Automatic behavior recognition of group-housed goats using deep learning
•Proposing general behavior recognition framework of group-housed goats.•Investigating appropriate detection model of individual goat based on deep learning.•Incorporating spatial-temporal location features of goats and feeding/drinking zones.•Developing the strategy for achieving real-time analysis...
Saved in:
Published in | Computers and electronics in agriculture Vol. 177; p. 105706 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Proposing general behavior recognition framework of group-housed goats.•Investigating appropriate detection model of individual goat based on deep learning.•Incorporating spatial-temporal location features of goats and feeding/drinking zones.•Developing the strategy for achieving real-time analysis of goat behavior.•Achieving high recognition accuracies without animal head detection and extra tools.
Daily behavior is one important manifestation for health and welfare status of livestock. In traditional behavior recognition methods, it was often mandatory to detect animal heads or depend on extra tools. To overcome such shortcomings, this paper proposed one efficient behavior recognition approach using deep learning to recognize eating, drinking, active and inactive behaviors of group-housed goats from video sequences of top upper-side view. Firstly, the approach of detecting individual goat was designed by means of investigating the characteristics and suitability of several popular deep learning methods. Secondly, we proposed a general behavior recognition framework of group-housed goats for videos acquired from top upper-side view. Four types of goat behaviors were recognized by analyzing the spatial location relationship between goat bounding boxes and feeding/drinking zones, as well as the temporal movement amount of bounding box centroids of the same goat among consecutive frames. One inferential strategy was presented for estimating the missing behaviors caused by goat detection failure in frames. The experimental results showed that YOLOv4 was superior to other models in terms of both goat detection speed and accuracy, and the average recognition accuracies of 97.87%, 98.27%, 96.86% and 96.92%, respectively, for eating, drinking, active and inactive behaviors were achieved on the experimental videos, in real-time manner with the average analysis speed of 17 frames per second on a conventional hardware configuration. Hence, it was demonstrated that the proposed approach could offer one effective way for automatically conducting comprehensive behavior recognition of group-housed livestock. |
---|---|
AbstractList | •Proposing general behavior recognition framework of group-housed goats.•Investigating appropriate detection model of individual goat based on deep learning.•Incorporating spatial-temporal location features of goats and feeding/drinking zones.•Developing the strategy for achieving real-time analysis of goat behavior.•Achieving high recognition accuracies without animal head detection and extra tools.
Daily behavior is one important manifestation for health and welfare status of livestock. In traditional behavior recognition methods, it was often mandatory to detect animal heads or depend on extra tools. To overcome such shortcomings, this paper proposed one efficient behavior recognition approach using deep learning to recognize eating, drinking, active and inactive behaviors of group-housed goats from video sequences of top upper-side view. Firstly, the approach of detecting individual goat was designed by means of investigating the characteristics and suitability of several popular deep learning methods. Secondly, we proposed a general behavior recognition framework of group-housed goats for videos acquired from top upper-side view. Four types of goat behaviors were recognized by analyzing the spatial location relationship between goat bounding boxes and feeding/drinking zones, as well as the temporal movement amount of bounding box centroids of the same goat among consecutive frames. One inferential strategy was presented for estimating the missing behaviors caused by goat detection failure in frames. The experimental results showed that YOLOv4 was superior to other models in terms of both goat detection speed and accuracy, and the average recognition accuracies of 97.87%, 98.27%, 96.86% and 96.92%, respectively, for eating, drinking, active and inactive behaviors were achieved on the experimental videos, in real-time manner with the average analysis speed of 17 frames per second on a conventional hardware configuration. Hence, it was demonstrated that the proposed approach could offer one effective way for automatically conducting comprehensive behavior recognition of group-housed livestock. Daily behavior is one important manifestation for health and welfare status of livestock. In traditional behavior recognition methods, it was often mandatory to detect animal heads or depend on extra tools. To overcome such shortcomings, this paper proposed one efficient behavior recognition approach using deep learning to recognize eating, drinking, active and inactive behaviors of group-housed goats from video sequences of top upper-side view. Firstly, the approach of detecting individual goat was designed by means of investigating the characteristics and suitability of several popular deep learning methods. Secondly, we proposed a general behavior recognition framework of group-housed goats for videos acquired from top upper-side view. Four types of goat behaviors were recognized by analyzing the spatial location relationship between goat bounding boxes and feeding/drinking zones, as well as the temporal movement amount of bounding box centroids of the same goat among consecutive frames. One inferential strategy was presented for estimating the missing behaviors caused by goat detection failure in frames. The experimental results showed that YOLOv4 was superior to other models in terms of both goat detection speed and accuracy, and the average recognition accuracies of 97.87%, 98.27%, 96.86% and 96.92%, respectively, for eating, drinking, active and inactive behaviors were achieved on the experimental videos, in real-time manner with the average analysis speed of 17 frames per second on a conventional hardware configuration. Hence, it was demonstrated that the proposed approach could offer one effective way for automatically conducting comprehensive behavior recognition of group-housed livestock. |
ArticleNumber | 105706 |
Author | Shen, Yiming Jiang, Min Zhang, Jingyao Rao, Yuan |
Author_xml | – sequence: 1 givenname: Min surname: Jiang fullname: Jiang, Min – sequence: 2 givenname: Yuan surname: Rao fullname: Rao, Yuan email: ry9925@163.com – sequence: 3 givenname: Jingyao surname: Zhang fullname: Zhang, Jingyao – sequence: 4 givenname: Yiming surname: Shen fullname: Shen, Yiming |
BookMark | eNqFkMtKxDAUhoMoOF7ewEXBjZuOSZomjQtBxBsIbnQdYnKmZugkNUkHfHsz1JULXZ0L3384fEdo3wcPCJ0RvCSY8Mv10oTNqPslxXS3agXme2hBOkFrQbDYR4uCdTXhUh6io5TWuMyyEwv0eDPlsNHZmeodPvTWhVhFMKH3Lrvgq7Cq-himsf4IUwJb9UHnVE3J-b6yAGM1gI6-TCfoYKWHBKc_9Ri93d-93j7Wzy8PT7c3z7VhTZNrkJYzXXqKMbWdkES-S6ubjlvW8dZysWIMcENb0dnGGEmNllILyVoA1ujmGF3Md8cYPidIWW1cMjAM2kN5UdGWk5YRKUhBz3-h6zBFX75TlDHJBRe4KRSbKRNDShFWaoxuo-OXIljt9Kq1mvWqnV416y2xq18x47LeOctRu-G_8PUchmJq6yCqZBx4A9YV-VnZ4P4-8A2Jh5lh |
CitedBy_id | crossref_primary_10_3390_s24185890 crossref_primary_10_1016_j_aiia_2021_11_004 crossref_primary_10_1016_j_compag_2021_106140 crossref_primary_10_3390_s23104752 crossref_primary_10_1007_s00500_023_08513_1 crossref_primary_10_1007_s11042_024_20512_4 crossref_primary_10_3389_fanim_2022_835516 crossref_primary_10_3390_ani14243667 crossref_primary_10_1142_S0218001424560093 crossref_primary_10_1016_j_livsci_2021_104700 crossref_primary_10_17221_124_2023_CJAS crossref_primary_10_3390_ani13193143 crossref_primary_10_1007_s13042_025_02602_3 crossref_primary_10_1016_j_compag_2023_107831 crossref_primary_10_1016_j_compag_2024_108645 crossref_primary_10_3390_ani13233688 crossref_primary_10_3390_app12094712 crossref_primary_10_1371_journal_pone_0265199 crossref_primary_10_1016_j_iot_2022_100539 crossref_primary_10_1093_jas_skae174 crossref_primary_10_3390_s23218952 crossref_primary_10_1177_15501477211007407 crossref_primary_10_1016_j_compag_2021_106636 crossref_primary_10_1016_j_compag_2021_106641 crossref_primary_10_3390_ani13203250 crossref_primary_10_4035_jsfwr_57_163 crossref_primary_10_1016_j_compag_2022_107010 crossref_primary_10_1093_jas_skad413 crossref_primary_10_1016_j_compag_2025_110224 crossref_primary_10_3168_jds_2022_22138 crossref_primary_10_3390_su13094738 crossref_primary_10_1371_journal_pone_0313412 crossref_primary_10_1016_j_compag_2024_108662 crossref_primary_10_1016_j_biosystemseng_2024_08_003 crossref_primary_10_1016_j_compag_2023_108189 crossref_primary_10_1016_j_compag_2024_109115 crossref_primary_10_1016_j_compag_2020_105982 crossref_primary_10_3390_technologies13030116 crossref_primary_10_1016_j_compag_2021_106254 crossref_primary_10_3390_ani12030233 crossref_primary_10_1016_j_eswa_2023_122829 crossref_primary_10_1109_TIM_2022_3192070 crossref_primary_10_1007_s00371_024_03301_w crossref_primary_10_3390_ani13162636 crossref_primary_10_32604_cmc_2022_027457 crossref_primary_10_3390_ani13132096 crossref_primary_10_3390_agriculture12111907 crossref_primary_10_1016_j_amf_2025_200205 crossref_primary_10_3390_s21041492 |
Cites_doi | 10.1016/j.tvjl.2016.09.005 10.3168/jds.2012-5806 10.1016/j.compag.2018.09.030 10.1109/TPAMI.2016.2577031 10.1016/j.compag.2016.04.026 10.1016/j.compag.2018.12.009 10.1016/j.livsci.2017.05.014 10.1016/j.compag.2018.11.002 10.1016/j.compag.2015.12.014 10.1016/j.compag.2014.03.010 10.1016/j.compag.2016.08.010 10.1016/B978-0-08-101012-9.00001-0 10.1016/j.compag.2019.104982 10.1016/j.compag.2015.07.003 10.1016/j.compag.2018.06.046 10.1016/j.compag.2018.01.023 10.13031/2013.39832 10.1016/j.meatsci.2015.05.010 10.1016/j.biosystemseng.2018.09.011 10.1016/j.compag.2013.06.002 10.1016/j.biosystemseng.2020.01.016 10.3390/s19173738 10.3390/s19224924 10.1016/j.livsci.2017.09.003 10.1017/S1751731116001208 10.1016/j.compag.2015.10.023 10.1016/j.compag.2013.01.013 10.3390/s17122757 10.1109/TII.2018.2875149 10.1016/j.compag.2017.11.036 10.1016/j.livsci.2013.11.007 10.1016/j.compag.2013.09.015 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Oct 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Oct 2020 |
DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
DOI | 10.1016/j.compag.2020.105706 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-7107 |
ExternalDocumentID | 10_1016_j_compag_2020_105706 S0168169920314344 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7SC 7SP 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-e9d64ac432002d87919b9da386d4865d67f44e032578d3cc92ca99a7945ee43a3 |
IEDL.DBID | .~1 |
ISSN | 0168-1699 |
IngestDate | Sun Aug 24 02:55:07 EDT 2025 Fri Jul 25 03:36:06 EDT 2025 Tue Jul 01 01:58:19 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Fri Feb 23 02:49:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning YOLOv4 Behavior recognition Video sequences Group-housed goats |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-e9d64ac432002d87919b9da386d4865d67f44e032578d3cc92ca99a7945ee43a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2449676703 |
PQPubID | 2045491 |
ParticipantIDs | proquest_miscellaneous_2561541971 proquest_journals_2449676703 crossref_primary_10_1016_j_compag_2020_105706 crossref_citationtrail_10_1016_j_compag_2020_105706 elsevier_sciencedirect_doi_10_1016_j_compag_2020_105706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Nasirahmadi, Richter, Hensel, Edwards, Sturm (b0085) 2015; 119 Yang, Huang, Zhu, Yang, Chen, Li, Xue (b0165) 2018; 175 Jiang, Wu, Yin, Wu, Song, He (b0030) 2019; 166 Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M., 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection. Shamim Hossain, Al-Hammadi, Muhammad (b0125) 2019; 15 Matthews, Miller, Clapp, Plötz, Kyriazakis (b0070) 2016; 217 Nasirahmadi, Hensel, Edwards, Sturm (b0080) 2017; 11 Nasirahmadi, Sturm, Olsson, Jeppsson, Müller, Edwards, Hensel (b0095) 2019; 156 Kiani (b0045) 2018 Viazzi, Ismayilova, Oczak, Sonoda, Fels, Guarino, Vranken, Hartung, Bahr, Berckmans (b0150) 2014; 104 Brown-Brandl, Rohrer, Eigenberg (b0020) 2013; 96 Velarde, Fàbrega, Blanco-Penedo, Dalmau (b0140) 2015; 109 Kashiha, Bahr, Ott, Moons, Niewold, Tuyttens, Berckmans (b0040) 2014; 159 Maselyne, Saeys, Briene, Mertens, Vangeyte, De Ketelaere, Hessel, Sonck, Van Nuffel (b0065) 2016; 128 Kim, Chung, Choi, Sa, Kim, Chung, Park, Kim (b0050) 2017; 17 Kashiha, Bahr, Ott, Moons, Niewold, Ödberg, Berckmans (b0035) 2013; 93 Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. arXiv Prepr. arXiv 1409.1556. Nasirahmadi, Edwards, Sturm (b0075) 2017; 202 Oczak, Ismayilova, Costa, Viazzi, Sonoda, Fels, Bahr, Hartung, Guarino, Berckmans, Vranken (b0100) 2013; 99 Stavrakakis, Li, Guy, Morgan, Ushaw, Johnson, Edwards (b0135) 2015; 117 Lao, Brown-Brandl, Stinn, Liu, Teng, Xin (b0055) 2016; 125 Wang, Tang, Zhu, Li, Xin, He (b0155) 2018; 154 Li, Chen, Zhang, Li (b0060) 2019; 19 Yang, Huang, Zheng, Li, Gan, Chen, Yang, Xue (b0160) 2020; 192 Zhu, Guo, Jiao, Ma, Chen (b0180) 2017; 205 Viazzi, Bahr, Schlageter-Tello, Van Hertem, Romanini, Pluk, Halachmi, Lokhorst, Berckmans (b0145) 2013 . Adrion, Kapun, Eckert, Holland, Staiger, Götz, Gallmann (b0005) 2018; 144 Brown-Brandl, Eigenberg (b0015) 2011; 54 Saberioon, Cisar (b0120) 2016; 121 Pedersen, L.J., 2018. Overview of commercial pig production systems and their main welfare challenges, Advances in Pig Welfare. Elsevier Ltd. Zheng, Zhu, Yang, Wang, Tu, Xue (b0175) 2018; 147 Ren, He, Girshick, Sun (b0115) 2017; 39 Campos, Sastre, Yagues, Torres, Giro-I-Nieto (b0025) 2017; 677–682 Nasirahmadi, Sturm, Edwards, Jeppsson, Olsson, Müller, Hensel (b0090) 2019; 19 Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement. arXiv Prepr. arXiv 1804.02767. Yang, Xiao, Lin (b0170) 2018; 155 Maselyne (10.1016/j.compag.2020.105706_b0065) 2016; 128 Campos (10.1016/j.compag.2020.105706_b0025) 2017; 677–682 Lao (10.1016/j.compag.2020.105706_b0055) 2016; 125 Nasirahmadi (10.1016/j.compag.2020.105706_b0090) 2019; 19 10.1016/j.compag.2020.105706_b0105 Ren (10.1016/j.compag.2020.105706_b0115) 2017; 39 Brown-Brandl (10.1016/j.compag.2020.105706_b0015) 2011; 54 Viazzi (10.1016/j.compag.2020.105706_b0150) 2014; 104 Kashiha (10.1016/j.compag.2020.105706_b0035) 2013; 93 Yang (10.1016/j.compag.2020.105706_b0165) 2018; 175 Nasirahmadi (10.1016/j.compag.2020.105706_b0095) 2019; 156 Matthews (10.1016/j.compag.2020.105706_b0070) 2016; 217 Adrion (10.1016/j.compag.2020.105706_b0005) 2018; 144 Zhu (10.1016/j.compag.2020.105706_b0180) 2017; 205 Kashiha (10.1016/j.compag.2020.105706_b0040) 2014; 159 Zheng (10.1016/j.compag.2020.105706_b0175) 2018; 147 Li (10.1016/j.compag.2020.105706_b0060) 2019; 19 Jiang (10.1016/j.compag.2020.105706_b0030) 2019; 166 Shamim Hossain (10.1016/j.compag.2020.105706_b0125) 2019; 15 Stavrakakis (10.1016/j.compag.2020.105706_b0135) 2015; 117 Nasirahmadi (10.1016/j.compag.2020.105706_b0080) 2017; 11 10.1016/j.compag.2020.105706_b0130 10.1016/j.compag.2020.105706_b0010 10.1016/j.compag.2020.105706_b0110 Wang (10.1016/j.compag.2020.105706_b0155) 2018; 154 Kiani (10.1016/j.compag.2020.105706_b0045) 2018 Kim (10.1016/j.compag.2020.105706_b0050) 2017; 17 Viazzi (10.1016/j.compag.2020.105706_b0145) 2013 Yang (10.1016/j.compag.2020.105706_b0160) 2020; 192 Oczak (10.1016/j.compag.2020.105706_b0100) 2013; 99 Brown-Brandl (10.1016/j.compag.2020.105706_b0020) 2013; 96 Yang (10.1016/j.compag.2020.105706_b0170) 2018; 155 Nasirahmadi (10.1016/j.compag.2020.105706_b0075) 2017; 202 Velarde (10.1016/j.compag.2020.105706_b0140) 2015; 109 Nasirahmadi (10.1016/j.compag.2020.105706_b0085) 2015; 119 Saberioon (10.1016/j.compag.2020.105706_b0120) 2016; 121 |
References_xml | – volume: 54 start-page: 1913 year: 2011 end-page: 1920 ident: b0015 article-title: Development of a livestock feeding behavior monitoring system publication-title: Trans. ASABE – volume: 159 start-page: 141 year: 2014 end-page: 148 ident: b0040 article-title: Automatic monitoring of pig locomotion using image analysis publication-title: Livest. Sci. – volume: 119 start-page: 184 year: 2015 end-page: 190 ident: b0085 article-title: Using machine vision for investigation of changes in pig group lying patterns publication-title: Comput. Electron. Agric. – volume: 121 start-page: 215 year: 2016 end-page: 221 ident: b0120 article-title: Automated multiple fish tracking in three-Dimension using a Structured Light Sensor publication-title: Comput. Electron. Agric. – volume: 99 start-page: 209 year: 2013 end-page: 217 ident: b0100 article-title: Analysis of aggressive behaviours of pigs by automatic video recordings publication-title: Comput. Electron. Agric. – volume: 677–682 year: 2017 ident: b0025 article-title: Scaling a convolutional neural network for classification of adjective noun pairs with TensorFlow on GPU Clusters publication-title: IEEE/ACM Int. Symp. Clust. – year: 2018 ident: b0045 article-title: Animal behavior management by energy-efficient wireless sensor networks publication-title: Comput. Electron. Agric. – volume: 11 start-page: 131 year: 2017 end-page: 139 ident: b0080 article-title: A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method publication-title: Animal – year: 2013 ident: b0145 article-title: Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle publication-title: J. Dairy Sci. – volume: 147 start-page: 51 year: 2018 end-page: 63 ident: b0175 article-title: Automatic recognition of lactating sow postures from depth images by deep learning detector publication-title: Comput. Electron. Agric. – volume: 93 start-page: 111 year: 2013 end-page: 120 ident: b0035 article-title: Automatic identification of marked pigs in a pen using image pattern recognition publication-title: Comput. Electron. Agric. – volume: 104 start-page: 57 year: 2014 end-page: 62 ident: b0150 article-title: Image feature extraction for classification of aggressive interactions among pigs publication-title: Comput. Electron. Agric. – volume: 217 start-page: 43 year: 2016 end-page: 51 ident: b0070 article-title: Early detection of health and welfare compromises through automated detection of behavioural changes in pigs publication-title: Vet. J. – volume: 15 start-page: 1027 year: 2019 end-page: 1034 ident: b0125 article-title: Automatic Fruit Classification Using Deep Learning for Industrial Applications publication-title: IEEE Trans. Ind. Informatics – volume: 202 start-page: 25 year: 2017 end-page: 38 ident: b0075 article-title: Implementation of machine vision for detecting behaviour of cattle and pigs publication-title: Livest. Sci. – volume: 125 start-page: 56 year: 2016 end-page: 62 ident: b0055 article-title: Automatic recognition of lactating sow behaviors through depth image processing publication-title: Comput. Electron. Agric. – volume: 175 start-page: 133 year: 2018 end-page: 145 ident: b0165 article-title: Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features publication-title: Biosyst. Eng. – volume: 109 start-page: 13 year: 2015 end-page: 17 ident: b0140 article-title: Animal welfare towards sustainability in pork meat production publication-title: Meat Sci. – volume: 96 start-page: 246 year: 2013 end-page: 252 ident: b0020 article-title: Analysis of feeding behavior of group housed growing-finishing pigs publication-title: Comput. Electron. Agric. – volume: 155 start-page: 453 year: 2018 end-page: 460 ident: b0170 article-title: Feeding behavior recognition for group-housed pigs with the Faster R-CNN publication-title: Comput. Electron. Agric. – volume: 154 start-page: 443 year: 2018 end-page: 449 ident: b0155 article-title: Dairy goat detection based on Faster R-CNN from surveillance video publication-title: Comput. Electron. Agric. – volume: 156 start-page: 475 year: 2019 end-page: 481 ident: b0095 article-title: Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine publication-title: Comput. Electron. Agric. – volume: 39 start-page: 1137 year: 2017 end-page: 1149 ident: b0115 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 205 start-page: 129 year: 2017 end-page: 136 ident: b0180 article-title: Recognition and drinking behaviour analysis of individual pigs based on machine vision publication-title: Livest. Sci. – volume: 19 start-page: 3738 year: 2019 ident: b0090 article-title: Deep learning and machine vision approaches for posture detection of individual pigs publication-title: Sensors (Switzerland) – reference: Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M., 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection. – reference: . – reference: Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. arXiv Prepr. arXiv 1409.1556. – reference: Pedersen, L.J., 2018. Overview of commercial pig production systems and their main welfare challenges, Advances in Pig Welfare. Elsevier Ltd. – volume: 144 start-page: 144 year: 2018 end-page: 153 ident: b0005 article-title: Monitoring trough visits of growing-finishing pigs with UHF-RFID publication-title: Comput. Electron. Agric. – volume: 117 start-page: 1 year: 2015 end-page: 7 ident: b0135 article-title: Validity of the Microsoft Kinect sensor for assessment of normal walking patterns in pigs publication-title: Comput. Electron. Agric. – volume: 128 start-page: 9 year: 2016 end-page: 19 ident: b0065 article-title: Methods to construct feeding visits from RFID registrations of growing-finishing pigs at the feed trough publication-title: Comput. Electron. Agric. – volume: 166 year: 2019 ident: b0030 article-title: FLYOLOv3 deep learning for key parts of dairy cow body detection publication-title: Comput. Electron. Agric. – reference: Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement. arXiv Prepr. arXiv 1804.02767. – volume: 192 start-page: 56 year: 2020 end-page: 71 ident: b0160 article-title: An automatic recognition framework for sow daily behaviours based on motion and image analyses publication-title: Biosyst. Eng. – volume: 19 start-page: 4924 year: 2019 ident: b0060 article-title: Mounting behaviour recognition for pigs based on deep learning publication-title: Sensors (Switzerland) – volume: 17 start-page: 2757 year: 2017 ident: b0050 article-title: Depth-based detection of standing-pigs in moving noise environments publication-title: Sensors (Switzerland) – volume: 217 start-page: 43 year: 2016 ident: 10.1016/j.compag.2020.105706_b0070 article-title: Early detection of health and welfare compromises through automated detection of behavioural changes in pigs publication-title: Vet. J. doi: 10.1016/j.tvjl.2016.09.005 – year: 2013 ident: 10.1016/j.compag.2020.105706_b0145 article-title: Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle publication-title: J. Dairy Sci. doi: 10.3168/jds.2012-5806 – volume: 154 start-page: 443 year: 2018 ident: 10.1016/j.compag.2020.105706_b0155 article-title: Dairy goat detection based on Faster R-CNN from surveillance video publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.09.030 – volume: 39 start-page: 1137 year: 2017 ident: 10.1016/j.compag.2020.105706_b0115 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 125 start-page: 56 year: 2016 ident: 10.1016/j.compag.2020.105706_b0055 article-title: Automatic recognition of lactating sow behaviors through depth image processing publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.04.026 – volume: 156 start-page: 475 year: 2019 ident: 10.1016/j.compag.2020.105706_b0095 article-title: Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.12.009 – volume: 202 start-page: 25 year: 2017 ident: 10.1016/j.compag.2020.105706_b0075 article-title: Implementation of machine vision for detecting behaviour of cattle and pigs publication-title: Livest. Sci. doi: 10.1016/j.livsci.2017.05.014 – volume: 155 start-page: 453 year: 2018 ident: 10.1016/j.compag.2020.105706_b0170 article-title: Feeding behavior recognition for group-housed pigs with the Faster R-CNN publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.11.002 – volume: 121 start-page: 215 year: 2016 ident: 10.1016/j.compag.2020.105706_b0120 article-title: Automated multiple fish tracking in three-Dimension using a Structured Light Sensor publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.12.014 – volume: 104 start-page: 57 year: 2014 ident: 10.1016/j.compag.2020.105706_b0150 article-title: Image feature extraction for classification of aggressive interactions among pigs publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.03.010 – volume: 128 start-page: 9 year: 2016 ident: 10.1016/j.compag.2020.105706_b0065 article-title: Methods to construct feeding visits from RFID registrations of growing-finishing pigs at the feed trough publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.08.010 – ident: 10.1016/j.compag.2020.105706_b0105 doi: 10.1016/B978-0-08-101012-9.00001-0 – ident: 10.1016/j.compag.2020.105706_b0130 – volume: 166 year: 2019 ident: 10.1016/j.compag.2020.105706_b0030 article-title: FLYOLOv3 deep learning for key parts of dairy cow body detection publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104982 – volume: 117 start-page: 1 year: 2015 ident: 10.1016/j.compag.2020.105706_b0135 article-title: Validity of the Microsoft Kinect sensor for assessment of normal walking patterns in pigs publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.07.003 – volume: 677–682 year: 2017 ident: 10.1016/j.compag.2020.105706_b0025 article-title: Scaling a convolutional neural network for classification of adjective noun pairs with TensorFlow on GPU Clusters publication-title: IEEE/ACM Int. Symp. Clust. – year: 2018 ident: 10.1016/j.compag.2020.105706_b0045 article-title: Animal behavior management by energy-efficient wireless sensor networks publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.06.046 – ident: 10.1016/j.compag.2020.105706_b0010 – volume: 147 start-page: 51 year: 2018 ident: 10.1016/j.compag.2020.105706_b0175 article-title: Automatic recognition of lactating sow postures from depth images by deep learning detector publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.01.023 – volume: 54 start-page: 1913 year: 2011 ident: 10.1016/j.compag.2020.105706_b0015 article-title: Development of a livestock feeding behavior monitoring system publication-title: Trans. ASABE doi: 10.13031/2013.39832 – volume: 109 start-page: 13 year: 2015 ident: 10.1016/j.compag.2020.105706_b0140 article-title: Animal welfare towards sustainability in pork meat production publication-title: Meat Sci. doi: 10.1016/j.meatsci.2015.05.010 – volume: 175 start-page: 133 year: 2018 ident: 10.1016/j.compag.2020.105706_b0165 article-title: Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.09.011 – volume: 96 start-page: 246 year: 2013 ident: 10.1016/j.compag.2020.105706_b0020 article-title: Analysis of feeding behavior of group housed growing-finishing pigs publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2013.06.002 – volume: 192 start-page: 56 year: 2020 ident: 10.1016/j.compag.2020.105706_b0160 article-title: An automatic recognition framework for sow daily behaviours based on motion and image analyses publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.01.016 – volume: 19 start-page: 3738 year: 2019 ident: 10.1016/j.compag.2020.105706_b0090 article-title: Deep learning and machine vision approaches for posture detection of individual pigs publication-title: Sensors (Switzerland) doi: 10.3390/s19173738 – ident: 10.1016/j.compag.2020.105706_b0110 – volume: 19 start-page: 4924 year: 2019 ident: 10.1016/j.compag.2020.105706_b0060 article-title: Mounting behaviour recognition for pigs based on deep learning publication-title: Sensors (Switzerland) doi: 10.3390/s19224924 – volume: 205 start-page: 129 year: 2017 ident: 10.1016/j.compag.2020.105706_b0180 article-title: Recognition and drinking behaviour analysis of individual pigs based on machine vision publication-title: Livest. Sci. doi: 10.1016/j.livsci.2017.09.003 – volume: 11 start-page: 131 year: 2017 ident: 10.1016/j.compag.2020.105706_b0080 article-title: A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method publication-title: Animal doi: 10.1017/S1751731116001208 – volume: 119 start-page: 184 year: 2015 ident: 10.1016/j.compag.2020.105706_b0085 article-title: Using machine vision for investigation of changes in pig group lying patterns publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.10.023 – volume: 93 start-page: 111 year: 2013 ident: 10.1016/j.compag.2020.105706_b0035 article-title: Automatic identification of marked pigs in a pen using image pattern recognition publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2013.01.013 – volume: 17 start-page: 2757 year: 2017 ident: 10.1016/j.compag.2020.105706_b0050 article-title: Depth-based detection of standing-pigs in moving noise environments publication-title: Sensors (Switzerland) doi: 10.3390/s17122757 – volume: 15 start-page: 1027 year: 2019 ident: 10.1016/j.compag.2020.105706_b0125 article-title: Automatic Fruit Classification Using Deep Learning for Industrial Applications publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2018.2875149 – volume: 144 start-page: 144 year: 2018 ident: 10.1016/j.compag.2020.105706_b0005 article-title: Monitoring trough visits of growing-finishing pigs with UHF-RFID publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.11.036 – volume: 159 start-page: 141 year: 2014 ident: 10.1016/j.compag.2020.105706_b0040 article-title: Automatic monitoring of pig locomotion using image analysis publication-title: Livest. Sci. doi: 10.1016/j.livsci.2013.11.007 – volume: 99 start-page: 209 year: 2013 ident: 10.1016/j.compag.2020.105706_b0100 article-title: Analysis of aggressive behaviours of pigs by automatic video recordings publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2013.09.015 |
SSID | ssj0016987 |
Score | 2.5162618 |
Snippet | •Proposing general behavior recognition framework of group-housed goats.•Investigating appropriate detection model of individual goat based on deep... Daily behavior is one important manifestation for health and welfare status of livestock. In traditional behavior recognition methods, it was often mandatory... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105706 |
SubjectTerms | agriculture Behavior Behavior recognition Centroids Deep learning Drinking Eating electronics Frames (data processing) Frames per second Goats Group dynamics group housing Group-housed goats Livestock Recognition Video Video sequences YOLOv4 |
Title | Automatic behavior recognition of group-housed goats using deep learning |
URI | https://dx.doi.org/10.1016/j.compag.2020.105706 https://www.proquest.com/docview/2449676703 https://www.proquest.com/docview/2561541971 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1wfSwSvddsmTZtjEZdVcS8q7C0kzWxVpF3WevW3O2nTBUUQvPWR0vI1M_mm_WaGkIvQSJ3EFgIohAk44zowBUYpwDiuzxIpffsp-34qJk_8dpbM1shVnwvjZJXe93c-vfXW_sjIozlavLyMHpCsZJGQMnYV2Bl3NUE5T90sv_xcyTxwQNalTAuMlnB0nz7XarxanXeJUWLcNbx1fY9-X55-OOp29RnvkG1PG2nePdkuWYNqj2zl5dKXzoB9Msk_mrotwEr73Hu6kgfVFa3ntE3hCJ4x2AdLy1o379Tp3ktqARbUN5AoD8jT-PrxahL4PglBwRlrApBWcI3bTnBhs1RG0kirWSYsz0RiRTrnHELmrNOyopBxoaXUaIkJAGeaHZL1qq7giFAjxRwJoTUaiVKSaGMyCyaMjWaMxQADwnp4VOGLiLteFm-qV4u9qg5U5UBVHagDEqyuWnRFNP4Yn_bIq2-TQaGf_-PK0_5FKW-M7woZjHR16UI2IOer02hG7t-IrgBRV8j8kExGMo2O_33zE7Lp9jqp3ylZb5YfcIaUpTHDdk4OyUZ-czeZfgHN1uqX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1t6YH2gNrSqku31JXKMexu7HjjA4cVLVrKxwWQuBk7ng1UVbJis0K98Kf4g4wTZyUQElIlblESJ9bzx7xJ3swA_BhYZZLYYYSZtJHgwkQ2Iy8FuSD7rIjS15-yj47l5Ez8Pk_OO3DXxsJ4WWXY-5s9vd6tw5l-QLM_u7rqnxBZSYdSqdhnYOdCBGXlAf67Ib9tvrP_kwZ5K473fp3uTqJQWiDKBOdVhMpJYejYaxRcOlJDZZUzPJVOpDJxcjQVAgfcT2jHs0zFmVHK0ORNEAU3nJ77Cl4L2i582YTt26WuhHqUNjHaktwz6l4br1eLympheU5uadxU2PWFlp62h48sQ23u9t7BWuCpbNxA8R46WHyAt-P8OuTqwHWYjBdVWWd8ZW2wP1vqkcqClVNWx4xEl-Vijo7lpanmzAvtc-YQZyxUrMg_wtmLoPcJVoqywM_ArJJTYqDOGmJmSWKsTR3aQWwN5zxG7AJv4dFZyFrui2f81a087Y9uQNUeVN2A2oVo2WrWZO145v5Ri7x-MPs0GZZnWvbagdJh9c81USblE-ENeBe-Ly_TuvU_Y0yBhLomqknsdahGw43_fvk3WJ2cHh3qw_3jgy_wxl9pdIY9WKmuF_iV-FJlN-v5yeDipRfEPRqbJSY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+behavior+recognition+of+group-housed+goats+using+deep+learning&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Jiang%2C+Min&rft.au=Rao%2C+Yuan&rft.au=Zhang%2C+Jingyao&rft.au=Shen%2C+Yiming&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=177&rft_id=info:doi/10.1016%2Fj.compag.2020.105706&rft.externalDocID=S0168169920314344 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |