A Novel Forest EcoSpatial Network for Carbon Stocking Using Complex Network Theory in the Yellow River Basin
The Yellow River Basin serves as a crucial ecological barrier in China, emphasizing the importance of accurately examining the spatial distribution of forest carbon stocks and enhancing carbon sequestration in order to attain “carbon peaking and carbon neutrality”. Forest patches have complex intera...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 10; p. 2612 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
17.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Yellow River Basin serves as a crucial ecological barrier in China, emphasizing the importance of accurately examining the spatial distribution of forest carbon stocks and enhancing carbon sequestration in order to attain “carbon peaking and carbon neutrality”. Forest patches have complex interactions that impact ecosystem services. To our knowledge, very few studies have explored the connection between these interactions and carbon stock. This study addressed this gap by utilizing complex network theory to establish a forest ecospatial network (ForEcoNet) in the Yellow River Basin in which forest patches are represented as nodes (sources) and their interactions as edges (corridors). Our objective was to optimize the ForEcoNet’s structure and enhance forest carbon stocks. First, we employed downscaling technology to allocate the forest carbon stocks of the 69 cities in the study area to grid cells, generating a spatial distribution map of forest carbon density in the Yellow River Basin. Next, we conducted morphological spatial pattern analysis (MSPA) and used the minimum cumulative resistance model (MCR) to extract the ForEcoNet in the basin. Finally, we proposed optimization of the ForEcoNet based on the coupling coordination between the node carbon stock and topological structure. The results showed that: (1) the forest carbon stocks of the upper, middle, and lower reaches accounted for 42.35%, 54.28%, and 3.37% of the total, respectively, (2) the ForEcoNet exhibited characteristics of both a random network and a scale-free network and demonstrated poor network stability, and (3) through the introduction of 51 sources and 46 corridors, we optimized the network and significantly improved its robustness. These findings provide scientific recommendations for the optimization of forest allocation in the Yellow River Basin and achieving the goal of increasing the forest carbon stock. |
---|---|
AbstractList | The Yellow River Basin serves as a crucial ecological barrier in China, emphasizing the importance of accurately examining the spatial distribution of forest carbon stocks and enhancing carbon sequestration in order to attain “carbon peaking and carbon neutrality”. Forest patches have complex interactions that impact ecosystem services. To our knowledge, very few studies have explored the connection between these interactions and carbon stock. This study addressed this gap by utilizing complex network theory to establish a forest ecospatial network (ForEcoNet) in the Yellow River Basin in which forest patches are represented as nodes (sources) and their interactions as edges (corridors). Our objective was to optimize the ForEcoNet’s structure and enhance forest carbon stocks. First, we employed downscaling technology to allocate the forest carbon stocks of the 69 cities in the study area to grid cells, generating a spatial distribution map of forest carbon density in the Yellow River Basin. Next, we conducted morphological spatial pattern analysis (MSPA) and used the minimum cumulative resistance model (MCR) to extract the ForEcoNet in the basin. Finally, we proposed optimization of the ForEcoNet based on the coupling coordination between the node carbon stock and topological structure. The results showed that: (1) the forest carbon stocks of the upper, middle, and lower reaches accounted for 42.35%, 54.28%, and 3.37% of the total, respectively, (2) the ForEcoNet exhibited characteristics of both a random network and a scale-free network and demonstrated poor network stability, and (3) through the introduction of 51 sources and 46 corridors, we optimized the network and significantly improved its robustness. These findings provide scientific recommendations for the optimization of forest allocation in the Yellow River Basin and achieving the goal of increasing the forest carbon stock. |
Audience | Academic |
Author | Huang, Huaguo Yu, Qiang Zhang, Huiqing Lin, Simei Gao, Ge Xu, Chenglong |
Author_xml | – sequence: 1 givenname: Huiqing surname: Zhang fullname: Zhang, Huiqing – sequence: 2 givenname: Simei surname: Lin fullname: Lin, Simei – sequence: 3 givenname: Qiang surname: Yu fullname: Yu, Qiang – sequence: 4 givenname: Ge surname: Gao fullname: Gao, Ge – sequence: 5 givenname: Chenglong surname: Xu fullname: Xu, Chenglong – sequence: 6 givenname: Huaguo orcidid: 0000-0001-9355-2338 surname: Huang fullname: Huang, Huaguo |
BookMark | eNptUV1rFDEUDVLBWvviLwj4IsLWfM0keVyXVgulgm0ffAqZzM0229m5azLb2n9v1pUqxQTuDZdzzuXkvCYHI45AyFvOTqS07GMuvOFMtFy8IIeCaTFTwoqDf96vyHEpK1aPlNwydUiGOb3EexjoGWYoEz0NeLXxU_IDvYTpAfMdjZjpwucOR3o1YbhL45LelF1d4HozwM8n5PUtYH6kaaTTLdDvMAz4QL-le8j0k6-MN-Rl9EOB4z_9iNycnV4vvswuvn4-X8wvZkFJOdXKgHfcQw9cSGi1labnUujYBGZM24s2WgBouqB6MCpqyzhEFnqlDGgtj8j5XrdHv3KbnNY-Pzr0yf0eYF46n6cUBnC6M74xrG99G5X00cjOcBEb4S1XUquq9X6vtcn4Y1u_yK1TCdWaHwG3xUmmmNKtbGyFvnsGXeE2j9WpE4Zb1UgldoIne9TS1_1pjDhlH-rtYZ1CTTSmOp_rRrSNtoJXwoc9IWQsJUN8csSZ2wXv_gZfwewZOKSp5olj3ZKG_1F-AfEwr9g |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2023_110909 crossref_primary_10_1016_j_ecolind_2024_112650 crossref_primary_10_3389_fevo_2024_1448426 crossref_primary_10_1080_15481603_2024_2318070 crossref_primary_10_1016_j_buildenv_2024_111541 crossref_primary_10_1016_j_ecolmodel_2023_110578 crossref_primary_10_1016_j_ecolind_2025_113138 crossref_primary_10_1007_s10661_024_12947_x |
Cites_doi | 10.1007/s10980-020-01027-3 10.1016/j.rse.2007.08.021 10.1016/0034-4257(89)90062-X 10.1016/j.foreco.2012.12.043 10.1038/298156a0 10.3390/rs13234926 10.1142/S0217984907013493 10.1016/j.enpol.2018.05.037 10.1111/1365-2664.12790 10.1016/j.ecolind.2017.09.002 10.1038/s41559-021-01644-4 10.3389/fpls.2020.00099 10.1093/forestry/cpp017 10.1016/j.jclepro.2021.128274 10.1016/j.socnet.2004.11.007 10.3390/su13105339 10.1016/S0169-2046(03)00167-1 10.3390/rs14184607 10.1002/wics.101 10.1016/j.ecoleng.2018.12.020 10.1016/j.jclepro.2021.129156 10.1038/s43017-021-00244-x 10.1016/j.socnet.2009.07.002 10.5194/essd-15-897-2023 10.3390/rs14184593 10.1016/j.scs.2020.102271 10.1016/j.ecolind.2021.107479 10.11922/11-6035.csd.2023.0005.zh 10.1103/RevModPhys.87.925 10.3390/su12030959 10.3390/rs14174185 10.1016/j.scitotenv.2022.160035 10.1016/j.ecolmodel.2014.09.016 10.3390/su11072176 10.3390/land9120514 10.3390/su142214981 10.3390/rs14163849 10.3390/rs13152892 10.1016/j.jclepro.2020.121510 10.3390/rs8030186 10.1016/0893-6080(94)90109-0 10.1016/j.agee.2020.106832 10.3390/rs14194700 10.1103/PhysRevE.71.057101 10.1128/mBio.00122-11 10.1016/j.foreco.2022.120208 10.3390/ijgi10050337 10.2307/1308175 10.1016/j.ecolind.2022.108814 10.5026/jgeography.128.129 10.1145/513800.513811 10.1016/j.jenvman.2021.113972 10.1007/s10980-006-0013-z 10.1016/0169-5347(86)90018-2 10.3390/f5061267 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15102612 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_7b8a580d6a6f43af83b812f52a914374 A752657921 10_3390_rs15102612 |
GeographicLocations | China Mongolia Yellow River |
GeographicLocations_xml | – name: China – name: Mongolia – name: Yellow River |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-c40e1b1aede123e67938d1327f5c0886d26f9eee5bc4de84f7901ef0cd448e773 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 00:48:49 EDT 2025 Fri Jul 11 11:02:10 EDT 2025 Fri Jul 25 09:29:35 EDT 2025 Tue May 27 03:55:43 EDT 2025 Tue Jul 01 03:11:08 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-c40e1b1aede123e67938d1327f5c0886d26f9eee5bc4de84f7901ef0cd448e773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9355-2338 |
OpenAccessLink | https://www.proquest.com/docview/2819453424?pq-origsite=%requestingapplication% |
PQID | 2819453424 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7b8a580d6a6f43af83b812f52a914374 proquest_miscellaneous_3040476359 proquest_journals_2819453424 gale_infotracacademiconefile_A752657921 crossref_primary_10_3390_rs15102612 crossref_citationtrail_10_3390_rs15102612 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-17 |
PublicationDateYYYYMMDD | 2023-05-17 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhang (ref_9) 2022; 138 Patten (ref_15) 2015; 295 Blackard (ref_48) 2008; 112 Galiana (ref_17) 2022; 6 ref_55 ref_54 Nelson (ref_49) 1989; 30 ref_52 Li (ref_59) 2020; 292 Abdi (ref_41) 2010; 2 ref_19 Saura (ref_33) 2006; 21 Paivinen (ref_31) 2009; 82 Everett (ref_39) 2005; 27 Woodwell (ref_3) 1978; 199 Liu (ref_1) 2021; 3 Kramer (ref_5) 1981; 31 Zhou (ref_60) 2011; 2 Tian (ref_51) 2021; 125 Guo (ref_57) 2021; 322 Lin (ref_10) 2022; 515 Song (ref_43) 2018; 121 ref_25 Gogoi (ref_11) 2022; 302 ref_24 ref_23 Soffer (ref_38) 2005; 71 ref_22 Nikolakaki (ref_56) 2004; 68 Bombrun (ref_21) 2020; 11 ref_29 Castellano (ref_16) 2015; 87 ref_28 ref_27 ref_26 Yang (ref_42) 2020; 61 Mann (ref_32) 2019; 127 Du (ref_6) 2014; 5 Cheng (ref_2) 2020; 1 Pohjanmies (ref_58) 2017; 54 Jing (ref_18) 2020; 263 ref_35 ref_34 Chen (ref_47) 2023; 15 ref_30 Stephen (ref_36) 2009; 31 ref_37 Zhao (ref_8) 2021; 316 An (ref_53) 2021; 36 Ren (ref_13) 2013; 293 Liu (ref_50) 2022; 44 Martinetz (ref_14) 1994; 7 ref_46 ref_44 Yu (ref_20) 2018; 84 Muraoka (ref_12) 2019; 128 Wu (ref_40) 2007; 21 Schaffer (ref_61) 1986; 1 Qiu (ref_45) 2023; 859 Post (ref_4) 1982; 298 ref_7 |
References_xml | – volume: 36 start-page: 2059 year: 2021 ident: ref_53 article-title: Construction and Optimization of an Ecological Network Based on Morphological Spatial Pattern Analysis and Circuit Theory publication-title: Landsc. Ecol. doi: 10.1007/s10980-020-01027-3 – volume: 112 start-page: 1658 year: 2008 ident: ref_48 article-title: Mapping US Forest Biomass Using Nationwide Forest Inventory Data and Moderate Resolution Information publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.08.021 – volume: 30 start-page: 201 year: 1989 ident: ref_49 article-title: Regression and Ratio Estimators to Integrate AVHRR and MSS Data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(89)90062-X – volume: 293 start-page: 122 year: 2013 ident: ref_13 article-title: Linking Landscape Patterns with Ecological Functions: A Case Study Examining the Interaction between Landscape Heterogeneity and Carbon Stock of Urban Forests in Xiamen, China publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2012.12.043 – volume: 298 start-page: 156 year: 1982 ident: ref_4 article-title: Soil Carbon Pools and World Life Zones publication-title: Nature doi: 10.1038/298156a0 – ident: ref_19 doi: 10.3390/rs13234926 – volume: 199 start-page: 141 year: 1978 ident: ref_3 article-title: The Biota and the World Carbon Budget publication-title: Sci. New Ser. – volume: 21 start-page: 1007 year: 2007 ident: ref_40 article-title: Attack Vulnerability of Complex Networks Based on Local Information publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984907013493 – volume: 121 start-page: 346 year: 2018 ident: ref_43 article-title: Investigation of a “Coupling Model” of Coordination between Low-Carbon Development and Urbanization in China publication-title: Energy Policy doi: 10.1016/j.enpol.2018.05.037 – volume: 54 start-page: 61 year: 2017 ident: ref_58 article-title: Optimizing Management to Enhance Multifunctionality in a Boreal Forest Landscape publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.12790 – volume: 84 start-page: 304 year: 2018 ident: ref_20 article-title: Optimization of Ecological Node Layout and Stability Analysis of Ecological Network in Desert Oasis: A Typical Case Study of Ecological Fragile Zone Located at Deng Kou County (Inner Mongolia) publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.09.002 – volume: 6 start-page: 307 year: 2022 ident: ref_17 article-title: Ecological Network Complexity Scales with Area publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-021-01644-4 – volume: 11 start-page: 99 year: 2020 ident: ref_21 article-title: Forest-Scale Phenotyping: Productivity Characterisation Through Machine Learning publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00099 – volume: 82 start-page: 479 year: 2009 ident: ref_31 article-title: The Growing Stock of European Forests Using Remote Sensing and Forest Inventory Data publication-title: Forestry doi: 10.1093/forestry/cpp017 – volume: 316 start-page: 128274 year: 2021 ident: ref_8 article-title: Spatially Explicit Changes in Forest Biomass Carbon of China over the Past 4 Decades: Coupling Long-Term Inventory and Remote Sensing Data publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128274 – volume: 27 start-page: 31 year: 2005 ident: ref_39 article-title: Ego Network Betweenness publication-title: Soc. Netw. doi: 10.1016/j.socnet.2004.11.007 – ident: ref_44 doi: 10.3390/su13105339 – volume: 68 start-page: 77 year: 2004 ident: ref_56 article-title: A GIS Site-Selection Process for Habitat Creation: Estimating Connectivity of Habitat Patches publication-title: Landsc. Urban Plan. doi: 10.1016/S0169-2046(03)00167-1 – ident: ref_27 doi: 10.3390/rs14184607 – volume: 2 start-page: 433 year: 2010 ident: ref_41 article-title: Principal Component Analysis publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.101 – volume: 127 start-page: 383 year: 2019 ident: ref_32 article-title: Spatio-Temporal Forest Cover Dynamics along Road Networks in the Central Himalaya publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2018.12.020 – volume: 322 start-page: 129156 year: 2021 ident: ref_57 article-title: Optimization of Landscape Spatial Structure Aiming at Achieving Carbon Neutrality in Desert and Mining Areas publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.129156 – volume: 3 start-page: 141 year: 2021 ident: ref_1 article-title: Challenges and Opportunities for Carbon Neutrality in China publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-021-00244-x – volume: 1 start-page: 100055 year: 2020 ident: ref_2 article-title: Future Earth and Sustainable Developments publication-title: Innovation – volume: 31 start-page: 262 year: 2009 ident: ref_36 article-title: Explaining the Power-Law Degree Distribution in a Social Commerce Network publication-title: Soc. Netw. doi: 10.1016/j.socnet.2009.07.002 – volume: 15 start-page: 897 year: 2023 ident: ref_47 article-title: Maps with 1 Km Resolution Reveal Increases in above- and Belowground Forest Biomass Carbon Pools in China over the Past 20 Years publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-15-897-2023 – ident: ref_22 doi: 10.3390/rs14184593 – volume: 61 start-page: 102271 year: 2020 ident: ref_42 article-title: Coupling Coordination Evaluation and Sustainable Development Pattern of Geo-Ecological Environment and Urbanization in Chongqing Municipality, China publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102271 – volume: 125 start-page: 107479 year: 2021 ident: ref_51 article-title: Vegetation Greening in More than 94% of the Yellow River Basin (YRB) Region in China during the 21st Century Caused Jointly by Warming and Anthropogenic Activities publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107479 – ident: ref_30 doi: 10.11922/11-6035.csd.2023.0005.zh – volume: 87 start-page: 925 year: 2015 ident: ref_16 article-title: Epidemic Processes in Complex Networks publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.925 – ident: ref_34 doi: 10.3390/su12030959 – ident: ref_23 doi: 10.3390/rs14174185 – volume: 859 start-page: 160035 year: 2023 ident: ref_45 article-title: Study of Spatialtemporal Changes in Chinese Forest Eco-Space and Optimization Strategies for Enhancing Carbon Sequestration Capacity through Ecological Spatial Network Theory publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.160035 – volume: 295 start-page: 47 year: 2015 ident: ref_15 article-title: Link Tracking: Quantifying Network Flows from Qualitative Node–Link Digraphs publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2014.09.016 – ident: ref_28 – ident: ref_54 doi: 10.3390/su11072176 – ident: ref_55 doi: 10.3390/land9120514 – ident: ref_26 doi: 10.3390/su142214981 – ident: ref_52 doi: 10.3390/rs14163849 – ident: ref_7 doi: 10.3390/rs13152892 – volume: 263 start-page: 121510 year: 2020 ident: ref_18 article-title: Sustainable Development Evaluation of the Society–Economy–Environment in a Resource-Based City of China:A Complex Network Approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121510 – ident: ref_37 – ident: ref_25 doi: 10.3390/rs8030186 – volume: 7 start-page: 507 year: 1994 ident: ref_14 article-title: Topology Representing Networks publication-title: Neural Netw. doi: 10.1016/0893-6080(94)90109-0 – volume: 292 start-page: 106832 year: 2020 ident: ref_59 article-title: Optimizing the Quantity and Spatial Patterns of Farmland Shelter Forests Increases Cotton Productivity in Arid Lands publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2020.106832 – ident: ref_46 doi: 10.3390/rs14194700 – ident: ref_29 – volume: 71 start-page: 057101 year: 2005 ident: ref_38 article-title: Network Clustering Coefficient without Degree-Correlation Biases publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.057101 – volume: 2 start-page: e00122-11 year: 2011 ident: ref_60 article-title: Phylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO2 publication-title: mBio doi: 10.1128/mBio.00122-11 – volume: 44 start-page: 142 year: 2022 ident: ref_50 article-title: Characteristics of Spatial Ecological Network in the Yellow River Basin of Northern China publication-title: J. Beijing For. Univ. – volume: 515 start-page: 120208 year: 2022 ident: ref_10 article-title: Mixed Forest Specific Calibration of the 3-PGmix Model Parameters from Site Observations to Predict Post-Fire Forest Regrowth publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2022.120208 – ident: ref_24 doi: 10.3390/ijgi10050337 – volume: 31 start-page: 29 year: 1981 ident: ref_5 article-title: Carbon Dioxide Concentration, Photosynthesis, and Dry Matter Production publication-title: BioScience doi: 10.2307/1308175 – volume: 138 start-page: 108814 year: 2022 ident: ref_9 article-title: Relationship between the Geographical Environment and the Forest Carbon Sink Capacity in China Based on an Individual-Tree Growth-Rate Model publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2022.108814 – volume: 128 start-page: 129 year: 2019 ident: ref_12 article-title: Long-term and Multidisciplinary Research on Carbon Cycling and Forest Ecosystem Functions in a Mountainous Landscape: Development and Perspectives publication-title: J. Geogr. Chigaku Zasshi doi: 10.5026/jgeography.128.129 – ident: ref_35 doi: 10.1145/513800.513811 – volume: 302 start-page: 113972 year: 2022 ident: ref_11 article-title: Evaluation of Ecosystem Carbon Storage in Major Forest Types of Eastern Himalaya: Implications for Carbon Sink Management publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.113972 – volume: 21 start-page: 959 year: 2006 ident: ref_33 article-title: Comparison and Development of New Graph-Based Landscape Connectivity Indices: Towards the Priorization of Habitat Patches and Corridors for Conservation publication-title: Landsc. Ecol. doi: 10.1007/s10980-006-0013-z – volume: 1 start-page: 58 year: 1986 ident: ref_61 article-title: Chaos in Ecological Systems: The Coals That Newcastle Forgot publication-title: Trends Ecol. Evol. doi: 10.1016/0169-5347(86)90018-2 – volume: 5 start-page: 1267 year: 2014 ident: ref_6 article-title: Mapping Forest Biomass Using Remote Sensing and National Forest Inventory in China publication-title: Forests doi: 10.3390/f5061267 |
SSID | ssj0000331904 |
Score | 2.3859527 |
Snippet | The Yellow River Basin serves as a crucial ecological barrier in China, emphasizing the importance of accurately examining the spatial distribution of forest... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2612 |
SubjectTerms | basins Carbon Carbon neutrality Carbon sequestration carbon sinks China Climate change Comparative analysis Corridors coupled coordination model Datasets Deforestation Distribution ecospatial network Ecosystem services Ecosystems Emission standards Environmental aspects Environmental impact forest area calibration Forest carbon Forests Measurement network theory Optimization Pattern analysis Provinces Remote sensing River basins River ecology Rivers Spatial analysis Spatial distribution spatial distribution of carbon stock Statistical models the yellow river basin topology Vegetation Watersheds Yellow River |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kF3sRays-bctKBfEQ-pL9zPG1tJRC30Et1NOyHxMUHom8l3743zuzSV8rVLx4ySGZhM3uzPxm2NnfMPYh1LFSmFkVdMixkFrqojZlKmwMVjfSau_poPDFXJ9dyvMrdfWo1RfVhA30wMPEHZpgvbLTpD2-KnxjRUBMalTla4R6k5lAEfMeJVPZBwtUrakc-EgF5vWHyxViWybM-gOBMlH_39xxxpjTl-zFGBzy2TCoLfYM2lfs-din_PuvbbaY8Xl3AwtOHTVXPT-JHfUURh3i86Gem2MQyo_9MnQt_9Kjs0No4rkugJPpL-BuLTkcy-c_Wo5BIP9GuzC3_DPVafAjj2_ssMvTk6_HZ8XYL6GIUoger1MoQ-khAeIRaDQ9mzDbNI2K6Ex0qnRTA4AKUSawsjEYDEAzjQlzNDBGvGYbbdfCG8YxqAhWKZ8hXjUCsyggW03RVzJZO2Gf7ufQxZFMnHpaLBwmFTTf7mG-J-xgLftzoNB4UuqIlmItQbTX-QYqgxuVwf1LGSbsIy2kI-PE4UQ_njHAnyKaKzcz1A3A1FU5Ybv3a-1Gq1052lSUSsgKP_R-_RjtjTZRfAvd9coJ9HqSWPzqt_9jxO_YJjWwp3qE0uyyjX55DXsY5vRhP2v0b2A69_c priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel Forest EcoSpatial Network for Carbon Stocking Using Complex Network Theory in the Yellow River Basin |
URI | https://www.proquest.com/docview/2819453424 https://www.proquest.com/docview/3040476359 https://doaj.org/article/7b8a580d6a6f43af83b812f52a914374 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdYe4DLxKcIjMoIJMQhWhLbsXNC7WiZEKvQxqRxshzbAaQq2ZqMj_-e9xI3ExJw6SF9iRK_7-fn9yPkZVnYTEBmFeMhx5jnPI8LmbpY2VLlFVe5MXhQ-GSdH5_z9xfiIhTc2tBWubOJvaF2jcUa-SFu-HDBeMbfXF7FiBqFu6sBQmOPTMEEKzUh08Vy_fF0rLIkDEQs4cNcUgb5_eG2BR_XD876wxP1A_v_ZZZ7X7O6S_ZDkEjnA1fvkVu-vk9uB7zyr78ekM2crpvvfkMRWbPt6NI2iC0MskTXQ183hWCUHplt2dT0rAOjBy6K9v0BFE3Axv8cKYfj-fRbTSEYpJ9xN-YHPcV-DbowcMdDcr5afjo6jgNuQmw5Yx38Jj4tU-OdB7_kc1BB5SDrlJWwYFRyl-VV4b0XpeXOK15JCAp8lVgHuZqXkj0ik7qp_WNCIbgolRCmd_WiYpBNedRZZ03GnVIReb1bQ23DUHHEtthoSC5wvfXNekfkxUh7OYzS-CvVAlkxUuD46_5Cs_2igzZpWSojVOJyA_LETKVYCYFKJTJTQPwneUReISM1Kim8jjXhrAF8FI670nOJqACyyNKIHOx4rYP2tvpG1iLyfPwb9A43U0ztm-tWM7B-HKf5FU_-_4in5A5C1GPHQSoPyKTbXvtnEMh05YzsqdW7GZnO3558OJsF2Z31ZYHf2Jv07A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFOEFjAChDhEzcOOnQNC29JlS9s9QCuVk-s4DlRaJWWTUvqn-I3M5FUhAbde9pA41sYef_NNPJ4P4GWW2khgZOXTIUefJzzxUxnmvrKZSgquEmPooPDBPJkd8Y_H4ngFfg1nYSitcsDEFqjzytI38k3a8OEi5hF_d_bdJ9Uo2l0dJDQ6s9hzlxcYstVvd9_j_L6KounO4fbM71UFfMvjuMHfwIVZaFzuELVdggaqcozJZCEsLrkkj5Iidc6JzPLcKV5IdJmuCGyOkYyTMsZ-b8BN7CulYE9NP4zfdIIYDTrgXRVUvB9sLmv0qG2Zrj_8XisP8C8n0Hq26R243VNSNuls6C6suPIerPXq6N8u78NiwubVD7dgpONZN2zHVqRkjJbL5l0WOUPqy7bNMqtK9rlBiEWHyNpsBEaAs3A_x5ZdMQB2WjKknuwL7f1csE-UHcK2DD7xAI6uZTwfwmpZle4RMKQymRLCtMRCFDHGbo4QIrcm4rlSHrwZxlDbvoQ5KWksNIYyNN76arw9eDG2PesKd_y11RZNxdiCim23F6rlV92vXS0zZYQK8sSg9camUHGGtKgQkUmRbUruwWuaSE2QgH_Hmv5kA74UFdfSE0kaBDKNQg82hrnWPVbU-sqyPXg-3sZVTls3pnTVea1jxFpOtQPTx__v4hmszQ4P9vX-7nxvHW5FSMko1yGUG7DaLM_dE6RQTfa0tVsGJ9e9UH4DXrottg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrQRcEJ8iUMAIEOIQbRI7sXNAaLfdVUthVRUqlZNxHAeQVknZpJT-NX4dM_nYCgm49bKHrDfK2jNv3sTjeQDPs9RGMWZWPh1y9EUiEj-VYe4rm6mkECoxhg4Kv18ku0fi7XF8vAG_hrMwVFY5YGIL1Hll6R35mDZ8RMxFJMZFXxZxsDN_c_LdJwUp2mkd5DQ6E9l352eYvtWv93ZwrV9E0Xz2cXvX7xUGfCs4b_AzcGEWGpc7RHCXoLGqHPMzWcQW3S_Jo6RInXNxZkXulCgkhk9XBDbHrMZJyfG-V2BTUlY0gs3pbHFwuH7DE3A070B0PVE5T4Pxqsb42jbt-iMKtmIB_woJbZyb34QbPUFlk86ibsGGK2_DtV4r_ev5HVhO2KL64ZaMVD3rhs1sRbrGaMds0dWUMyTCbNussqpkHxoEXAyPrK1NYAQ_S_dzPbJrDcC-lQyJKPtEO0Fn7JBqRdjU4C_uwtGlzOg9GJVV6e4DQ2KTqTg2Lc2IC46ZnCO8yK2JRK6UB6-GOdS2b2hOuhpLjYkNzbe-mG8Pnq3HnnRtPP46akpLsR5BrbfbC9Xqi-49WctMmVgFeWLQlrkpFM-QJBVxZFLknlJ48JIWUhNA4ONY059zwD9Frbb0RJIigUyj0IOtYa11jxy1vrBzD56uv0afp40cU7rqtNYckVdQJ8H0wf9v8QSuopPod3uL_YdwPUJ-RoUPodyCUbM6dY-QTzXZ495wGXy-bF_5DWFfM0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Forest+EcoSpatial+Network+for+Carbon+Stocking+Using+Complex+Network+Theory+in+the+Yellow+River+Basin&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Huiqing+Zhang&rft.au=Simei+Lin&rft.au=Qiang+Yu&rft.au=Ge+Gao&rft.date=2023-05-17&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=10&rft_id=info:doi/10.3390%2Frs15102612&rft.externalDocID=A752657921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |