Heat transfer analyses of porous media receiver with multi-dish collector by coupling MCRT and FVM method

•MCRT and FVM coupling method is used to solve problems of porous media receiver.•The LTNE model with concentrated heat flux boundary is used for energy equations.•MCRT method is used to obtain the heat flux distribution of multi-dishes collector.•FLUENT with UDFs is used to solve the fluid and soli...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 93; pp. 158 - 168
Main Authors Wang, Fuqiang, Shuai, Yong, Tan, Heping, Zhang, Xiaofeng, Mao, Qianjun
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.07.2013
Elsevier
Pergamon Press Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •MCRT and FVM coupling method is used to solve problems of porous media receiver.•The LTNE model with concentrated heat flux boundary is used for energy equations.•MCRT method is used to obtain the heat flux distribution of multi-dishes collector.•FLUENT with UDFs is used to solve the fluid and solid phase heat transfer problems. In this paper, Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is adopted to solve the radiation, conduction and convection coupled heat transfer problems of porous media receiver with multi-dish collector. The MCRT method is used to obtain the concentrated heat flux distribution on the fluid inlet surface of porous media receiver. The local thermal non-equilibrium (LTNE) model with concentrated solar irradiation on the fluid inlet surface is used for energy equations. FVM software FLUENT with User Defined Functions (UDFs) is used to solve the fluid phase and solid phase heat transfer problems. The effects of solar irradiance, air inlet velocity, average particle diameter, receiver radius and air properties on the temperature distribution are investigated.
AbstractList In this paper, Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is adopted to solve the radiation, conduction and convection coupled heat transfer problems of porous media receiver with multi-dish collector. The MCRT method is used to obtain the concentrated heat flux distribution on the fluid inlet surface of porous media receiver. The local thermal non-equilibrium (LTNE) model with concentrated solar irradiation on the fluid inlet surface is used for energy equations. FVM software FLUENT with User Defined Functions (UDFs) is used to solve the fluid phase and solid phase heat transfer problems. The effects of solar irradiance, air inlet velocity, average particle diameter, receiver radius and air properties on the temperature distribution are investigated.
•MCRT and FVM coupling method is used to solve problems of porous media receiver.•The LTNE model with concentrated heat flux boundary is used for energy equations.•MCRT method is used to obtain the heat flux distribution of multi-dishes collector.•FLUENT with UDFs is used to solve the fluid and solid phase heat transfer problems. In this paper, Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is adopted to solve the radiation, conduction and convection coupled heat transfer problems of porous media receiver with multi-dish collector. The MCRT method is used to obtain the concentrated heat flux distribution on the fluid inlet surface of porous media receiver. The local thermal non-equilibrium (LTNE) model with concentrated solar irradiation on the fluid inlet surface is used for energy equations. FVM software FLUENT with User Defined Functions (UDFs) is used to solve the fluid phase and solid phase heat transfer problems. The effects of solar irradiance, air inlet velocity, average particle diameter, receiver radius and air properties on the temperature distribution are investigated.
In this paper, Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is adopted to solve the radiation, conduction and convection coupled heat transfer problems of porous media receiver with multi-dish collector. The MCRT method is used to obtain the concentrated heat flux distribution on the fluid inlet surface of porous media receiver. The local thermal non-equilibrium (LTNE) model with concentrated solar irradiation on the fluid inlet surface is used for energy equations. FVM software FLUENT with User Defined Functions (UDFs) is used to solve the fluid phase and solid phase heat transfer problems. The effects of solar irradiance, air inlet velocity, average particle diameter, receiver radius and air properties on the temperature distribution are investigated. [PUBLICATION ABSTRACT]
Author Mao, Qianjun
Wang, Fuqiang
Tan, Heping
Shuai, Yong
Zhang, Xiaofeng
Author_xml – sequence: 1
  givenname: Fuqiang
  surname: Wang
  fullname: Wang, Fuqiang
  email: W_fuqiang@yahoo.com.cn
  organization: College of Pipeline and Civil Engineering, China University of Petroleum (Huadong), 66, West Changjiang Street, Qingdao 266580, PR China
– sequence: 2
  givenname: Yong
  surname: Shuai
  fullname: Shuai, Yong
  email: Shuaiyong@hit.edu.cn
  organization: School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001, PR China
– sequence: 3
  givenname: Heping
  surname: Tan
  fullname: Tan, Heping
  organization: School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001, PR China
– sequence: 4
  givenname: Xiaofeng
  surname: Zhang
  fullname: Zhang, Xiaofeng
  organization: School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001, PR China
– sequence: 5
  givenname: Qianjun
  surname: Mao
  fullname: Mao, Qianjun
  organization: School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27411324$$DView record in Pascal Francis
BookMark eNqFkV1rFDEUQINUcFv9CUJABF9mvPmYTOZJZLFWaBGkim8hm7njZslO1iRT2X9vyi4--NKHEAInJ-SeS3IxxxkJec2gZcDU-12bY8AZU8uBiRZkCyCfkRWTPWsY7_oLsgIQuoGB_3xBLnPeAbCe6X5F_A3aQkuyc54wUTvbcMyYaZzoIaa4ZLrH0Vua0KF_qMQfX7Z0v4Tim9HnLXUxBHQlJro51sNyCH7-Re_W3-6rbKTXP-6qoWzj-JI8n2zI-Oq8X5Hv15_u1zfN7dfPX9YfbxsnhSgNohqF7QQoDhtkk1AS2CiGjdZcaFaXYDj0Vo1S9egGZdVGaodSaz110okr8u7kPaT4e8FczN5nhyHYGet_DOugE3KQAzyNSiW7jnE-VPTNf-guLqlOq1JCdbzXgstKdSfKpZhzwskckt_bdDQMzGMrszPnVuaxlQFpaqt67-3ZbrOzYao5nM__LvNeMnbyfzhxWAf44KslO4-zq4lqoGLG6J946S-NNqz5
CODEN SRENA4
CitedBy_id crossref_primary_10_1016_j_enconman_2014_03_083
crossref_primary_10_1016_j_cherd_2023_04_008
crossref_primary_10_1016_j_enconman_2016_01_074
crossref_primary_10_1016_j_enconman_2014_11_004
crossref_primary_10_1016_j_ijhydene_2016_01_083
crossref_primary_10_1016_j_applthermaleng_2015_08_090
crossref_primary_10_1016_j_ijthermalsci_2022_107510
crossref_primary_10_1061__ASCE_EY_1943_7897_0000448
crossref_primary_10_1016_j_renene_2014_08_016
crossref_primary_10_1016_j_apenergy_2015_01_135
crossref_primary_10_3390_en14217053
crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_136
crossref_primary_10_1016_j_enconman_2015_08_028
crossref_primary_10_1063_1_5142805
crossref_primary_10_1016_j_solener_2014_07_016
crossref_primary_10_1016_j_energy_2017_08_062
crossref_primary_10_1016_j_solener_2022_09_006
crossref_primary_10_1016_j_proeng_2016_08_370
crossref_primary_10_1088_0957_0233_27_7_074002
crossref_primary_10_1016_j_applthermaleng_2023_120603
crossref_primary_10_1007_s40430_020_2195_8
crossref_primary_10_1016_j_renene_2024_120370
crossref_primary_10_1007_s11431_020_1637_3
crossref_primary_10_1115_1_4052080
crossref_primary_10_1016_j_renene_2021_10_077
crossref_primary_10_1016_j_solener_2014_06_021
crossref_primary_10_1016_j_solener_2016_06_066
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_120
crossref_primary_10_1007_s11708_017_0506_2
crossref_primary_10_1016_j_rser_2017_05_174
crossref_primary_10_1016_j_solmat_2020_110558
crossref_primary_10_1016_j_seta_2021_101721
crossref_primary_10_1016_j_renene_2014_11_075
crossref_primary_10_1016_j_applthermaleng_2018_12_006
crossref_primary_10_1080_10407790_2023_2216873
crossref_primary_10_1016_j_jqsrt_2016_11_025
crossref_primary_10_1364_AO_54_009863
crossref_primary_10_1016_j_rser_2019_03_059
crossref_primary_10_1016_j_apenergy_2022_119297
crossref_primary_10_1016_j_ijthermalsci_2020_106694
crossref_primary_10_1016_j_solener_2015_10_054
crossref_primary_10_1016_j_apenergy_2015_11_084
crossref_primary_10_1016_j_apenergy_2020_115343
crossref_primary_10_1016_j_enconman_2017_01_018
crossref_primary_10_1016_j_ijheatmasstransfer_2014_06_035
crossref_primary_10_1007_s11431_020_1580_2
crossref_primary_10_1016_j_enconman_2014_12_065
crossref_primary_10_1080_15567036_2020_1861134
crossref_primary_10_1364_OE_23_024274
crossref_primary_10_1016_j_enconman_2014_03_068
crossref_primary_10_1016_j_egypro_2014_07_297
crossref_primary_10_1016_j_applthermaleng_2022_118331
crossref_primary_10_1016_j_rser_2021_110785
crossref_primary_10_1016_j_ijthermalsci_2022_107971
crossref_primary_10_1155_2021_4517923
crossref_primary_10_1016_j_enconman_2014_08_003
crossref_primary_10_1016_j_ces_2018_09_045
crossref_primary_10_1007_s13369_023_08195_9
crossref_primary_10_1016_j_renene_2018_12_001
crossref_primary_10_1364_OE_23_0A1010
crossref_primary_10_1016_j_icheatmasstransfer_2016_06_012
crossref_primary_10_1016_j_ijhydene_2022_08_079
crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_089
crossref_primary_10_1016_j_enconman_2015_06_049
crossref_primary_10_1016_j_renene_2018_01_117
crossref_primary_10_1016_j_enconman_2015_07_030
crossref_primary_10_1016_j_renene_2019_05_112
crossref_primary_10_1016_j_energy_2016_08_013
crossref_primary_10_1016_j_renene_2016_05_065
crossref_primary_10_3390_app12052347
crossref_primary_10_1016_j_ijhydene_2013_10_132
crossref_primary_10_3390_su15139918
crossref_primary_10_1016_j_solener_2018_01_032
crossref_primary_10_1016_j_tsep_2020_100719
crossref_primary_10_1016_j_applthermaleng_2021_116604
crossref_primary_10_1016_j_solener_2015_10_031
Cites_doi 10.1016/j.solener.2012.12.017
10.1016/0017-9310(94)90219-4
10.1016/j.solener.2011.06.030
10.1016/j.solener.2005.11.006
10.1016/j.renene.2010.09.017
10.1016/j.solener.2010.07.005
10.1016/j.apenergy.2003.07.003
10.1016/j.ijthermalsci.2011.07.008
10.1016/S0017-9310(97)00146-4
10.1016/S1290-0729(01)01305-9
10.1016/S0038-092X(97)00007-8
10.1016/j.solener.2012.02.039
10.1126/science.1197834
10.1016/j.applthermaleng.2011.06.022
10.1016/j.renene.2010.12.027
10.1016/j.expthermflusci.2011.12.001
10.1016/S0142-727X(00)00066-7
10.1016/j.solmat.2004.01.039
10.1016/j.solener.2013.01.017
10.1016/j.renene.2010.07.017
10.1016/j.ijhydene.2008.11.098
10.1016/j.ijhydene.2011.07.138
10.1016/j.applthermaleng.2012.08.045
10.1016/j.apenergy.2012.07.048
10.1016/j.solmat.2006.10.021
10.1115/1.521468
10.1016/j.ijheatmasstransfer.2011.06.018
10.1016/j.solmat.2011.05.020
10.1016/j.apenergy.2012.09.056
10.1016/j.ijthermalsci.2010.08.010
10.1016/S0360-5442(03)00188-9
10.1080/10407789508913724
10.1016/j.solener.2007.06.005
10.1016/j.matdes.2011.07.048
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright Pergamon Press Inc. Jul 2013
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright Pergamon Press Inc. Jul 2013
DBID IQODW
AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
7TG
KL.
DOI 10.1016/j.solener.2013.04.004
DatabaseName Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Meteorological & Geoastrophysical Abstracts

Meteorological & Geoastrophysical Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1471-1257
Editor Pitchumani, R
Editor_xml – fullname: Pitchumani, R
EndPage 168
ExternalDocumentID 2989464491
10_1016_j_solener_2013_04_004
27411324
S0038092X13001370
Genre Feature
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~KM
~S-
08R
8W4
AALMO
ABFLS
ABPIF
ABPTK
ADALY
IPNFZ
IQODW
PQEST
TAF
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
7TG
KL.
ID FETCH-LOGICAL-c433t-ee6d3a530620be1f36401d39b88238123831e97a6d467ec96a6b48ce4888f54c3
IEDL.DBID AIKHN
ISSN 0038-092X
IngestDate Fri Oct 25 00:32:17 EDT 2024
Fri Oct 25 00:54:58 EDT 2024
Thu Oct 10 17:44:54 EDT 2024
Thu Sep 26 19:22:23 EDT 2024
Thu Nov 24 18:27:07 EST 2022
Fri Feb 23 02:18:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Porous media
Receiver
Monte Carlo
Finite Volume Method
Multi-dish collector
Temperature distribution
Monte Carlo method
Heat flow
Finite volume method
Heat distribution
Irradiance
Thermal equilibrium
Porous material
Convection
Heat flux
Energy equation
Non equilibrium conditions
Collector
Ray tracing
Numerical simulation
Software
Solid phase
Solar radiation
Heat transfer
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-ee6d3a530620be1f36401d39b88238123831e97a6d467ec96a6b48ce4888f54c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1365278324
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1505349490
proquest_miscellaneous_1464551229
proquest_journals_1365278324
crossref_primary_10_1016_j_solener_2013_04_004
pascalfrancis_primary_27411324
elsevier_sciencedirect_doi_10_1016_j_solener_2013_04_004
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: New York
PublicationTitle Solar energy
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Pergamon Press Inc
References Jiang, Ren (b0115) 2001; 22
Wang, Bai, Jian, Xu, Wang (b0185) 2012; 38
Fend, Pitz-Paal, Reuttera, Bauer, Hoffschmidt (b0105) 2004; 84
Wang, Shuai, Yuan, Yang, Tan (b0180) 2010; 84
Vafai (b0170) 2005
Wang, Lin, Liu, Tan, Shuai (b0195) 2013; 90
Wu, Caliot, Bai, Flamant, Wang (b0200) 2011; 85
Cheng, He, Cui, Xu, Tao (b0065) 2012; 86
Manzolini, Giostri, Saccilotto (b0135) 2011; 36
Nithyanandam, Pitchumani (b0145) 2011; 54
Wang, Shuai, Yuan, Liu (b0190) 2012; 33
Pitz-Paal, Hoffschmidt, Böhmer, Becker (b0155) 1997; 60
Ernst, Steinfeld, Pratsinis (b0090) 2009; 34
He, Xiao, Cheng, Tao (b0110) 2011; 36
Villafán-Vidales, Abanades, Caliot, Romero-Paredes (b0175) 2011; 31
Amiri, Vafai (b0025) 1994; 37
Tao, He, Cui, Lin (b0165) 2013; 90
Xu, Song, Chen, Zhen (b0205) 2011; 36
Chueh, Falter, Abbott, Scipio, Furler, Haile, Steinfeld (b0080) 2010; 330
Becker, Fend, Hoffschmidt, Pitz-Paal, Reutter, Stamatov, Steven, Trimis (b0045) 2006; 80
Alkam, Nimr (b0020) 1998; 41
Amiri, Vafai, Kuzay (b0030) 1995; 27
Lu, Zhao, Guo (b0125) 2011; 36
Nithyanandam, Pitchumani (b0150) 2013; 103
Shuai, Xia, Tan (b0160) 2008; 82
Liu, Fan, Huang (b0120) 2007
Chamkha, Camille, Khanafer (b0055) 2002; 41
Cheng, He, Cui (b0075) 2013; 101
Ansys Inc., 2008. Ansys Fluent Tutorial Guide of Ansys 12.0 software package.
Fend (b0095) 2010; 40
Beckera, Fenda, Hoffschmidt, Pitz-Paala, Reuttera, Stamatovc, Stevenc, Trimisc (b0050) 2006; 80
David, Ruxandra, Pieter (b0085) 2011; 95
Modest (b0140) 2003
Alazmi, Vafai (b0010) 2000; 122
Alessandro, Giovanni, Pekka (b0015) 2011; 68
Agrafiotis, Mavroidis, Konstandopoulos, Hoffschmidt, Stobbec, Romero, Fernandez-Quero (b0005) 2007; 91
Chen, Liu (b0060) 2004; 78
Cheng, He, Cui (b0070) 2013; 1
Fend, Hoffschmidt, Pitz-Paal, Reuttera, Rietbrock (b0100) 2004; 29
Bai (b0040) 2010; 49
Mahmoudi, Maerefat (b0130) 2011; 50
Lu (10.1016/j.solener.2013.04.004_b0125) 2011; 36
Liu (10.1016/j.solener.2013.04.004_b0120) 2007
Xu (10.1016/j.solener.2013.04.004_b0205) 2011; 36
Cheng (10.1016/j.solener.2013.04.004_b0075) 2013; 101
Alkam (10.1016/j.solener.2013.04.004_b0020) 1998; 41
Beckera (10.1016/j.solener.2013.04.004_b0050) 2006; 80
Chen (10.1016/j.solener.2013.04.004_b0060) 2004; 78
Alessandro (10.1016/j.solener.2013.04.004_b0015) 2011; 68
Fend (10.1016/j.solener.2013.04.004_b0105) 2004; 84
Vafai (10.1016/j.solener.2013.04.004_b0170) 2005
Agrafiotis (10.1016/j.solener.2013.04.004_b0005) 2007; 91
Modest (10.1016/j.solener.2013.04.004_b0140) 2003
Alazmi (10.1016/j.solener.2013.04.004_b0010) 2000; 122
Amiri (10.1016/j.solener.2013.04.004_b0030) 1995; 27
Chamkha (10.1016/j.solener.2013.04.004_b0055) 2002; 41
Chueh (10.1016/j.solener.2013.04.004_b0080) 2010; 330
David (10.1016/j.solener.2013.04.004_b0085) 2011; 95
Amiri (10.1016/j.solener.2013.04.004_b0025) 1994; 37
Nithyanandam (10.1016/j.solener.2013.04.004_b0145) 2011; 54
Becker (10.1016/j.solener.2013.04.004_b0045) 2006; 80
Bai (10.1016/j.solener.2013.04.004_b0040) 2010; 49
Fend (10.1016/j.solener.2013.04.004_b0095) 2010; 40
Nithyanandam (10.1016/j.solener.2013.04.004_b0150) 2013; 103
Ernst (10.1016/j.solener.2013.04.004_b0090) 2009; 34
He (10.1016/j.solener.2013.04.004_b0110) 2011; 36
Cheng (10.1016/j.solener.2013.04.004_b0065) 2012; 86
Mahmoudi (10.1016/j.solener.2013.04.004_b0130) 2011; 50
Wang (10.1016/j.solener.2013.04.004_b0195) 2013; 90
Manzolini (10.1016/j.solener.2013.04.004_b0135) 2011; 36
10.1016/j.solener.2013.04.004_b0035
Tao (10.1016/j.solener.2013.04.004_b0165) 2013; 90
Cheng (10.1016/j.solener.2013.04.004_b0070) 2013; 1
Shuai (10.1016/j.solener.2013.04.004_b0160) 2008; 82
Wang (10.1016/j.solener.2013.04.004_b0190) 2012; 33
Jiang (10.1016/j.solener.2013.04.004_b0115) 2001; 22
Wu (10.1016/j.solener.2013.04.004_b0200) 2011; 85
Fend (10.1016/j.solener.2013.04.004_b0100) 2004; 29
Villafán-Vidales (10.1016/j.solener.2013.04.004_b0175) 2011; 31
Pitz-Paal (10.1016/j.solener.2013.04.004_b0155) 1997; 60
Wang (10.1016/j.solener.2013.04.004_b0185) 2012; 38
Wang (10.1016/j.solener.2013.04.004_b0180) 2010; 84
References_xml – volume: 82
  start-page: 13
  year: 2008
  end-page: 21
  ident: b0160
  article-title: Radiation performance of dish solar concentrator/cavity receiver systems
  publication-title: Solar Energy
  contributor:
    fullname: Tan
– year: 2005
  ident: b0170
  article-title: Handbook of Porous Media
  contributor:
    fullname: Vafai
– volume: 91
  start-page: 474
  year: 2007
  end-page: 488
  ident: b0005
  article-title: Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation
  publication-title: Solar Energy Materials and Solar Cells
  contributor:
    fullname: Fernandez-Quero
– volume: 27
  start-page: 651
  year: 1995
  end-page: 664
  ident: b0030
  article-title: Effects of boundary conditions on non-darcian heat transfer through porous media and experimental comparisons
  publication-title: Numerical Heat Transfer A
  contributor:
    fullname: Kuzay
– volume: 38
  start-page: 127
  year: 2012
  end-page: 133
  ident: b0185
  article-title: Heat transfer enhancement of an electric air heating furnace by inserting silicon carbide ceramic foam panels
  publication-title: Experimental Thermal and Fluid Science
  contributor:
    fullname: Wang
– volume: 90
  start-page: 195
  year: 2013
  end-page: 204
  ident: b0195
  article-title: Optical efficiency analysis of cylindrical cavity receiver with bottom surface convex
  publication-title: Solar Energy
  contributor:
    fullname: Shuai
– volume: 84
  start-page: 291
  year: 2004
  end-page: 304
  ident: b0105
  article-title: Two novel high-porosity materials as volumetric receivers for concentrated solar radiation
  publication-title: Solar Energy Materials and Solar Cells
  contributor:
    fullname: Hoffschmidt
– volume: 36
  start-page: 1138
  year: 2011
  end-page: 1144
  ident: b0205
  article-title: Numerical investigation on porous media heat transfer in a solar tower receiver
  publication-title: Renewable Energy
  contributor:
    fullname: Zhen
– volume: 36
  start-page: 1993
  year: 2011
  end-page: 2003
  ident: b0135
  article-title: Development of an innovative code for the design of thermodynamic solar power plants part A: code description and test case
  publication-title: Renewable Energy
  contributor:
    fullname: Saccilotto
– volume: 40
  start-page: 271
  year: 2010
  end-page: 284
  ident: b0095
  article-title: High porosity materials as volumetric receivers for solar energetic
  publication-title: Optica Applicata
  contributor:
    fullname: Fend
– volume: 34
  start-page: 1166
  year: 2009
  end-page: 1175
  ident: b0090
  article-title: Hydrolysis rate of submicron Zn particles for solar H
  publication-title: International Journal of Hydrogen Energy
  contributor:
    fullname: Pratsinis
– volume: 90
  start-page: 84
  year: 2013
  end-page: 93
  ident: b0165
  article-title: Numerical study on coupling phase change heat transfer performance of solar dish collector
  publication-title: Solar Energy
  contributor:
    fullname: Lin
– volume: 37
  start-page: 939
  year: 1994
  end-page: 954
  ident: b0025
  article-title: Analysis of dispersion effects and non-thermal equilibrium, non-darcian variable porosity incompressible flow through porous media
  publication-title: International Journal of Heat and Mass Transfer
  contributor:
    fullname: Vafai
– volume: 60
  start-page: 135
  year: 1997
  end-page: 150
  ident: b0155
  article-title: Experimental and numerical evaluation of the performance and flow stability of different types of open volumetric absorber under non-homogeneous irradiation
  publication-title: Solar Energy
  contributor:
    fullname: Becker
– volume: 68
  start-page: 603
  year: 2011
  end-page: 621
  ident: b0015
  article-title: Optimal interplanetary rendezvous combining electric sail and high thrust propulsion system
  publication-title: Acta Astronautica
  contributor:
    fullname: Pekka
– volume: 103
  start-page: 400
  year: 2013
  end-page: 415
  ident: b0150
  article-title: Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power
  publication-title: Applied Energy
  contributor:
    fullname: Pitchumani
– volume: 80
  start-page: 1241
  year: 2006
  end-page: 1248
  ident: b0045
  article-title: Theoretical and numerical investigation of flow stability in porous materials applied as volumetric solar receivers
  publication-title: Solar Energy
  contributor:
    fullname: Trimis
– volume: 80
  start-page: 1241
  year: 2006
  end-page: 1248
  ident: b0050
  article-title: Theoretical and numerical investigation of flow stability in porous materials applied as volumetric solar receivers
  publication-title: Solar Energy
  contributor:
    fullname: Trimisc
– year: 2003
  ident: b0140
  article-title: Radiative Heat Transfer
  contributor:
    fullname: Modest
– volume: 41
  start-page: 347
  year: 1998
  end-page: 356
  ident: b0020
  article-title: Transient non-Darcian forced convection flow in a pipe partially filled with a porous material
  publication-title: International Journal of Heat and Mass Transfer
  contributor:
    fullname: Nimr
– volume: 86
  start-page: 1770
  year: 2012
  end-page: 1784
  ident: b0065
  article-title: Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method
  publication-title: Solar Energy
  contributor:
    fullname: Tao
– volume: 36
  start-page: 976
  year: 2011
  end-page: 985
  ident: b0110
  article-title: A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector
  publication-title: Renewable Energy
  contributor:
    fullname: Tao
– volume: 36
  start-page: 14349
  year: 2011
  end-page: 14359
  ident: b0125
  article-title: Technical and economic evaluation of solar hydrogen production by supercritical water gasification of biomass in China
  publication-title: International Journal of Hydrogen Energy
  contributor:
    fullname: Guo
– volume: 41
  start-page: 73
  year: 2002
  end-page: 81
  ident: b0055
  article-title: Natural convection from an inclined plate embedded in a variable porosity porous media due to solar radiation
  publication-title: International Journal of Thermal Sciences
  contributor:
    fullname: Khanafer
– volume: 330
  start-page: 1797
  year: 2010
  end-page: 1801
  ident: b0080
  article-title: High–flux solar–driven thermochemical dissociation of CO
  publication-title: Science
  contributor:
    fullname: Steinfeld
– volume: 101
  start-page: 686
  year: 2013
  end-page: 698
  ident: b0075
  article-title: A new modeling method and unified code with MCRT for concentrating solar collectors and its applications
  publication-title: Applied Energy
  contributor:
    fullname: Cui
– volume: 54
  start-page: 4596
  year: 2011
  end-page: 4610
  ident: b0145
  article-title: Analysis and optimization of a latent thermal energy storage system with embedded heat pipes
  publication-title: International Journal of Heat and Mass Transfer
  contributor:
    fullname: Pitchumani
– volume: 95
  start-page: 2703
  year: 2011
  end-page: 2725
  ident: b0085
  article-title: Innovation in concentrated solar power
  publication-title: Solar Energy Materials and Solar Cells
  contributor:
    fullname: Pieter
– volume: 85
  start-page: 2374
  year: 2011
  end-page: 2385
  ident: b0200
  article-title: Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers
  publication-title: Solar Energy
  contributor:
    fullname: Wang
– volume: 33
  start-page: 284
  year: 2012
  end-page: 291
  ident: b0190
  article-title: Effects of material selection on the thermal stresses of tube receiver under concentrated solar irradiation
  publication-title: Materials and Design
  contributor:
    fullname: Liu
– volume: 49
  start-page: 2400
  year: 2010
  end-page: 2404
  ident: b0040
  article-title: One Dimensional Thermal analysis of silicon carbide ceramic foam used for solar air receiver
  publication-title: International Journal of Thermal Sciences
  contributor:
    fullname: Bai
– volume: 1
  start-page: 1044
  year: 2013
  end-page: 1054
  ident: b0070
  article-title: Numerical investigations on coupled heat transfer and synthetical performance of a pressurized volumetric receiver with MCRT–FVM method
  publication-title: Applied Thermal Engineering
  contributor:
    fullname: Cui
– volume: 22
  start-page: 102
  year: 2001
  end-page: 110
  ident: b0115
  article-title: Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model
  publication-title: International Journal of Heat Fluid Flow
  contributor:
    fullname: Ren
– volume: 122
  start-page: 303
  year: 2000
  end-page: 312
  ident: b0010
  article-title: Analysis of variants within the porous media transport models
  publication-title: Journal of Heat Transfer
  contributor:
    fullname: Vafai
– volume: 84
  start-page: 1809
  year: 2010
  end-page: 1815
  ident: b0180
  article-title: Thermal stress analysis of eccentric tube receiver using concentrated solar radiation
  publication-title: Solar Energy
  contributor:
    fullname: Tan
– volume: 50
  start-page: 2386
  year: 2011
  end-page: 2401
  ident: b0130
  article-title: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition
  publication-title: International Journal of Thermal Sciences
  contributor:
    fullname: Maerefat
– volume: 29
  start-page: 823
  year: 2004
  end-page: 833
  ident: b0100
  article-title: Porous materials as open volumetric solar receivers: experimental determination of thermophysical and heat transfer properties
  publication-title: Energy
  contributor:
    fullname: Rietbrock
– year: 2007
  ident: b0120
  article-title: Heat and Mass Transfer Theory and Application of Porous Media
  contributor:
    fullname: Huang
– volume: 78
  start-page: 137
  year: 2004
  end-page: 149
  ident: b0060
  article-title: Numerical analysis of heat transfer in a composite wall solar- collector system with a porous absorber
  publication-title: Applied Energy
  contributor:
    fullname: Liu
– volume: 31
  start-page: 3377
  year: 2011
  end-page: 3386
  ident: b0175
  article-title: Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver
  publication-title: Applied Thermal Engineering
  contributor:
    fullname: Romero-Paredes
– year: 2007
  ident: 10.1016/j.solener.2013.04.004_b0120
  contributor:
    fullname: Liu
– volume: 90
  start-page: 84
  year: 2013
  ident: 10.1016/j.solener.2013.04.004_b0165
  article-title: Numerical study on coupling phase change heat transfer performance of solar dish collector
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2012.12.017
  contributor:
    fullname: Tao
– volume: 37
  start-page: 939
  issue: 6
  year: 1994
  ident: 10.1016/j.solener.2013.04.004_b0025
  article-title: Analysis of dispersion effects and non-thermal equilibrium, non-darcian variable porosity incompressible flow through porous media
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(94)90219-4
  contributor:
    fullname: Amiri
– volume: 85
  start-page: 2374
  issue: 9
  year: 2011
  ident: 10.1016/j.solener.2013.04.004_b0200
  article-title: Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2011.06.030
  contributor:
    fullname: Wu
– volume: 80
  start-page: 1241
  issue: 10
  year: 2006
  ident: 10.1016/j.solener.2013.04.004_b0050
  article-title: Theoretical and numerical investigation of flow stability in porous materials applied as volumetric solar receivers
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2005.11.006
  contributor:
    fullname: Beckera
– volume: 36
  start-page: 1138
  year: 2011
  ident: 10.1016/j.solener.2013.04.004_b0205
  article-title: Numerical investigation on porous media heat transfer in a solar tower receiver
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2010.09.017
  contributor:
    fullname: Xu
– volume: 84
  start-page: 1809
  issue: 10
  year: 2010
  ident: 10.1016/j.solener.2013.04.004_b0180
  article-title: Thermal stress analysis of eccentric tube receiver using concentrated solar radiation
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2010.07.005
  contributor:
    fullname: Wang
– volume: 78
  start-page: 137
  year: 2004
  ident: 10.1016/j.solener.2013.04.004_b0060
  article-title: Numerical analysis of heat transfer in a composite wall solar- collector system with a porous absorber
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2003.07.003
  contributor:
    fullname: Chen
– volume: 50
  start-page: 2386
  year: 2011
  ident: 10.1016/j.solener.2013.04.004_b0130
  article-title: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2011.07.008
  contributor:
    fullname: Mahmoudi
– volume: 68
  start-page: 603
  issue: 5–6
  year: 2011
  ident: 10.1016/j.solener.2013.04.004_b0015
  article-title: Optimal interplanetary rendezvous combining electric sail and high thrust propulsion system
  publication-title: Acta Astronautica
  contributor:
    fullname: Alessandro
– volume: 41
  start-page: 347
  issue: 2
  year: 1998
  ident: 10.1016/j.solener.2013.04.004_b0020
  article-title: Transient non-Darcian forced convection flow in a pipe partially filled with a porous material
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(97)00146-4
  contributor:
    fullname: Alkam
– volume: 41
  start-page: 73
  year: 2002
  ident: 10.1016/j.solener.2013.04.004_b0055
  article-title: Natural convection from an inclined plate embedded in a variable porosity porous media due to solar radiation
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/S1290-0729(01)01305-9
  contributor:
    fullname: Chamkha
– volume: 60
  start-page: 135
  issue: 3–4
  year: 1997
  ident: 10.1016/j.solener.2013.04.004_b0155
  article-title: Experimental and numerical evaluation of the performance and flow stability of different types of open volumetric absorber under non-homogeneous irradiation
  publication-title: Solar Energy
  doi: 10.1016/S0038-092X(97)00007-8
  contributor:
    fullname: Pitz-Paal
– volume: 86
  start-page: 1770
  issue: 6
  year: 2012
  ident: 10.1016/j.solener.2013.04.004_b0065
  article-title: Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2012.02.039
  contributor:
    fullname: Cheng
– volume: 330
  start-page: 1797
  year: 2010
  ident: 10.1016/j.solener.2013.04.004_b0080
  article-title: High–flux solar–driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria
  publication-title: Science
  doi: 10.1126/science.1197834
  contributor:
    fullname: Chueh
– volume: 31
  start-page: 3377
  issue: 16
  year: 2011
  ident: 10.1016/j.solener.2013.04.004_b0175
  article-title: Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2011.06.022
  contributor:
    fullname: Villafán-Vidales
– year: 2003
  ident: 10.1016/j.solener.2013.04.004_b0140
  contributor:
    fullname: Modest
– volume: 36
  start-page: 1993
  issue: 7
  year: 2011
  ident: 10.1016/j.solener.2013.04.004_b0135
  article-title: Development of an innovative code for the design of thermodynamic solar power plants part A: code description and test case
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2010.12.027
  contributor:
    fullname: Manzolini
– volume: 38
  start-page: 127
  year: 2012
  ident: 10.1016/j.solener.2013.04.004_b0185
  article-title: Heat transfer enhancement of an electric air heating furnace by inserting silicon carbide ceramic foam panels
  publication-title: Experimental Thermal and Fluid Science
  doi: 10.1016/j.expthermflusci.2011.12.001
  contributor:
    fullname: Wang
– volume: 22
  start-page: 102
  year: 2001
  ident: 10.1016/j.solener.2013.04.004_b0115
  article-title: Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model
  publication-title: International Journal of Heat Fluid Flow
  doi: 10.1016/S0142-727X(00)00066-7
  contributor:
    fullname: Jiang
– year: 2005
  ident: 10.1016/j.solener.2013.04.004_b0170
  contributor:
    fullname: Vafai
– volume: 84
  start-page: 291
  issue: 1–4
  year: 2004
  ident: 10.1016/j.solener.2013.04.004_b0105
  article-title: Two novel high-porosity materials as volumetric receivers for concentrated solar radiation
  publication-title: Solar Energy Materials and Solar Cells
  doi: 10.1016/j.solmat.2004.01.039
  contributor:
    fullname: Fend
– volume: 90
  start-page: 195
  year: 2013
  ident: 10.1016/j.solener.2013.04.004_b0195
  article-title: Optical efficiency analysis of cylindrical cavity receiver with bottom surface convex
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2013.01.017
  contributor:
    fullname: Wang
– volume: 36
  start-page: 976
  year: 2011
  ident: 10.1016/j.solener.2013.04.004_b0110
  article-title: A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2010.07.017
  contributor:
    fullname: He
– volume: 34
  start-page: 1166
  issue: 3
  year: 2009
  ident: 10.1016/j.solener.2013.04.004_b0090
  article-title: Hydrolysis rate of submicron Zn particles for solar H2 synthesis
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.11.098
  contributor:
    fullname: Ernst
– volume: 36
  start-page: 14349
  issue: 22
  year: 2011
  ident: 10.1016/j.solener.2013.04.004_b0125
  article-title: Technical and economic evaluation of solar hydrogen production by supercritical water gasification of biomass in China
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.07.138
  contributor:
    fullname: Lu
– volume: 1
  start-page: 1044
  issue: 50
  year: 2013
  ident: 10.1016/j.solener.2013.04.004_b0070
  article-title: Numerical investigations on coupled heat transfer and synthetical performance of a pressurized volumetric receiver with MCRT–FVM method
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2012.08.045
  contributor:
    fullname: Cheng
– volume: 101
  start-page: 686
  year: 2013
  ident: 10.1016/j.solener.2013.04.004_b0075
  article-title: A new modeling method and unified code with MCRT for concentrating solar collectors and its applications
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2012.07.048
  contributor:
    fullname: Cheng
– volume: 80
  start-page: 1241
  issue: 10
  year: 2006
  ident: 10.1016/j.solener.2013.04.004_b0045
  article-title: Theoretical and numerical investigation of flow stability in porous materials applied as volumetric solar receivers
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2005.11.006
  contributor:
    fullname: Becker
– volume: 91
  start-page: 474
  issue: 6
  year: 2007
  ident: 10.1016/j.solener.2013.04.004_b0005
  article-title: Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation
  publication-title: Solar Energy Materials and Solar Cells
  doi: 10.1016/j.solmat.2006.10.021
  contributor:
    fullname: Agrafiotis
– volume: 122
  start-page: 303
  issue: 5
  year: 2000
  ident: 10.1016/j.solener.2013.04.004_b0010
  article-title: Analysis of variants within the porous media transport models
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.521468
  contributor:
    fullname: Alazmi
– volume: 54
  start-page: 4596
  year: 2011
  ident: 10.1016/j.solener.2013.04.004_b0145
  article-title: Analysis and optimization of a latent thermal energy storage system with embedded heat pipes
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2011.06.018
  contributor:
    fullname: Nithyanandam
– volume: 95
  start-page: 2703
  year: 2011
  ident: 10.1016/j.solener.2013.04.004_b0085
  article-title: Innovation in concentrated solar power
  publication-title: Solar Energy Materials and Solar Cells
  doi: 10.1016/j.solmat.2011.05.020
  contributor:
    fullname: David
– ident: 10.1016/j.solener.2013.04.004_b0035
– volume: 103
  start-page: 400
  year: 2013
  ident: 10.1016/j.solener.2013.04.004_b0150
  article-title: Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2012.09.056
  contributor:
    fullname: Nithyanandam
– volume: 49
  start-page: 2400
  year: 2010
  ident: 10.1016/j.solener.2013.04.004_b0040
  article-title: One Dimensional Thermal analysis of silicon carbide ceramic foam used for solar air receiver
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2010.08.010
  contributor:
    fullname: Bai
– volume: 40
  start-page: 271
  issue: 2
  year: 2010
  ident: 10.1016/j.solener.2013.04.004_b0095
  article-title: High porosity materials as volumetric receivers for solar energetic
  publication-title: Optica Applicata
  contributor:
    fullname: Fend
– volume: 29
  start-page: 823
  year: 2004
  ident: 10.1016/j.solener.2013.04.004_b0100
  article-title: Porous materials as open volumetric solar receivers: experimental determination of thermophysical and heat transfer properties
  publication-title: Energy
  doi: 10.1016/S0360-5442(03)00188-9
  contributor:
    fullname: Fend
– volume: 27
  start-page: 651
  issue: 6
  year: 1995
  ident: 10.1016/j.solener.2013.04.004_b0030
  article-title: Effects of boundary conditions on non-darcian heat transfer through porous media and experimental comparisons
  publication-title: Numerical Heat Transfer A
  doi: 10.1080/10407789508913724
  contributor:
    fullname: Amiri
– volume: 82
  start-page: 13
  issue: 1
  year: 2008
  ident: 10.1016/j.solener.2013.04.004_b0160
  article-title: Radiation performance of dish solar concentrator/cavity receiver systems
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2007.06.005
  contributor:
    fullname: Shuai
– volume: 33
  start-page: 284
  year: 2012
  ident: 10.1016/j.solener.2013.04.004_b0190
  article-title: Effects of material selection on the thermal stresses of tube receiver under concentrated solar irradiation
  publication-title: Materials and Design
  doi: 10.1016/j.matdes.2011.07.048
  contributor:
    fullname: Wang
SSID ssj0017187
Score 2.4209824
Snippet •MCRT and FVM coupling method is used to solve problems of porous media receiver.•The LTNE model with concentrated heat flux boundary is used for energy...
In this paper, Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is adopted to solve the radiation, conduction and convection...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 158
SubjectTerms Applied sciences
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Finite Volume Method
Heat transfer
Monte Carlo
Monte Carlo simulation
Multi-dish collector
Natural energy
Porous materials
Porous media
Radiation
Receiver
Solar energy
Solar radiation
Temperature distribution
Theoretical studies. Data and constants. Metering
Title Heat transfer analyses of porous media receiver with multi-dish collector by coupling MCRT and FVM method
URI https://dx.doi.org/10.1016/j.solener.2013.04.004
https://www.proquest.com/docview/1365278324
https://search.proquest.com/docview/1464551229
https://search.proquest.com/docview/1505349490
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLCCEeIpnZSTW0MRO0mREFVUBwYAAdbPixIEiVCraDiz8dr5znAICgcSQoYmTtnf2d_fF92DsyNd5lMIx90Rkcg_oF3ip1JHnh7oAaRFk8ija4iru3Ybn_ag_xzp1LgyFVTrsrzDdorU703LSbI0GA8rxlYmfij5tyASyDd6-AHMkkgZbODm76F3NNhMAv1XpTEk7_aL_kcjTegSPfaL6zhTkJW3RU9ey7QcTtTzKxhBcWXW8-Abe1iJ1V9mKcyX5SfVr19icGa6zpU8FBjfYoAeo5RPrnJoXntkKJGbMn0sOvxukn9vMEQ4RGArQ4PRaltsgQ68YjB84TRP7Xp_rV3yYUv7uPb_sXN_gYQXv3l3yqgf1Jrvtnt50ep5rruDloZQTz5i4kFkExiB8bYJSxmBahUw1XG5YcRwyMGk7iwtoy-RpnMU6THKDBZ-UUZjLLdYYPg_NNuO5xPAgBYSHIHNxoKNSizLKYwAEEcoddlzLU42qGhqqDi57VE4BihSg_FBBATssqaWuvkwGBZz_69bmFy3NvpDK9IB5Y8B-rTbllutYUawftRyhy4ezy1hotHuSDQ30QRwphHspRPrLGPiTtt6Pv_v_v7DHFoXtuUExwfusMXmZmgN4PhPdZPPHb0HTze93DuABjQ
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuMwFLUQLAaERjwFDA8jsQ1N7CTUS1RRhYF2gQrqzooTB4pQqWhZ8Pec6zgdEGhGmkUXbdzXvfbxOfF9MHYSmiJRIOaBSGwRAP2iQEmTBGFsSogWQVseRVv00-w2_j1Mhgus0-TCUFilx_4a0x1a-1da3pqtyWhEOb6yHSoxpAOZSJ5Bty-BDSiszqXzy6usPz9MAPzWpTMlnfSL4Z9EntYjdOwT1XemIC_pip76lm3fbFGrk3wKw1V1x4sv4O12pO4a--mpJD-vf-06W7DjDbbyocDgJhtlgFo-c-TUvvDcVSCxU_5ccfBuiH7uMkc4TGApQIPTbVnuggyDcjR94DRN3H19bt7w5JXyd-95r3MzwIeVvHvX43UP6i12270YdLLAN1cIiljKWWBtWso8gWIQobFRJVMorVIqA8qNXRwPGVl1lqclvGULleapiduFxYJvV0lcyG22OH4e2x3GC4nhkQKExxBzaWSSyogqKVIABAnKXXba2FNP6hoaugkue9TeAZocoMNYwwG7rN1YXX-aDBo4_6-3Hn7y0vwLqUwPlDcG7Ddu0365TjXF-lHLEbp8PL-MhUanJ_nYwh-kkWLQSyHUX8aAT7p6P-He__-FI_YjG_Su9fVl_-oXWxau_wbFB--zxdnLqz0AC5qZQz_L3wFIrQOB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+transfer+analyses+of+porous+media+receiver+with+multi-dish+collector+by+coupling+MCRT+and+FVM+method&rft.jtitle=Solar+energy&rft.au=Wang%2C+Fuqiang&rft.au=Shuai%2C+Yong&rft.au=Tan%2C+Heping&rft.au=Zhang%2C+Xiaofeng&rft.date=2013-07-01&rft.pub=Pergamon+Press+Inc&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=93&rft.spage=158&rft_id=info:doi/10.1016%2Fj.solener.2013.04.004&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2989464491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon