Effect of Placenta-Derived Mesenchymal Stem Cells in a Dementia Rat Model via Microglial Mediation: a Comparison between Stem Cell Transplant Methods

Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a therapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modality has not yet been established. In this study, we studied t...

Full description

Saved in:
Bibliographic Details
Published inYonsei medical journal Vol. 59; no. 3; pp. 406 - 415
Main Authors Cho, Jae Sung, Lee, Jihyeon, Jeong, Da Un, Kim, Han Wool, Chang, Won Seok, Moon, Jisook, Chang, Jin Woo
Format Journal Article
LanguageEnglish
Published Korea (South) Yonsei University College of Medicine 01.05.2018
연세대학교의과대학
Subjects
Online AccessGet full text
ISSN0513-5796
1976-2437
1976-2437
DOI10.3349/ymj.2018.59.3.406

Cover

Abstract Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a therapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modality has not yet been established. In this study, we studied the therapeutic effects of human placenta-derived mesenchymal stem cells (pMSCs) in dementia rat model using either intracerebroventricular (ICV) or intravenous (IV) injections and analyzed their mechanisms of therapeutic action. Dementia modeling was established by intraventricular injection of 192 IgG-saporin, which causes lesion of cholinergic neurons. Sixty-five male Sprague-Dawley rats were divided into five groups: control, lesion, lesion+ICV injection of pMSCs, lesion+IV injection of pMSCs, and lesion+donepezil. Rats were subjected to the Morris water maze and subsequent immunostaining analyses. Both ICV and IV pMSC administrations allowed significant cognitive recovery compared to the lesioned rats. Acetylcholinesterase activity was significantly rescued in the hippocampus of rats injected with pMSCs post-lesion. Choline acetyltransferase did not co-localize with pMSCs, showing that pMSCs did not directly differentiate into cholinergic cells. Number of microglial cells increased in lesioned rats and significantly decreased back to normal levels with pMSC injection. Our results suggest that ICV and IV injections of pMSCs facilitate the recovery of cholinergic neuronal populations and cognitive behavior. This recovery likely occurs through paracrine effects that resemble microglia function rather than direct differentiation of injected pMSCs into cholinergic neurons.
AbstractList Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a therapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modality has not yet been established. In this study, we studied the therapeutic effects of human placenta-derived mesenchymal stem cells (pMSCs) in dementia rat model using either intracerebroventricular (ICV) or intravenous (IV) injections and analyzed their mechanisms of therapeutic action. Dementia modeling was established by intraventricular injection of 192 IgG-saporin, which causes lesion of cholinergic neurons. Sixty-five male Sprague-Dawley rats were divided into five groups: control, lesion, lesion+ICV injection of pMSCs, lesion+IV injection of pMSCs, and lesion+donepezil. Rats were subjected to the Morris water maze and subsequent immunostaining analyses. Both ICV and IV pMSC administrations allowed significant cognitive recovery compared to the lesioned rats. Acetylcholinesterase activity was significantly rescued in the hippocampus of rats injected with pMSCs post-lesion. Choline acetyltransferase did not co-localize with pMSCs, showing that pMSCs did not directly differentiate into cholinergic cells. Number of microglial cells increased in lesioned rats and significantly decreased back to normal levels with pMSC injection. Our results suggest that ICV and IV injections of pMSCs facilitate the recovery of cholinergic neuronal populations and cognitive behavior. This recovery likely occurs through paracrine effects that resemble microglia function rather than direct differentiation of injected pMSCs into cholinergic neurons.
Purpose: Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as atherapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modalityhas not yet been established. In this study, we studied the therapeutic effects of human placenta-derived mesenchymal stem cells(pMSCs) in dementia rat model using either intracerebroventricular (ICV) or intravenous (IV) injections and analyzed theirmechanisms of therapeutic action. Materials and Methods: Dementia modeling was established by intraventricular injection of 192 IgG-saporin, which causes lesionof cholinergic neurons. Sixty-five male Sprague-Dawley rats were divided into five groups: control, lesion, lesion+ICV injectionof pMSCs, lesion+IV injection of pMSCs, and lesion+donepezil. Rats were subjected to the Morris water maze and subsequentimmunostaining analyses. Results: Both ICV and IV pMSC administrations allowed significant cognitive recovery compared to the lesioned rats. Acetylcholinesteraseactivity was significantly rescued in the hippocampus of rats injected with pMSCs post-lesion. Choline acetyltransferasedid not co-localize with pMSCs, showing that pMSCs did not directly differentiate into cholinergic cells. Number of microglialcells increased in lesioned rats and significantly decreased back to normal levels with pMSC injection. Conclusion: Our results suggest that ICV and IV injections of pMSCs facilitate the recovery of cholinergic neuronal populationsand cognitive behavior. This recovery likely occurs through paracrine effects that resemble microglia function rather than directdifferentiation of injected pMSCs into cholinergic neurons. KCI Citation Count: 1
Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a therapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modality has not yet been established. In this study, we studied the therapeutic effects of human placenta-derived mesenchymal stem cells (pMSCs) in dementia rat model using either intracerebroventricular (ICV) or intravenous (IV) injections and analyzed their mechanisms of therapeutic action.PURPOSELoss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a therapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modality has not yet been established. In this study, we studied the therapeutic effects of human placenta-derived mesenchymal stem cells (pMSCs) in dementia rat model using either intracerebroventricular (ICV) or intravenous (IV) injections and analyzed their mechanisms of therapeutic action.Dementia modeling was established by intraventricular injection of 192 IgG-saporin, which causes lesion of cholinergic neurons. Sixty-five male Sprague-Dawley rats were divided into five groups: control, lesion, lesion+ICV injection of pMSCs, lesion+IV injection of pMSCs, and lesion+donepezil. Rats were subjected to the Morris water maze and subsequent immunostaining analyses.MATERIALS AND METHODSDementia modeling was established by intraventricular injection of 192 IgG-saporin, which causes lesion of cholinergic neurons. Sixty-five male Sprague-Dawley rats were divided into five groups: control, lesion, lesion+ICV injection of pMSCs, lesion+IV injection of pMSCs, and lesion+donepezil. Rats were subjected to the Morris water maze and subsequent immunostaining analyses.Both ICV and IV pMSC administrations allowed significant cognitive recovery compared to the lesioned rats. Acetylcholinesterase activity was significantly rescued in the hippocampus of rats injected with pMSCs post-lesion. Choline acetyltransferase did not co-localize with pMSCs, showing that pMSCs did not directly differentiate into cholinergic cells. Number of microglial cells increased in lesioned rats and significantly decreased back to normal levels with pMSC injection.RESULTSBoth ICV and IV pMSC administrations allowed significant cognitive recovery compared to the lesioned rats. Acetylcholinesterase activity was significantly rescued in the hippocampus of rats injected with pMSCs post-lesion. Choline acetyltransferase did not co-localize with pMSCs, showing that pMSCs did not directly differentiate into cholinergic cells. Number of microglial cells increased in lesioned rats and significantly decreased back to normal levels with pMSC injection.Our results suggest that ICV and IV injections of pMSCs facilitate the recovery of cholinergic neuronal populations and cognitive behavior. This recovery likely occurs through paracrine effects that resemble microglia function rather than direct differentiation of injected pMSCs into cholinergic neurons.CONCLUSIONOur results suggest that ICV and IV injections of pMSCs facilitate the recovery of cholinergic neuronal populations and cognitive behavior. This recovery likely occurs through paracrine effects that resemble microglia function rather than direct differentiation of injected pMSCs into cholinergic neurons.
Author Lee, Jihyeon
Chang, Jin Woo
Chang, Won Seok
Moon, Jisook
Kim, Han Wool
Jeong, Da Un
Cho, Jae Sung
AuthorAffiliation 4 Department of Bioengineering, College of Life Science, CHA University, Seoul, Korea
2 Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
1 Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
3 General Research Institute, Gangnam CHA General Hospital, Seoul, Korea
AuthorAffiliation_xml – name: 2 Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
– name: 3 General Research Institute, Gangnam CHA General Hospital, Seoul, Korea
– name: 4 Department of Bioengineering, College of Life Science, CHA University, Seoul, Korea
– name: 1 Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
Author_xml – sequence: 1
  givenname: Jae Sung
  orcidid: 0000-0002-6290-2195
  surname: Cho
  fullname: Cho, Jae Sung
  organization: Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
– sequence: 2
  givenname: Jihyeon
  orcidid: 0000-0002-1321-5452
  surname: Lee
  fullname: Lee, Jihyeon
  organization: Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
– sequence: 3
  givenname: Da Un
  surname: Jeong
  fullname: Jeong, Da Un
  organization: Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
– sequence: 4
  givenname: Han Wool
  surname: Kim
  fullname: Kim, Han Wool
  organization: General Research Institute, Gangnam CHA General Hospital, Seoul, Korea
– sequence: 5
  givenname: Won Seok
  surname: Chang
  fullname: Chang, Won Seok
  organization: Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
– sequence: 6
  givenname: Jisook
  surname: Moon
  fullname: Moon, Jisook
  organization: General Research Institute, Gangnam CHA General Hospital, Seoul, Korea., Department of Bioengineering, College of Life Science, CHA University, Seoul, Korea
– sequence: 7
  givenname: Jin Woo
  orcidid: 0000-0002-2717-0101
  surname: Chang
  fullname: Chang, Jin Woo
  organization: Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea., Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29611403$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002337609$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp1ks1uEzEUhS1URNPCA7BBXsJiBv_NeIYFUpUWqNQIVMLacjzXjdsZO7UnQXkQ3hcnafmTWF3ZPue70vE5QUc-eEDoJSUl56J9ux1uS0ZoU1ZtyUtB6idoQltZF0xweYQmpKK8qGRbH6OTlG4JYZIS9gwds7amVBA-QT8urAUz4mDxl14b8KMuziG6DXR4Bgm8WW4H3eOvIwx4Cn2fsPNY43MYstZpfK1HPAsd9HiTTzNnYrjpXXbMoHN6dMG_y_JpGFY6uhQ8XsD4HcD_JuJ51D6teu0zCcZl6NJz9NTqPsGLh3mKvn24mE8_FVefP15Oz64KIzgfC9PZTnSy6SxpFpQ1pLH5QkNFK2joAris64o0lNVC24WkgneWC0mAGtkabfkpenPg-mjVnXEqaLefN0HdRXV2Pb9Ugolayipr3x-0q_VigG4XVdS9WkU36LjdO_9-8W6ZORtVNU3btjwDXj8AYrhfQxrV4JLJAWgPYZ0UI4xyRmXDsvTVn7t-LXn8tyyQB0GOO6UIVhk37tPOq12vKFG7hqjcELVriKpaxVVuSHbSf5yP8P97fgIgUMEp
CitedBy_id crossref_primary_10_1155_2020_6393075
crossref_primary_10_1016_j_repbio_2021_100508
crossref_primary_10_1016_j_ejmcr_2024_100154
crossref_primary_10_1186_s13195_019_0569_x
crossref_primary_10_1007_s10787_023_01320_y
crossref_primary_10_2478_acb_2020_0021
crossref_primary_10_2478_sjecr_2019_0045
crossref_primary_10_1016_j_scr_2020_101726
crossref_primary_10_1016_j_brainres_2023_148688
crossref_primary_10_3233_JAD_200219
crossref_primary_10_2478_sjecr_2018_0032
crossref_primary_10_3390_toxins14030184
crossref_primary_10_1155_2020_3153891
Cites_doi 10.1016/j.expneurol.2004.05.025
10.1002/glia.22408
10.1523/JNEUROSCI.3441-12.2013
10.1093/brain/awu193
10.1016/j.neulet.2008.11.059
10.3389/fncel.2013.00006
10.1016/j.nbd.2013.06.001
10.1038/srep01197
10.1900/RDS.2010.7.168
10.1097/00001756-200103050-00025
10.1002/jcp.25347
10.1523/JNEUROSCI.22-05-01784.2002
10.1038/nature04223
10.1002/jnr.1157
10.4049/jimmunol.1003600
10.1016/0006-8993(88)90163-1
10.1016/j.neulet.2014.10.039
10.1007/s00401-002-0636-3
10.1007/978-1-84882-718-9_2
10.2174/1574888X09666140923101110
10.1016/0006-2952(61)90145-9
10.1073/pnas.96.19.10711
10.1016/j.neuroscience.2011.06.088
10.1016/S0197-4580(00)00090-7
10.1007/s00018-013-1290-8
10.1016/j.neurobiolaging.2013.03.029
10.1016/j.brainres.2010.05.011
10.1523/JNEUROSCI.5505-08.2009
10.1016/j.neuron.2012.12.023
10.1007/s11064-013-1120-2
10.1371/journal.pone.0134920
10.1007/s12031-014-0457-6
10.1523/JNEUROSCI.19-05-01708.1999
10.1016/j.neulet.2013.03.018
10.1037/0735-7044.109.4.714
10.1634/stemcells.2007-0594
10.1046/j.1460-9568.2003.02745.x
10.1089/scd.2008.0253
10.1371/journal.pone.0006486
ContentType Journal Article
Copyright Copyright: Yonsei University College of Medicine 2018.
Copyright: Yonsei University College of Medicine 2018 2018 Yonsei University College of Medicine
Copyright_xml – notice: Copyright: Yonsei University College of Medicine 2018.
– notice: Copyright: Yonsei University College of Medicine 2018 2018 Yonsei University College of Medicine
DBID AAYXX
CITATION
NPM
7X8
5PM
ACYCR
DOI 10.3349/ymj.2018.59.3.406
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1976-2437
EndPage 415
ExternalDocumentID oai_kci_go_kr_ARTI_4246775
PMC5889993
29611403
10_3349_ymj_2018_59_3_406
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 10062880
GroupedDBID ---
.55
.GJ
123
29R
2WC
36B
5-W
53G
5RE
8JR
8XY
9ZL
AAYXX
ACYCR
ADBBV
ADRAZ
AEGXH
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
CS3
DIK
DU5
E3Z
EBD
EF.
EMB
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
L7B
M48
MK0
O5R
O5S
OK1
OVT
P2P
PGMZT
RNS
RPM
SV3
TR2
X7M
XSB
ZGI
ZXP
M~E
NPM
7X8
5PM
ID FETCH-LOGICAL-c433t-cdfd4d78df08b12808ffd4ae515e81be37665081264afb7143df3470e1c79caf3
IEDL.DBID M48
ISSN 0513-5796
1976-2437
IngestDate Tue Nov 21 21:47:58 EST 2023
Thu Aug 21 17:56:17 EDT 2025
Fri Jul 11 16:15:56 EDT 2025
Wed Feb 19 02:43:51 EST 2025
Thu Apr 24 23:07:40 EDT 2025
Tue Jul 01 04:03:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords cholinergic neurons
dementia
Placenta
hipppocampus
microglia
mesenchymal stem cells
Language English
License Copyright: Yonsei University College of Medicine 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-cdfd4d78df08b12808ffd4ae515e81be37665081264afb7143df3470e1c79caf3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Jae Sung Cho and Jihyeon Lee contributed equally to this work.
https://www.eymj.org/DOIx.php?id=10.3349/ymj.2018.59.3.406
ORCID 0000-0002-1321-5452
0000-0002-2717-0101
0000-0002-6290-2195
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3349/ymj.2018.59.3.406
PMID 29611403
PQID 2021321782
PQPubID 23479
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_4246775
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889993
proquest_miscellaneous_2021321782
pubmed_primary_29611403
crossref_citationtrail_10_3349_ymj_2018_59_3_406
crossref_primary_10_3349_ymj_2018_59_3_406
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Yonsei medical journal
PublicationTitleAlternate Yonsei Med J
PublicationYear 2018
Publisher Yonsei University College of Medicine
연세대학교의과대학
Publisher_xml – name: Yonsei University College of Medicine
– name: 연세대학교의과대학
References Zilka (10.3349/ymj.2018.59.3.406_ref30) 2011; 193
Osaka (10.3349/ymj.2018.59.3.406_ref40) 2010; 1343
Kadam (10.3349/ymj.2018.59.3.406_ref14) 2010; 7
Nakajima (10.3349/ymj.2018.59.3.406_ref39) 2001; 65
Lee (10.3349/ymj.2018.59.3.406_ref15) 2009; 450
Kim (10.3349/ymj.2018.59.3.406_ref19) 2013; 34
Lu (10.3349/ymj.2018.59.3.406_ref27) 2001; 12
Pappas (10.3349/ymj.2018.59.3.406_ref1) 2000; 21
Kopen (10.3349/ymj.2018.59.3.406_ref25) 1999; 96
Kettenmann (10.3349/ymj.2018.59.3.406_ref32) 2013; 77
Tanna (10.3349/ymj.2018.59.3.406_ref7) 2014; 9
Yoo (10.3349/ymj.2018.59.3.406_ref31) 2013; 58
Hall (10.3349/ymj.2018.59.3.406_ref2) 2014; 137
Tatebayashi (10.3349/ymj.2018.59.3.406_ref23) 2003; 105
Fischer (10.3349/ymj.2018.59.3.406_ref28) 2009; 18
Teixeira (10.3349/ymj.2018.59.3.406_ref8) 2013; 70
Katsuda (10.3349/ymj.2018.59.3.406_ref10) 2013; 3
Greter (10.3349/ymj.2018.59.3.406_ref16) 2013; 61
Zhu (10.3349/ymj.2018.59.3.406_ref11) 2013; 541
Nilsson (10.3349/ymj.2018.59.3.406_ref21) 1988; 453
Lambertsen (10.3349/ymj.2018.59.3.406_ref18) 2009; 29
Neher (10.3349/ymj.2018.59.3.406_ref33) 2011; 186
Cunningham (10.3349/ymj.2018.59.3.406_ref36) 2013; 33
Ricceri (10.3349/ymj.2018.59.3.406_ref3) 2004; 189
Batchelor (10.3349/ymj.2018.59.3.406_ref37) 1999; 19
Sierra (10.3349/ymj.2018.59.3.406_ref35) 2013; 7
Gelfo (10.3349/ymj.2018.59.3.406_ref5) 2013; 38
Lehmann (10.3349/ymj.2018.59.3.406_ref6) 2003; 18
Neumann (10.3349/ymj.2018.59.3.406_ref34) 2009; 132
Lee (10.3349/ymj.2018.59.3.406_ref26) 2015; 10
Chen (10.3349/ymj.2018.59.3.406_ref22) 2016; 231
Seaberg (10.3349/ymj.2018.59.3.406_ref24) 2002; 22
Suzuki (10.3349/ymj.2018.59.3.406_ref9) 2015; 584
Ellman (10.3349/ymj.2018.59.3.406_ref20) 1961; 7
Hamisha (10.3349/ymj.2018.59.3.406_ref29) 2014; 55
Parolini (10.3349/ymj.2018.59.3.406_ref13) 2008; 26
Baxter (10.3349/ymj.2018.59.3.406_ref4) 1995; 109
Parolini (10.3349/ymj.2018.59.3.406_ref12) 2011
Boscia (10.3349/ymj.2018.59.3.406_ref17) 2009; 4
Coull (10.3349/ymj.2018.59.3.406_ref38) 2005; 438
26895748 - J Cell Physiol. 2016 Nov;231(11):2428-38
23456256 - Cell Mol Life Sci. 2013 Oct;70(20):3871-82
12557008 - Acta Neuropathol. 2003 Mar;105(3):225-32
26241653 - PLoS One. 2015 Aug 04;10(8):e0134920
25062696 - Brain. 2014 Sep;137(Pt 9):2493-508
21402900 - J Immunol. 2011 Apr 15;186(8):4973-83
10794843 - Neurobiol Aging. 2000 Jan-Feb;21(1):11-7
23312512 - Neuron. 2013 Jan 9;77(1):10-8
25384918 - J Mol Neurosci. 2015 Apr;55(4):1006-13
23623603 - Neurobiol Aging. 2013 Oct;34(10):2408-20
23378928 - Sci Rep. 2013;3:1197
11880507 - J Neurosci. 2002 Mar 1;22(5):1784-93
19099374 - Stem Cells Dev. 2009 Jun;18(5):683-92
23759293 - Neurobiol Dis. 2013 Oct;58:249-57
21060975 - Rev Diabet Stud. 2010 Summer;7(2):168-82
17975221 - Stem Cells. 2008 Feb;26(2):300-11
18567623 - Brain. 2009 Feb;132(Pt 2):288-95
16355225 - Nature. 2005 Dec 15;438(7070):1017-21
23523648 - Neurosci Lett. 2013 Apr 29;541:77-82
21763758 - Neuroscience. 2011 Oct 13;193:330-7
11494368 - J Neurosci Res. 2001 Aug 15;65(4):322-31
10485891 - Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10711-6
23925861 - Neurochem Res. 2013 Oct;38(10):2114-23
10024357 - J Neurosci. 1999 Mar 1;19(5):1708-16
20470759 - Brain Res. 2010 Jul 9;1343:226-35
15296846 - Exp Neurol. 2004 Sep;189(1):162-72
25248677 - Curr Stem Cell Res Ther. 2014;9(6):513-21
25449872 - Neurosci Lett. 2015 Jan 1;584:276-81
23386811 - Front Cell Neurosci. 2013 Jan 30;7:6
7576215 - Behav Neurosci. 1995 Aug;109(4):714-22
19193879 - J Neurosci. 2009 Feb 4;29(5):1319-30
3401761 - Brain Res. 1988 Jun 21;453(1-2):235-46
11234763 - Neuroreport. 2001 Mar 5;12(3):559-63
13726518 - Biochem Pharmacol. 1961 Jul;7:88-95
12911761 - Eur J Neurosci. 2003 Aug;18(3):651-66
19084047 - Neurosci Lett. 2009 Jan 30;450(2):136-41
22927325 - Glia. 2013 Jan;61(1):121-7
19649251 - PLoS One. 2009 Aug 03;4(8):e6486
23467340 - J Neurosci. 2013 Mar 6;33(10):4216-33
References_xml – volume: 189
  start-page: 162
  year: 2004
  ident: 10.3349/ymj.2018.59.3.406_ref3
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2004.05.025
– volume: 61
  start-page: 121
  year: 2013
  ident: 10.3349/ymj.2018.59.3.406_ref16
  publication-title: Glia
  doi: 10.1002/glia.22408
– volume: 33
  start-page: 4216
  year: 2013
  ident: 10.3349/ymj.2018.59.3.406_ref36
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3441-12.2013
– volume: 137
  start-page: 2493
  year: 2014
  ident: 10.3349/ymj.2018.59.3.406_ref2
  publication-title: Brain
  doi: 10.1093/brain/awu193
– volume: 450
  start-page: 136
  year: 2009
  ident: 10.3349/ymj.2018.59.3.406_ref15
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2008.11.059
– volume: 7
  start-page: 6
  year: 2013
  ident: 10.3349/ymj.2018.59.3.406_ref35
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2013.00006
– volume: 58
  start-page: 249
  year: 2013
  ident: 10.3349/ymj.2018.59.3.406_ref31
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2013.06.001
– volume: 3
  start-page: 1197
  year: 2013
  ident: 10.3349/ymj.2018.59.3.406_ref10
  publication-title: Sci Rep
  doi: 10.1038/srep01197
– volume: 7
  start-page: 168
  year: 2010
  ident: 10.3349/ymj.2018.59.3.406_ref14
  publication-title: Rev Diabet Stud
  doi: 10.1900/RDS.2010.7.168
– volume: 12
  start-page: 559
  year: 2001
  ident: 10.3349/ymj.2018.59.3.406_ref27
  publication-title: Neuroreport
  doi: 10.1097/00001756-200103050-00025
– volume: 231
  start-page: 2428
  year: 2016
  ident: 10.3349/ymj.2018.59.3.406_ref22
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.25347
– volume: 22
  start-page: 1784
  year: 2002
  ident: 10.3349/ymj.2018.59.3.406_ref24
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-05-01784.2002
– volume: 438
  start-page: 1017
  year: 2005
  ident: 10.3349/ymj.2018.59.3.406_ref38
  publication-title: Nature
  doi: 10.1038/nature04223
– volume: 65
  start-page: 322
  year: 2001
  ident: 10.3349/ymj.2018.59.3.406_ref39
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.1157
– volume: 186
  start-page: 4973
  year: 2011
  ident: 10.3349/ymj.2018.59.3.406_ref33
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1003600
– volume: 453
  start-page: 235
  year: 1988
  ident: 10.3349/ymj.2018.59.3.406_ref21
  publication-title: Brain Res
  doi: 10.1016/0006-8993(88)90163-1
– volume: 584
  start-page: 276
  year: 2015
  ident: 10.3349/ymj.2018.59.3.406_ref9
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2014.10.039
– volume: 105
  start-page: 225
  year: 2003
  ident: 10.3349/ymj.2018.59.3.406_ref23
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-002-0636-3
– start-page: 11
  volume-title: Regenerative medicine using pregnancy-specific biological substances
  year: 2011
  ident: 10.3349/ymj.2018.59.3.406_ref12
  doi: 10.1007/978-1-84882-718-9_2
– volume: 9
  start-page: 513
  year: 2014
  ident: 10.3349/ymj.2018.59.3.406_ref7
  publication-title: Curr Stem Cell Res Ther
  doi: 10.2174/1574888X09666140923101110
– volume: 7
  start-page: 88
  year: 1961
  ident: 10.3349/ymj.2018.59.3.406_ref20
  publication-title: Biochem Pharmacol
  doi: 10.1016/0006-2952(61)90145-9
– volume: 96
  start-page: 10711
  year: 1999
  ident: 10.3349/ymj.2018.59.3.406_ref25
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.19.10711
– volume: 193
  start-page: 330
  year: 2011
  ident: 10.3349/ymj.2018.59.3.406_ref30
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2011.06.088
– volume: 21
  start-page: 11
  year: 2000
  ident: 10.3349/ymj.2018.59.3.406_ref1
  publication-title: Neurobiol Aging
  doi: 10.1016/S0197-4580(00)00090-7
– volume: 70
  start-page: 3871
  year: 2013
  ident: 10.3349/ymj.2018.59.3.406_ref8
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-013-1290-8
– volume: 34
  start-page: 2408
  year: 2013
  ident: 10.3349/ymj.2018.59.3.406_ref19
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2013.03.029
– volume: 1343
  start-page: 226
  year: 2010
  ident: 10.3349/ymj.2018.59.3.406_ref40
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2010.05.011
– volume: 29
  start-page: 1319
  year: 2009
  ident: 10.3349/ymj.2018.59.3.406_ref18
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5505-08.2009
– volume: 77
  start-page: 10
  year: 2013
  ident: 10.3349/ymj.2018.59.3.406_ref32
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.12.023
– volume: 38
  start-page: 2114
  year: 2013
  ident: 10.3349/ymj.2018.59.3.406_ref5
  publication-title: Neurochem Res
  doi: 10.1007/s11064-013-1120-2
– volume: 10
  start-page: e0134920
  year: 2015
  ident: 10.3349/ymj.2018.59.3.406_ref26
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0134920
– volume: 55
  start-page: 1006
  year: 2014
  ident: 10.3349/ymj.2018.59.3.406_ref29
  publication-title: J Mol Neurosci
  doi: 10.1007/s12031-014-0457-6
– volume: 19
  start-page: 1708
  year: 1999
  ident: 10.3349/ymj.2018.59.3.406_ref37
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-05-01708.1999
– volume: 132
  start-page: 288
  issue: Pt 2
  year: 2009
  ident: 10.3349/ymj.2018.59.3.406_ref34
  publication-title: Brain
– volume: 541
  start-page: 77
  year: 2013
  ident: 10.3349/ymj.2018.59.3.406_ref11
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2013.03.018
– volume: 109
  start-page: 714
  year: 1995
  ident: 10.3349/ymj.2018.59.3.406_ref4
  publication-title: Behav Neurosci
  doi: 10.1037/0735-7044.109.4.714
– volume: 26
  start-page: 300
  year: 2008
  ident: 10.3349/ymj.2018.59.3.406_ref13
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0594
– volume: 18
  start-page: 651
  year: 2003
  ident: 10.3349/ymj.2018.59.3.406_ref6
  publication-title: Eur J Neurosci
  doi: 10.1046/j.1460-9568.2003.02745.x
– volume: 18
  start-page: 683
  year: 2009
  ident: 10.3349/ymj.2018.59.3.406_ref28
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2008.0253
– volume: 4
  start-page: e6486
  year: 2009
  ident: 10.3349/ymj.2018.59.3.406_ref17
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006486
– reference: 15296846 - Exp Neurol. 2004 Sep;189(1):162-72
– reference: 10024357 - J Neurosci. 1999 Mar 1;19(5):1708-16
– reference: 25062696 - Brain. 2014 Sep;137(Pt 9):2493-508
– reference: 11234763 - Neuroreport. 2001 Mar 5;12(3):559-63
– reference: 23456256 - Cell Mol Life Sci. 2013 Oct;70(20):3871-82
– reference: 3401761 - Brain Res. 1988 Jun 21;453(1-2):235-46
– reference: 23467340 - J Neurosci. 2013 Mar 6;33(10):4216-33
– reference: 11494368 - J Neurosci Res. 2001 Aug 15;65(4):322-31
– reference: 26241653 - PLoS One. 2015 Aug 04;10(8):e0134920
– reference: 17975221 - Stem Cells. 2008 Feb;26(2):300-11
– reference: 23623603 - Neurobiol Aging. 2013 Oct;34(10):2408-20
– reference: 19193879 - J Neurosci. 2009 Feb 4;29(5):1319-30
– reference: 21402900 - J Immunol. 2011 Apr 15;186(8):4973-83
– reference: 19649251 - PLoS One. 2009 Aug 03;4(8):e6486
– reference: 23523648 - Neurosci Lett. 2013 Apr 29;541:77-82
– reference: 16355225 - Nature. 2005 Dec 15;438(7070):1017-21
– reference: 18567623 - Brain. 2009 Feb;132(Pt 2):288-95
– reference: 25449872 - Neurosci Lett. 2015 Jan 1;584:276-81
– reference: 21060975 - Rev Diabet Stud. 2010 Summer;7(2):168-82
– reference: 19084047 - Neurosci Lett. 2009 Jan 30;450(2):136-41
– reference: 25248677 - Curr Stem Cell Res Ther. 2014;9(6):513-21
– reference: 10485891 - Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10711-6
– reference: 25384918 - J Mol Neurosci. 2015 Apr;55(4):1006-13
– reference: 23759293 - Neurobiol Dis. 2013 Oct;58:249-57
– reference: 26895748 - J Cell Physiol. 2016 Nov;231(11):2428-38
– reference: 23312512 - Neuron. 2013 Jan 9;77(1):10-8
– reference: 22927325 - Glia. 2013 Jan;61(1):121-7
– reference: 12557008 - Acta Neuropathol. 2003 Mar;105(3):225-32
– reference: 11880507 - J Neurosci. 2002 Mar 1;22(5):1784-93
– reference: 21763758 - Neuroscience. 2011 Oct 13;193:330-7
– reference: 10794843 - Neurobiol Aging. 2000 Jan-Feb;21(1):11-7
– reference: 7576215 - Behav Neurosci. 1995 Aug;109(4):714-22
– reference: 19099374 - Stem Cells Dev. 2009 Jun;18(5):683-92
– reference: 23378928 - Sci Rep. 2013;3:1197
– reference: 23386811 - Front Cell Neurosci. 2013 Jan 30;7:6
– reference: 20470759 - Brain Res. 2010 Jul 9;1343:226-35
– reference: 13726518 - Biochem Pharmacol. 1961 Jul;7:88-95
– reference: 12911761 - Eur J Neurosci. 2003 Aug;18(3):651-66
– reference: 23925861 - Neurochem Res. 2013 Oct;38(10):2114-23
SSID ssj0027102
Score 2.2310433
Snippet Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a therapeutic intervention for patients is...
Purpose: Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as atherapeutic intervention for patients...
SourceID nrf
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 406
SubjectTerms Original
의학일반
Title Effect of Placenta-Derived Mesenchymal Stem Cells in a Dementia Rat Model via Microglial Mediation: a Comparison between Stem Cell Transplant Methods
URI https://www.ncbi.nlm.nih.gov/pubmed/29611403
https://www.proquest.com/docview/2021321782
https://pubmed.ncbi.nlm.nih.gov/PMC5889993
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002337609
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Yonsei Medical Journal, 2018, 59(3), , pp.406-415
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7ahoR4QdwJl8ognpBSkti5GAkh1DENpCAEVOzNchx7K0vTrc0m-kP4v5yTpB1FFQ88VW1tR8k5zjmfffx9AC-MLAIbGelnpZAIUGKcUk4Y3xWZLqRzOpR0UDj_lByOxcej-GgHVvJW_QNcbIV2pCc1nlfDn-fLtzjh3xDi5EK-Wk5_UI1WNozlkA8FEXBfw8CUEBbLRXaFv8K2BBHdkPt0BLPb5Nw-BJEEyyQkNruNiLVbz922ZPTvmso_gtTBLbjZZ5fsXecOt2HH1nfget7vn9-FXx1ZMZs59pnWz-tG-_vog5e2ZDmdQzInyykO8LWxUzayVbVgk5pptt8uIk40-6IbRvJpFbvEbzlV8x1X6MIsbyU_0MivsfloLW7I-jqwqxFZR6deoUWxE8lXL-7B-OD9t9Gh3wsz-EZw3vimdKUo06x0QVZggAsyhz9oi7mRxTTY4kuLEr8Qky3tClJYLx0XaWBDk0qjHb8Pe_Wstg-BJSKMjJVlIrFFElkd6hQxa8RLHjh8XXgQrB6-Mj1rOYlnVArRC5lOoekUmU7FUnGFpvPg5brLWUfZ8a_Gz9Gi6tRMFBFt0-fxTJ3OFcKJD0pEGEfS2INnK4MrnH20paJrO7tY4FgRwvkQ0ywPHnQOsL7myn88SDdcY92ALrj5Tz05aRm-4wxhsOSP_rvnY7hBt9lVZj6BvWZ-YZ9i9tQUA9iN_e-Ddu1h0M6P316TGu8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Placenta-Derived+Mesenchymal+Stem+Cells+in+a+Dementia+Rat+Model+via+Microglial+Mediation%3A+a+Comparison+between+Stem+Cell+Transplant+Methods&rft.jtitle=Yonsei+medical+journal&rft.au=Cho%2C+Jae+Sung&rft.au=Lee%2C+Jihyeon&rft.au=Jeong%2C+Da+Un&rft.au=Kim%2C+Han+Wool&rft.date=2018-05-01&rft.pub=Yonsei+University+College+of+Medicine&rft.issn=0513-5796&rft.eissn=1976-2437&rft.volume=59&rft.issue=3&rft.spage=406&rft.epage=415&rft_id=info:doi/10.3349%2Fymj.2018.59.3.406&rft_id=info%3Apmid%2F29611403&rft.externalDocID=PMC5889993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0513-5796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0513-5796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0513-5796&client=summon