61
  start-page: 2071
  year: 2010
  end-page: 2081
  ident: bib21
  article-title: A model for gas transport in pear fruit at multiple scales
  publication-title: J. Exp. Bot.
– volume: 75
  start-page: 57
  year: 2015
  end-page: 70
  ident: bib52
  article-title: Plant respiration under low oxygen
  publication-title: Chil. J. Agric. Res.
– year: 2013
  ident: bib35
  article-title: HECTOR: A 240kV micro-CT setup optimized for research 012012
– volume: 14
  start-page: 335
  year: 1998
  end-page: 349
  ident: bib17
  article-title: A dynamic and generic model of gas exchange of respiring produce: the effects of oxygen, carbon dioxide and temperature
  publication-title: Postharvest Biol. Technol.
– volume: 43
  start-page: 1
  year: 2007
  end-page: 13
  ident: bib13
  article-title: Browning disorders in pear fruit
  publication-title: Postharvest Biol. Technol.
– volume: 9
  start-page: 283
  year: 1996
  end-page: 295
  ident: bib41
  article-title: Modelling oxidative and fermentative carbon dioxide production of fruits and vegetables
  publication-title: Postharvest Biol. Technol.
– volume: 24
  start-page: 201
  year: 2002
  end-page: 205
  ident: bib43
  article-title: Oxygen concentration affects chlorophyll fluorescence in chlorophyll-containing fruit
  publication-title: Postharvest Biol. Technol.
– volume: 69
  start-page: 2049
  year: 2018
  end-page: 2060
  ident: bib25
  article-title: Down-regulation of respiration in pear fruit depends on temperature
  publication-title: J. Exp. Bot.
– volume: 28
  start-page: 295
  year: 2003
  end-page: 302
  ident: bib54
  article-title: Internal browning in pear fruit (
  publication-title: Postharvest Biol. Technol.
– volume: 159
  year: 2020
  ident: bib26
  article-title: 3D pore structure analysis of intact ‘Braeburn’ apples using X-ray micro-CT
  publication-title: Postharvest Biol. Technol.
– volume: 29
  start-page: 19
  year: 2003
  end-page: 28
  ident: bib34
  article-title: Analysis of the time course of core breakdown in ‘Conference’ pears by means of MRI and X-ray CT
  publication-title: Postharvest Biol. Technol.
– volume: 72
  start-page: 28
  year: 2015
  end-page: 33
  ident: bib55
  article-title: Respiratory quotient: innovative method for monitoring ‘Royal Gala’ apple storage in a dynamic controlled atmosphere
  publication-title: Sci. Agric.
– volume: 176
  start-page: 77
  year: 2016
  end-page: 87
  ident: bib24
  article-title: Stochastic modelling for virtual engineering of controlled atmosphere storage of fruit
  publication-title: J. Food Eng.
– volume: 6
  start-page: 247
  year: 2003
  end-page: 256
  ident: bib14
  article-title: Response of plant metabolism to too little oxygen
  publication-title: Current Opinion in Plant Biology
– volume: 4
  start-page: 13
  year: 2008
  ident: bib20
  article-title: A continuum model for metabolic gas exchange in pear fruit
  publication-title: PLoS Comput. Biol.
– volume: 127
  start-page: 27
  year: 2017
  end-page: 34
  ident: bib36
  article-title: Minimum exposure period for dynamic controlled atmospheres to control superficial scald in ‘Granny Smith’ apples for long distance supply chains
  publication-title: Postharvest Biol. Technol.
– start-page: 7
  year: 2016
  ident: bib9
  article-title: Extreme hypoxic conditions induce selective molecular responses and metabolic reset in detached apple fruit
  publication-title: Front. Plant Sci.
– volume: 21
  start-page: 805
  year: 2003
  end-page: 815
  ident: bib33
  article-title: MRI and X-ray CT study of spatial distribution of core breakdown in ‘Conference’ pears
  publication-title: Magn. Reson. Imaging
– volume: 87
  start-page: 571
  year: 1988
  end-page: 576
  ident: bib6
  article-title: Respiration and protein synthesis in nongrowing cultured pear fruit cells in response to ethylene and modified atmospheres: a model system for fruits postharvest
  publication-title: Plant Physiol.
– volume: 3
  start-page: 249
  year: 1993
  end-page: 258
  ident: bib1
  article-title: Effect of carbon dioxide partial pressure on blueberry fruit respiration and respiratory quotient
  publication-title: Postharvest Biol. Technol.
– volume: 162
  year: 2020
  ident: bib3
  article-title: Apparent respiratory quotient observed in headspace of static respirometers underestimates cellular respiratory quotient of pear fruit
  publication-title: Postharvest Biol. Technol.
– volume: 123
  start-page: 115
  year: 1998
  end-page: 118
  ident: bib42
  article-title: Fractional surface coating modifies gas diffusion and ripening in bananas
  publication-title: J. Am. Soc. Hort. Sci.
– volume: 215
  start-page: 483
  year: 2017
  end-page: 492
  ident: bib5
  article-title: Effects of dynamic controlled atmosphere by respiratory quotient on some quality parameters and volatile profile of ‘Royal Gala’ apple after long-term storage
  publication-title: Food Chem.
– volume: 48
  start-page: 223
  year: 1997
  end-page: 250
  ident: bib11
  article-title: Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia
  publication-title: Annu. Rev. Plant. Physiol. Plant. Mol. Biol.
– volume: 55
  start-page: 21
  year: 2010
  end-page: 28
  ident: bib57
  article-title: The effect of temperature and other factors on chlorophyll a fluorescence and the lower oxygen limit in apples (
  publication-title: Postharvest Biol. Technol.
– volume: 115
  start-page: 793
  year: 1990
  end-page: 797
  ident: bib44
  article-title: Development of oxygen concentration gradients in flesh tissues of bulky plant organs
  publication-title: jashs
– volume: 170
  start-page: 183
  year: 2000
  end-page: 192
  ident: bib16
  article-title: Henry’s constants of n-alkanols (methanol through
  publication-title: Fluid Phase Equilibria
– volume: 63
  start-page: 4389
  year: 2012
  end-page: 4402
  ident: bib12
  article-title: Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis
  publication-title: J. Exp. Bot.
– volume: 155
  start-page: 1158
  year: 2011
  end-page: 1168
  ident: bib22
  article-title: A three-dimensional multiscale model for gas exchange in fruit
  publication-title: Plant Physiol.
– volume: 69
  start-page: 2071
  year: 2018
  end-page: 2083
  ident: bib58
  article-title: Hypoxia in grape berries: the role of seed respiration and lenticels on the berry pedicel and the possible link to cell death
  publication-title: J. Exp. Bot.
– volume: 115
  start-page: 91
  year: 2016
  end-page: 102
  ident: bib2
  article-title: A novel type of dynamic controlled atmosphere storage based on the respiratory quotient (RQ-DCA)
  publication-title: Postharvest Biol. Technol.
– volume: 3
  start-page: 259
  year: 1993
  end-page: 267
  ident: bib15
  article-title: Determination of the low oxygen limit for several commercial apple cultivars by respiratory quotient breakpoint
  publication-title: Postharvest Biol. Technol.
– volume: 43
  start-page: 359
  year: 2000
  end-page: 363
  ident: bib60
  article-title: Oxygen diffusivities of apple flesh and skin
  publication-title: Trans. ASAE
– volume: 30
  start-page: 29
  year: 2003
  end-page: 42
  ident: bib31
  article-title: A respiration-diffusion model for ‘Conference’ pears I: model development and validation
  publication-title: Postharvest Biol. Technol.
– volume: 33
  start-page: 671
  year: 2015
  end-page: 680
  ident: bib56
  article-title: MRI investigation of subcellular water compartmentalization and gas distribution in apples Parenchyma Seeds Vascular
  publication-title: Magn. Reson. Imaging
– volume: 30
  start-page: 123
  year: 2003
  end-page: 132
  ident: bib48
  article-title: Energy metabolism and membrane lipid alterations in relation to brown heart development in ‘Conference’ pears during delayed controlled atmosphere storage
  publication-title: Postharvest Biol. Technol.
– volume: 156
  year: 2019
  ident: 10.1016/j.postharvbio.2022.111985_bib10
  article-title: Spatial distribution of gas concentrations and RQ in a controlled atmosphere storage container with pear fruit in very low oxygen conditions
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2019.05.004
– volume: 63
  start-page: 4389
  year: 2012
  ident: 10.1016/j.postharvbio.2022.111985_bib12
  article-title: Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers114
– volume: 43
  start-page: 1
  year: 2007
  ident: 10.1016/j.postharvbio.2022.111985_bib13
  article-title: Browning disorders in pear fruit
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2006.08.008
– volume: 3
  start-page: 259
  year: 1993
  ident: 10.1016/j.postharvbio.2022.111985_bib15
  article-title: Determination of the low oxygen limit for several commercial apple cultivars by respiratory quotient breakpoint
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/0925-5214(93)90061-7
– volume: 221
  start-page: 151
  year: 2018
  ident: 10.1016/j.postharvbio.2022.111985_bib51
  article-title: Determination of thermal diffusivity of persimmon fl esh tissue using three-dimensional structure model based on X-ray computed tomography
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2017.10.021
– volume: 5
  start-page: 1950
  year: 2012
  ident: 10.1016/j.postharvbio.2022.111985_bib47
  article-title: Evaluation of models for spinach respiratory metabolism under low oxygen atmospheres
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-010-0503-5
– volume: 43
  start-page: 359
  year: 2000
  ident: 10.1016/j.postharvbio.2022.111985_bib60
  article-title: Oxygen diffusivities of apple flesh and skin
  publication-title: Trans. ASAE
  doi: 10.13031/2013.2712
– volume: 61
  start-page: 2071
  year: 2010
  ident: 10.1016/j.postharvbio.2022.111985_bib21
  article-title: A model for gas transport in pear fruit at multiple scales
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq026
– volume: 7
  start-page: 78
  year: 2018
  ident: 10.1016/j.postharvbio.2022.111985_bib8
  article-title: Progress toward understanding the molecular basis of fruit response to hypoxia
  publication-title: Plants
  doi: 10.3390/plants7040078
– volume: 162
  year: 2020
  ident: 10.1016/j.postharvbio.2022.111985_bib3
  article-title: Apparent respiratory quotient observed in headspace of static respirometers underestimates cellular respiratory quotient of pear fruit
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2019.111104
– volume: 63
  start-page: 449
  year: 2002
  ident: 10.1016/j.postharvbio.2022.111985_bib28
  article-title: Calculations of the effective diffusion coefficient for inhomogeneous media
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/S0022-3697(01)00159-7
– volume: 69
  start-page: 2071
  year: 2018
  ident: 10.1016/j.postharvbio.2022.111985_bib58
  article-title: Hypoxia in grape berries: the role of seed respiration and lenticels on the berry pedicel and the possible link to cell death
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery039
– ident: 10.1016/j.postharvbio.2022.111985_bib27
  doi: 10.1201/9780203910092.ch2
– volume: 30
  start-page: 29
  year: 2003
  ident: 10.1016/j.postharvbio.2022.111985_bib31
  article-title: A respiration-diffusion model for ‘Conference’ pears I: model development and validation
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(03)00061-9
– volume: 168
  start-page: 1434
  year: 2011
  ident: 10.1016/j.postharvbio.2022.111985_bib53
  article-title: Regulation of respiration in plants: a role for alternative metabolic pathways
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2010.11.004
– volume: 159
  year: 2020
  ident: 10.1016/j.postharvbio.2022.111985_bib26
  article-title: 3D pore structure analysis of intact ‘Braeburn’ apples using X-ray micro-CT
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2019.111014
– volume: 78
  start-page: 103
  year: 2013
  ident: 10.1016/j.postharvbio.2022.111985_bib23
  article-title: Controlled atmosphere storage may lead to local ATP deficiency in apple
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2012.12.014
– volume: 23
  start-page: 93
  year: 2001
  ident: 10.1016/j.postharvbio.2022.111985_bib30
  article-title: Simultaneous determination of oxygen diffusivity and respiration in pear skin and tissue
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(01)00113-2
– volume: 31
  start-page: 1095
  year: 2003
  ident: 10.1016/j.postharvbio.2022.111985_bib46
  article-title: The molecular machinery of Keilin’s respiratory chain
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/bst0311095
– volume: 30
  start-page: 43
  year: 2003
  ident: 10.1016/j.postharvbio.2022.111985_bib32
  article-title: A respiration-diffusion model for ‘Conference’ pears II: simulations and relation to core breakdown
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(03)00062-0
– volume: 174
  year: 2021
  ident: 10.1016/j.postharvbio.2022.111985_bib7
  article-title: X-ray CT and porosity mapping to determine the effect of ‘Fuji’ apple morphological and microstructural properties on the incidence of CO2 induced internal browning
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2021.111464
– volume: 20
  start-page: 25
  year: 2000
  ident: 10.1016/j.postharvbio.2022.111985_bib29
  article-title: Logistic regression analysis of factors influencing core breakdown in ‘Conference’ pears
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(00)00114-9
– volume: 176
  start-page: 77
  year: 2016
  ident: 10.1016/j.postharvbio.2022.111985_bib24
  article-title: Stochastic modelling for virtual engineering of controlled atmosphere storage of fruit
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2015.07.003
– volume: 21
  start-page: 805
  year: 2003
  ident: 10.1016/j.postharvbio.2022.111985_bib33
  article-title: MRI and X-ray CT study of spatial distribution of core breakdown in ‘Conference’ pears
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(03)00105-X
– volume: 33
  start-page: 671
  year: 2015
  ident: 10.1016/j.postharvbio.2022.111985_bib56
  article-title: MRI investigation of subcellular water compartmentalization and gas distribution in apples Parenchyma Seeds Vascular
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2015.02.014
– volume: 123
  start-page: 115
  year: 1998
  ident: 10.1016/j.postharvbio.2022.111985_bib42
  article-title: Fractional surface coating modifies gas diffusion and ripening in bananas
  publication-title: J. Am. Soc. Hort. Sci.
  doi: 10.21273/JASHS.123.1.115
– volume: 29
  start-page: 19
  year: 2003
  ident: 10.1016/j.postharvbio.2022.111985_bib34
  article-title: Analysis of the time course of core breakdown in ‘Conference’ pears by means of MRI and X-ray CT
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(02)00212-0
– volume: 306
  year: 2021
  ident: 10.1016/j.postharvbio.2022.111985_bib39
  article-title: Oxygen diffusivity mapping of fruit and vegetables based on X-ray CT
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2021.110640
– volume: 24
  start-page: 201
  year: 2002
  ident: 10.1016/j.postharvbio.2022.111985_bib43
  article-title: Oxygen concentration affects chlorophyll fluorescence in chlorophyll-containing fruit
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(01)00188-0
– year: 2013
  ident: 10.1016/j.postharvbio.2022.111985_bib35
– volume: 120
  start-page: 293
  year: 1999
  ident: 10.1016/j.postharvbio.2022.111985_bib45
  article-title: Membrane lipid integrity relies on a threshold of ATP production rate in potato cell cultures submitted to anoxia
  publication-title: Plant Physiol.
  doi: 10.1104/pp.120.1.293
– volume: 41
  start-page: 113
  year: 2006
  ident: 10.1016/j.postharvbio.2022.111985_bib18
  article-title: Gas diffusion properties at different positions in the pear
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2006.04.002
– volume: 127
  start-page: 27
  year: 2017
  ident: 10.1016/j.postharvbio.2022.111985_bib36
  article-title: Minimum exposure period for dynamic controlled atmospheres to control superficial scald in ‘Granny Smith’ apples for long distance supply chains
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2016.12.009
– volume: 9
  start-page: 283
  year: 1996
  ident: 10.1016/j.postharvbio.2022.111985_bib41
  article-title: Modelling oxidative and fermentative carbon dioxide production of fruits and vegetables
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(96)00029-4
– volume: 215
  start-page: 483
  year: 2017
  ident: 10.1016/j.postharvbio.2022.111985_bib5
  article-title: Effects of dynamic controlled atmosphere by respiratory quotient on some quality parameters and volatile profile of ‘Royal Gala’ apple after long-term storage
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2016.08.009
– volume: 31
  start-page: 25
  year: 1998
  ident: 10.1016/j.postharvbio.2022.111985_bib49
  article-title: Improvement of quality of Elstar Apples by dynamic control of ULO conditions
  publication-title: IFAC Proceedings
  doi: 10.1016/S1474-6670(17)44023-7
– volume: 14
  start-page: 335
  year: 1998
  ident: 10.1016/j.postharvbio.2022.111985_bib17
  article-title: A dynamic and generic model of gas exchange of respiring produce: the effects of oxygen, carbon dioxide and temperature
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(98)00058-1
– volume: 8
  start-page: 95
  year: 1996
  ident: 10.1016/j.postharvbio.2022.111985_bib59
  article-title: Determination of lower oxygen limits for apple fruit
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/0925-5214(96)00064-6
– volume: 115
  start-page: 91
  year: 2016
  ident: 10.1016/j.postharvbio.2022.111985_bib2
  article-title: A novel type of dynamic controlled atmosphere storage based on the respiratory quotient (RQ-DCA)
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2015.12.019
– volume: 7
  start-page: 27
  year: 1996
  ident: 10.1016/j.postharvbio.2022.111985_bib40
  article-title: Evaluation of four types of inhibition for modelling the influence of carbon dioxide on oxygen consumption of fruits and vegetables
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/0925-5214(96)80995-1
– volume: 3
  start-page: 249
  year: 1993
  ident: 10.1016/j.postharvbio.2022.111985_bib1
  article-title: Effect of carbon dioxide partial pressure on blueberry fruit respiration and respiratory quotient
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/0925-5214(93)90060-G
– start-page: 7
  year: 2016
  ident: 10.1016/j.postharvbio.2022.111985_bib9
  article-title: Extreme hypoxic conditions induce selective molecular responses and metabolic reset in detached apple fruit
  publication-title: Front. Plant Sci.
– volume: 115
  start-page: 793
  year: 1990
  ident: 10.1016/j.postharvbio.2022.111985_bib44
  article-title: Development of oxygen concentration gradients in flesh tissues of bulky plant organs
  publication-title: jashs
  doi: 10.21273/JASHS.115.5.793
– volume: 6
  start-page: 247
  year: 2003
  ident: 10.1016/j.postharvbio.2022.111985_bib14
  article-title: Response of plant metabolism to too little oxygen
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/S1369-5266(03)00038-4
– volume: 55
  start-page: 21
  year: 2010
  ident: 10.1016/j.postharvbio.2022.111985_bib57
  article-title: The effect of temperature and other factors on chlorophyll a fluorescence and the lower oxygen limit in apples (Malus domestica)
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2009.07.011
– volume: 28
  start-page: 295
  year: 2003
  ident: 10.1016/j.postharvbio.2022.111985_bib54
  article-title: Internal browning in pear fruit (Pyrus communis L. cv Conference) may be a result of a limited availability of energy and antioxidants
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(02)00198-9
– volume: 29
  start-page: 155
  year: 2003
  ident: 10.1016/j.postharvbio.2022.111985_bib50
  article-title: Simultaneous measurement of oxygen and carbon dioxide diffusivity in pear fruit tissue
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(02)00251-X
– volume: 75
  start-page: 57
  year: 2015
  ident: 10.1016/j.postharvbio.2022.111985_bib52
  article-title: Plant respiration under low oxygen
  publication-title: Chil. J. Agric. Res.
  doi: 10.4067/S0718-58392015000300007
– volume: 10
  year: 2019
  ident: 10.1016/j.postharvbio.2022.111985_bib4
  article-title: Regulation of the central carbon metabolism in apple fruit exposed to postharvest low-oxygen stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01384
– volume: 87
  start-page: 571
  year: 1988
  ident: 10.1016/j.postharvbio.2022.111985_bib6
  article-title: Respiration and protein synthesis in nongrowing cultured pear fruit cells in response to ethylene and modified atmospheres: a model system for fruits postharvest
  publication-title: Plant Physiol.
  doi: 10.1104/pp.87.3.571
– volume: 4
  start-page: 13
  year: 2008
  ident: 10.1016/j.postharvbio.2022.111985_bib20
  article-title: A continuum model for metabolic gas exchange in pear fruit
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000023
– volume: 69
  start-page: 2049
  year: 2018
  ident: 10.1016/j.postharvbio.2022.111985_bib25
  article-title: Down-regulation of respiration in pear fruit depends on temperature
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery031
– volume: 48
  start-page: 223
  year: 1997
  ident: 10.1016/j.postharvbio.2022.111985_bib11
  article-title: Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia
  publication-title: Annu. Rev. Plant. Physiol. Plant. Mol. Biol.
  doi: 10.1146/annurev.arplant.48.1.223
– volume: 150
  start-page: 80
  year: 2019
  ident: 10.1016/j.postharvbio.2022.111985_bib38
  article-title: Postharvest biology and technology non-destructive porosity mapping of fruit and vegetables using X-ray CT
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2018.12.016
– volume: 30
  start-page: 123
  year: 2003
  ident: 10.1016/j.postharvbio.2022.111985_bib48
  article-title: Energy metabolism and membrane lipid alterations in relation to brown heart development in ‘Conference’ pears during delayed controlled atmosphere storage
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(03)00099-1
– volume: 155
  start-page: 1158
  year: 2011
  ident: 10.1016/j.postharvbio.2022.111985_bib22
  article-title: A three-dimensional multiscale model for gas exchange in fruit
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.169391
– volume: 57
  start-page: 4215
  year: 2006
  ident: 10.1016/j.postharvbio.2022.111985_bib19
  article-title: A permeation – diffusion – reaction model of gas transport in cellular tissue of plant materials
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erl198
– volume: 28
  start-page: 1525
  year: 2010
  ident: 10.1016/j.postharvbio.2022.111985_bib37
  article-title: Quantification of microporosity in fruit by MRI at various magnetic fields: comparison with X-ray microtomography
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2010.06.028
– volume: 72
  start-page: 28
  year: 2015
  ident: 10.1016/j.postharvbio.2022.111985_bib55
  article-title: Respiratory quotient: innovative method for monitoring ‘Royal Gala’ apple storage in a dynamic controlled atmosphere
  publication-title: Sci. Agric.
  doi: 10.1590/0103-9016-2013-0429
– volume: 170
  start-page: 183
  year: 2000
  ident: 10.1016/j.postharvbio.2022.111985_bib16
  article-title: Henry’s constants of n-alkanols (methanol through n-hexanol) in water at temperatures between 40 °C and 90 °C
  publication-title: Fluid Phase Equilibria
  doi: 10.1016/S0378-3812(00)00350-2
SSID ssj0005558
Score 2.4343264
Snippet Internal gas gradients in pear fruit during controlled atmosphere storage depend on the effective gas diffusivity of the tissue. The diffusivity varies over...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111985
SubjectTerms Browning
Carbon dioxide
Computed tomography
Controlled atmosphere storage
Diffusivity
Energy balance
Fermentation
Fruits
Gas exchange
Heterogeneity
Heterogeneous structure
Hypoxia
microstructure
Oxygen
Pears
Porosity
Quotients
Respiration
Respiratory quotient
Tissues
X-ray CT
Title Gas exchange model using heterogeneous diffusivity to study internal browning in ‘Conference’ pear
URI https://dx.doi.org/10.1016/j.postharvbio.2022.111985
https://www.proquest.com/docview/2690252161
https://www.proquest.com/docview/2675571419
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LahsxcAgJlOZQ2qalblOjQK4b2ytpJUEvJiR1a5pD0pDcxGotJRuMbext6an4M5rfy5dkZh-OW3oI5LRodwaE5r2aB8C-H6FqlDqJOFcqElQmY1zgUexk1g0h06Ks4_52kgzOxddLebkBh00tDKVV1rq_0umltq7fdOrT7MzyvHPWNegOU8cwSgtCr4Uq2IUiLj_4vZbmIcsZnQQcEfQz2HvI8ZpNF8V1Ov_pcqoDjGNSIIbGKv_fRv2jrUsTdPwSXtS-I-tX23sFG37yGrb7V_O6f4bH1Vp_wR0In9MF87-q4l5WDr1hlOh-xa4pC2aKzOMx8mc0JQXf0xgJVkxZ2XKW5dW_wjFzFKkTUj5hd8s_DzWCd8tbNkNJeQPnx0ffDwdRPVghygTnRYR2kQeVGN_V3iQiaO56XI3SWHvpUeJVJo123Z7j3o0wgAxGpWaUBaOVT5UU_C1sTqYT_w6YwhPD4NyooKVAvY-EloojkE-NUCptgW6O0mZ113EafjG2TXrZjV2jgiUq2IoKLYhXqLOq9cZjkD419LJ_8ZFFE_EY9N2GxrYW5oWNE7qLjdE3bsHe6jOKId2tpCWhEEZJqXqiZ94_bQcf4DmtqjS2Xdgs5j_8R_R7CtcuGbsNW_0vw8EJPYenF8N7lVMJNQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB61QYL2gHiqKQFcieuSZG2vbYlLFRECpL3QSr1Z642dLqqSKNlWnFB-Bvy9_hJm9tEGxKFSj2vPSJbH8_B6Zj6Ad36CplHqJOJcqUhQmYxxgUexk1kvhEyLso776DgZnYovZ_JsCwZNLQylVda2v7LppbWuR7r1bnYXed791jMYDlPHMEoLwqhlGx4IVF-CMXj_cyPPQ5YgnUQdEflDOLhN8lrMV8V5urxyORUCxjFZEEO4yv93Uv-Y69IHDZ_A4zp4ZIfV-p7Clp89g93D6bJuoOHxa6PB4HMIn9IV8z-q6l5Wot4wynSfsnNKg5nj6fF49WcEk4LjhCPBijkre86yvPpZeMEcXdWJKZ-x6_Wv2yLB6_VvtkBVeQGnw48ng1FUIytEmeC8iNAx8qAS43vam0QEzV2fq0kaay89qrzKpNGu13fcuwneIINRqZlkwWjlUyUFfwmt2Xzm94Ap3DG8nRsVtBRo-FHSUnEk8qkRSqVt0M1W2qxuO07oFxe2yS_7bjekYEkKtpJCG-Ib1kXVe-MuTB8aedm_DpJFH3EX9k4jY1tr88rGCT3Gxhgct-HgZhr1kB5X0lJQSKOkVH3RN_v3W8FbeDQ6ORrb8efjr69gh2aqnLYOtIrlpX-NQVDh3pSH_A88jwkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas+exchange+model+using+heterogeneous+diffusivity+to+study+internal+browning+in+%E2%80%98Conference%E2%80%99+pear&rft.jtitle=Postharvest+biology+and+technology&rft.au=Nugraha%2C+Bayu&rft.au=Verboven%2C+Pieter&rft.au=Verlinden%2C+Bert+E&rft.au=Verreydt%2C+Celine&rft.date=2022-09-01&rft.issn=0925-5214&rft.volume=191+p.111985-&rft_id=info:doi/10.1016%2Fj.postharvbio.2022.111985&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5214&client=summon