Transferability of Covariates to Predict Soil Organic Carbon in Cropland Soils
Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one requirement to design and execute effective climate and food policies. In digital soil mapping (DSM), machine learning algorithms are used to predict soil properties from covariates derived from traditional soil m...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 4; p. 876 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one requirement to design and execute effective climate and food policies. In digital soil mapping (DSM), machine learning algorithms are used to predict soil properties from covariates derived from traditional soil mapping, digital elevation models, land use, and Earth observation (EO). However, such DSM models are trained for a specific dataset and region and have so far only allowed limited general statements to be made that would enable the models to be transferred to different regions. In this study, we test the transferability of SOC models for cropland soils using five different covariate groups: multispectral soil reflectance composites (satellite), soil legacy data (soil), digital elevation model derivatives (terrain), climate parameters (climate), and combined models (combined). The transferability was analyzed using data from two federal states in southern Germany: Bavaria and Baden-Wuerttemberg. First, baseline models were trained for each state with combined models performing best in both cases (R2 = 0.68/0.48). Next, the models were transferred and tested with soil samples from the other state whose data were not used during model calibration. Only satellite and combined models were transferable, but accuracy declined in both cases. In the final step, models were trained with samples from both states (mixed-data models) and applied to each state separately. This process significantly improved the accuracies of satellite, terrain, and combined models, while it showed no effect on climate models and decreased the models based on soil covariates. The experiment underlines the importance of EO for the transfer and extrapolation of DSM models. |
---|---|
AbstractList | Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one requirement to design and execute effective climate and food policies. In digital soil mapping (DSM), machine learning algorithms are used to predict soil properties from covariates derived from traditional soil mapping, digital elevation models, land use, and Earth observation (EO). However, such DSM models are trained for a specific dataset and region and have so far only allowed limited general statements to be made that would enable the models to be transferred to different regions. In this study, we test the transferability of SOC models for cropland soils using five different covariate groups: multispectral soil reflectance composites (satellite), soil legacy data (soil), digital elevation model derivatives (terrain), climate parameters (climate), and combined models (combined). The transferability was analyzed using data from two federal states in southern Germany: Bavaria and Baden-Wuerttemberg. First, baseline models were trained for each state with combined models performing best in both cases (R² = 0.68/0.48). Next, the models were transferred and tested with soil samples from the other state whose data were not used during model calibration. Only satellite and combined models were transferable, but accuracy declined in both cases. In the final step, models were trained with samples from both states (mixed-data models) and applied to each state separately. This process significantly improved the accuracies of satellite, terrain, and combined models, while it showed no effect on climate models and decreased the models based on soil covariates. The experiment underlines the importance of EO for the transfer and extrapolation of DSM models. Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one requirement to design and execute effective climate and food policies. In digital soil mapping (DSM), machine learning algorithms are used to predict soil properties from covariates derived from traditional soil mapping, digital elevation models, land use, and Earth observation (EO). However, such DSM models are trained for a specific dataset and region and have so far only allowed limited general statements to be made that would enable the models to be transferred to different regions. In this study, we test the transferability of SOC models for cropland soils using five different covariate groups: multispectral soil reflectance composites (satellite), soil legacy data (soil), digital elevation model derivatives (terrain), climate parameters (climate), and combined models (combined). The transferability was analyzed using data from two federal states in southern Germany: Bavaria and Baden-Wuerttemberg. First, baseline models were trained for each state with combined models performing best in both cases (R[sup.2] = 0.68/0.48). Next, the models were transferred and tested with soil samples from the other state whose data were not used during model calibration. Only satellite and combined models were transferable, but accuracy declined in both cases. In the final step, models were trained with samples from both states (mixed-data models) and applied to each state separately. This process significantly improved the accuracies of satellite, terrain, and combined models, while it showed no effect on climate models and decreased the models based on soil covariates. The experiment underlines the importance of EO for the transfer and extrapolation of DSM models. Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one requirement to design and execute effective climate and food policies. In digital soil mapping (DSM), machine learning algorithms are used to predict soil properties from covariates derived from traditional soil mapping, digital elevation models, land use, and Earth observation (EO). However, such DSM models are trained for a specific dataset and region and have so far only allowed limited general statements to be made that would enable the models to be transferred to different regions. In this study, we test the transferability of SOC models for cropland soils using five different covariate groups: multispectral soil reflectance composites (satellite), soil legacy data (soil), digital elevation model derivatives (terrain), climate parameters (climate), and combined models (combined). The transferability was analyzed using data from two federal states in southern Germany: Bavaria and Baden-Wuerttemberg. First, baseline models were trained for each state with combined models performing best in both cases (R2 = 0.68/0.48). Next, the models were transferred and tested with soil samples from the other state whose data were not used during model calibration. Only satellite and combined models were transferable, but accuracy declined in both cases. In the final step, models were trained with samples from both states (mixed-data models) and applied to each state separately. This process significantly improved the accuracies of satellite, terrain, and combined models, while it showed no effect on climate models and decreased the models based on soil covariates. The experiment underlines the importance of EO for the transfer and extrapolation of DSM models. |
Audience | Academic |
Author | Broeg, Tom Scholten, Thomas Blaschek, Michael Seitz, Steffen Taghizadeh-Mehrjardi, Ruhollah Zepp, Simone |
Author_xml | – sequence: 1 givenname: Tom surname: Broeg fullname: Broeg, Tom – sequence: 2 givenname: Michael orcidid: 0000-0003-3042-6195 surname: Blaschek fullname: Blaschek, Michael – sequence: 3 givenname: Steffen orcidid: 0000-0003-4911-3906 surname: Seitz fullname: Seitz, Steffen – sequence: 4 givenname: Ruhollah orcidid: 0000-0002-4620-6624 surname: Taghizadeh-Mehrjardi fullname: Taghizadeh-Mehrjardi, Ruhollah – sequence: 5 givenname: Simone orcidid: 0000-0002-7178-0476 surname: Zepp fullname: Zepp, Simone – sequence: 6 givenname: Thomas orcidid: 0000-0002-4875-2602 surname: Scholten fullname: Scholten, Thomas |
BookMark | eNptkU9r3DAQxU1IoWmaSz-BIZdS2HT0x5Z1DKZpA6EpJDmLsTxatHilraQt5NtHzTa0hEoHidHvPTHz3jXHIQZqmg8MLoTQ8Dll1oGEQfVHzQkHxVeSa378z_1tc5bzBuoSgmmQJ833-4QhO0o4-cWXxza6doy_MHkslNsS2x-JZm9Lexf90t6mNQZv2xHTFEPrQzumuFswzM_v-X3zxuGS6ezPedo8XH25H7-tbm6_Xo-XNysrhSir2WoHbJhsx5HPqDnrLGhyMyBpFKLnQs09txomYtBLLgg6pxkHweUAUpw21wffOeLG7JLfYno0Eb15LsS0NpiKtwsZgFkhTZwrxaUlnCx1zlqBtneDslS9Ph68din-3FMuZuuzpaV2RXGfjagzlUpypip6_grdxH0KtVNT7XU_dGJglbo4UGus__vgYklo655p623NzPlav1QddEx0A1QBHAQ2xZwTOWN9weJjqEK_GAbmd8Dmb8BV8umV5GUI_4GfABQ0pcY |
CitedBy_id | crossref_primary_10_1111_gcb_17608 crossref_primary_10_1016_j_geoderma_2024_116850 crossref_primary_10_3390_app14219990 crossref_primary_10_3390_land12091680 crossref_primary_10_1016_j_geoderma_2024_116941 crossref_primary_10_1016_j_geoderma_2024_116952 crossref_primary_10_3390_rs16152712 crossref_primary_10_1016_j_geoderma_2024_116984 crossref_primary_10_3390_land12040819 crossref_primary_10_1007_s10661_024_12640_z crossref_primary_10_1002_saj2_20559 crossref_primary_10_3390_agriculture13040781 crossref_primary_10_3390_su16135592 crossref_primary_10_3390_rs15225304 crossref_primary_10_1016_j_catena_2023_107183 crossref_primary_10_1016_j_still_2024_106428 crossref_primary_10_1016_j_catena_2024_108312 crossref_primary_10_3390_rs15184491 |
Cites_doi | 10.1016/j.geodrs.2021.e00422 10.3390/rs13091791 10.1016/j.catena.2020.104810 10.1038/s41598-022-13514-5 10.1016/j.isprsjprs.2021.06.015 10.1016/j.agee.2013.05.012 10.3390/rs11182121 10.5194/egusphere-egu2020-8253 10.3390/rs12071095 10.1038/s41598-020-61408-1 10.1016/j.geoderma.2017.09.015 10.1111/2041-210X.13650 10.3390/rs11242947 10.1016/j.rse.2017.11.004 10.3390/rs13245115 10.1023/A:1010933404324 10.1016/j.soilbio.2005.10.008 10.3390/rs12142234 10.3390/rs13071293 10.1016/j.still.2020.104589 10.1016/j.scitotenv.2020.137703 10.1590/1678-992x-2017-0300 10.3390/rs13163141 10.1590/s0100-204x2017000800009 10.3390/rs12091369 10.1016/j.geoderma.2021.115637 10.1111/ejss.12687 10.3390/rs14030472 10.1016/j.envsoft.2017.12.001 10.7717/peerj.5518 10.1214/ss/1009213726 10.1002/jpln.201500313 10.5194/gmd-8-1991-2015 10.1016/j.geoderma.2022.116094 10.5194/soil-6-269-2020 10.1111/j.1472-4642.2010.00725.x 10.1016/j.still.2021.105017 10.3390/rs14122917 10.5194/soil-8-587-2022 10.1007/s10584-006-9150-2 10.7717/peerj.13728 10.1016/j.geoderma.2020.114366 10.1016/S0016-7061(03)00223-4 10.3390/rs9121245 10.3390/agronomy12030628 10.20944/preprints202203.0253.v1 10.1002/fes3.96 10.1590/0103-9016-2015-0131 10.1016/j.geoderma.2021.115118 10.1016/j.geoderma.2021.115426 10.1016/j.geoderma.2015.08.037 10.1016/j.compag.2019.105172 10.1080/713610854 10.18637/jss.v077.i01 10.1016/j.catena.2021.105723 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15040876 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_00d7aeb227724ceabce5fcc3ac6f87ce A750513580 10_3390_rs15040876 |
GeographicLocations | Germany Bavaria Germany Alps |
GeographicLocations_xml | – name: Germany – name: Alps – name: Bavaria Germany |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-dc9f018bc52a2da9215c09efd0ae9a336237d62c90be106423e05f91203248043 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:28:42 EDT 2025 Fri Jul 11 11:29:56 EDT 2025 Fri Jul 25 09:32:52 EDT 2025 Tue Jun 10 21:01:25 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 Tue Jul 01 03:10:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-dc9f018bc52a2da9215c09efd0ae9a336237d62c90be106423e05f91203248043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3042-6195 0000-0003-4911-3906 0000-0002-7178-0476 0000-0002-4620-6624 0000-0002-4875-2602 |
OpenAccessLink | https://www.proquest.com/docview/2779685381?pq-origsite=%requestingapplication% |
PQID | 2779685381 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_00d7aeb227724ceabce5fcc3ac6f87ce proquest_miscellaneous_3040474217 proquest_journals_2779685381 gale_infotracacademiconefile_A750513580 crossref_citationtrail_10_3390_rs15040876 crossref_primary_10_3390_rs15040876 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wiesmeier (ref_64) 2013; 176 Vaudour (ref_18) 2021; 96 Zhao (ref_28) 2020; 169 ref_58 ref_13 ref_57 Lal (ref_1) 2016; 5 ref_11 ref_55 ref_10 ref_54 Gehl (ref_23) 2007; 80 Breiman (ref_52) 2001; 45 Safanelli (ref_16) 2020; 10 ref_19 Neyestani (ref_29) 2021; 26 ref_17 ref_15 ref_59 Meyer (ref_51) 2021; 12 Janzen (ref_3) 2006; 38 Zepp (ref_40) 2021; 178 Breiman (ref_53) 2001; 16 Wright (ref_56) 2017; 77 ref_60 Rogge (ref_14) 2018; 205 Guo (ref_69) 2021; 398 ref_24 ref_68 ref_67 ref_20 Rentschler (ref_12) 2022; 12 Hong (ref_74) 2020; 199 Meyer (ref_66) 2018; 101 Wolski (ref_27) 2017; 52 Gholizadeh (ref_73) 2021; 211 McBratney (ref_6) 2003; 117 Maleki (ref_21) 2020; 195 Minasny (ref_63) 2013; 33 Sheikhpour (ref_31) 2022; 426 ref_71 Elith (ref_50) 2011; 17 ref_70 Beucher (ref_39) 2020; 6 Stumpf (ref_22) 2016; 179 Behrens (ref_44) 2018; 310 Zeraatpisheh (ref_33) 2022; 208 ref_36 ref_35 ref_34 Conrad (ref_42) 2015; 8 ref_32 ref_75 Behrens (ref_38) 2018; 69 ref_37 Roudier (ref_77) 2022; 409 Bonannella (ref_61) 2022; 10 ref_47 ref_46 ref_45 Sakhaee (ref_76) 2022; 8 Malone (ref_25) 2016; 262 ref_43 Fathololoumi (ref_62) 2020; 721 ref_41 Vohland (ref_72) 2022; 405 Lal (ref_2) 2003; 22 Chagas (ref_26) 2016; 73 Machado (ref_30) 2019; 76 ref_49 ref_48 ref_9 Ma (ref_65) 2020; 370 ref_5 ref_4 ref_7 Hengl (ref_8) 2018; 2018 |
References_xml | – volume: 26 start-page: e00422 year: 2021 ident: ref_29 article-title: Digital mapp.ing of soil classes using spatial extrapolation with imbalanced data publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2021.e00422 – ident: ref_58 doi: 10.3390/rs13091791 – ident: ref_49 – ident: ref_32 – ident: ref_55 – volume: 195 start-page: 10481 year: 2020 ident: ref_21 article-title: Effect of the accuracy of topographic data on improving digital soil mapp.ing predictions with limited soil data: An app.lication to the Iranian loess plateau publication-title: CATENA doi: 10.1016/j.catena.2020.104810 – volume: 12 start-page: 9496 year: 2022 ident: ref_12 article-title: Contextual spatial modelling in the horizontal and vertical domains publication-title: Sci. Rep. doi: 10.1038/s41598-022-13514-5 – volume: 178 start-page: 366 year: 2021 ident: ref_40 article-title: The influence of vegetation index thresholding on EO-based assessments of exposed soil masks in Germany between 1984 and 2019 publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.06.015 – volume: 176 start-page: 39 year: 2013 ident: ref_64 article-title: Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria) publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2013.05.012 – ident: ref_67 doi: 10.3390/rs11182121 – ident: ref_68 doi: 10.5194/egusphere-egu2020-8253 – ident: ref_10 doi: 10.3390/rs12071095 – volume: 10 start-page: 4461 year: 2020 ident: ref_16 article-title: Bare Earth’s Surface Spectra as a Proxy for Soil Resource Monitoring publication-title: Sci. Rep. doi: 10.1038/s41598-020-61408-1 – volume: 310 start-page: 128 year: 2018 ident: ref_44 article-title: Multiscale contextual spatial modelling with the Gaussian scale space publication-title: Geoderma doi: 10.1016/j.geoderma.2017.09.015 – volume: 12 start-page: 1620 year: 2021 ident: ref_51 article-title: Predicting into unknown space? Estimating the area of applicability of spatial prediction models publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13650 – ident: ref_35 – ident: ref_60 doi: 10.3390/rs11242947 – ident: ref_71 – volume: 205 start-page: 1 year: 2018 ident: ref_14 article-title: Building an exposed soil composite processor (SCMaP) for mapp.ing spatial and temporal characteristics of soils with Landsat imagery (1984–2014) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.004 – ident: ref_59 doi: 10.3390/rs13245115 – volume: 45 start-page: 5 year: 2001 ident: ref_52 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 33 start-page: 14 year: 2013 ident: ref_63 article-title: Why calculating RPD is redundant publication-title: Pedometron – volume: 38 start-page: 419 year: 2006 ident: ref_3 article-title: The soil carbon dilemma: Shall we hoard it or use it? publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.10.008 – ident: ref_13 doi: 10.3390/rs12142234 – ident: ref_4 – ident: ref_5 doi: 10.3390/rs13071293 – volume: 199 start-page: 104589 year: 2020 ident: ref_74 article-title: Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: Feature selection coupled with random forest publication-title: Soil Tillage Res. doi: 10.1016/j.still.2020.104589 – volume: 721 start-page: 137703 year: 2020 ident: ref_62 article-title: Improved digital soil mapp.ing with multitemporal remotely sensed satellite data fusion: A case study in Iran publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137703 – volume: 76 start-page: 243 year: 2019 ident: ref_30 article-title: Soil type spatial prediction from random forest: Different training datasets, transferability, accuracy and uncertainty assessment publication-title: Sci. Agric. doi: 10.1590/1678-992x-2017-0300 – ident: ref_48 – ident: ref_19 doi: 10.3390/rs13163141 – volume: 52 start-page: 633 year: 2017 ident: ref_27 article-title: Digital soil mapp.ing and its implications in the extrapolation of soil-landscape relationships in detailed scale publication-title: Pesqui. Agropecu. Bras. doi: 10.1590/s0100-204x2017000800009 – ident: ref_17 doi: 10.3390/rs12091369 – ident: ref_41 – volume: 409 start-page: 115637 year: 2022 ident: ref_77 article-title: Soilscapes of New Zealand: Pedologic diversity as organised along environmental gradients publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115637 – volume: 69 start-page: 757 year: 2018 ident: ref_38 article-title: Spatial modelling with Euclidean distance fields and machine learning publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12687 – ident: ref_7 doi: 10.3390/rs14030472 – ident: ref_45 – volume: 101 start-page: 1 year: 2018 ident: ref_66 article-title: Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.12.001 – volume: 2018 start-page: e5518 year: 2018 ident: ref_8 article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables publication-title: PeerJ doi: 10.7717/peerj.5518 – volume: 16 start-page: 199 year: 2001 ident: ref_53 article-title: Statistical Modeling: The Two Cultures publication-title: Stat. Sci. doi: 10.1214/ss/1009213726 – volume: 179 start-page: 499 year: 2016 ident: ref_22 article-title: Incorporating limited field operability and legacy soil samples in a hypercube sampling design for digital soil mapping publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201500313 – volume: 8 start-page: 1991 year: 2015 ident: ref_42 article-title: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-1991-2015 – volume: 426 start-page: 116094 year: 2022 ident: ref_31 article-title: Semi-supervised learning for the spatial extrapolation of soil information publication-title: Geoderma doi: 10.1016/j.geoderma.2022.116094 – volume: 6 start-page: 269 year: 2020 ident: ref_39 article-title: Oblique geographic coordinates as covariates for digital soil mapping publication-title: SOIL doi: 10.5194/soil-6-269-2020 – volume: 17 start-page: 43 year: 2011 ident: ref_50 article-title: A statistical explanation of MaxEnt for ecologists publication-title: Divers. Distrib. doi: 10.1111/j.1472-4642.2010.00725.x – volume: 211 start-page: 105017 year: 2021 ident: ref_73 article-title: Soil organic carbon estimation using VNIR–SWIR spectroscopy: The effect of multiple sensors and scanning conditions publication-title: Soil Tillage Res. doi: 10.1016/j.still.2021.105017 – ident: ref_24 – ident: ref_57 doi: 10.3390/rs14122917 – ident: ref_34 – volume: 8 start-page: 587 year: 2022 ident: ref_76 article-title: Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms publication-title: SOIL doi: 10.5194/soil-8-587-2022 – ident: ref_47 – ident: ref_11 – volume: 96 start-page: 102277 year: 2021 ident: ref_18 article-title: Temporal mosaicking app.roaches of Sentinel-2 images for extending topsoil organic carbon content mapp.ing in croplands publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 80 start-page: 43 year: 2007 ident: ref_23 article-title: Emerging technologies for in situ measurement of soil carbon publication-title: Clim. Chang. doi: 10.1007/s10584-006-9150-2 – volume: 10 start-page: e13728 year: 2022 ident: ref_61 article-title: Forest tree species distribution for Europe 2000–2020: Mapping potential and realized distributions using spatiotemporal machine learning publication-title: PeerJ doi: 10.7717/peerj.13728 – volume: 370 start-page: 114366 year: 2020 ident: ref_65 article-title: Comparison of conditioned Latin hypercube and feature space coverage sampling for predicting soil classes using simulation from soil maps publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114366 – volume: 117 start-page: 3 year: 2003 ident: ref_6 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – ident: ref_37 – ident: ref_15 doi: 10.3390/rs9121245 – ident: ref_9 doi: 10.3390/agronomy12030628 – ident: ref_20 doi: 10.20944/preprints202203.0253.v1 – volume: 5 start-page: 212 year: 2016 ident: ref_1 article-title: Soil health and carbon management publication-title: Food Energy Secur. doi: 10.1002/fes3.96 – ident: ref_75 – ident: ref_54 – ident: ref_46 – volume: 73 start-page: 266 year: 2016 ident: ref_26 article-title: Digital soil mapp.ing using reference area and artificial neural networks publication-title: Sci. Agric. doi: 10.1590/0103-9016-2015-0131 – volume: 398 start-page: 115118 year: 2021 ident: ref_69 article-title: Mapp.ing soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115118 – volume: 405 start-page: 115426 year: 2022 ident: ref_72 article-title: Quantification of soil organic carbon at regional scale: Benefits of fusing vis-NIR and MIR diffuse reflectance data are greater for in situ than for laboratory-based modelling approaches publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115426 – volume: 262 start-page: 243 year: 2016 ident: ref_25 article-title: Comparing regression-based digital soil mapp.ing and multiple-point geostatistics for the spatial extrapolation of soil data publication-title: Geoderma doi: 10.1016/j.geoderma.2015.08.037 – volume: 169 start-page: 105172 year: 2020 ident: ref_28 article-title: Extended model prediction of high-resolution soil organic matter over a large area using limited number of field samples publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105172 – ident: ref_36 – ident: ref_70 – ident: ref_43 – volume: 22 start-page: 151 year: 2003 ident: ref_2 article-title: Global potential of soil carbon sequestration to mitigate the greenhouse effect publication-title: Crit. Rev. Plant Sci. doi: 10.1080/713610854 – volume: 77 start-page: 1 year: 2017 ident: ref_56 article-title: Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R publication-title: J. Stat. Soft. doi: 10.18637/jss.v077.i01 – volume: 208 start-page: 105723 year: 2022 ident: ref_33 article-title: Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates publication-title: CATENA doi: 10.1016/j.catena.2021.105723 |
SSID | ssj0000331904 |
Score | 2.4404314 |
Snippet | Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one requirement to design and execute effective climate and food policies.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 876 |
SubjectTerms | Accuracy Agricultural land Algorithms Carbon Carbon content climate Climate effects Climate models Comparative analysis cropland data collection Datasets Digital Elevation Models Digital mapping digital soil mapping Elevation extrapolation Germany Land use landscapes Machine learning Mapping model transfer Multispectral photography Organic carbon Organic soils reflectance Remote sensing satellites soil Soil mapping soil organic carbon Soil properties soil reflectance composite Soils Terrain Vegetation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSx0xEA7ixV6ktS2-aktKC6WHxWST_ZGjfVSkBylUwVuYnSQoyK7sWwX_e2d211cLipdeN2GZzGQy85HJN0J8BUImaNnTMDgCKI3OGhMwczlAYdFhGcYq35Py-Mz-Oi_OH7X64pqwiR54UtyBUqECgn85pYEWIzQYi4RoAMtUVxj59KWY9whMjWewoa2l7MRHagjXH_QrSn0sE7D9E4FGov7njuMxxhy9FttzcigPJ6HeiI3Y7oituU_5xd1bcTKGlhT7iV37TnZJLrtbwrucMsqhk797vnkZ5J_u8kpODy1RLqFvulZetnLZd9dcyziOr96Js6Ofp8vjbO6IkKE1ZsgCuqR03WCRQx7AUbxG5WIKCqIDQ8HIVKHM0akmaoYWJqoiOc1t0m2trHkvNtuujbtCQqGjLlmxJtnoDKQCah3r0kGFLuiF-P6gJY8zXTh3rbjyBBtYo_6vRhfiy3ru9USS8eSsH6zs9Qwmth4_kLn9bG7_krkX4hubyrP7kTgI8ysCWhQTWflDyoAKzXe7C7H_YE0_--XK029dSRlKTev7vB4mj-JrEmhjd7PyhsS1lSWs9uF_SLwnXnGL-qnSe19sDv1N_EiJzNB8GvfsPWuI8ks priority: 102 providerName: Directory of Open Access Journals |
Title | Transferability of Covariates to Predict Soil Organic Carbon in Cropland Soils |
URI | https://www.proquest.com/docview/2779685381 https://www.proquest.com/docview/3040474217 https://doaj.org/article/00d7aeb227724ceabce5fcc3ac6f87ce |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo9wAXxFMEysoIJMQhqhM7D5_QdulSIVhVlEq9Wc7EgUpVvCQpUv89M4l3KyTgmliRM_Y8Ps_4G8beWEQmoEjToNYIUKokrmQNsU6tzRRoyOuxynedn5yrTxfZRThw60NZ5dYmjoa69kBn5IdpUegcfUuZvN_8jKlrFGVXQwuNPTZDE1wi-JodHa9Pv-5OWYTELSbUxEsqEd8fdj2GQIqI2P7wRCNh_7_M8uhrVg_Y_RAk8sW0qg_ZHdc-YndDv_IfN4_ZenQxjesmlu0b7hu-9L8Q91LoyAfPTzvKwAz8zF9e8enCJfCl7Srf8suWLzu_oZrG8X3_hJ2vjr8tT-LQGSEGJeUQ16AbkZQVZKlNa6vRb4PQrqmFddpKdEqyqPMUtKhcQhBDOpE1OqF26aoUSj5l-61v3TPGbZa4JEd8ncpGOS1tk9kycWWubQG6TiL2bislA4E2nLpXXBmEDyRRcyvRiL3ejd1MZBl_HXVEwt6NIILr8YHvvpugL0aIurA0K4z-FThbgcsaAGkhb8oCXMTe0lIZUkOcDthwmwB_igitzAIjoSyhHG_EDraraYJ-9uZ2N0Xs1e41ahalS2zr_HVvJE5XFQox2_P_f-IFu0dN6Kda7gO2P3TX7iWGKkM1Z3vl6uOczRYfvnw-m4fdOR-B_2-tzex1 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ilCCxgBQhyi2rHz8AGhsrBsaVkh0Uq9GWfi0EpVsiQpaP8Uv5GZJLsVEnDrNbYsZzyvzzOeYey5Q2QCmiQNCoMAJZdhrgoITeRcrMFAUvRZvvNkdqw_nsQnG-zX6i0MpVWudGKvqIsa6I58N0pTk6BtyeSbxfeQukZRdHXVQmNgiwO__ImQrX29_w7P90UUTd8fTWbh2FUgBK1UFxZgSiGzHOLIRYUzaPNAGF8WwnnjFCp0lRZJBEbkXpJ7rryISyOp1bjOhFa47jV2HdcyJFHZ9MP6TkcoZGihhyqoOC52mxYdLk1l3_6we317gH8Zgd6yTW-xm6NLyvcGHrrNNnx1h22N3dFPl3fZvDdopW-Gmt5LXpd8Uv9AlE2OKu9q_rmheE_Hv9Rn53x43gl84pq8rvhZxSdNvaAMyn68vceOr4Ri99lmVVf-AeMull4miOYjVWpvlCtjl0mfJcalYAoZsFcrKlkYi5RTr4xzi2CFKGovKRqwZ-u5i6E0x19nvSVir2dQOe3-Q918s6N0WiGK1NGuEGto8C4HH5cAykFSZin4gL2ko7Ik9LgdcOPbBfwpKp9l99DviiVFlAO2szpNO2qD1l7ybsCerodRjik44ypfX7RW4XZ1qhEhPvz_Ek_Y1uzo06E93J8fbLMbETpdQxb5Dtvsmgv_CJ2kLn_ccyZnX69aFH4DUdci-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEJ-iMMAIEOIhqhM7H35AaOtWbQxVFTBpb8a5ODBpSkragfqv8ddxl6SdkIC3vcaW5Zzv6-c73wG8dIRMULOkYWEIoORhkKsCAxM5F2s0mBRtlu80OTzR70_j0y34tX4Lw2mVa53YKuqiRr4jH0VpahKyLVk4Kvu0iNn-5N38e8AdpDjSum6n0bHIsV_9JPi2eHu0T2f9KoomB5_Hh0HfYSBArdQyKNCUMsxyjCMXFc6Q_UNpfFlI541TpNxVWiQRGpn7kF115WVcmpDbjutMakXrXoPtlFCRHMD23sF09nFzwyMVsbfUXU1UpYwcNQtyvzQXgfvDCrbNAv5lElo7N7kNt3oHVex2HHUHtnx1F270vdK_re7BtDVvpW-6Ct8rUZdiXP8gzM1uq1jWYtZw9GcpPtVn56J77Ili7Jq8rsRZJcZNPed8ynZ8cR9OroRmD2BQ1ZV_CMLFoQ8TwvaRKrU3ypWxy0KfJcalaIpwCG_WVLLYlyznzhnnlqALU9ReUnQILzZz512hjr_O2mNib2Zwce32Q918tb2sWimL1PGuCHlo9C5HH5eIymFSZin6Ibzmo7KsAmg76PqXDPRTXEzL7pIXFoccXx7Czvo0ba8bFvaSk4fwfDNMUs2hGlf5-mJhFW1Xp5rw4qP_L_EMrpMY2A9H0-PHcDMiD6xLKd-BwbK58E_IY1rmT3vWFPDlqqXhN7TaKI0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferability+of+Covariates+to+Predict+Soil+Organic+Carbon+in+Cropland+Soils&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Broeg%2C+Tom&rft.au=Blaschek%2C+Michael&rft.au=Seitz%2C+Steffen&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=4&rft.spage=876&rft_id=info:doi/10.3390%2Frs15040876&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |