Twelve weeks of exenatide treatment increases [18F]fluorodeoxyglucose uptake by brown adipose tissue without affecting oxidative resting energy expenditure in nondiabetic males

Brown adipose tissue (BAT) improves energy metabolism by combusting glucose and lipids into heat. Agonism of the glucagon-like peptide-1 receptor (GLP-1R) within the central nervous system activates BAT in mice. Moreover, in patients with type 2 diabetes, GLP-1R agonism lowers body weight and improv...

Full description

Saved in:
Bibliographic Details
Published inMetabolism, clinical and experimental Vol. 106; p. 154167
Main Authors Janssen, Laura G.M., Nahon, Kimberly J., Bracké, Katrien F.M., van den Broek, Dennis, Smit, Renée, Sardjoe Mishre, Aashley S.D., Koorneef, Lisa L., Martinez-Tellez, Borja, Burakiewicz, Jedrzej, Kan, Hermien E., van Velden, Floris H.P., Pereira Arias-Bouda, Lenka M., de Geus-Oei, Lioe-Fee, Berbée, Jimmy F.P., Jazet, Ingrid M., Boon, Mariëtte R., Rensen, Patrick C.N.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brown adipose tissue (BAT) improves energy metabolism by combusting glucose and lipids into heat. Agonism of the glucagon-like peptide-1 receptor (GLP-1R) within the central nervous system activates BAT in mice. Moreover, in patients with type 2 diabetes, GLP-1R agonism lowers body weight and improves glucose and lipid levels, possibly involving BAT activation. Interestingly, people from South Asian descent are prone to develop cardiometabolic disease. We studied the effect of GLP-1R agonism on BAT in humans, specifically in South Asians and Europids without obesity or type 2 diabetes. Twelve Dutch South Asian and 12 age- and BMI-matched Europid nondiabetic men received 12 weeks extended-release exenatide (Bydureon) in this single-arm prospective study. Before and after treatment, BAT was visualized by a cold-induced [18F]FDG-PET/CT scan and a thermoneutral MRI scan, and resting energy expenditure (REE), substrate oxidation, body composition and fasting plasma glucose and serum lipids were determined. Appetite was rated using a visual analogue scale. Since the effect of exenatide on metabolic parameters did not evidently differ between ethnicities, data of all participants were pooled. Exenatide decreased body weight (−1.5 ± 0.4 kg, p < 0.01), without affecting REE or substrate oxidation, and transiently decreased appetite ratings during the first weeks. Exenatide also lowered triglycerides (−15%, p < 0.05) and total cholesterol (−5%, p < 0.05), and tended to lower glucose levels. Notably, exenatide increased BAT metabolic volume (+28%, p < 0.05) and mean standardized uptake value (+11%, p < 0.05) ([18F]FDG-PET/CT), without affecting supraclavicular adipose tissue fat fraction (MRI). We show for the first time that GLP-1R agonism increases [18F]FDG uptake by BAT in South Asian and Europid men without obesity or type 2 diabetes. Clinicaltrials.gov NCT03002675. •Exenatide lowers body weight and lipid and glucose levels in healthy subjects.•Exenatide increases [18F]FDG uptake by BAT measured with PET/CT scan.•Exenatide does not affect the supraclavicular BAT fat fraction measured with MRI.
AbstractList Brown adipose tissue (BAT) improves energy metabolism by combusting glucose and lipids into heat. Agonism of the glucagon-like peptide-1 receptor (GLP-1R) within the central nervous system activates BAT in mice. Moreover, in patients with type 2 diabetes, GLP-1R agonism lowers body weight and improves glucose and lipid levels, possibly involving BAT activation. Interestingly, people from South Asian descent are prone to develop cardiometabolic disease. We studied the effect of GLP-1R agonism on BAT in humans, specifically in South Asians and Europids without obesity or type 2 diabetes. Twelve Dutch South Asian and 12 age- and BMI-matched Europid nondiabetic men received 12 weeks extended-release exenatide (Bydureon) in this single-arm prospective study. Before and after treatment, BAT was visualized by a cold-induced [18F]FDG-PET/CT scan and a thermoneutral MRI scan, and resting energy expenditure (REE), substrate oxidation, body composition and fasting plasma glucose and serum lipids were determined. Appetite was rated using a visual analogue scale. Since the effect of exenatide on metabolic parameters did not evidently differ between ethnicities, data of all participants were pooled. Exenatide decreased body weight (−1.5 ± 0.4 kg, p < 0.01), without affecting REE or substrate oxidation, and transiently decreased appetite ratings during the first weeks. Exenatide also lowered triglycerides (−15%, p < 0.05) and total cholesterol (−5%, p < 0.05), and tended to lower glucose levels. Notably, exenatide increased BAT metabolic volume (+28%, p < 0.05) and mean standardized uptake value (+11%, p < 0.05) ([18F]FDG-PET/CT), without affecting supraclavicular adipose tissue fat fraction (MRI). We show for the first time that GLP-1R agonism increases [18F]FDG uptake by BAT in South Asian and Europid men without obesity or type 2 diabetes. Clinicaltrials.gov NCT03002675. •Exenatide lowers body weight and lipid and glucose levels in healthy subjects.•Exenatide increases [18F]FDG uptake by BAT measured with PET/CT scan.•Exenatide does not affect the supraclavicular BAT fat fraction measured with MRI.
Brown adipose tissue (BAT) improves energy metabolism by combusting glucose and lipids into heat. Agonism of the glucagon-like peptide-1 receptor (GLP-1R) within the central nervous system activates BAT in mice. Moreover, in patients with type 2 diabetes, GLP-1R agonism lowers body weight and improves glucose and lipid levels, possibly involving BAT activation. Interestingly, people from South Asian descent are prone to develop cardiometabolic disease. We studied the effect of GLP-1R agonism on BAT in humans, specifically in South Asians and Europids without obesity or type 2 diabetes. Twelve Dutch South Asian and 12 age- and BMI-matched Europid nondiabetic men received 12 weeks extended-release exenatide (Bydureon) in this single-arm prospective study. Before and after treatment, BAT was visualized by a cold-induced [ F]FDG-PET/CT scan and a thermoneutral MRI scan, and resting energy expenditure (REE), substrate oxidation, body composition and fasting plasma glucose and serum lipids were determined. Appetite was rated using a visual analogue scale. Since the effect of exenatide on metabolic parameters did not evidently differ between ethnicities, data of all participants were pooled. Exenatide decreased body weight (-1.5 ± 0.4 kg, p < 0.01), without affecting REE or substrate oxidation, and transiently decreased appetite ratings during the first weeks. Exenatide also lowered triglycerides (-15%, p < 0.05) and total cholesterol (-5%, p < 0.05), and tended to lower glucose levels. Notably, exenatide increased BAT metabolic volume (+28%, p < 0.05) and mean standardized uptake value (+11%, p < 0.05) ([ F]FDG-PET/CT), without affecting supraclavicular adipose tissue fat fraction (MRI). We show for the first time that GLP-1R agonism increases [ F]FDG uptake by BAT in South Asian and Europid men without obesity or type 2 diabetes. Clinicaltrials.gov NCT03002675.
ArticleNumber 154167
Author Jazet, Ingrid M.
van den Broek, Dennis
Pereira Arias-Bouda, Lenka M.
Burakiewicz, Jedrzej
de Geus-Oei, Lioe-Fee
Janssen, Laura G.M.
Boon, Mariëtte R.
Nahon, Kimberly J.
Bracké, Katrien F.M.
Rensen, Patrick C.N.
van Velden, Floris H.P.
Smit, Renée
Martinez-Tellez, Borja
Kan, Hermien E.
Sardjoe Mishre, Aashley S.D.
Berbée, Jimmy F.P.
Koorneef, Lisa L.
Author_xml – sequence: 1
  givenname: Laura G.M.
  surname: Janssen
  fullname: Janssen, Laura G.M.
  organization: Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 2
  givenname: Kimberly J.
  surname: Nahon
  fullname: Nahon, Kimberly J.
  organization: Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 3
  givenname: Katrien F.M.
  surname: Bracké
  fullname: Bracké, Katrien F.M.
  organization: Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 4
  givenname: Dennis
  surname: van den Broek
  fullname: van den Broek, Dennis
  organization: Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 5
  givenname: Renée
  surname: Smit
  fullname: Smit, Renée
  organization: Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 6
  givenname: Aashley S.D.
  surname: Sardjoe Mishre
  fullname: Sardjoe Mishre, Aashley S.D.
  organization: Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 7
  givenname: Lisa L.
  surname: Koorneef
  fullname: Koorneef, Lisa L.
  organization: Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 8
  givenname: Borja
  surname: Martinez-Tellez
  fullname: Martinez-Tellez, Borja
  organization: Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 9
  givenname: Jedrzej
  surname: Burakiewicz
  fullname: Burakiewicz, Jedrzej
  organization: Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 10
  givenname: Hermien E.
  surname: Kan
  fullname: Kan, Hermien E.
  organization: Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 11
  givenname: Floris H.P.
  surname: van Velden
  fullname: van Velden, Floris H.P.
  organization: Department of Radiology, Division of Nuclear Medicine, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 12
  givenname: Lenka M.
  surname: Pereira Arias-Bouda
  fullname: Pereira Arias-Bouda, Lenka M.
  organization: Department of Radiology, Division of Nuclear Medicine, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 13
  givenname: Lioe-Fee
  surname: de Geus-Oei
  fullname: de Geus-Oei, Lioe-Fee
  organization: Department of Radiology, Division of Nuclear Medicine, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 14
  givenname: Jimmy F.P.
  surname: Berbée
  fullname: Berbée, Jimmy F.P.
  organization: Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 15
  givenname: Ingrid M.
  surname: Jazet
  fullname: Jazet, Ingrid M.
  organization: Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 16
  givenname: Mariëtte R.
  surname: Boon
  fullname: Boon, Mariëtte R.
  email: m.r.boon@lumc.nl
  organization: Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 17
  givenname: Patrick C.N.
  surname: Rensen
  fullname: Rensen, Patrick C.N.
  organization: Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31982480$$D View this record in MEDLINE/PubMed
BookMark eNqNUctu1DAUtVARnRY-AeQfyGAnzksIIVS1gFSJTVkhFDn2zXBnHDuync7kr_hEPExh0U3Z-FpH56F7zwU5s84CIa85W3PGq7fb9QhR9s6sc5YnrBS8qp-RFS-LPGsqxs7IirG8yphoy3NyEcKWMVbXTfWCnBe8bXLRsBX5dbcHcw90D7AL1A0UDmBlRA00epBxBBspWpX-AQL9zpubH4OZnXca3GHZmFm5AHSeotwB7Rfae7e3VGqcjnjEEObkjvGnmyOVwwAqot1Qd0CdYlKyh_AHAQt-s6T8CazGOHtIuTRtrVH2EFHRURoIL8nzQZoArx7mJfl2c3139Tm7_frpy9XH20yJooiZLkRTFmWji7pXgkstlOp7UYj0tmXVMqnafEgklhggVA51xWrZqoq3tRC6uCRvTr7T3I-gu8njKP3S_T1dIpQngvIuBA_DPwpn3bGibts9VNQdK-pOFSXdu0c6hTGdwtnoJZon1R9Oaki73yP4LigEq0CjT6fttMMnHd4_clAGLSppdrD8h_43dnLKdg
CitedBy_id crossref_primary_10_1038_s41598_022_21938_2
crossref_primary_10_46570_utjms_2024_1218
crossref_primary_10_3389_fphar_2023_1124633
crossref_primary_10_1002_lary_31815
crossref_primary_10_3389_fendo_2021_803363
crossref_primary_10_1039_D3FO00613A
crossref_primary_10_1080_17434440_2023_2283618
crossref_primary_10_18705_2782_3806_2025_5_1_6_28
crossref_primary_10_3390_biom15030408
crossref_primary_10_1093_cvr_cvac131
crossref_primary_10_1113_EP091815
crossref_primary_10_1016_j_molmet_2021_101351
crossref_primary_10_1097_MCO_0000000000000662
crossref_primary_10_3390_ijms252413295
crossref_primary_10_1007_s13410_023_01239_8
crossref_primary_10_1016_j_jnutbio_2024_109832
crossref_primary_10_3390_cells10051122
crossref_primary_10_1016_j_ando_2024_05_021
crossref_primary_10_1016_j_hsr_2024_100148
crossref_primary_10_3390_ijms25168650
crossref_primary_10_1111_cob_12481
crossref_primary_10_1152_ajpheart_00305_2021
crossref_primary_10_3390_ijms25094659
crossref_primary_10_1097_MCO_0000000000001064
crossref_primary_10_1016_j_jtherbio_2022_103259
crossref_primary_10_1007_s40618_023_02125_0
crossref_primary_10_1111_dom_16146
crossref_primary_10_1111_dom_15579
crossref_primary_10_1210_endrev_bnac015
crossref_primary_10_1016_j_xcrm_2022_100813
crossref_primary_10_1111_dom_15478
crossref_primary_10_2174_0115748855276929231218053337
crossref_primary_10_3390_biomedicines13020381
crossref_primary_10_3390_jcm13144151
crossref_primary_10_3390_cells13010065
crossref_primary_10_3390_ijms24108592
Cites_doi 10.1093/clinchem/18.6.499
10.2337/db14-1651
10.1111/dom.12175
10.2337/db11-1556
10.1523/JNEUROSCI.5977-08.2009
10.1038/s41598-019-48879-7
10.1016/j.metabol.2016.03.009
10.1016/j.cmet.2016.07.014
10.1016/j.cmet.2018.03.001
10.1093/ajcn/41.4.753
10.1056/NEJMoa1411892
10.1161/CIR.0000000000000580
10.1111/j.1467-789X.2010.00767.x
10.1111/j.1753-4887.1987.tb02684.x
10.1530/JOE-13-0414
10.1111/bcp.12843
10.1073/pnas.1705287114
10.2337/db14-0302
10.1016/S2213-8587(13)70156-6
10.1001/jamapediatrics.2013.1045
10.2337/diacare.27.8.1915
10.1002/jmri.25364
10.1016/j.physbeh.2006.04.026
10.1172/JCI97233
10.2337/db14-0849
10.1172/JCI68993
10.1007/s00125-016-3896-5
10.1002/osp4.84
10.4158/EP161356.ESGL
10.1161/ATVBAHA.112.246207
10.1016/j.diabres.2012.02.016
10.1097/MOL.0000000000000296
10.1007/s00125-015-3727-0
10.1038/ijo.2013.162
10.1016/j.ijcard.2016.06.028
10.1038/ijo.2015.219
10.3389/fendo.2018.00447
10.1016/j.atherosclerosis.2010.05.028
10.1210/jc.2014-3415
10.1016/j.molmet.2014.09.005
10.2337/dc11-0931
10.1371/journal.pone.0049152
10.1016/j.clinthera.2014.11.008
10.1139/h2012-068
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
DOI 10.1016/j.metabol.2020.154167
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1532-8600
ExternalDocumentID 31982480
10_1016_j_metabol_2020_154167
S0026049520300317
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYJJ
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACIEU
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AEVXI
AFFNX
AFJKZ
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
LZ1
M29
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OB0
OHT
ON-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UAP
UHS
WUQ
X7M
Z5R
ZGI
~G-
~KM
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
LCYCR
RIG
ZA5
AAYXX
AGRNS
CITATION
NPM
PKN
ID FETCH-LOGICAL-c433t-d3485358d37bc41ad4ccbb434cbb95690ac92f3480d37e4c2e7607a9c619744d3
IEDL.DBID .~1
ISSN 0026-0495
IngestDate Wed Feb 19 02:30:15 EST 2025
Tue Jul 01 00:56:46 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Fri Feb 23 02:46:07 EST 2024
Tue Aug 26 16:33:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords [18F]FDG
GLP-1
MRI
Weight loss
VAS
Brown adipose tissue
Glucagon-like peptide-1 receptor agonism
SUVpeak
REE
BAT
PET/CT
[18F]FDG-PET/CT
SUVmean
Lipid metabolism
GLP-1R
[F]FDG-PET/CT
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-d3485358d37bc41ad4ccbb434cbb95690ac92f3480d37e4c2e7607a9c619744d3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0026049520300317
PMID 31982480
ParticipantIDs pubmed_primary_31982480
crossref_primary_10_1016_j_metabol_2020_154167
crossref_citationtrail_10_1016_j_metabol_2020_154167
elsevier_sciencedirect_doi_10_1016_j_metabol_2020_154167
elsevier_clinicalkey_doi_10_1016_j_metabol_2020_154167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
2020-May
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Metabolism, clinical and experimental
PublicationTitleAlternate Metabolism
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kooijman, Wang, Parlevliet, Boon, Edelschaap, Snaterse (bb0050) 2015; 58
Nogueiras, Perez-Tilve, Veyrat-Durebex, Morgan, Varela, Haynes (bb0060) 2009; 29
van der Lans, Hoeks, Brans, Vijgen, Visser, Vosselman (bb0225) 2013; 123
Xiao, Bandsma, Dash, Szeto, Lewis (bb0175) 2012; 32
Lockie, Heppner, Chaudhary, Chabenne, Morgan, Veyrat-Durebex (bb0055) 2012; 61
Bradley, Kulstad, Racine, Shenker, Meredith, Schoeller (bb0145) 2012; 37
Smits, Muskiet, Tonneijck, Hoekstra, Kramer, Diamant (bb0205) 2016; 81
Schwartz, Koska, Mullin, Syoufi, Schwenke, Reaven (bb0180) 2010; 212
Taher, Baker, Cuizon, Masoudpour, Zhang, Farr (bb0165) 2014; 3
Schilperoort, Hoeke, Kooijman, Rensen (bb0195) 2016; 27
van Bloemendaal, Ten Kulve, la Fleur, Ijzerman, Diamant (bb0125) 2014; 221
Garvey, Mechanick, Brett, Garber, Hurley, Jastreboff (bb0015) 2016; 22
Carpentier, Blondin, Virtanen, Richard, Haman, Turcotte (bb0190) 2018; 9
Su, Li, Xu, Li, Kwong, Du (bb0095) 2016; 219
Apovian, Aronne, Bessesen, McDonnell, Murad, Pagotto (bb0020) 2015; 100
van Bloemendaal, RG, Ten Kulve, Barkhof, Konrad, Drent (bb0130) 2014; 63
Dushay, Gao, Gopalakrishnan, Crawley, Mitten, Wilker (bb0105) 2012; 35
Volgman, Palaniappan, Aggarwal, Gupta, Khandelwal, Krishnan (bb0010) 2018; 138
Drucker, Habener, Holst (bb0025) 2017; 127
Drucker (bb0030) 2018; 27
Andersson, Lundstrom, Engstrom, Lubberink, Ahlstrom, Kullberg (bb0210) 2019; 9
General Assembly of the World Medical A (bb0065) 2014; 81
Bakker, Boon, van der Linden, Arias-Bouda, van Klinken, Smit (bb0075) 2014; 2
Parlevliet, Wang, Geerling, Schroder-Van der Elst, Picha, O’Neil (bb0170) 2012; 7
Harder, Nielsen, Tu, Astrup (bb0150) 2004; 27
Beiroa, Imbernon, Gallego, Senra, Herranz, Villarroya (bb0040) 2014; 63
Mehta, Marso, Neeland (bb0230) 2017; 3
Shah, Kandula, Lin, Allison, Carr, Herrington (bb0110) 2016; 40
Kelly, Rudser, Nathan, Fox, Metzig, Coombes (bb0100) 2013; 167
Pi-Sunyer, Astrup, Fujioka, Greenway, Halpern, Krempf (bb0200) 2015; 373
Leitner, Huang, Brychta, Duckworth, Baskin, McGehee (bb0220) 2017; 114
van Marken Lichtenbelt, Daanen, Wouters, Fronczek, Raymann, Severens (bb0070) 2006; 88
bb0005
Stahl, Maier, Freitag, Floca, Berger, Umathum (bb0090) 2017; 45
Heymsfield, Thomas, Nguyen, Peng, Martin, Shen (bb0115) 2011; 12
Friedewald, Levy, Fredrickson (bb0080) 1972; 18
Forbes (bb0120) 1987; 45
Sun, Wu, Wang, Guo, Chai, Yang (bb0035) 2015; 37
Monami, Dicembrini, Nardini, Fiordelli, Mannucci (bb0085) 2014; 16
Chen, Cypess, Laughlin, Haft, Hu, Bredella (bb0185) 2016; 24
Horowitz, Flint, Jones, Hindsberger, Rasmussen, Kapitza (bb0045) 2012; 97
Blondin, Labbe, Noll, Kunach, Phoenix, Guerin (bb0215) 2015; 64
Farr, Tsoukas, Triantafyllou, Dincer, Filippaios, Ko (bb0135) 2016; 65
Xu, Lin, Zheng, Chen, Cao, Xu (bb0140) 2016; 59
van Can, Sloth, Jensen, Flint, Blaak, Saris (bb0155) 2014; 38
Ravussin, Burnand, Schutz, Jequier (bb0160) 1985; 41
Garvey (10.1016/j.metabol.2020.154167_bb0015) 2016; 22
Schwartz (10.1016/j.metabol.2020.154167_bb0180) 2010; 212
Forbes (10.1016/j.metabol.2020.154167_bb0120) 1987; 45
Bradley (10.1016/j.metabol.2020.154167_bb0145) 2012; 37
Drucker (10.1016/j.metabol.2020.154167_bb0025) 2017; 127
van Marken Lichtenbelt (10.1016/j.metabol.2020.154167_bb0070) 2006; 88
Taher (10.1016/j.metabol.2020.154167_bb0165) 2014; 3
Xu (10.1016/j.metabol.2020.154167_bb0140) 2016; 59
Harder (10.1016/j.metabol.2020.154167_bb0150) 2004; 27
Friedewald (10.1016/j.metabol.2020.154167_bb0080) 1972; 18
Horowitz (10.1016/j.metabol.2020.154167_bb0045) 2012; 97
Kooijman (10.1016/j.metabol.2020.154167_bb0050) 2015; 58
Su (10.1016/j.metabol.2020.154167_bb0095) 2016; 219
Shah (10.1016/j.metabol.2020.154167_bb0110) 2016; 40
Drucker (10.1016/j.metabol.2020.154167_bb0030) 2018; 27
General Assembly of the World Medical A (10.1016/j.metabol.2020.154167_bb0065) 2014; 81
Parlevliet (10.1016/j.metabol.2020.154167_bb0170) 2012; 7
Monami (10.1016/j.metabol.2020.154167_bb0085) 2014; 16
Stahl (10.1016/j.metabol.2020.154167_bb0090) 2017; 45
Farr (10.1016/j.metabol.2020.154167_bb0135) 2016; 65
Leitner (10.1016/j.metabol.2020.154167_bb0220) 2017; 114
van Bloemendaal (10.1016/j.metabol.2020.154167_bb0130) 2014; 63
Blondin (10.1016/j.metabol.2020.154167_bb0215) 2015; 64
Xiao (10.1016/j.metabol.2020.154167_bb0175) 2012; 32
Nogueiras (10.1016/j.metabol.2020.154167_bb0060) 2009; 29
Chen (10.1016/j.metabol.2020.154167_bb0185) 2016; 24
Lockie (10.1016/j.metabol.2020.154167_bb0055) 2012; 61
Andersson (10.1016/j.metabol.2020.154167_bb0210) 2019; 9
Bakker (10.1016/j.metabol.2020.154167_bb0075) 2014; 2
van der Lans (10.1016/j.metabol.2020.154167_bb0225) 2013; 123
Beiroa (10.1016/j.metabol.2020.154167_bb0040) 2014; 63
van Bloemendaal (10.1016/j.metabol.2020.154167_bb0125) 2014; 221
Schilperoort (10.1016/j.metabol.2020.154167_bb0195) 2016; 27
Kelly (10.1016/j.metabol.2020.154167_bb0100) 2013; 167
Carpentier (10.1016/j.metabol.2020.154167_bb0190) 2018; 9
Mehta (10.1016/j.metabol.2020.154167_bb0230) 2017; 3
Apovian (10.1016/j.metabol.2020.154167_bb0020) 2015; 100
van Can (10.1016/j.metabol.2020.154167_bb0155) 2014; 38
Dushay (10.1016/j.metabol.2020.154167_bb0105) 2012; 35
Sun (10.1016/j.metabol.2020.154167_bb0035) 2015; 37
Heymsfield (10.1016/j.metabol.2020.154167_bb0115) 2011; 12
Pi-Sunyer (10.1016/j.metabol.2020.154167_bb0200) 2015; 373
Ravussin (10.1016/j.metabol.2020.154167_bb0160) 1985; 41
Smits (10.1016/j.metabol.2020.154167_bb0205) 2016; 81
Volgman (10.1016/j.metabol.2020.154167_bb0010) 2018; 138
References_xml – volume: 114
  start-page: 8649
  year: 2017
  end-page: 8654
  ident: bb0220
  article-title: Mapping of human brown adipose tissue in lean and obese young men
  publication-title: Proc Natl Acad Sci U S A
– volume: 29
  start-page: 5916
  year: 2009
  end-page: 5925
  ident: bb0060
  article-title: Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity
  publication-title: J Neurosci
– volume: 81
  start-page: 613
  year: 2016
  end-page: 620
  ident: bb0205
  article-title: Exenatide acutely increases heart rate in parallel with augmented sympathetic nervous system activation in healthy overweight males
  publication-title: Br J Clin Pharmacol
– volume: 63
  start-page: 3346
  year: 2014
  end-page: 3358
  ident: bb0040
  article-title: GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK
  publication-title: Diabetes.
– volume: 65
  start-page: 945
  year: 2016
  end-page: 953
  ident: bb0135
  article-title: Short-term administration of the GLP-1 analog liraglutide decreases circulating leptin and increases GIP levels and these changes are associated with alterations in CNS responses to food cues: a randomized, placebo-controlled, crossover study
  publication-title: Metabolism
– volume: 58
  start-page: 2637
  year: 2015
  end-page: 2646
  ident: bb0050
  article-title: Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice
  publication-title: Diabetologia.
– volume: 138
  start-page: e1
  year: 2018
  end-page: e34
  ident: bb0010
  article-title: Atherosclerotic cardiovascular disease in South Asians in the United States: epidemiology, risk factors, and treatments: a scientific statement from the American Heart Association
  publication-title: Circulation.
– volume: 9
  start-page: 12358
  year: 2019
  ident: bb0210
  article-title: Estimating the cold-induced brown adipose tissue glucose uptake rate measured by (18)F-FDG PET using infrared thermography and water-fat separated MRI
  publication-title: Sci Rep
– volume: 64
  start-page: 2388
  year: 2015
  end-page: 2397
  ident: bb0215
  article-title: Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes
  publication-title: Diabetes.
– volume: 7
  year: 2012
  ident: bb0170
  article-title: GLP-1 receptor activation inhibits VLDL production and reverses hepatic steatosis by decreasing hepatic lipogenesis in high-fat-fed APOE*3-Leiden mice
  publication-title: PLoS One
– volume: 3
  start-page: 3
  year: 2017
  end-page: 14
  ident: bb0230
  article-title: Liraglutide for weight management: a critical review of the evidence
  publication-title: Obes Sci Pract
– volume: 27
  start-page: 740
  year: 2018
  end-page: 756
  ident: bb0030
  article-title: Mechanisms of action and therapeutic application of glucagon-like peptide-1
  publication-title: Cell Metab
– volume: 32
  start-page: 1513
  year: 2012
  end-page: 1519
  ident: bb0175
  article-title: Exenatide, a glucagon-like peptide-1 receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 373
  start-page: 11
  year: 2015
  end-page: 22
  ident: bb0200
  article-title: A randomized, controlled trial of 3.0 mg of liraglutide in weight management
  publication-title: N Engl J Med
– volume: 97
  start-page: 258
  year: 2012
  end-page: 266
  ident: bb0045
  article-title: Effect of the once-daily human GLP-1 analogue liraglutide on appetite, energy intake, energy expenditure and gastric emptying in type 2 diabetes
  publication-title: Diabetes Res Clin Pract
– volume: 59
  start-page: 1059
  year: 2016
  end-page: 1069
  ident: bb0140
  article-title: GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1
  publication-title: Diabetologia.
– volume: 38
  start-page: 784
  year: 2014
  end-page: 793
  ident: bb0155
  article-title: Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults
  publication-title: Int J Obes (Lond)
– volume: 37
  start-page: 225
  year: 2015
  end-page: 241
  ident: bb0035
  article-title: Effect of glucagon-like peptide-1 receptor agonists on lipid profiles among type 2 diabetes: a systematic review and network meta-analysis
  publication-title: Clin Ther.
– volume: 27
  start-page: 1915
  year: 2004
  end-page: 1921
  ident: bb0150
  article-title: The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes
  publication-title: Diabetes Care
– volume: 45
  start-page: 225
  year: 1987
  end-page: 231
  ident: bb0120
  article-title: Lean body mass-body fat interrelationships in humans
  publication-title: Nutr Rev
– volume: 12
  start-page: e348
  year: 2011
  end-page: e361
  ident: bb0115
  article-title: Voluntary weight loss: systematic review of early phase body composition changes
  publication-title: Obes Rev
– volume: 221
  start-page: T1
  year: 2014
  end-page: 16
  ident: bb0125
  article-title: Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS
  publication-title: J Endocrinol
– volume: 219
  start-page: 293
  year: 2016
  end-page: 300
  ident: bb0095
  article-title: Exenatide in obese or overweight patients without diabetes: a systematic review and meta-analyses of randomized controlled trials
  publication-title: Int J Cardiol
– volume: 61
  start-page: 2753
  year: 2012
  end-page: 2762
  ident: bb0055
  article-title: Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling
  publication-title: Diabetes.
– volume: 18
  start-page: 499
  year: 1972
  end-page: 502
  ident: bb0080
  article-title: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge
  publication-title: Clin Chem
– volume: 24
  start-page: 210
  year: 2016
  end-page: 222
  ident: bb0185
  article-title: Brown adipose reporting criteria in imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans
  publication-title: Cell Metab
– volume: 41
  start-page: 753
  year: 1985
  end-page: 759
  ident: bb0160
  article-title: Energy expenditure before and during energy restriction in obese patients
  publication-title: Am J Clin Nutr
– volume: 100
  start-page: 342
  year: 2015
  end-page: 362
  ident: bb0020
  article-title: Pharmacological management of obesity: an endocrine society clinical practice guideline
  publication-title: J Clin Endocrinol Metab
– volume: 81
  start-page: 14
  year: 2014
  end-page: 18
  ident: bb0065
  article-title: World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects
  publication-title: J Am Coll Dent
– ident: bb0005
– volume: 3
  start-page: 823
  year: 2014
  end-page: 833
  ident: bb0165
  article-title: GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance
  publication-title: Mol Metab
– volume: 63
  start-page: 4186
  year: 2014
  end-page: 4196
  ident: bb0130
  article-title: GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans
  publication-title: Diabetes.
– volume: 45
  start-page: 369
  year: 2017
  end-page: 380
  ident: bb0090
  article-title: In vivo assessment of cold stimulation effects on the fat fraction of brown adipose tissue using DIXON MRI
  publication-title: J Magn Reson Imaging
– volume: 22
  start-page: 842
  year: 2016
  end-page: 884
  ident: bb0015
  article-title: American association of clinical endocrinologists and American college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity executive summary complete guidelines available at https://www.aace.com/publications/guidelines
  publication-title: Endocr Pract
– volume: 88
  start-page: 489
  year: 2006
  end-page: 497
  ident: bb0070
  article-title: Evaluation of wireless determination of skin temperature using iButtons
  publication-title: Physiol Behav
– volume: 167
  start-page: 355
  year: 2013
  end-page: 360
  ident: bb0100
  article-title: The effect of glucagon-like peptide-1 receptor agonist therapy on body mass index in adolescents with severe obesity: a randomized, placebo-controlled, clinical trial
  publication-title: JAMA Pediatr
– volume: 16
  start-page: 38
  year: 2014
  end-page: 47
  ident: bb0085
  article-title: Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials
  publication-title: Diabetes Obes Metab
– volume: 9
  start-page: 447
  year: 2018
  ident: bb0190
  article-title: Brown adipose tissue energy metabolism in humans
  publication-title: Front Endocrinol (Lausanne)
– volume: 27
  start-page: 242
  year: 2016
  end-page: 248
  ident: bb0195
  article-title: Relevance of lipid metabolism for brown fat visualization and quantification
  publication-title: Curr Opin Lipidol
– volume: 123
  start-page: 3395
  year: 2013
  end-page: 3403
  ident: bb0225
  article-title: Cold acclimation recruits human brown fat and increases nonshivering thermogenesis
  publication-title: J Clin Invest
– volume: 127
  start-page: 4217
  year: 2017
  end-page: 4227
  ident: bb0025
  article-title: Discovery, characterization, and clinical development of the glucagon-like peptides
  publication-title: J Clin Invest
– volume: 212
  start-page: 217
  year: 2010
  end-page: 222
  ident: bb0180
  article-title: Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus
  publication-title: Atherosclerosis.
– volume: 35
  start-page: 4
  year: 2012
  end-page: 11
  ident: bb0105
  article-title: Short-term exenatide treatment leads to significant weight loss in a subset of obese women without diabetes
  publication-title: Diabetes Care
– volume: 40
  start-page: 639
  year: 2016
  end-page: 645
  ident: bb0110
  article-title: Less favorable body composition and adipokines in South Asians compared with other US ethnic groups: results from the MASALA and MESA studies
  publication-title: Int J Obes (Lond)
– volume: 2
  start-page: 210
  year: 2014
  end-page: 217
  ident: bb0075
  article-title: Brown adipose tissue volume in healthy lean south Asian adults compared with white Caucasians: a prospective, case-controlled observational study
  publication-title: Lancet Diabetes Endocrinol
– volume: 37
  start-page: 893
  year: 2012
  end-page: 899
  ident: bb0145
  article-title: Alterations in energy balance following exenatide administration
  publication-title: Appl Physiol Nutr Metab
– volume: 18
  start-page: 499
  year: 1972
  ident: 10.1016/j.metabol.2020.154167_bb0080
  article-title: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge
  publication-title: Clin Chem
  doi: 10.1093/clinchem/18.6.499
– volume: 64
  start-page: 2388
  year: 2015
  ident: 10.1016/j.metabol.2020.154167_bb0215
  article-title: Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes
  publication-title: Diabetes.
  doi: 10.2337/db14-1651
– volume: 16
  start-page: 38
  year: 2014
  ident: 10.1016/j.metabol.2020.154167_bb0085
  article-title: Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials
  publication-title: Diabetes Obes Metab
  doi: 10.1111/dom.12175
– volume: 81
  start-page: 14
  year: 2014
  ident: 10.1016/j.metabol.2020.154167_bb0065
  article-title: World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects
  publication-title: J Am Coll Dent
– volume: 61
  start-page: 2753
  year: 2012
  ident: 10.1016/j.metabol.2020.154167_bb0055
  article-title: Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling
  publication-title: Diabetes.
  doi: 10.2337/db11-1556
– volume: 29
  start-page: 5916
  year: 2009
  ident: 10.1016/j.metabol.2020.154167_bb0060
  article-title: Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5977-08.2009
– volume: 9
  start-page: 12358
  year: 2019
  ident: 10.1016/j.metabol.2020.154167_bb0210
  article-title: Estimating the cold-induced brown adipose tissue glucose uptake rate measured by (18)F-FDG PET using infrared thermography and water-fat separated MRI
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-48879-7
– volume: 65
  start-page: 945
  year: 2016
  ident: 10.1016/j.metabol.2020.154167_bb0135
  article-title: Short-term administration of the GLP-1 analog liraglutide decreases circulating leptin and increases GIP levels and these changes are associated with alterations in CNS responses to food cues: a randomized, placebo-controlled, crossover study
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2016.03.009
– volume: 24
  start-page: 210
  year: 2016
  ident: 10.1016/j.metabol.2020.154167_bb0185
  article-title: Brown adipose reporting criteria in imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.07.014
– volume: 27
  start-page: 740
  year: 2018
  ident: 10.1016/j.metabol.2020.154167_bb0030
  article-title: Mechanisms of action and therapeutic application of glucagon-like peptide-1
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2018.03.001
– volume: 41
  start-page: 753
  year: 1985
  ident: 10.1016/j.metabol.2020.154167_bb0160
  article-title: Energy expenditure before and during energy restriction in obese patients
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/41.4.753
– volume: 373
  start-page: 11
  year: 2015
  ident: 10.1016/j.metabol.2020.154167_bb0200
  article-title: A randomized, controlled trial of 3.0 mg of liraglutide in weight management
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1411892
– volume: 138
  start-page: e1
  year: 2018
  ident: 10.1016/j.metabol.2020.154167_bb0010
  article-title: Atherosclerotic cardiovascular disease in South Asians in the United States: epidemiology, risk factors, and treatments: a scientific statement from the American Heart Association
  publication-title: Circulation.
  doi: 10.1161/CIR.0000000000000580
– volume: 12
  start-page: e348
  year: 2011
  ident: 10.1016/j.metabol.2020.154167_bb0115
  article-title: Voluntary weight loss: systematic review of early phase body composition changes
  publication-title: Obes Rev
  doi: 10.1111/j.1467-789X.2010.00767.x
– volume: 45
  start-page: 225
  year: 1987
  ident: 10.1016/j.metabol.2020.154167_bb0120
  article-title: Lean body mass-body fat interrelationships in humans
  publication-title: Nutr Rev
  doi: 10.1111/j.1753-4887.1987.tb02684.x
– volume: 221
  start-page: T1
  year: 2014
  ident: 10.1016/j.metabol.2020.154167_bb0125
  article-title: Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS
  publication-title: J Endocrinol
  doi: 10.1530/JOE-13-0414
– volume: 81
  start-page: 613
  year: 2016
  ident: 10.1016/j.metabol.2020.154167_bb0205
  article-title: Exenatide acutely increases heart rate in parallel with augmented sympathetic nervous system activation in healthy overweight males
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/bcp.12843
– volume: 114
  start-page: 8649
  year: 2017
  ident: 10.1016/j.metabol.2020.154167_bb0220
  article-title: Mapping of human brown adipose tissue in lean and obese young men
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1705287114
– volume: 63
  start-page: 3346
  year: 2014
  ident: 10.1016/j.metabol.2020.154167_bb0040
  article-title: GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK
  publication-title: Diabetes.
  doi: 10.2337/db14-0302
– volume: 2
  start-page: 210
  year: 2014
  ident: 10.1016/j.metabol.2020.154167_bb0075
  article-title: Brown adipose tissue volume in healthy lean south Asian adults compared with white Caucasians: a prospective, case-controlled observational study
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(13)70156-6
– volume: 167
  start-page: 355
  year: 2013
  ident: 10.1016/j.metabol.2020.154167_bb0100
  article-title: The effect of glucagon-like peptide-1 receptor agonist therapy on body mass index in adolescents with severe obesity: a randomized, placebo-controlled, clinical trial
  publication-title: JAMA Pediatr
  doi: 10.1001/jamapediatrics.2013.1045
– volume: 27
  start-page: 1915
  year: 2004
  ident: 10.1016/j.metabol.2020.154167_bb0150
  article-title: The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.8.1915
– volume: 45
  start-page: 369
  year: 2017
  ident: 10.1016/j.metabol.2020.154167_bb0090
  article-title: In vivo assessment of cold stimulation effects on the fat fraction of brown adipose tissue using DIXON MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25364
– volume: 88
  start-page: 489
  year: 2006
  ident: 10.1016/j.metabol.2020.154167_bb0070
  article-title: Evaluation of wireless determination of skin temperature using iButtons
  publication-title: Physiol Behav
  doi: 10.1016/j.physbeh.2006.04.026
– volume: 127
  start-page: 4217
  year: 2017
  ident: 10.1016/j.metabol.2020.154167_bb0025
  article-title: Discovery, characterization, and clinical development of the glucagon-like peptides
  publication-title: J Clin Invest
  doi: 10.1172/JCI97233
– volume: 63
  start-page: 4186
  year: 2014
  ident: 10.1016/j.metabol.2020.154167_bb0130
  article-title: GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans
  publication-title: Diabetes.
  doi: 10.2337/db14-0849
– volume: 123
  start-page: 3395
  year: 2013
  ident: 10.1016/j.metabol.2020.154167_bb0225
  article-title: Cold acclimation recruits human brown fat and increases nonshivering thermogenesis
  publication-title: J Clin Invest
  doi: 10.1172/JCI68993
– volume: 59
  start-page: 1059
  year: 2016
  ident: 10.1016/j.metabol.2020.154167_bb0140
  article-title: GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1
  publication-title: Diabetologia.
  doi: 10.1007/s00125-016-3896-5
– volume: 3
  start-page: 3
  year: 2017
  ident: 10.1016/j.metabol.2020.154167_bb0230
  article-title: Liraglutide for weight management: a critical review of the evidence
  publication-title: Obes Sci Pract
  doi: 10.1002/osp4.84
– volume: 22
  start-page: 842
  year: 2016
  ident: 10.1016/j.metabol.2020.154167_bb0015
  publication-title: Endocr Pract
  doi: 10.4158/EP161356.ESGL
– volume: 32
  start-page: 1513
  year: 2012
  ident: 10.1016/j.metabol.2020.154167_bb0175
  article-title: Exenatide, a glucagon-like peptide-1 receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.112.246207
– volume: 97
  start-page: 258
  year: 2012
  ident: 10.1016/j.metabol.2020.154167_bb0045
  article-title: Effect of the once-daily human GLP-1 analogue liraglutide on appetite, energy intake, energy expenditure and gastric emptying in type 2 diabetes
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2012.02.016
– volume: 27
  start-page: 242
  year: 2016
  ident: 10.1016/j.metabol.2020.154167_bb0195
  article-title: Relevance of lipid metabolism for brown fat visualization and quantification
  publication-title: Curr Opin Lipidol
  doi: 10.1097/MOL.0000000000000296
– volume: 58
  start-page: 2637
  year: 2015
  ident: 10.1016/j.metabol.2020.154167_bb0050
  article-title: Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice
  publication-title: Diabetologia.
  doi: 10.1007/s00125-015-3727-0
– volume: 38
  start-page: 784
  year: 2014
  ident: 10.1016/j.metabol.2020.154167_bb0155
  article-title: Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults
  publication-title: Int J Obes (Lond)
  doi: 10.1038/ijo.2013.162
– volume: 219
  start-page: 293
  year: 2016
  ident: 10.1016/j.metabol.2020.154167_bb0095
  article-title: Exenatide in obese or overweight patients without diabetes: a systematic review and meta-analyses of randomized controlled trials
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2016.06.028
– volume: 40
  start-page: 639
  year: 2016
  ident: 10.1016/j.metabol.2020.154167_bb0110
  article-title: Less favorable body composition and adipokines in South Asians compared with other US ethnic groups: results from the MASALA and MESA studies
  publication-title: Int J Obes (Lond)
  doi: 10.1038/ijo.2015.219
– volume: 9
  start-page: 447
  year: 2018
  ident: 10.1016/j.metabol.2020.154167_bb0190
  article-title: Brown adipose tissue energy metabolism in humans
  publication-title: Front Endocrinol (Lausanne)
  doi: 10.3389/fendo.2018.00447
– volume: 212
  start-page: 217
  year: 2010
  ident: 10.1016/j.metabol.2020.154167_bb0180
  article-title: Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus
  publication-title: Atherosclerosis.
  doi: 10.1016/j.atherosclerosis.2010.05.028
– volume: 100
  start-page: 342
  year: 2015
  ident: 10.1016/j.metabol.2020.154167_bb0020
  article-title: Pharmacological management of obesity: an endocrine society clinical practice guideline
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2014-3415
– volume: 3
  start-page: 823
  year: 2014
  ident: 10.1016/j.metabol.2020.154167_bb0165
  article-title: GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2014.09.005
– volume: 35
  start-page: 4
  year: 2012
  ident: 10.1016/j.metabol.2020.154167_bb0105
  article-title: Short-term exenatide treatment leads to significant weight loss in a subset of obese women without diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc11-0931
– volume: 7
  year: 2012
  ident: 10.1016/j.metabol.2020.154167_bb0170
  article-title: GLP-1 receptor activation inhibits VLDL production and reverses hepatic steatosis by decreasing hepatic lipogenesis in high-fat-fed APOE*3-Leiden mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049152
– volume: 37
  start-page: 225
  issue: e8
  year: 2015
  ident: 10.1016/j.metabol.2020.154167_bb0035
  article-title: Effect of glucagon-like peptide-1 receptor agonists on lipid profiles among type 2 diabetes: a systematic review and network meta-analysis
  publication-title: Clin Ther.
  doi: 10.1016/j.clinthera.2014.11.008
– volume: 37
  start-page: 893
  year: 2012
  ident: 10.1016/j.metabol.2020.154167_bb0145
  article-title: Alterations in energy balance following exenatide administration
  publication-title: Appl Physiol Nutr Metab
  doi: 10.1139/h2012-068
SSID ssj0007786
Score 2.4618146
Snippet Brown adipose tissue (BAT) improves energy metabolism by combusting glucose and lipids into heat. Agonism of the glucagon-like peptide-1 receptor (GLP-1R)...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 154167
SubjectTerms [18F]FDG-PET/CT
Brown adipose tissue
Glucagon-like peptide-1 receptor agonism
Lipid metabolism
MRI
Weight loss
Title Twelve weeks of exenatide treatment increases [18F]fluorodeoxyglucose uptake by brown adipose tissue without affecting oxidative resting energy expenditure in nondiabetic males
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0026049520300317
https://dx.doi.org/10.1016/j.metabol.2020.154167
https://www.ncbi.nlm.nih.gov/pubmed/31982480
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LatwwUISEll5Kmr6StmEOvXp3bWn9OIbQZduSnBIIlGIsaQxONuslaye7l3xTPrEzlrxpL03pxSChsYVmPC_NQ4jP1lotbcppv6EOWGUI0qIcBUhDHRkbhyX7O05O4-m5-nYxvtgSx30uDIdVet7veHrHrf3M0J_mcFFVnONLujjp9xHRKZEmZ5QrlTCVD-4fwzy4PpoL8yDLmVY_ZvEMLwfX2NBR8w1E1PlYwq7d_N_k02_CZ7IrXnqtEY7cxl6JLZzviWeuj-R6Tzw_8Tfkr8XD2R3ObhHuEK-WUJeAK2SHn0XYxJRDNWddcYlL-BGmk5_lrK2Jj2K9WvsIdmgXTXGFoNeg2U6HwlYLnm86PAF7b-u2gaKLBiHpB_Wqsl0NceBmHzyDXVYhcAsBvhZvb5C-C_N67ty9lYFrEk7LN-J88uXseBr4rgyBUVI2gZWKRPw4tTLRRoWFVcZoraSiJxlb2agwWVTSohGtQGUiTOJRUmSGTLVEKSvfim36Fr4XYDI0mZFFIuNUlaHSaaIjbSypWISLZLwvVI-L3PiS5dw5Y5b3sWmXuUdhzijMHQr3xWADtnA1O54CiHtE531CKrHQnKTKU4DpBvAPqv0X0HeOojZbJGaYRnRsB___0g_iBY9cQOZHsd3ctPiJlKZGH3Z_xaHYOfr6fXr6Cz52GvA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcFVSAb1UUCgUCsyBq5vY3vhxrCqilDY5pVIlhCzv7lhym8ZRY9Pkr_qJzNhrl14o4mLJa493tTOe185DiK_GGOWbiNN-XeWwyuBEaTZwkG6Vp03gZuzvmEyD8YX8fjm83BInbS4Mh1Va3t_w9Jpb25G-3c3-Ms85x5d0cdLvPaJTIs3wmdjm6lTDntg-Pj0bTzuGzCXSmkgPMp4J4CGRp391dIMl7TYfQni1m8WtO87_TUT9IX9Gr8SuVRzhuFnba7GFiz3xvGkludkTLyb2kPyNuJ_d4fwXwh3i9QqKDHCN7PMzCF1YOeQLVhdXuIIfbjT6mc2rglgpFuuNDWKHalmm1whqA4pNdUhNvuTxskYVsAO3qEpI64AQEoBQrHNTlxEH7vfBI1gnFgJ3EeCT8eoWaV5YFIvG45truCH5tHorLkbfZidjxzZmcLT0_dIxviQpP4yMHyot3dRIrZWSvqQr2VvxINWxl9FLA3oDpfYwDAZhGmuy1kIpjb8vejQXvhegY9Sx9tPQDyKZuVJFofKUNqRlES7C4YGQLS4SbauWc_OMedKGp10lFoUJozBpUHggjjqwZVO24ymAoEV00uakEhdNSLA8BRh1gI8I919A3zUU1S2R-GHk0bZ9-P-PfhEvx7PJeXJ-Oj37KHb4SROfeSh65W2Fn0iHKtVn-4_8BtVkHaE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twelve+weeks+of+exenatide+treatment+increases+%5B18F%5Dfluorodeoxyglucose+uptake+by+brown+adipose+tissue+without+affecting+oxidative+resting+energy+expenditure+in+nondiabetic+males&rft.jtitle=Metabolism%2C+clinical+and+experimental&rft.au=Janssen%2C+Laura+G.M.&rft.au=Nahon%2C+Kimberly+J.&rft.au=Brack%C3%A9%2C+Katrien+F.M.&rft.au=van+den+Broek%2C+Dennis&rft.date=2020-05-01&rft.issn=0026-0495&rft.volume=106&rft.spage=154167&rft_id=info:doi/10.1016%2Fj.metabol.2020.154167&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_metabol_2020_154167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-0495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-0495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-0495&client=summon