Automatic behavior recognition of group-housed goats using deep learning

•Proposing general behavior recognition framework of group-housed goats.•Investigating appropriate detection model of individual goat based on deep learning.•Incorporating spatial-temporal location features of goats and feeding/drinking zones.•Developing the strategy for achieving real-time analysis...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 177; p. 105706
Main Authors Jiang, Min, Rao, Yuan, Zhang, Jingyao, Shen, Yiming
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Proposing general behavior recognition framework of group-housed goats.•Investigating appropriate detection model of individual goat based on deep learning.•Incorporating spatial-temporal location features of goats and feeding/drinking zones.•Developing the strategy for achieving real-time analysis of goat behavior.•Achieving high recognition accuracies without animal head detection and extra tools. Daily behavior is one important manifestation for health and welfare status of livestock. In traditional behavior recognition methods, it was often mandatory to detect animal heads or depend on extra tools. To overcome such shortcomings, this paper proposed one efficient behavior recognition approach using deep learning to recognize eating, drinking, active and inactive behaviors of group-housed goats from video sequences of top upper-side view. Firstly, the approach of detecting individual goat was designed by means of investigating the characteristics and suitability of several popular deep learning methods. Secondly, we proposed a general behavior recognition framework of group-housed goats for videos acquired from top upper-side view. Four types of goat behaviors were recognized by analyzing the spatial location relationship between goat bounding boxes and feeding/drinking zones, as well as the temporal movement amount of bounding box centroids of the same goat among consecutive frames. One inferential strategy was presented for estimating the missing behaviors caused by goat detection failure in frames. The experimental results showed that YOLOv4 was superior to other models in terms of both goat detection speed and accuracy, and the average recognition accuracies of 97.87%, 98.27%, 96.86% and 96.92%, respectively, for eating, drinking, active and inactive behaviors were achieved on the experimental videos, in real-time manner with the average analysis speed of 17 frames per second on a conventional hardware configuration. Hence, it was demonstrated that the proposed approach could offer one effective way for automatically conducting comprehensive behavior recognition of group-housed livestock.
AbstractList •Proposing general behavior recognition framework of group-housed goats.•Investigating appropriate detection model of individual goat based on deep learning.•Incorporating spatial-temporal location features of goats and feeding/drinking zones.•Developing the strategy for achieving real-time analysis of goat behavior.•Achieving high recognition accuracies without animal head detection and extra tools. Daily behavior is one important manifestation for health and welfare status of livestock. In traditional behavior recognition methods, it was often mandatory to detect animal heads or depend on extra tools. To overcome such shortcomings, this paper proposed one efficient behavior recognition approach using deep learning to recognize eating, drinking, active and inactive behaviors of group-housed goats from video sequences of top upper-side view. Firstly, the approach of detecting individual goat was designed by means of investigating the characteristics and suitability of several popular deep learning methods. Secondly, we proposed a general behavior recognition framework of group-housed goats for videos acquired from top upper-side view. Four types of goat behaviors were recognized by analyzing the spatial location relationship between goat bounding boxes and feeding/drinking zones, as well as the temporal movement amount of bounding box centroids of the same goat among consecutive frames. One inferential strategy was presented for estimating the missing behaviors caused by goat detection failure in frames. The experimental results showed that YOLOv4 was superior to other models in terms of both goat detection speed and accuracy, and the average recognition accuracies of 97.87%, 98.27%, 96.86% and 96.92%, respectively, for eating, drinking, active and inactive behaviors were achieved on the experimental videos, in real-time manner with the average analysis speed of 17 frames per second on a conventional hardware configuration. Hence, it was demonstrated that the proposed approach could offer one effective way for automatically conducting comprehensive behavior recognition of group-housed livestock.
Daily behavior is one important manifestation for health and welfare status of livestock. In traditional behavior recognition methods, it was often mandatory to detect animal heads or depend on extra tools. To overcome such shortcomings, this paper proposed one efficient behavior recognition approach using deep learning to recognize eating, drinking, active and inactive behaviors of group-housed goats from video sequences of top upper-side view. Firstly, the approach of detecting individual goat was designed by means of investigating the characteristics and suitability of several popular deep learning methods. Secondly, we proposed a general behavior recognition framework of group-housed goats for videos acquired from top upper-side view. Four types of goat behaviors were recognized by analyzing the spatial location relationship between goat bounding boxes and feeding/drinking zones, as well as the temporal movement amount of bounding box centroids of the same goat among consecutive frames. One inferential strategy was presented for estimating the missing behaviors caused by goat detection failure in frames. The experimental results showed that YOLOv4 was superior to other models in terms of both goat detection speed and accuracy, and the average recognition accuracies of 97.87%, 98.27%, 96.86% and 96.92%, respectively, for eating, drinking, active and inactive behaviors were achieved on the experimental videos, in real-time manner with the average analysis speed of 17 frames per second on a conventional hardware configuration. Hence, it was demonstrated that the proposed approach could offer one effective way for automatically conducting comprehensive behavior recognition of group-housed livestock.
ArticleNumber 105706
Author Shen, Yiming
Jiang, Min
Zhang, Jingyao
Rao, Yuan
Author_xml – sequence: 1
  givenname: Min
  surname: Jiang
  fullname: Jiang, Min
– sequence: 2
  givenname: Yuan
  surname: Rao
  fullname: Rao, Yuan
  email: ry9925@163.com
– sequence: 3
  givenname: Jingyao
  surname: Zhang
  fullname: Zhang, Jingyao
– sequence: 4
  givenname: Yiming
  surname: Shen
  fullname: Shen, Yiming
BookMark eNqFkMtKxDAUhoMoOF7ewEXBjZuOSZomjQtBxBsIbnQdYnKmZugkNUkHfHsz1JULXZ0L3384fEdo3wcPCJ0RvCSY8Mv10oTNqPslxXS3agXme2hBOkFrQbDYR4uCdTXhUh6io5TWuMyyEwv0eDPlsNHZmeodPvTWhVhFMKH3Lrvgq7Cq-himsf4IUwJb9UHnVE3J-b6yAGM1gI6-TCfoYKWHBKc_9Ri93d-93j7Wzy8PT7c3z7VhTZNrkJYzXXqKMbWdkES-S6ubjlvW8dZysWIMcENb0dnGGEmNllILyVoA1ujmGF3Md8cYPidIWW1cMjAM2kN5UdGWk5YRKUhBz3-h6zBFX75TlDHJBRe4KRSbKRNDShFWaoxuo-OXIljt9Kq1mvWqnV416y2xq18x47LeOctRu-G_8PUchmJq6yCqZBx4A9YV-VnZ4P4-8A2Jh5lh
CitedBy_id crossref_primary_10_3390_s24185890
crossref_primary_10_1016_j_aiia_2021_11_004
crossref_primary_10_1016_j_compag_2021_106140
crossref_primary_10_3390_s23104752
crossref_primary_10_1007_s00500_023_08513_1
crossref_primary_10_1007_s11042_024_20512_4
crossref_primary_10_3389_fanim_2022_835516
crossref_primary_10_3390_ani14243667
crossref_primary_10_1142_S0218001424560093
crossref_primary_10_1016_j_livsci_2021_104700
crossref_primary_10_17221_124_2023_CJAS
crossref_primary_10_3390_ani13193143
crossref_primary_10_1007_s13042_025_02602_3
crossref_primary_10_1016_j_compag_2023_107831
crossref_primary_10_1016_j_compag_2024_108645
crossref_primary_10_3390_ani13233688
crossref_primary_10_3390_app12094712
crossref_primary_10_1371_journal_pone_0265199
crossref_primary_10_1016_j_iot_2022_100539
crossref_primary_10_1093_jas_skae174
crossref_primary_10_3390_s23218952
crossref_primary_10_1177_15501477211007407
crossref_primary_10_1016_j_compag_2021_106636
crossref_primary_10_1016_j_compag_2021_106641
crossref_primary_10_3390_ani13203250
crossref_primary_10_4035_jsfwr_57_163
crossref_primary_10_1016_j_compag_2022_107010
crossref_primary_10_1093_jas_skad413
crossref_primary_10_1016_j_compag_2025_110224
crossref_primary_10_3168_jds_2022_22138
crossref_primary_10_3390_su13094738
crossref_primary_10_1371_journal_pone_0313412
crossref_primary_10_1016_j_compag_2024_108662
crossref_primary_10_1016_j_biosystemseng_2024_08_003
crossref_primary_10_1016_j_compag_2023_108189
crossref_primary_10_1016_j_compag_2024_109115
crossref_primary_10_1016_j_compag_2020_105982
crossref_primary_10_3390_technologies13030116
crossref_primary_10_1016_j_compag_2021_106254
crossref_primary_10_3390_ani12030233
crossref_primary_10_1016_j_eswa_2023_122829
crossref_primary_10_1109_TIM_2022_3192070
crossref_primary_10_1007_s00371_024_03301_w
crossref_primary_10_3390_ani13162636
crossref_primary_10_32604_cmc_2022_027457
crossref_primary_10_3390_ani13132096
crossref_primary_10_3390_agriculture12111907
crossref_primary_10_1016_j_amf_2025_200205
crossref_primary_10_3390_s21041492
Cites_doi 10.1016/j.tvjl.2016.09.005
10.3168/jds.2012-5806
10.1016/j.compag.2018.09.030
10.1109/TPAMI.2016.2577031
10.1016/j.compag.2016.04.026
10.1016/j.compag.2018.12.009
10.1016/j.livsci.2017.05.014
10.1016/j.compag.2018.11.002
10.1016/j.compag.2015.12.014
10.1016/j.compag.2014.03.010
10.1016/j.compag.2016.08.010
10.1016/B978-0-08-101012-9.00001-0
10.1016/j.compag.2019.104982
10.1016/j.compag.2015.07.003
10.1016/j.compag.2018.06.046
10.1016/j.compag.2018.01.023
10.13031/2013.39832
10.1016/j.meatsci.2015.05.010
10.1016/j.biosystemseng.2018.09.011
10.1016/j.compag.2013.06.002
10.1016/j.biosystemseng.2020.01.016
10.3390/s19173738
10.3390/s19224924
10.1016/j.livsci.2017.09.003
10.1017/S1751731116001208
10.1016/j.compag.2015.10.023
10.1016/j.compag.2013.01.013
10.3390/s17122757
10.1109/TII.2018.2875149
10.1016/j.compag.2017.11.036
10.1016/j.livsci.2013.11.007
10.1016/j.compag.2013.09.015
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Oct 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 2020
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2020.105706
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2020_105706
S0168169920314344
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7SC
7SP
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c433t-e9d64ac432002d87919b9da386d4865d67f44e032578d3cc92ca99a7945ee43a3
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Sun Aug 24 02:55:07 EDT 2025
Fri Jul 25 03:36:06 EDT 2025
Tue Jul 01 01:58:19 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Fri Feb 23 02:49:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
YOLOv4
Behavior recognition
Video sequences
Group-housed goats
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-e9d64ac432002d87919b9da386d4865d67f44e032578d3cc92ca99a7945ee43a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2449676703
PQPubID 2045491
ParticipantIDs proquest_miscellaneous_2561541971
proquest_journals_2449676703
crossref_primary_10_1016_j_compag_2020_105706
crossref_citationtrail_10_1016_j_compag_2020_105706
elsevier_sciencedirect_doi_10_1016_j_compag_2020_105706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Nasirahmadi, Richter, Hensel, Edwards, Sturm (b0085) 2015; 119
Yang, Huang, Zhu, Yang, Chen, Li, Xue (b0165) 2018; 175
Jiang, Wu, Yin, Wu, Song, He (b0030) 2019; 166
Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M., 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection.
Shamim Hossain, Al-Hammadi, Muhammad (b0125) 2019; 15
Matthews, Miller, Clapp, Plötz, Kyriazakis (b0070) 2016; 217
Nasirahmadi, Hensel, Edwards, Sturm (b0080) 2017; 11
Nasirahmadi, Sturm, Olsson, Jeppsson, Müller, Edwards, Hensel (b0095) 2019; 156
Kiani (b0045) 2018
Viazzi, Ismayilova, Oczak, Sonoda, Fels, Guarino, Vranken, Hartung, Bahr, Berckmans (b0150) 2014; 104
Brown-Brandl, Rohrer, Eigenberg (b0020) 2013; 96
Velarde, Fàbrega, Blanco-Penedo, Dalmau (b0140) 2015; 109
Kashiha, Bahr, Ott, Moons, Niewold, Tuyttens, Berckmans (b0040) 2014; 159
Maselyne, Saeys, Briene, Mertens, Vangeyte, De Ketelaere, Hessel, Sonck, Van Nuffel (b0065) 2016; 128
Kim, Chung, Choi, Sa, Kim, Chung, Park, Kim (b0050) 2017; 17
Kashiha, Bahr, Ott, Moons, Niewold, Ödberg, Berckmans (b0035) 2013; 93
Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. arXiv Prepr. arXiv 1409.1556.
Nasirahmadi, Edwards, Sturm (b0075) 2017; 202
Oczak, Ismayilova, Costa, Viazzi, Sonoda, Fels, Bahr, Hartung, Guarino, Berckmans, Vranken (b0100) 2013; 99
Stavrakakis, Li, Guy, Morgan, Ushaw, Johnson, Edwards (b0135) 2015; 117
Lao, Brown-Brandl, Stinn, Liu, Teng, Xin (b0055) 2016; 125
Wang, Tang, Zhu, Li, Xin, He (b0155) 2018; 154
Li, Chen, Zhang, Li (b0060) 2019; 19
Yang, Huang, Zheng, Li, Gan, Chen, Yang, Xue (b0160) 2020; 192
Zhu, Guo, Jiao, Ma, Chen (b0180) 2017; 205
Viazzi, Bahr, Schlageter-Tello, Van Hertem, Romanini, Pluk, Halachmi, Lokhorst, Berckmans (b0145) 2013
.
Adrion, Kapun, Eckert, Holland, Staiger, Götz, Gallmann (b0005) 2018; 144
Brown-Brandl, Eigenberg (b0015) 2011; 54
Saberioon, Cisar (b0120) 2016; 121
Pedersen, L.J., 2018. Overview of commercial pig production systems and their main welfare challenges, Advances in Pig Welfare. Elsevier Ltd.
Zheng, Zhu, Yang, Wang, Tu, Xue (b0175) 2018; 147
Ren, He, Girshick, Sun (b0115) 2017; 39
Campos, Sastre, Yagues, Torres, Giro-I-Nieto (b0025) 2017; 677–682
Nasirahmadi, Sturm, Edwards, Jeppsson, Olsson, Müller, Hensel (b0090) 2019; 19
Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement. arXiv Prepr. arXiv 1804.02767.
Yang, Xiao, Lin (b0170) 2018; 155
Maselyne (10.1016/j.compag.2020.105706_b0065) 2016; 128
Campos (10.1016/j.compag.2020.105706_b0025) 2017; 677–682
Lao (10.1016/j.compag.2020.105706_b0055) 2016; 125
Nasirahmadi (10.1016/j.compag.2020.105706_b0090) 2019; 19
10.1016/j.compag.2020.105706_b0105
Ren (10.1016/j.compag.2020.105706_b0115) 2017; 39
Brown-Brandl (10.1016/j.compag.2020.105706_b0015) 2011; 54
Viazzi (10.1016/j.compag.2020.105706_b0150) 2014; 104
Kashiha (10.1016/j.compag.2020.105706_b0035) 2013; 93
Yang (10.1016/j.compag.2020.105706_b0165) 2018; 175
Nasirahmadi (10.1016/j.compag.2020.105706_b0095) 2019; 156
Matthews (10.1016/j.compag.2020.105706_b0070) 2016; 217
Adrion (10.1016/j.compag.2020.105706_b0005) 2018; 144
Zhu (10.1016/j.compag.2020.105706_b0180) 2017; 205
Kashiha (10.1016/j.compag.2020.105706_b0040) 2014; 159
Zheng (10.1016/j.compag.2020.105706_b0175) 2018; 147
Li (10.1016/j.compag.2020.105706_b0060) 2019; 19
Jiang (10.1016/j.compag.2020.105706_b0030) 2019; 166
Shamim Hossain (10.1016/j.compag.2020.105706_b0125) 2019; 15
Stavrakakis (10.1016/j.compag.2020.105706_b0135) 2015; 117
Nasirahmadi (10.1016/j.compag.2020.105706_b0080) 2017; 11
10.1016/j.compag.2020.105706_b0130
10.1016/j.compag.2020.105706_b0010
10.1016/j.compag.2020.105706_b0110
Wang (10.1016/j.compag.2020.105706_b0155) 2018; 154
Kiani (10.1016/j.compag.2020.105706_b0045) 2018
Kim (10.1016/j.compag.2020.105706_b0050) 2017; 17
Viazzi (10.1016/j.compag.2020.105706_b0145) 2013
Yang (10.1016/j.compag.2020.105706_b0160) 2020; 192
Oczak (10.1016/j.compag.2020.105706_b0100) 2013; 99
Brown-Brandl (10.1016/j.compag.2020.105706_b0020) 2013; 96
Yang (10.1016/j.compag.2020.105706_b0170) 2018; 155
Nasirahmadi (10.1016/j.compag.2020.105706_b0075) 2017; 202
Velarde (10.1016/j.compag.2020.105706_b0140) 2015; 109
Nasirahmadi (10.1016/j.compag.2020.105706_b0085) 2015; 119
Saberioon (10.1016/j.compag.2020.105706_b0120) 2016; 121
References_xml – volume: 54
  start-page: 1913
  year: 2011
  end-page: 1920
  ident: b0015
  article-title: Development of a livestock feeding behavior monitoring system
  publication-title: Trans. ASABE
– volume: 159
  start-page: 141
  year: 2014
  end-page: 148
  ident: b0040
  article-title: Automatic monitoring of pig locomotion using image analysis
  publication-title: Livest. Sci.
– volume: 119
  start-page: 184
  year: 2015
  end-page: 190
  ident: b0085
  article-title: Using machine vision for investigation of changes in pig group lying patterns
  publication-title: Comput. Electron. Agric.
– volume: 121
  start-page: 215
  year: 2016
  end-page: 221
  ident: b0120
  article-title: Automated multiple fish tracking in three-Dimension using a Structured Light Sensor
  publication-title: Comput. Electron. Agric.
– volume: 99
  start-page: 209
  year: 2013
  end-page: 217
  ident: b0100
  article-title: Analysis of aggressive behaviours of pigs by automatic video recordings
  publication-title: Comput. Electron. Agric.
– volume: 677–682
  year: 2017
  ident: b0025
  article-title: Scaling a convolutional neural network for classification of adjective noun pairs with TensorFlow on GPU Clusters
  publication-title: IEEE/ACM Int. Symp. Clust.
– year: 2018
  ident: b0045
  article-title: Animal behavior management by energy-efficient wireless sensor networks
  publication-title: Comput. Electron. Agric.
– volume: 11
  start-page: 131
  year: 2017
  end-page: 139
  ident: b0080
  article-title: A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method
  publication-title: Animal
– year: 2013
  ident: b0145
  article-title: Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle
  publication-title: J. Dairy Sci.
– volume: 147
  start-page: 51
  year: 2018
  end-page: 63
  ident: b0175
  article-title: Automatic recognition of lactating sow postures from depth images by deep learning detector
  publication-title: Comput. Electron. Agric.
– volume: 93
  start-page: 111
  year: 2013
  end-page: 120
  ident: b0035
  article-title: Automatic identification of marked pigs in a pen using image pattern recognition
  publication-title: Comput. Electron. Agric.
– volume: 104
  start-page: 57
  year: 2014
  end-page: 62
  ident: b0150
  article-title: Image feature extraction for classification of aggressive interactions among pigs
  publication-title: Comput. Electron. Agric.
– volume: 217
  start-page: 43
  year: 2016
  end-page: 51
  ident: b0070
  article-title: Early detection of health and welfare compromises through automated detection of behavioural changes in pigs
  publication-title: Vet. J.
– volume: 15
  start-page: 1027
  year: 2019
  end-page: 1034
  ident: b0125
  article-title: Automatic Fruit Classification Using Deep Learning for Industrial Applications
  publication-title: IEEE Trans. Ind. Informatics
– volume: 202
  start-page: 25
  year: 2017
  end-page: 38
  ident: b0075
  article-title: Implementation of machine vision for detecting behaviour of cattle and pigs
  publication-title: Livest. Sci.
– volume: 125
  start-page: 56
  year: 2016
  end-page: 62
  ident: b0055
  article-title: Automatic recognition of lactating sow behaviors through depth image processing
  publication-title: Comput. Electron. Agric.
– volume: 175
  start-page: 133
  year: 2018
  end-page: 145
  ident: b0165
  article-title: Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features
  publication-title: Biosyst. Eng.
– volume: 109
  start-page: 13
  year: 2015
  end-page: 17
  ident: b0140
  article-title: Animal welfare towards sustainability in pork meat production
  publication-title: Meat Sci.
– volume: 96
  start-page: 246
  year: 2013
  end-page: 252
  ident: b0020
  article-title: Analysis of feeding behavior of group housed growing-finishing pigs
  publication-title: Comput. Electron. Agric.
– volume: 155
  start-page: 453
  year: 2018
  end-page: 460
  ident: b0170
  article-title: Feeding behavior recognition for group-housed pigs with the Faster R-CNN
  publication-title: Comput. Electron. Agric.
– volume: 154
  start-page: 443
  year: 2018
  end-page: 449
  ident: b0155
  article-title: Dairy goat detection based on Faster R-CNN from surveillance video
  publication-title: Comput. Electron. Agric.
– volume: 156
  start-page: 475
  year: 2019
  end-page: 481
  ident: b0095
  article-title: Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine
  publication-title: Comput. Electron. Agric.
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: b0115
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 205
  start-page: 129
  year: 2017
  end-page: 136
  ident: b0180
  article-title: Recognition and drinking behaviour analysis of individual pigs based on machine vision
  publication-title: Livest. Sci.
– volume: 19
  start-page: 3738
  year: 2019
  ident: b0090
  article-title: Deep learning and machine vision approaches for posture detection of individual pigs
  publication-title: Sensors (Switzerland)
– reference: Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M., 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection.
– reference: .
– reference: Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. arXiv Prepr. arXiv 1409.1556.
– reference: Pedersen, L.J., 2018. Overview of commercial pig production systems and their main welfare challenges, Advances in Pig Welfare. Elsevier Ltd.
– volume: 144
  start-page: 144
  year: 2018
  end-page: 153
  ident: b0005
  article-title: Monitoring trough visits of growing-finishing pigs with UHF-RFID
  publication-title: Comput. Electron. Agric.
– volume: 117
  start-page: 1
  year: 2015
  end-page: 7
  ident: b0135
  article-title: Validity of the Microsoft Kinect sensor for assessment of normal walking patterns in pigs
  publication-title: Comput. Electron. Agric.
– volume: 128
  start-page: 9
  year: 2016
  end-page: 19
  ident: b0065
  article-title: Methods to construct feeding visits from RFID registrations of growing-finishing pigs at the feed trough
  publication-title: Comput. Electron. Agric.
– volume: 166
  year: 2019
  ident: b0030
  article-title: FLYOLOv3 deep learning for key parts of dairy cow body detection
  publication-title: Comput. Electron. Agric.
– reference: Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement. arXiv Prepr. arXiv 1804.02767.
– volume: 192
  start-page: 56
  year: 2020
  end-page: 71
  ident: b0160
  article-title: An automatic recognition framework for sow daily behaviours based on motion and image analyses
  publication-title: Biosyst. Eng.
– volume: 19
  start-page: 4924
  year: 2019
  ident: b0060
  article-title: Mounting behaviour recognition for pigs based on deep learning
  publication-title: Sensors (Switzerland)
– volume: 17
  start-page: 2757
  year: 2017
  ident: b0050
  article-title: Depth-based detection of standing-pigs in moving noise environments
  publication-title: Sensors (Switzerland)
– volume: 217
  start-page: 43
  year: 2016
  ident: 10.1016/j.compag.2020.105706_b0070
  article-title: Early detection of health and welfare compromises through automated detection of behavioural changes in pigs
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2016.09.005
– year: 2013
  ident: 10.1016/j.compag.2020.105706_b0145
  article-title: Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2012-5806
– volume: 154
  start-page: 443
  year: 2018
  ident: 10.1016/j.compag.2020.105706_b0155
  article-title: Dairy goat detection based on Faster R-CNN from surveillance video
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.09.030
– volume: 39
  start-page: 1137
  year: 2017
  ident: 10.1016/j.compag.2020.105706_b0115
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 125
  start-page: 56
  year: 2016
  ident: 10.1016/j.compag.2020.105706_b0055
  article-title: Automatic recognition of lactating sow behaviors through depth image processing
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.04.026
– volume: 156
  start-page: 475
  year: 2019
  ident: 10.1016/j.compag.2020.105706_b0095
  article-title: Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.12.009
– volume: 202
  start-page: 25
  year: 2017
  ident: 10.1016/j.compag.2020.105706_b0075
  article-title: Implementation of machine vision for detecting behaviour of cattle and pigs
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2017.05.014
– volume: 155
  start-page: 453
  year: 2018
  ident: 10.1016/j.compag.2020.105706_b0170
  article-title: Feeding behavior recognition for group-housed pigs with the Faster R-CNN
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.11.002
– volume: 121
  start-page: 215
  year: 2016
  ident: 10.1016/j.compag.2020.105706_b0120
  article-title: Automated multiple fish tracking in three-Dimension using a Structured Light Sensor
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.12.014
– volume: 104
  start-page: 57
  year: 2014
  ident: 10.1016/j.compag.2020.105706_b0150
  article-title: Image feature extraction for classification of aggressive interactions among pigs
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.03.010
– volume: 128
  start-page: 9
  year: 2016
  ident: 10.1016/j.compag.2020.105706_b0065
  article-title: Methods to construct feeding visits from RFID registrations of growing-finishing pigs at the feed trough
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.08.010
– ident: 10.1016/j.compag.2020.105706_b0105
  doi: 10.1016/B978-0-08-101012-9.00001-0
– ident: 10.1016/j.compag.2020.105706_b0130
– volume: 166
  year: 2019
  ident: 10.1016/j.compag.2020.105706_b0030
  article-title: FLYOLOv3 deep learning for key parts of dairy cow body detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104982
– volume: 117
  start-page: 1
  year: 2015
  ident: 10.1016/j.compag.2020.105706_b0135
  article-title: Validity of the Microsoft Kinect sensor for assessment of normal walking patterns in pigs
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.07.003
– volume: 677–682
  year: 2017
  ident: 10.1016/j.compag.2020.105706_b0025
  article-title: Scaling a convolutional neural network for classification of adjective noun pairs with TensorFlow on GPU Clusters
  publication-title: IEEE/ACM Int. Symp. Clust.
– year: 2018
  ident: 10.1016/j.compag.2020.105706_b0045
  article-title: Animal behavior management by energy-efficient wireless sensor networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.06.046
– ident: 10.1016/j.compag.2020.105706_b0010
– volume: 147
  start-page: 51
  year: 2018
  ident: 10.1016/j.compag.2020.105706_b0175
  article-title: Automatic recognition of lactating sow postures from depth images by deep learning detector
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.01.023
– volume: 54
  start-page: 1913
  year: 2011
  ident: 10.1016/j.compag.2020.105706_b0015
  article-title: Development of a livestock feeding behavior monitoring system
  publication-title: Trans. ASABE
  doi: 10.13031/2013.39832
– volume: 109
  start-page: 13
  year: 2015
  ident: 10.1016/j.compag.2020.105706_b0140
  article-title: Animal welfare towards sustainability in pork meat production
  publication-title: Meat Sci.
  doi: 10.1016/j.meatsci.2015.05.010
– volume: 175
  start-page: 133
  year: 2018
  ident: 10.1016/j.compag.2020.105706_b0165
  article-title: Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.09.011
– volume: 96
  start-page: 246
  year: 2013
  ident: 10.1016/j.compag.2020.105706_b0020
  article-title: Analysis of feeding behavior of group housed growing-finishing pigs
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.06.002
– volume: 192
  start-page: 56
  year: 2020
  ident: 10.1016/j.compag.2020.105706_b0160
  article-title: An automatic recognition framework for sow daily behaviours based on motion and image analyses
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.01.016
– volume: 19
  start-page: 3738
  year: 2019
  ident: 10.1016/j.compag.2020.105706_b0090
  article-title: Deep learning and machine vision approaches for posture detection of individual pigs
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s19173738
– ident: 10.1016/j.compag.2020.105706_b0110
– volume: 19
  start-page: 4924
  year: 2019
  ident: 10.1016/j.compag.2020.105706_b0060
  article-title: Mounting behaviour recognition for pigs based on deep learning
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s19224924
– volume: 205
  start-page: 129
  year: 2017
  ident: 10.1016/j.compag.2020.105706_b0180
  article-title: Recognition and drinking behaviour analysis of individual pigs based on machine vision
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2017.09.003
– volume: 11
  start-page: 131
  year: 2017
  ident: 10.1016/j.compag.2020.105706_b0080
  article-title: A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method
  publication-title: Animal
  doi: 10.1017/S1751731116001208
– volume: 119
  start-page: 184
  year: 2015
  ident: 10.1016/j.compag.2020.105706_b0085
  article-title: Using machine vision for investigation of changes in pig group lying patterns
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.10.023
– volume: 93
  start-page: 111
  year: 2013
  ident: 10.1016/j.compag.2020.105706_b0035
  article-title: Automatic identification of marked pigs in a pen using image pattern recognition
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.01.013
– volume: 17
  start-page: 2757
  year: 2017
  ident: 10.1016/j.compag.2020.105706_b0050
  article-title: Depth-based detection of standing-pigs in moving noise environments
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s17122757
– volume: 15
  start-page: 1027
  year: 2019
  ident: 10.1016/j.compag.2020.105706_b0125
  article-title: Automatic Fruit Classification Using Deep Learning for Industrial Applications
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2018.2875149
– volume: 144
  start-page: 144
  year: 2018
  ident: 10.1016/j.compag.2020.105706_b0005
  article-title: Monitoring trough visits of growing-finishing pigs with UHF-RFID
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.11.036
– volume: 159
  start-page: 141
  year: 2014
  ident: 10.1016/j.compag.2020.105706_b0040
  article-title: Automatic monitoring of pig locomotion using image analysis
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2013.11.007
– volume: 99
  start-page: 209
  year: 2013
  ident: 10.1016/j.compag.2020.105706_b0100
  article-title: Analysis of aggressive behaviours of pigs by automatic video recordings
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.09.015
SSID ssj0016987
Score 2.5162618
Snippet •Proposing general behavior recognition framework of group-housed goats.•Investigating appropriate detection model of individual goat based on deep...
Daily behavior is one important manifestation for health and welfare status of livestock. In traditional behavior recognition methods, it was often mandatory...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105706
SubjectTerms agriculture
Behavior
Behavior recognition
Centroids
Deep learning
Drinking
Eating
electronics
Frames (data processing)
Frames per second
Goats
Group dynamics
group housing
Group-housed goats
Livestock
Recognition
Video
Video sequences
YOLOv4
Title Automatic behavior recognition of group-housed goats using deep learning
URI https://dx.doi.org/10.1016/j.compag.2020.105706
https://www.proquest.com/docview/2449676703
https://www.proquest.com/docview/2561541971
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1wfSwSvddsmTZtjEZdVcS8q7C0kzWxVpF3WevW3O2nTBUUQvPWR0vI1M_mm_WaGkIvQSJ3EFgIohAk44zowBUYpwDiuzxIpffsp-34qJk_8dpbM1shVnwvjZJXe93c-vfXW_sjIozlavLyMHpCsZJGQMnYV2Bl3NUE5T90sv_xcyTxwQNalTAuMlnB0nz7XarxanXeJUWLcNbx1fY9-X55-OOp29RnvkG1PG2nePdkuWYNqj2zl5dKXzoB9Msk_mrotwEr73Hu6kgfVFa3ntE3hCJ4x2AdLy1o379Tp3ktqARbUN5AoD8jT-PrxahL4PglBwRlrApBWcI3bTnBhs1RG0kirWSYsz0RiRTrnHELmrNOyopBxoaXUaIkJAGeaHZL1qq7giFAjxRwJoTUaiVKSaGMyCyaMjWaMxQADwnp4VOGLiLteFm-qV4u9qg5U5UBVHagDEqyuWnRFNP4Yn_bIq2-TQaGf_-PK0_5FKW-M7woZjHR16UI2IOer02hG7t-IrgBRV8j8kExGMo2O_33zE7Lp9jqp3ylZb5YfcIaUpTHDdk4OyUZ-czeZfgHN1uqX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1t6YH2gNrSqku31JXKMexu7HjjA4cVLVrKxwWQuBk7ng1UVbJis0K98Kf4g4wTZyUQElIlblESJ9bzx7xJ3swA_BhYZZLYYYSZtJHgwkQ2Iy8FuSD7rIjS15-yj47l5Ez8Pk_OO3DXxsJ4WWXY-5s9vd6tw5l-QLM_u7rqnxBZSYdSqdhnYOdCBGXlAf67Ib9tvrP_kwZ5K473fp3uTqJQWiDKBOdVhMpJYejYaxRcOlJDZZUzPJVOpDJxcjQVAgfcT2jHs0zFmVHK0ORNEAU3nJ77Cl4L2i582YTt26WuhHqUNjHaktwz6l4br1eLympheU5uadxU2PWFlp62h48sQ23u9t7BWuCpbNxA8R46WHyAt-P8OuTqwHWYjBdVWWd8ZW2wP1vqkcqClVNWx4xEl-Vijo7lpanmzAvtc-YQZyxUrMg_wtmLoPcJVoqywM_ArJJTYqDOGmJmSWKsTR3aQWwN5zxG7AJv4dFZyFrui2f81a087Y9uQNUeVN2A2oVo2WrWZO145v5Ri7x-MPs0GZZnWvbagdJh9c81USblE-ENeBe-Ly_TuvU_Y0yBhLomqknsdahGw43_fvk3WJ2cHh3qw_3jgy_wxl9pdIY9WKmuF_iV-FJlN-v5yeDipRfEPRqbJSY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+behavior+recognition+of+group-housed+goats+using+deep+learning&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Jiang%2C+Min&rft.au=Rao%2C+Yuan&rft.au=Zhang%2C+Jingyao&rft.au=Shen%2C+Yiming&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=177&rft_id=info:doi/10.1016%2Fj.compag.2020.105706&rft.externalDocID=S0168169920314344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon