Transferability of Covariates to Predict Soil Organic Carbon in Cropland Soils

Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one requirement to design and execute effective climate and food policies. In digital soil mapping (DSM), machine learning algorithms are used to predict soil properties from covariates derived from traditional soil m...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 4; p. 876
Main Authors Broeg, Tom, Blaschek, Michael, Seitz, Steffen, Taghizadeh-Mehrjardi, Ruhollah, Zepp, Simone, Scholten, Thomas
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one requirement to design and execute effective climate and food policies. In digital soil mapping (DSM), machine learning algorithms are used to predict soil properties from covariates derived from traditional soil mapping, digital elevation models, land use, and Earth observation (EO). However, such DSM models are trained for a specific dataset and region and have so far only allowed limited general statements to be made that would enable the models to be transferred to different regions. In this study, we test the transferability of SOC models for cropland soils using five different covariate groups: multispectral soil reflectance composites (satellite), soil legacy data (soil), digital elevation model derivatives (terrain), climate parameters (climate), and combined models (combined). The transferability was analyzed using data from two federal states in southern Germany: Bavaria and Baden-Wuerttemberg. First, baseline models were trained for each state with combined models performing best in both cases (R2 = 0.68/0.48). Next, the models were transferred and tested with soil samples from the other state whose data were not used during model calibration. Only satellite and combined models were transferable, but accuracy declined in both cases. In the final step, models were trained with samples from both states (mixed-data models) and applied to each state separately. This process significantly improved the accuracies of satellite, terrain, and combined models, while it showed no effect on climate models and decreased the models based on soil covariates. The experiment underlines the importance of EO for the transfer and extrapolation of DSM models.
AbstractList Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one requirement to design and execute effective climate and food policies. In digital soil mapping (DSM), machine learning algorithms are used to predict soil properties from covariates derived from traditional soil mapping, digital elevation models, land use, and Earth observation (EO). However, such DSM models are trained for a specific dataset and region and have so far only allowed limited general statements to be made that would enable the models to be transferred to different regions. In this study, we test the transferability of SOC models for cropland soils using five different covariate groups: multispectral soil reflectance composites (satellite), soil legacy data (soil), digital elevation model derivatives (terrain), climate parameters (climate), and combined models (combined). The transferability was analyzed using data from two federal states in southern Germany: Bavaria and Baden-Wuerttemberg. First, baseline models were trained for each state with combined models performing best in both cases (R² = 0.68/0.48). Next, the models were transferred and tested with soil samples from the other state whose data were not used during model calibration. Only satellite and combined models were transferable, but accuracy declined in both cases. In the final step, models were trained with samples from both states (mixed-data models) and applied to each state separately. This process significantly improved the accuracies of satellite, terrain, and combined models, while it showed no effect on climate models and decreased the models based on soil covariates. The experiment underlines the importance of EO for the transfer and extrapolation of DSM models.
Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one requirement to design and execute effective climate and food policies. In digital soil mapping (DSM), machine learning algorithms are used to predict soil properties from covariates derived from traditional soil mapping, digital elevation models, land use, and Earth observation (EO). However, such DSM models are trained for a specific dataset and region and have so far only allowed limited general statements to be made that would enable the models to be transferred to different regions. In this study, we test the transferability of SOC models for cropland soils using five different covariate groups: multispectral soil reflectance composites (satellite), soil legacy data (soil), digital elevation model derivatives (terrain), climate parameters (climate), and combined models (combined). The transferability was analyzed using data from two federal states in southern Germany: Bavaria and Baden-Wuerttemberg. First, baseline models were trained for each state with combined models performing best in both cases (R[sup.2] = 0.68/0.48). Next, the models were transferred and tested with soil samples from the other state whose data were not used during model calibration. Only satellite and combined models were transferable, but accuracy declined in both cases. In the final step, models were trained with samples from both states (mixed-data models) and applied to each state separately. This process significantly improved the accuracies of satellite, terrain, and combined models, while it showed no effect on climate models and decreased the models based on soil covariates. The experiment underlines the importance of EO for the transfer and extrapolation of DSM models.
Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one requirement to design and execute effective climate and food policies. In digital soil mapping (DSM), machine learning algorithms are used to predict soil properties from covariates derived from traditional soil mapping, digital elevation models, land use, and Earth observation (EO). However, such DSM models are trained for a specific dataset and region and have so far only allowed limited general statements to be made that would enable the models to be transferred to different regions. In this study, we test the transferability of SOC models for cropland soils using five different covariate groups: multispectral soil reflectance composites (satellite), soil legacy data (soil), digital elevation model derivatives (terrain), climate parameters (climate), and combined models (combined). The transferability was analyzed using data from two federal states in southern Germany: Bavaria and Baden-Wuerttemberg. First, baseline models were trained for each state with combined models performing best in both cases (R2 = 0.68/0.48). Next, the models were transferred and tested with soil samples from the other state whose data were not used during model calibration. Only satellite and combined models were transferable, but accuracy declined in both cases. In the final step, models were trained with samples from both states (mixed-data models) and applied to each state separately. This process significantly improved the accuracies of satellite, terrain, and combined models, while it showed no effect on climate models and decreased the models based on soil covariates. The experiment underlines the importance of EO for the transfer and extrapolation of DSM models.
Audience Academic
Author Broeg, Tom
Scholten, Thomas
Blaschek, Michael
Seitz, Steffen
Taghizadeh-Mehrjardi, Ruhollah
Zepp, Simone
Author_xml – sequence: 1
  givenname: Tom
  surname: Broeg
  fullname: Broeg, Tom
– sequence: 2
  givenname: Michael
  orcidid: 0000-0003-3042-6195
  surname: Blaschek
  fullname: Blaschek, Michael
– sequence: 3
  givenname: Steffen
  orcidid: 0000-0003-4911-3906
  surname: Seitz
  fullname: Seitz, Steffen
– sequence: 4
  givenname: Ruhollah
  orcidid: 0000-0002-4620-6624
  surname: Taghizadeh-Mehrjardi
  fullname: Taghizadeh-Mehrjardi, Ruhollah
– sequence: 5
  givenname: Simone
  orcidid: 0000-0002-7178-0476
  surname: Zepp
  fullname: Zepp, Simone
– sequence: 6
  givenname: Thomas
  orcidid: 0000-0002-4875-2602
  surname: Scholten
  fullname: Scholten, Thomas
BookMark eNptkU9r3DAQxU1IoWmaSz-BIZdS2HT0x5Z1DKZpA6EpJDmLsTxatHilraQt5NtHzTa0hEoHidHvPTHz3jXHIQZqmg8MLoTQ8Dll1oGEQfVHzQkHxVeSa378z_1tc5bzBuoSgmmQJ833-4QhO0o4-cWXxza6doy_MHkslNsS2x-JZm9Lexf90t6mNQZv2xHTFEPrQzumuFswzM_v-X3zxuGS6ezPedo8XH25H7-tbm6_Xo-XNysrhSir2WoHbJhsx5HPqDnrLGhyMyBpFKLnQs09txomYtBLLgg6pxkHweUAUpw21wffOeLG7JLfYno0Eb15LsS0NpiKtwsZgFkhTZwrxaUlnCx1zlqBtneDslS9Ph68din-3FMuZuuzpaV2RXGfjagzlUpypip6_grdxH0KtVNT7XU_dGJglbo4UGus__vgYklo655p623NzPlav1QddEx0A1QBHAQ2xZwTOWN9weJjqEK_GAbmd8Dmb8BV8umV5GUI_4GfABQ0pcY
CitedBy_id crossref_primary_10_1111_gcb_17608
crossref_primary_10_1016_j_geoderma_2024_116850
crossref_primary_10_3390_app14219990
crossref_primary_10_3390_land12091680
crossref_primary_10_1016_j_geoderma_2024_116941
crossref_primary_10_1016_j_geoderma_2024_116952
crossref_primary_10_3390_rs16152712
crossref_primary_10_1016_j_geoderma_2024_116984
crossref_primary_10_3390_land12040819
crossref_primary_10_1007_s10661_024_12640_z
crossref_primary_10_1002_saj2_20559
crossref_primary_10_3390_agriculture13040781
crossref_primary_10_3390_su16135592
crossref_primary_10_3390_rs15225304
crossref_primary_10_1016_j_catena_2023_107183
crossref_primary_10_1016_j_still_2024_106428
crossref_primary_10_1016_j_catena_2024_108312
crossref_primary_10_3390_rs15184491
Cites_doi 10.1016/j.geodrs.2021.e00422
10.3390/rs13091791
10.1016/j.catena.2020.104810
10.1038/s41598-022-13514-5
10.1016/j.isprsjprs.2021.06.015
10.1016/j.agee.2013.05.012
10.3390/rs11182121
10.5194/egusphere-egu2020-8253
10.3390/rs12071095
10.1038/s41598-020-61408-1
10.1016/j.geoderma.2017.09.015
10.1111/2041-210X.13650
10.3390/rs11242947
10.1016/j.rse.2017.11.004
10.3390/rs13245115
10.1023/A:1010933404324
10.1016/j.soilbio.2005.10.008
10.3390/rs12142234
10.3390/rs13071293
10.1016/j.still.2020.104589
10.1016/j.scitotenv.2020.137703
10.1590/1678-992x-2017-0300
10.3390/rs13163141
10.1590/s0100-204x2017000800009
10.3390/rs12091369
10.1016/j.geoderma.2021.115637
10.1111/ejss.12687
10.3390/rs14030472
10.1016/j.envsoft.2017.12.001
10.7717/peerj.5518
10.1214/ss/1009213726
10.1002/jpln.201500313
10.5194/gmd-8-1991-2015
10.1016/j.geoderma.2022.116094
10.5194/soil-6-269-2020
10.1111/j.1472-4642.2010.00725.x
10.1016/j.still.2021.105017
10.3390/rs14122917
10.5194/soil-8-587-2022
10.1007/s10584-006-9150-2
10.7717/peerj.13728
10.1016/j.geoderma.2020.114366
10.1016/S0016-7061(03)00223-4
10.3390/rs9121245
10.3390/agronomy12030628
10.20944/preprints202203.0253.v1
10.1002/fes3.96
10.1590/0103-9016-2015-0131
10.1016/j.geoderma.2021.115118
10.1016/j.geoderma.2021.115426
10.1016/j.geoderma.2015.08.037
10.1016/j.compag.2019.105172
10.1080/713610854
10.18637/jss.v077.i01
10.1016/j.catena.2021.105723
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15040876
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_00d7aeb227724ceabce5fcc3ac6f87ce
A750513580
10_3390_rs15040876
GeographicLocations Germany
Bavaria Germany
Alps
GeographicLocations_xml – name: Germany
– name: Alps
– name: Bavaria Germany
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-dc9f018bc52a2da9215c09efd0ae9a336237d62c90be106423e05f91203248043
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:28:42 EDT 2025
Fri Jul 11 11:29:56 EDT 2025
Fri Jul 25 09:32:52 EDT 2025
Tue Jun 10 21:01:25 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
Tue Jul 01 03:10:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-dc9f018bc52a2da9215c09efd0ae9a336237d62c90be106423e05f91203248043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3042-6195
0000-0003-4911-3906
0000-0002-7178-0476
0000-0002-4620-6624
0000-0002-4875-2602
OpenAccessLink https://www.proquest.com/docview/2779685381?pq-origsite=%requestingapplication%
PQID 2779685381
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_00d7aeb227724ceabce5fcc3ac6f87ce
proquest_miscellaneous_3040474217
proquest_journals_2779685381
gale_infotracacademiconefile_A750513580
crossref_citationtrail_10_3390_rs15040876
crossref_primary_10_3390_rs15040876
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wiesmeier (ref_64) 2013; 176
Vaudour (ref_18) 2021; 96
Zhao (ref_28) 2020; 169
ref_58
ref_13
ref_57
Lal (ref_1) 2016; 5
ref_11
ref_55
ref_10
ref_54
Gehl (ref_23) 2007; 80
Breiman (ref_52) 2001; 45
Safanelli (ref_16) 2020; 10
ref_19
Neyestani (ref_29) 2021; 26
ref_17
ref_15
ref_59
Meyer (ref_51) 2021; 12
Janzen (ref_3) 2006; 38
Zepp (ref_40) 2021; 178
Breiman (ref_53) 2001; 16
Wright (ref_56) 2017; 77
ref_60
Rogge (ref_14) 2018; 205
Guo (ref_69) 2021; 398
ref_24
ref_68
ref_67
ref_20
Rentschler (ref_12) 2022; 12
Hong (ref_74) 2020; 199
Meyer (ref_66) 2018; 101
Wolski (ref_27) 2017; 52
Gholizadeh (ref_73) 2021; 211
McBratney (ref_6) 2003; 117
Maleki (ref_21) 2020; 195
Minasny (ref_63) 2013; 33
Sheikhpour (ref_31) 2022; 426
ref_71
Elith (ref_50) 2011; 17
ref_70
Beucher (ref_39) 2020; 6
Stumpf (ref_22) 2016; 179
Behrens (ref_44) 2018; 310
Zeraatpisheh (ref_33) 2022; 208
ref_36
ref_35
ref_34
Conrad (ref_42) 2015; 8
ref_32
ref_75
Behrens (ref_38) 2018; 69
ref_37
Roudier (ref_77) 2022; 409
Bonannella (ref_61) 2022; 10
ref_47
ref_46
ref_45
Sakhaee (ref_76) 2022; 8
Malone (ref_25) 2016; 262
ref_43
Fathololoumi (ref_62) 2020; 721
ref_41
Vohland (ref_72) 2022; 405
Lal (ref_2) 2003; 22
Chagas (ref_26) 2016; 73
Machado (ref_30) 2019; 76
ref_49
ref_48
ref_9
Ma (ref_65) 2020; 370
ref_5
ref_4
ref_7
Hengl (ref_8) 2018; 2018
References_xml – volume: 26
  start-page: e00422
  year: 2021
  ident: ref_29
  article-title: Digital mapp.ing of soil classes using spatial extrapolation with imbalanced data
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2021.e00422
– ident: ref_58
  doi: 10.3390/rs13091791
– ident: ref_49
– ident: ref_32
– ident: ref_55
– volume: 195
  start-page: 10481
  year: 2020
  ident: ref_21
  article-title: Effect of the accuracy of topographic data on improving digital soil mapp.ing predictions with limited soil data: An app.lication to the Iranian loess plateau
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104810
– volume: 12
  start-page: 9496
  year: 2022
  ident: ref_12
  article-title: Contextual spatial modelling in the horizontal and vertical domains
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-13514-5
– volume: 178
  start-page: 366
  year: 2021
  ident: ref_40
  article-title: The influence of vegetation index thresholding on EO-based assessments of exposed soil masks in Germany between 1984 and 2019
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.06.015
– volume: 176
  start-page: 39
  year: 2013
  ident: ref_64
  article-title: Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria)
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2013.05.012
– ident: ref_67
  doi: 10.3390/rs11182121
– ident: ref_68
  doi: 10.5194/egusphere-egu2020-8253
– ident: ref_10
  doi: 10.3390/rs12071095
– volume: 10
  start-page: 4461
  year: 2020
  ident: ref_16
  article-title: Bare Earth’s Surface Spectra as a Proxy for Soil Resource Monitoring
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61408-1
– volume: 310
  start-page: 128
  year: 2018
  ident: ref_44
  article-title: Multiscale contextual spatial modelling with the Gaussian scale space
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.09.015
– volume: 12
  start-page: 1620
  year: 2021
  ident: ref_51
  article-title: Predicting into unknown space? Estimating the area of applicability of spatial prediction models
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13650
– ident: ref_35
– ident: ref_60
  doi: 10.3390/rs11242947
– ident: ref_71
– volume: 205
  start-page: 1
  year: 2018
  ident: ref_14
  article-title: Building an exposed soil composite processor (SCMaP) for mapp.ing spatial and temporal characteristics of soils with Landsat imagery (1984–2014)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.004
– ident: ref_59
  doi: 10.3390/rs13245115
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_52
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 33
  start-page: 14
  year: 2013
  ident: ref_63
  article-title: Why calculating RPD is redundant
  publication-title: Pedometron
– volume: 38
  start-page: 419
  year: 2006
  ident: ref_3
  article-title: The soil carbon dilemma: Shall we hoard it or use it?
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.10.008
– ident: ref_13
  doi: 10.3390/rs12142234
– ident: ref_4
– ident: ref_5
  doi: 10.3390/rs13071293
– volume: 199
  start-page: 104589
  year: 2020
  ident: ref_74
  article-title: Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: Feature selection coupled with random forest
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2020.104589
– volume: 721
  start-page: 137703
  year: 2020
  ident: ref_62
  article-title: Improved digital soil mapp.ing with multitemporal remotely sensed satellite data fusion: A case study in Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137703
– volume: 76
  start-page: 243
  year: 2019
  ident: ref_30
  article-title: Soil type spatial prediction from random forest: Different training datasets, transferability, accuracy and uncertainty assessment
  publication-title: Sci. Agric.
  doi: 10.1590/1678-992x-2017-0300
– ident: ref_48
– ident: ref_19
  doi: 10.3390/rs13163141
– volume: 52
  start-page: 633
  year: 2017
  ident: ref_27
  article-title: Digital soil mapp.ing and its implications in the extrapolation of soil-landscape relationships in detailed scale
  publication-title: Pesqui. Agropecu. Bras.
  doi: 10.1590/s0100-204x2017000800009
– ident: ref_17
  doi: 10.3390/rs12091369
– ident: ref_41
– volume: 409
  start-page: 115637
  year: 2022
  ident: ref_77
  article-title: Soilscapes of New Zealand: Pedologic diversity as organised along environmental gradients
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115637
– volume: 69
  start-page: 757
  year: 2018
  ident: ref_38
  article-title: Spatial modelling with Euclidean distance fields and machine learning
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12687
– ident: ref_7
  doi: 10.3390/rs14030472
– ident: ref_45
– volume: 101
  start-page: 1
  year: 2018
  ident: ref_66
  article-title: Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.12.001
– volume: 2018
  start-page: e5518
  year: 2018
  ident: ref_8
  article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
  publication-title: PeerJ
  doi: 10.7717/peerj.5518
– volume: 16
  start-page: 199
  year: 2001
  ident: ref_53
  article-title: Statistical Modeling: The Two Cultures
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009213726
– volume: 179
  start-page: 499
  year: 2016
  ident: ref_22
  article-title: Incorporating limited field operability and legacy soil samples in a hypercube sampling design for digital soil mapping
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201500313
– volume: 8
  start-page: 1991
  year: 2015
  ident: ref_42
  article-title: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-8-1991-2015
– volume: 426
  start-page: 116094
  year: 2022
  ident: ref_31
  article-title: Semi-supervised learning for the spatial extrapolation of soil information
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.116094
– volume: 6
  start-page: 269
  year: 2020
  ident: ref_39
  article-title: Oblique geographic coordinates as covariates for digital soil mapping
  publication-title: SOIL
  doi: 10.5194/soil-6-269-2020
– volume: 17
  start-page: 43
  year: 2011
  ident: ref_50
  article-title: A statistical explanation of MaxEnt for ecologists
  publication-title: Divers. Distrib.
  doi: 10.1111/j.1472-4642.2010.00725.x
– volume: 211
  start-page: 105017
  year: 2021
  ident: ref_73
  article-title: Soil organic carbon estimation using VNIR–SWIR spectroscopy: The effect of multiple sensors and scanning conditions
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2021.105017
– ident: ref_24
– ident: ref_57
  doi: 10.3390/rs14122917
– ident: ref_34
– volume: 8
  start-page: 587
  year: 2022
  ident: ref_76
  article-title: Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
  publication-title: SOIL
  doi: 10.5194/soil-8-587-2022
– ident: ref_47
– ident: ref_11
– volume: 96
  start-page: 102277
  year: 2021
  ident: ref_18
  article-title: Temporal mosaicking app.roaches of Sentinel-2 images for extending topsoil organic carbon content mapp.ing in croplands
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 80
  start-page: 43
  year: 2007
  ident: ref_23
  article-title: Emerging technologies for in situ measurement of soil carbon
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-006-9150-2
– volume: 10
  start-page: e13728
  year: 2022
  ident: ref_61
  article-title: Forest tree species distribution for Europe 2000–2020: Mapping potential and realized distributions using spatiotemporal machine learning
  publication-title: PeerJ
  doi: 10.7717/peerj.13728
– volume: 370
  start-page: 114366
  year: 2020
  ident: ref_65
  article-title: Comparison of conditioned Latin hypercube and feature space coverage sampling for predicting soil classes using simulation from soil maps
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114366
– volume: 117
  start-page: 3
  year: 2003
  ident: ref_6
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– ident: ref_37
– ident: ref_15
  doi: 10.3390/rs9121245
– ident: ref_9
  doi: 10.3390/agronomy12030628
– ident: ref_20
  doi: 10.20944/preprints202203.0253.v1
– volume: 5
  start-page: 212
  year: 2016
  ident: ref_1
  article-title: Soil health and carbon management
  publication-title: Food Energy Secur.
  doi: 10.1002/fes3.96
– ident: ref_75
– ident: ref_54
– ident: ref_46
– volume: 73
  start-page: 266
  year: 2016
  ident: ref_26
  article-title: Digital soil mapp.ing using reference area and artificial neural networks
  publication-title: Sci. Agric.
  doi: 10.1590/0103-9016-2015-0131
– volume: 398
  start-page: 115118
  year: 2021
  ident: ref_69
  article-title: Mapp.ing soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115118
– volume: 405
  start-page: 115426
  year: 2022
  ident: ref_72
  article-title: Quantification of soil organic carbon at regional scale: Benefits of fusing vis-NIR and MIR diffuse reflectance data are greater for in situ than for laboratory-based modelling approaches
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115426
– volume: 262
  start-page: 243
  year: 2016
  ident: ref_25
  article-title: Comparing regression-based digital soil mapp.ing and multiple-point geostatistics for the spatial extrapolation of soil data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.08.037
– volume: 169
  start-page: 105172
  year: 2020
  ident: ref_28
  article-title: Extended model prediction of high-resolution soil organic matter over a large area using limited number of field samples
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105172
– ident: ref_36
– ident: ref_70
– ident: ref_43
– volume: 22
  start-page: 151
  year: 2003
  ident: ref_2
  article-title: Global potential of soil carbon sequestration to mitigate the greenhouse effect
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/713610854
– volume: 77
  start-page: 1
  year: 2017
  ident: ref_56
  article-title: Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
  publication-title: J. Stat. Soft.
  doi: 10.18637/jss.v077.i01
– volume: 208
  start-page: 105723
  year: 2022
  ident: ref_33
  article-title: Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates
  publication-title: CATENA
  doi: 10.1016/j.catena.2021.105723
SSID ssj0000331904
Score 2.4404314
Snippet Precise knowledge about the soil organic carbon (SOC) content in cropland soils is one requirement to design and execute effective climate and food policies....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 876
SubjectTerms Accuracy
Agricultural land
Algorithms
Carbon
Carbon content
climate
Climate effects
Climate models
Comparative analysis
cropland
data collection
Datasets
Digital Elevation Models
Digital mapping
digital soil mapping
Elevation
extrapolation
Germany
Land use
landscapes
Machine learning
Mapping
model transfer
Multispectral photography
Organic carbon
Organic soils
reflectance
Remote sensing
satellites
soil
Soil mapping
soil organic carbon
Soil properties
soil reflectance composite
Soils
Terrain
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSx0xEA7ixV6ktS2-aktKC6WHxWST_ZGjfVSkBylUwVuYnSQoyK7sWwX_e2d211cLipdeN2GZzGQy85HJN0J8BUImaNnTMDgCKI3OGhMwczlAYdFhGcYq35Py-Mz-Oi_OH7X64pqwiR54UtyBUqECgn85pYEWIzQYi4RoAMtUVxj59KWY9whMjWewoa2l7MRHagjXH_QrSn0sE7D9E4FGov7njuMxxhy9FttzcigPJ6HeiI3Y7oituU_5xd1bcTKGlhT7iV37TnZJLrtbwrucMsqhk797vnkZ5J_u8kpODy1RLqFvulZetnLZd9dcyziOr96Js6Ofp8vjbO6IkKE1ZsgCuqR03WCRQx7AUbxG5WIKCqIDQ8HIVKHM0akmaoYWJqoiOc1t0m2trHkvNtuujbtCQqGjLlmxJtnoDKQCah3r0kGFLuiF-P6gJY8zXTh3rbjyBBtYo_6vRhfiy3ru9USS8eSsH6zs9Qwmth4_kLn9bG7_krkX4hubyrP7kTgI8ysCWhQTWflDyoAKzXe7C7H_YE0_--XK029dSRlKTev7vB4mj-JrEmhjd7PyhsS1lSWs9uF_SLwnXnGL-qnSe19sDv1N_EiJzNB8GvfsPWuI8ks
  priority: 102
  providerName: Directory of Open Access Journals
Title Transferability of Covariates to Predict Soil Organic Carbon in Cropland Soils
URI https://www.proquest.com/docview/2779685381
https://www.proquest.com/docview/3040474217
https://doaj.org/article/00d7aeb227724ceabce5fcc3ac6f87ce
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo9wAXxFMEysoIJMQhqhM7D5_QdulSIVhVlEq9Wc7EgUpVvCQpUv89M4l3KyTgmliRM_Y8Ps_4G8beWEQmoEjToNYIUKokrmQNsU6tzRRoyOuxynedn5yrTxfZRThw60NZ5dYmjoa69kBn5IdpUegcfUuZvN_8jKlrFGVXQwuNPTZDE1wi-JodHa9Pv-5OWYTELSbUxEsqEd8fdj2GQIqI2P7wRCNh_7_M8uhrVg_Y_RAk8sW0qg_ZHdc-YndDv_IfN4_ZenQxjesmlu0b7hu-9L8Q91LoyAfPTzvKwAz8zF9e8enCJfCl7Srf8suWLzu_oZrG8X3_hJ2vjr8tT-LQGSEGJeUQ16AbkZQVZKlNa6vRb4PQrqmFddpKdEqyqPMUtKhcQhBDOpE1OqF26aoUSj5l-61v3TPGbZa4JEd8ncpGOS1tk9kycWWubQG6TiL2bislA4E2nLpXXBmEDyRRcyvRiL3ejd1MZBl_HXVEwt6NIILr8YHvvpugL0aIurA0K4z-FThbgcsaAGkhb8oCXMTe0lIZUkOcDthwmwB_igitzAIjoSyhHG_EDraraYJ-9uZ2N0Xs1e41ahalS2zr_HVvJE5XFQox2_P_f-IFu0dN6Kda7gO2P3TX7iWGKkM1Z3vl6uOczRYfvnw-m4fdOR-B_2-tzex1
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ilCCxgBQhyi2rHz8AGhsrBsaVkh0Uq9GWfi0EpVsiQpaP8Uv5GZJLsVEnDrNbYsZzyvzzOeYey5Q2QCmiQNCoMAJZdhrgoITeRcrMFAUvRZvvNkdqw_nsQnG-zX6i0MpVWudGKvqIsa6I58N0pTk6BtyeSbxfeQukZRdHXVQmNgiwO__ImQrX29_w7P90UUTd8fTWbh2FUgBK1UFxZgSiGzHOLIRYUzaPNAGF8WwnnjFCp0lRZJBEbkXpJ7rryISyOp1bjOhFa47jV2HdcyJFHZ9MP6TkcoZGihhyqoOC52mxYdLk1l3_6we317gH8Zgd6yTW-xm6NLyvcGHrrNNnx1h22N3dFPl3fZvDdopW-Gmt5LXpd8Uv9AlE2OKu9q_rmheE_Hv9Rn53x43gl84pq8rvhZxSdNvaAMyn68vceOr4Ri99lmVVf-AeMull4miOYjVWpvlCtjl0mfJcalYAoZsFcrKlkYi5RTr4xzi2CFKGovKRqwZ-u5i6E0x19nvSVir2dQOe3-Q918s6N0WiGK1NGuEGto8C4HH5cAykFSZin4gL2ko7Ik9LgdcOPbBfwpKp9l99DviiVFlAO2szpNO2qD1l7ybsCerodRjik44ypfX7RW4XZ1qhEhPvz_Ek_Y1uzo06E93J8fbLMbETpdQxb5Dtvsmgv_CJ2kLn_ccyZnX69aFH4DUdci-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEJ-iMMAIEOIhqhM7H35AaOtWbQxVFTBpb8a5ODBpSkragfqv8ddxl6SdkIC3vcaW5Zzv6-c73wG8dIRMULOkYWEIoORhkKsCAxM5F2s0mBRtlu80OTzR70_j0y34tX4Lw2mVa53YKuqiRr4jH0VpahKyLVk4Kvu0iNn-5N38e8AdpDjSum6n0bHIsV_9JPi2eHu0T2f9KoomB5_Hh0HfYSBArdQyKNCUMsxyjCMXFc6Q_UNpfFlI541TpNxVWiQRGpn7kF115WVcmpDbjutMakXrXoPtlFCRHMD23sF09nFzwyMVsbfUXU1UpYwcNQtyvzQXgfvDCrbNAv5lElo7N7kNt3oHVex2HHUHtnx1F270vdK_re7BtDVvpW-6Ct8rUZdiXP8gzM1uq1jWYtZw9GcpPtVn56J77Ili7Jq8rsRZJcZNPed8ynZ8cR9OroRmD2BQ1ZV_CMLFoQ8TwvaRKrU3ypWxy0KfJcalaIpwCG_WVLLYlyznzhnnlqALU9ReUnQILzZz512hjr_O2mNib2Zwce32Q918tb2sWimL1PGuCHlo9C5HH5eIymFSZin6Ibzmo7KsAmg76PqXDPRTXEzL7pIXFoccXx7Czvo0ba8bFvaSk4fwfDNMUs2hGlf5-mJhFW1Xp5rw4qP_L_EMrpMY2A9H0-PHcDMiD6xLKd-BwbK58E_IY1rmT3vWFPDlqqXhN7TaKI0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferability+of+Covariates+to+Predict+Soil+Organic+Carbon+in+Cropland+Soils&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Broeg%2C+Tom&rft.au=Blaschek%2C+Michael&rft.au=Seitz%2C+Steffen&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=4&rft.spage=876&rft_id=info:doi/10.3390%2Frs15040876&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon