Generalized principal component analysis (GPCA)

This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 27; no. 12; pp. 1945 - 1959
Main Authors Vidal, R., Yi Ma, Sastry, S.
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.12.2005
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a data point give normal vectors to the subspace passing through the point. When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to classifying one point per subspace. We select these points optimally from the data set by minimizing certain distance function, thus dealing automatically with moderate noise in the data. A basis for the complement of each subspace is then recovered by applying standard PCA to the collection of derivatives (normal vectors). Extensions of GPCA that deal with data in a high-dimensional space and with an unknown number of subspaces are also presented. Our experiments on low-dimensional data show that GPCA outperforms existing algebraic algorithms based on polynomial factorization and provides a good initialization to iterative techniques such as k-subspaces and expectation maximization. We also present applications of GPCA to computer vision problems such as face clustering, temporal video segmentation, and 3D motion segmentation from point correspondences in multiple affine views.
AbstractList When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to classifying one point per subspace.
This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a data point give normal vectors to the subspace passing through the point. When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to classifying one point per subspace. We select these points optimally from the data set by minimizing certain distance function, thus dealing automatically with moderate noise in the data. A basis for the complement of each subspace is then recovered by applying standard PCA to the collection of derivatives (normal vectors). Extensions of GPCA that deal with data in a high-dimensional space and with an unknown number of subspaces are also presented. Our experiments on low-dimensional data show that GPCA outperforms existing algebraic algorithms based on polynomial factorization and provides a good initialization to iterative techniques such as K-subspaces and Expectation Maximization. We also present applications of GPCA to computer vision problems such as face clustering, temporal video segmentation, and 3D motion segmentation from point correspondences in multiple affine views.
This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a data point give normal vectors to the subspace passing through the point. When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to classifying one point per subspace. We select these points optimally from the data set by minimizing certain distance function, thus dealing automatically with moderate noise in the data. A basis for the complement of each subspace is then recovered by applying standard PCA to the collection of derivatives (normal vectors). Extensions of GPCA that deal with data in a high-dimensional space and with an unknown number of subspaces are also presented. Our experiments on low-dimensional data show that GPCA outperforms existing algebraic algorithms based on polynomial factorization and provides a good initialization to iterative techniques such as K-subspaces and Expectation Maximization. We also present applications of GPCA to computer vision problems such as face clustering, temporal video segmentation, and 3D motion segmentation from point correspondences in multiple affine views.This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a data point give normal vectors to the subspace passing through the point. When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to classifying one point per subspace. We select these points optimally from the data set by minimizing certain distance function, thus dealing automatically with moderate noise in the data. A basis for the complement of each subspace is then recovered by applying standard PCA to the collection of derivatives (normal vectors). Extensions of GPCA that deal with data in a high-dimensional space and with an unknown number of subspaces are also presented. Our experiments on low-dimensional data show that GPCA outperforms existing algebraic algorithms based on polynomial factorization and provides a good initialization to iterative techniques such as K-subspaces and Expectation Maximization. We also present applications of GPCA to computer vision problems such as face clustering, temporal video segmentation, and 3D motion segmentation from point correspondences in multiple affine views.
Author Vidal, R.
Sastry, S.
Yi Ma
Author_xml – sequence: 1
  givenname: R.
  surname: Vidal
  fullname: Vidal, R.
  organization: Dept. of Biomed. Eng., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 2
  surname: Yi Ma
  fullname: Yi Ma
– sequence: 3
  givenname: S.
  surname: Sastry
  fullname: Sastry, S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17247131$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16355661$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1LIzEYBvAgLlo_rl4EKcJ-eJiaN1_z5ljKbldQ1oOeQyaTgch0pibTg_71ptu6grB6yuX3vIHnOSC7Xd95Qk6ATgCovry7nd5cTRilcsKE2CEj0FwXXHK9S0YUFCsQGe6Tg5QeKAUhKd8j-6C4lErBiFzOfeejbcOzr8fLGDoXlrYdu36xzB91w9h2tn1KIY1_zG9n04sj8qWxbfLH2_eQ3P_6eTf7XVz_mV_NpteFE5wPRVWLGnmjRVUxzlltUcqGW2k9BYQKsdaNr-tGKy0QqRBOaW2F05Q57rXjh-T75u4y9o8rnwazCMn5trWd71fJoFZQKpSQ5bcPpULUJaD-FDKkDBWs4fk7-NCvYu4hf6tKVYLkIqOzLVpVC1-b3N3CxifzWm0GX7fAJmfbJtrcbXpzJRMl8LUTG-din1L0jXFhsEPouyHa0BqgZr20-bu0WS9t8tI5NnkX-3f5f4HTTSB479-wZEJjyV8Ax4GvNA
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_cviu_2012_09_004
crossref_primary_10_1002_rnc_4968
crossref_primary_10_1016_j_acha_2013_12_001
crossref_primary_10_1016_j_patcog_2016_02_006
crossref_primary_10_1155_2013_878417
crossref_primary_10_1109_TNNLS_2021_3071797
crossref_primary_10_1007_s10489_021_02409_z
crossref_primary_10_1109_ACCESS_2017_2736058
crossref_primary_10_1109_LSP_2014_2303122
crossref_primary_10_1109_TCSVT_2016_2595328
crossref_primary_10_1190_geo2015_0047_1
crossref_primary_10_1016_j_dsp_2023_104338
crossref_primary_10_3934_bdia_2016001
crossref_primary_10_1109_JSTSP_2011_2155032
crossref_primary_10_1109_TIP_2017_2767785
crossref_primary_10_1109_TPAMI_2018_2871850
crossref_primary_10_1049_iet_cvi_2013_0224
crossref_primary_10_1109_TMM_2017_2771477
crossref_primary_10_1007_s10586_023_04033_7
crossref_primary_10_1109_TPAMI_2014_2339851
crossref_primary_10_14710_jtsiskom_2020_13422
crossref_primary_10_1155_2013_417492
crossref_primary_10_1007_s11263_013_0694_0
crossref_primary_10_1016_j_automatica_2024_111643
crossref_primary_10_1186_s40537_023_00872_8
crossref_primary_10_3390_electronics11213637
crossref_primary_10_1016_j_knosys_2019_105029
crossref_primary_10_1016_j_ifacol_2017_08_1846
crossref_primary_10_1109_ACCESS_2023_3257357
crossref_primary_10_1016_j_sigpro_2021_108082
crossref_primary_10_1109_TPAMI_2017_2748579
crossref_primary_10_1016_j_eswa_2023_119977
crossref_primary_10_1007_s00521_022_06909_y
crossref_primary_10_3233_JIFS_189587
crossref_primary_10_1109_LCSYS_2020_3045664
crossref_primary_10_1111_mice_12063
crossref_primary_10_5902_2179460X90532
crossref_primary_10_3390_math11081777
crossref_primary_10_1016_j_patcog_2012_09_013
crossref_primary_10_1016_j_asoc_2024_112303
crossref_primary_10_1109_TSP_2015_2472372
crossref_primary_10_1016_j_asoc_2024_111576
crossref_primary_10_1109_TASL_2012_2234110
crossref_primary_10_1109_JSTSP_2015_2402643
crossref_primary_10_1109_TIT_2016_2573311
crossref_primary_10_1016_j_measurement_2016_04_078
crossref_primary_10_1109_LSP_2017_2757901
crossref_primary_10_1109_TIP_2014_2362052
crossref_primary_10_1109_TNNLS_2020_2968848
crossref_primary_10_1109_LSP_2017_2777997
crossref_primary_10_1016_j_neucom_2019_12_019
crossref_primary_10_1109_TSMC_2021_3138550
crossref_primary_10_1109_ACCESS_2019_2911723
crossref_primary_10_1109_TIP_2011_2176743
crossref_primary_10_1109_JPROC_2009_2037655
crossref_primary_10_3390_s17071633
crossref_primary_10_1016_j_patcog_2012_02_033
crossref_primary_10_1109_ACCESS_2020_2999457
crossref_primary_10_1631_FITEE_1700667
crossref_primary_10_1016_j_neucom_2015_05_049
crossref_primary_10_1142_S0218213018500203
crossref_primary_10_1016_j_ins_2020_03_033
crossref_primary_10_1016_j_knosys_2021_107053
crossref_primary_10_1109_TCYB_2019_2943691
crossref_primary_10_1109_TIT_2018_2879912
crossref_primary_10_1016_j_knosys_2016_11_013
crossref_primary_10_1016_j_neucom_2017_02_019
crossref_primary_10_1016_j_acha_2013_11_003
crossref_primary_10_1016_j_patrec_2019_02_024
crossref_primary_10_1007_s11042_022_12943_8
crossref_primary_10_1016_j_patrec_2019_02_023
crossref_primary_10_1016_j_neucom_2017_10_060
crossref_primary_10_1016_j_dsp_2016_09_006
crossref_primary_10_1007_s11263_021_01544_x
crossref_primary_10_1142_S021969132250028X
crossref_primary_10_1155_2024_9655008
crossref_primary_10_1109_TCSVT_2021_3069094
crossref_primary_10_1007_s10489_021_02749_w
crossref_primary_10_1016_j_patcog_2018_07_002
crossref_primary_10_1109_TPAMI_2024_3446537
crossref_primary_10_1007_s10851_015_0629_1
crossref_primary_10_3390_en12122229
crossref_primary_10_1080_17517575_2018_1442934
crossref_primary_10_1109_TCSVT_2022_3232604
crossref_primary_10_1109_TCSVT_2016_2630731
crossref_primary_10_1016_j_neunet_2020_06_022
crossref_primary_10_1109_LSP_2023_3271828
crossref_primary_10_1109_ACCESS_2018_2872733
crossref_primary_10_1177_1748302620983690
crossref_primary_10_1016_j_ifacol_2020_12_1320
crossref_primary_10_1109_TPAMI_2023_3257407
crossref_primary_10_11118_actaun201058010013
crossref_primary_10_1007_s11263_007_0099_z
crossref_primary_10_1109_TCYB_2016_2536752
crossref_primary_10_3233_JIFS_210274
crossref_primary_10_1109_ACCESS_2019_2920688
crossref_primary_10_1109_TETC_2021_3074242
crossref_primary_10_1109_TSMC_2019_2899398
crossref_primary_10_1109_TPAMI_2020_2992392
crossref_primary_10_3390_s19132936
crossref_primary_10_1109_MSP_2010_939739
crossref_primary_10_1016_j_measurement_2023_113138
crossref_primary_10_1016_j_comgeo_2019_101606
crossref_primary_10_1186_s41074_016_0002_3
crossref_primary_10_1109_TIP_2020_2984893
crossref_primary_10_1109_TPAMI_2018_2877660
crossref_primary_10_1088_1361_6501_abfbaa
crossref_primary_10_1016_j_geomat_2024_100031
crossref_primary_10_1109_JSEN_2022_3154594
crossref_primary_10_1007_s10208_009_9043_7
crossref_primary_10_1109_JIOT_2021_3071152
crossref_primary_10_1371_journal_pone_0117341
crossref_primary_10_1016_j_ipm_2013_01_004
crossref_primary_10_1587_transinf_2020EDP7086
crossref_primary_10_1109_TSP_2016_2613070
crossref_primary_10_3390_rs9101017
crossref_primary_10_1088_1361_6420_aa7773
crossref_primary_10_1007_s13171_021_00247_2
crossref_primary_10_1109_TCYB_2016_2618852
crossref_primary_10_1016_j_ifacol_2020_12_1300
crossref_primary_10_1016_j_measurement_2013_10_026
crossref_primary_10_1007_s00521_017_3259_2
crossref_primary_10_1214_24_AOAS1877
crossref_primary_10_1007_s12559_015_9373_5
crossref_primary_10_1007_s00500_015_1869_0
crossref_primary_10_1016_j_measurement_2017_02_031
crossref_primary_10_1214_12_AOS1034
crossref_primary_10_1109_JSTSP_2018_2867446
crossref_primary_10_1109_TITS_2016_2596296
crossref_primary_10_1155_2015_572753
crossref_primary_10_1016_j_knosys_2023_110874
crossref_primary_10_1016_j_commatsci_2024_112896
crossref_primary_10_1016_j_meatsci_2024_109533
crossref_primary_10_1016_j_patcog_2016_07_008
crossref_primary_10_1016_j_sigpro_2019_05_017
crossref_primary_10_1109_TIP_2006_884921
crossref_primary_10_1016_j_image_2021_116137
crossref_primary_10_1109_TIP_2017_2691557
crossref_primary_10_1016_j_patcog_2018_01_018
crossref_primary_10_1109_TPAMI_2019_2929146
crossref_primary_10_1371_journal_pone_0176769
crossref_primary_10_1107_S2052252518013519
crossref_primary_10_1109_TCYB_2018_2878069
crossref_primary_10_1007_s11356_022_21118_9
crossref_primary_10_1016_j_patcog_2019_03_028
crossref_primary_10_1016_j_neuroimage_2021_118531
crossref_primary_10_1515_cait_2016_0088
crossref_primary_10_1016_j_cviu_2018_04_004
crossref_primary_10_1109_TSG_2020_3011266
crossref_primary_10_1109_TIP_2015_2456504
crossref_primary_10_1016_j_jvcir_2019_04_003
crossref_primary_10_1109_TCSVT_2023_3298319
crossref_primary_10_1109_ACCESS_2021_3087575
crossref_primary_10_1016_j_patrec_2017_12_020
crossref_primary_10_1109_TPAMI_2007_1179
crossref_primary_10_1016_j_ymssp_2018_04_003
crossref_primary_10_1016_j_knosys_2017_02_031
crossref_primary_10_1109_TAC_2011_2166295
crossref_primary_10_1007_s00138_018_0918_y
crossref_primary_10_1109_TBDATA_2023_3301389
crossref_primary_10_1088_1361_6501_ab5b65
crossref_primary_10_1214_13_AOS1199
crossref_primary_10_1016_j_cma_2022_115760
crossref_primary_10_1016_j_jocs_2021_101408
crossref_primary_10_1109_ACCESS_2020_3022706
crossref_primary_10_1109_TPAMI_2017_2678477
crossref_primary_10_1109_LSP_2018_2849590
crossref_primary_10_1016_j_neucom_2016_04_010
crossref_primary_10_1109_TRO_2023_3335693
crossref_primary_10_1016_j_patcog_2019_107145
crossref_primary_10_1109_TBCAS_2020_2969910
crossref_primary_10_1016_j_patrec_2015_09_001
crossref_primary_10_1109_LGRS_2023_3235714
crossref_primary_10_3389_frai_2023_1274830
crossref_primary_10_1214_11_AOS914
crossref_primary_10_1109_TSP_2020_3018665
crossref_primary_10_1007_s10489_023_04830_y
crossref_primary_10_1007_s11063_018_9859_8
crossref_primary_10_1016_j_patcog_2017_07_018
crossref_primary_10_3390_rs14236017
crossref_primary_10_1016_j_ymssp_2022_109372
crossref_primary_10_1109_TAFFC_2022_3168834
crossref_primary_10_1016_j_imavis_2014_04_004
crossref_primary_10_1016_j_jpaa_2019_04_013
crossref_primary_10_1109_TGRS_2018_2862899
crossref_primary_10_1007_s13042_021_01456_9
crossref_primary_10_1016_j_sigpro_2013_03_020
crossref_primary_10_3390_biom13030526
crossref_primary_10_1109_LGRS_2017_2705703
crossref_primary_10_1016_j_patcog_2022_109085
crossref_primary_10_1016_j_cma_2022_115420
crossref_primary_10_1109_TFUZZ_2022_3215566
crossref_primary_10_1109_TAC_2022_3144135
crossref_primary_10_1109_TGRS_2018_2872416
crossref_primary_10_1142_S0218001421510095
crossref_primary_10_3390_su122310010
crossref_primary_10_1016_j_jmva_2024_105333
crossref_primary_10_1109_TSP_2017_2781649
crossref_primary_10_1109_TPAMI_2007_1123
crossref_primary_10_1039_c0ib00036a
crossref_primary_10_1002_pamm_201410486
crossref_primary_10_1016_j_neucom_2017_11_021
crossref_primary_10_1109_JSTSP_2018_2877041
crossref_primary_10_1109_TPAMI_2012_265
crossref_primary_10_1016_j_neunet_2015_11_011
crossref_primary_10_1016_j_inffus_2025_103012
crossref_primary_10_1080_10618600_2021_2000420
crossref_primary_10_1016_j_ifacol_2016_10_088
crossref_primary_10_1049_iet_cta_2008_0274
crossref_primary_10_1016_j_engappai_2024_109055
crossref_primary_10_1109_TPAMI_2011_216
crossref_primary_10_1016_j_knosys_2015_12_006
crossref_primary_10_1109_TSP_2012_2187642
crossref_primary_10_1007_s11036_021_01889_0
crossref_primary_10_1109_TMM_2023_3330093
crossref_primary_10_1109_JPROC_2010_2040551
crossref_primary_10_1109_TSP_2015_2469637
crossref_primary_10_4236_jilsa_2011_31006
crossref_primary_10_1016_j_knosys_2014_10_004
crossref_primary_10_1016_j_jprocont_2016_01_008
crossref_primary_10_1109_TSP_2009_2036477
crossref_primary_10_1145_3177853
crossref_primary_10_1016_j_tele_2022_101853
crossref_primary_10_1007_s10489_023_04697_z
crossref_primary_10_1016_j_oceaneng_2023_116310
crossref_primary_10_1109_TIT_2015_2472520
crossref_primary_10_1137_18M1169321
crossref_primary_10_1109_TSP_2017_2749206
crossref_primary_10_1109_TITS_2021_3055766
crossref_primary_10_1016_j_sigpro_2018_02_010
crossref_primary_10_1109_TPDS_2020_2975550
crossref_primary_10_1109_TPAMI_2019_2913863
crossref_primary_10_1177_0278364908096316
crossref_primary_10_1007_s10489_024_06073_x
crossref_primary_10_1016_j_patcog_2012_06_011
crossref_primary_10_1007_s41095_019_0149_9
crossref_primary_10_1016_j_dsp_2021_103121
crossref_primary_10_1016_j_neucom_2019_02_055
crossref_primary_10_1016_j_patcog_2019_04_029
crossref_primary_10_1016_j_neunet_2022_06_003
crossref_primary_10_1109_TSP_2015_2425803
crossref_primary_10_1016_j_neucom_2018_08_054
crossref_primary_10_1007_s10044_018_00774_z
crossref_primary_10_1109_TPAMI_2022_3168882
crossref_primary_10_1016_j_sigpro_2014_03_047
crossref_primary_10_1109_TCSVT_2018_2805838
crossref_primary_10_1007_s00521_023_09388_x
crossref_primary_10_1109_ACCESS_2022_3200482
crossref_primary_10_3389_fams_2018_00065
crossref_primary_10_1007_s11263_005_4839_7
crossref_primary_10_1109_TIP_2009_2038778
crossref_primary_10_1109_TPAMI_2012_52
crossref_primary_10_1109_TCBB_2018_2834371
crossref_primary_10_1109_TGRS_2014_2363101
crossref_primary_10_1016_j_acha_2017_08_006
crossref_primary_10_1109_TCYB_2018_2811764
crossref_primary_10_1007_s10773_014_2406_0
crossref_primary_10_1109_TSTE_2013_2295402
crossref_primary_10_3390_genes12121847
crossref_primary_10_1093_imaiai_iaaa019
crossref_primary_10_1016_j_patrec_2013_08_005
crossref_primary_10_1016_j_patrec_2013_08_006
crossref_primary_10_1109_TPAMI_2013_57
crossref_primary_10_1016_j_cviu_2015_04_003
crossref_primary_10_1016_j_patcog_2022_108918
crossref_primary_10_1109_LGRS_2019_2955737
crossref_primary_10_1016_j_comgeo_2011_05_002
crossref_primary_10_1109_TSP_2024_3457529
crossref_primary_10_1016_j_patrec_2017_08_023
crossref_primary_10_1109_TPAMI_2017_2652452
crossref_primary_10_1093_mnras_staa319
crossref_primary_10_1117_1_JEI_26_3_033021
crossref_primary_10_1142_S0218001413500043
crossref_primary_10_1109_TCSVT_2022_3207484
crossref_primary_10_1109_TMM_2007_898949
crossref_primary_10_1016_j_engappai_2018_09_008
crossref_primary_10_1016_j_acha_2018_03_003
crossref_primary_10_1109_JSAIT_2020_3039170
crossref_primary_10_3389_fgene_2023_1110899
crossref_primary_10_1109_MSP_2010_940005
crossref_primary_10_1016_j_ins_2019_11_031
crossref_primary_10_1109_TPAMI_2016_2614980
crossref_primary_10_1007_s00521_022_08056_w
crossref_primary_10_3390_fi11090190
crossref_primary_10_1109_TIT_2016_2549040
crossref_primary_10_1137_15M1054201
crossref_primary_10_1016_j_engappai_2020_103722
crossref_primary_10_1109_TCSVT_2008_2005805
crossref_primary_10_1016_j_eswa_2024_124619
crossref_primary_10_1109_TNN_2011_2147798
crossref_primary_10_1109_TCYB_2021_3113520
crossref_primary_10_1109_TPAMI_2009_191
crossref_primary_10_1007_s10618_023_00976_y
crossref_primary_10_1109_TPAMI_2018_2794348
crossref_primary_10_1515_bmt_2010_057
crossref_primary_10_3724_SP_J_1224_2014_00259
crossref_primary_10_1111_rssb_12410
crossref_primary_10_1049_iet_spr_2018_5207
crossref_primary_10_3934_mine_2022028
crossref_primary_10_3934_fods_2021024
crossref_primary_10_3390_app13169345
crossref_primary_10_1007_s11263_016_0928_z
crossref_primary_10_1007_s00521_019_04688_7
crossref_primary_10_1049_iet_cvi_20080027
crossref_primary_10_1109_TPAMI_2007_1085
crossref_primary_10_1109_TSP_2020_3003423
crossref_primary_10_1016_j_patcog_2020_107261
crossref_primary_10_1007_s11434_016_1041_y
crossref_primary_10_1016_j_aei_2024_102654
crossref_primary_10_1007_s10994_015_5501_4
crossref_primary_10_1007_s10044_024_01336_2
crossref_primary_10_1109_JSTSP_2018_2879743
crossref_primary_10_1016_j_petrol_2021_108362
crossref_primary_10_1109_TNNLS_2018_2876327
crossref_primary_10_1109_TPAMI_2023_3250325
crossref_primary_10_1109_JSTARS_2020_2987951
crossref_primary_10_1016_j_neucom_2018_02_098
crossref_primary_10_3390_app10124252
crossref_primary_10_1007_s11263_009_0314_1
crossref_primary_10_1007_s00500_022_07092_x
crossref_primary_10_1016_j_ins_2015_03_010
crossref_primary_10_1109_TCYB_2013_2286106
crossref_primary_10_1186_s40537_020_00320_x
crossref_primary_10_1016_j_cosrev_2021_100435
crossref_primary_10_1016_j_jbi_2019_103357
crossref_primary_10_5050_KSNVE_2021_31_6_604
crossref_primary_10_1109_TIP_2006_882016
crossref_primary_10_1109_TNNLS_2013_2253123
crossref_primary_10_1109_TSP_2017_2725227
crossref_primary_10_1016_j_eswa_2021_116359
crossref_primary_10_1016_j_patrec_2010_10_009
crossref_primary_10_1109_TIE_2019_2931243
crossref_primary_10_1109_TNNLS_2014_2374631
crossref_primary_10_1016_j_patcog_2023_109438
crossref_primary_10_1016_j_dsp_2023_104082
crossref_primary_10_1109_TKDE_2020_2995896
crossref_primary_10_1080_10618600_2022_2034636
crossref_primary_10_1177_0962280220921912
crossref_primary_10_1007_s11042_023_16846_0
crossref_primary_10_1371_journal_pone_0137986
crossref_primary_10_1109_ACCESS_2019_2920592
crossref_primary_10_1007_s11263_008_0178_9
crossref_primary_10_1080_24725854_2022_2040761
crossref_primary_10_1109_ACCESS_2017_2765688
crossref_primary_10_1007_s00521_018_3617_8
crossref_primary_10_1016_j_jcmds_2025_100113
crossref_primary_10_1371_journal_pone_0206607
crossref_primary_10_1016_j_patrec_2019_03_019
crossref_primary_10_1109_TCSVT_2018_2793359
crossref_primary_10_1364_JOCN_402884
crossref_primary_10_1109_TIT_2019_2891628
crossref_primary_10_1109_TMM_2023_3301280
crossref_primary_10_1016_j_jsc_2018_02_003
crossref_primary_10_3390_e20110830
crossref_primary_10_1016_j_ins_2019_03_069
crossref_primary_10_1007_s11063_018_9963_9
crossref_primary_10_1109_TPAMI_2020_3027968
crossref_primary_10_1109_TPAMI_2014_2377740
crossref_primary_10_1002_cjs_11642
crossref_primary_10_1007_s11263_008_0144_6
crossref_primary_10_1371_journal_pone_0059377
crossref_primary_10_1007_s11263_006_9352_0
crossref_primary_10_1016_j_neucom_2013_03_015
crossref_primary_10_1109_TCYB_2018_2832171
crossref_primary_10_1109_TGRS_2024_3374597
crossref_primary_10_1137_20M1335571
crossref_primary_10_1016_j_neucom_2015_08_077
crossref_primary_10_1137_20M1323448
crossref_primary_10_1016_j_neucom_2018_01_006
crossref_primary_10_1109_TKDE_2023_3249765
crossref_primary_10_1111_cgf_12255
crossref_primary_10_1098_rspa_2023_0320
crossref_primary_10_1109_TNNLS_2014_2315571
crossref_primary_10_3390_app14146081
crossref_primary_10_1007_s11263_012_0535_6
crossref_primary_10_1016_j_dsp_2023_104060
crossref_primary_10_1049_iet_cim_2019_0003
crossref_primary_10_1109_TSMC_2024_3465039
crossref_primary_10_1007_s10827_010_0307_7
crossref_primary_10_1016_j_knosys_2024_112538
crossref_primary_10_1109_ACCESS_2020_3036132
crossref_primary_10_1088_0031_9155_57_1_173
crossref_primary_10_1587_transinf_2017EDL8129
crossref_primary_10_1016_j_imavis_2013_06_005
crossref_primary_10_3390_electronics12194042
crossref_primary_10_1016_j_neunet_2017_04_005
crossref_primary_10_1109_LSP_2012_2214211
crossref_primary_10_1109_MSP_2010_939041
crossref_primary_10_1007_BF03549538
crossref_primary_10_1007_s11042_016_3385_3
crossref_primary_10_1109_ACCESS_2019_2944427
crossref_primary_10_1007_s00454_020_00206_y
crossref_primary_10_1016_j_neunet_2014_06_005
crossref_primary_10_1007_s10898_014_0225_8
crossref_primary_10_1109_TSP_2016_2539143
crossref_primary_10_1109_TNNLS_2015_2472284
crossref_primary_10_1109_TNNLS_2017_2691725
crossref_primary_10_3390_app8030454
crossref_primary_10_1109_TIT_2019_2915593
crossref_primary_10_1007_s10586_023_03978_z
crossref_primary_10_1016_j_bbcan_2021_188588
crossref_primary_10_1186_s13634_021_00717_7
crossref_primary_10_1007_s44163_021_00013_1
crossref_primary_10_1016_j_neucom_2015_12_009
crossref_primary_10_1109_TIA_2018_2873576
crossref_primary_10_1145_3465056
crossref_primary_10_3182_20120711_3_BE_2027_00430
crossref_primary_10_1109_ACCESS_2019_2958648
crossref_primary_10_1016_j_neucom_2015_12_123
crossref_primary_10_1109_JSTSP_2018_2873147
crossref_primary_10_1109_TASLP_2014_2371544
crossref_primary_10_4236_jdaip_2021_93013
crossref_primary_10_1109_TIP_2009_2019307
crossref_primary_10_1109_TPAMI_2015_2511743
crossref_primary_10_1007_s00521_019_04317_3
crossref_primary_10_1016_j_patrec_2019_10_007
crossref_primary_10_1109_ACCESS_2018_2886824
crossref_primary_10_1016_j_automatica_2014_10_101
crossref_primary_10_1524_auto_2007_55_10_503
crossref_primary_10_1162_NECO_a_00762
crossref_primary_10_1109_TNSE_2022_3210233
crossref_primary_10_1016_j_compbiomed_2010_06_007
crossref_primary_10_1089_cmb_2015_0084
crossref_primary_10_1007_s40031_022_00818_3
crossref_primary_10_1109_JSTARS_2019_2895508
crossref_primary_10_1109_TNNLS_2022_3164540
crossref_primary_10_1109_TCYB_2015_2454521
crossref_primary_10_1109_ACCESS_2022_3175199
crossref_primary_10_1007_s10898_018_0684_4
crossref_primary_10_1109_TSP_2019_2935914
crossref_primary_10_1016_j_inffus_2020_01_005
crossref_primary_10_1016_j_ins_2023_119143
crossref_primary_10_1109_TNNLS_2012_2189581
crossref_primary_10_1190_geo2014_0525_1
crossref_primary_10_1016_j_imavis_2023_104769
crossref_primary_10_3390_biom13060923
crossref_primary_10_1016_j_patcog_2018_05_020
crossref_primary_10_1016_j_inffus_2017_05_002
crossref_primary_10_1109_MCSE_2014_52
crossref_primary_10_1080_00207543_2022_2086083
crossref_primary_10_3390_math11020436
crossref_primary_10_1007_s10851_006_8286_z
crossref_primary_10_1109_TCYB_2018_2882924
crossref_primary_10_1587_transinf_2019EDP7138
crossref_primary_10_1016_j_ins_2015_12_038
crossref_primary_10_1016_j_jpaa_2006_05_032
crossref_primary_10_1016_j_neunet_2022_03_039
crossref_primary_10_1007_s11263_018_1129_8
Cites_doi 10.1007/978-1-4684-9449-5
10.1016/S0031-3203(01)00198-4
10.1145/358669.358692
10.1109/CVPR.2003.1211482
10.1109/CVPR.2003.1211411
10.1109/CVPR.2004.1315075
10.1007/BF02288367
10.1137/S0036139998338583
10.1162/089976698300017467
10.1162/089976699300016728
10.1109/34.910882
10.1109/CVPR.1991.139704
10.1007/978-0-8176-4771-1
10.1007/978-1-4757-1904-8
10.1007/s11263-005-4839-7
10.1111/1467-9868.00196
10.1007/978-1-4757-2189-8
10.1007/978-1-4757-3849-0
10.1109/ICCV.2001.937679
10.1109/CVPR.2003.1211332
10.1023/A:1008000628999
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2005.244
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
MEDLINE

Computer and Information Systems Abstracts
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 1959
ExternalDocumentID 2352141721
16355661
17247131
10_1109_TPAMI_2005_244
1524987
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYOK
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c433t-bd4d83f94bb2332da855f3a5ae0181b88d9feddf969488044c699a4c902c3e9c3
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Fri Jul 11 06:24:57 EDT 2025
Fri Jul 11 08:15:39 EDT 2025
Fri Jul 11 05:57:38 EDT 2025
Mon Jun 30 04:12:50 EDT 2025
Wed Feb 19 01:44:56 EST 2025
Mon Jul 21 09:15:41 EDT 2025
Tue Jul 01 03:18:16 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Tue Aug 26 16:40:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords subspace segmentation
Computer vision
dynamic scenes and motion segmentation
Veronese map
temporal video segmentation
Multiple view
Index Terms-Principal component analysis (PCA)
Image segmentation
Dimension reduction
dimensionality reduction
Multidimensional database
Scene analysis
Tridimensional image
EM algorithm
Pattern analysis
Principal component analysis
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-bd4d83f94bb2332da855f3a5ae0181b88d9feddf969488044c699a4c902c3e9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 16355661
PQID 867671534
PQPubID 23500
PageCount 15
ParticipantIDs ieee_primary_1524987
proquest_journals_867671534
proquest_miscellaneous_68897189
pubmed_primary_16355661
pascalfrancis_primary_17247131
crossref_primary_10_1109_TPAMI_2005_244
proquest_miscellaneous_896176851
proquest_miscellaneous_28028619
crossref_citationtrail_10_1109_TPAMI_2005_244
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-12-01
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: 2005-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2005
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
hartshorne (ref8) 1977
vidal (ref26) 2004
ref15
harris (ref7) 1992
ref10
ref1
ref17
ref16
ref19
kanatani (ref14) 2003
vidal (ref22) 2004; ii
jolliffe (ref12) 1986
wu (ref27) 2001; 2
ref24
stark (ref18) 2001
ref23
ref25
ref20
ref21
ref28
ref4
ref3
huang (ref11) 2004; 2
ref6
collins (ref2) 2001; 14
hirsch (ref9) 1976
ref5
References_xml – year: 1976
  ident: ref9
  publication-title: Differential Topology
  doi: 10.1007/978-1-4684-9449-5
– ident: ref15
  doi: 10.1016/S0031-3203(01)00198-4
– ident: ref5
  doi: 10.1145/358669.358692
– ident: ref28
  doi: 10.1109/CVPR.2003.1211482
– volume: 14
  year: 2001
  ident: ref2
  article-title: A Generalization of Principal Component Analysis to the Exponential Family
  publication-title: Advances in neural information processing systems
– ident: ref24
  doi: 10.1109/CVPR.2003.1211411
– ident: ref23
  doi: 10.1109/CVPR.2004.1315075
– ident: ref4
  doi: 10.1007/BF02288367
– start-page: 1
  year: 2004
  ident: ref26
  article-title: A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation
  publication-title: Proc European Conf Computer Vision
– ident: ref1
  doi: 10.1137/S0036139998338583
– ident: ref16
  doi: 10.1162/089976698300017467
– ident: ref19
  doi: 10.1162/089976699300016728
– ident: ref21
  doi: 10.1109/34.910882
– volume: ii
  start-page: 310
  year: 2004
  ident: ref22
  article-title: Motion Segmentation with Missing Data by PowerFactorization and Generalized PCA
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– ident: ref17
  doi: 10.1109/CVPR.1991.139704
– ident: ref6
  doi: 10.1007/978-0-8176-4771-1
– year: 1986
  ident: ref12
  publication-title: Principal Component Analysis
  doi: 10.1007/978-1-4757-1904-8
– start-page: 335
  year: 2003
  ident: ref14
  article-title: Multi-Stage Optimization for Multi-Body Motion Segmentation
  publication-title: Proc Australia-Japan Advanced Workshop Computer Vision
– ident: ref25
  doi: 10.1007/s11263-005-4839-7
– ident: ref20
  doi: 10.1111/1467-9868.00196
– year: 1992
  ident: ref7
  publication-title: Algebraic Geometry A First Course
  doi: 10.1007/978-1-4757-2189-8
– volume: 2
  start-page: 631
  year: 2004
  ident: ref11
  article-title: Minimum Effective Dimension for Mixtures of Subspaces: A Robust GPCA Algorithm and Its Applications
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– year: 1977
  ident: ref8
  publication-title: Algebraic Geometry
  doi: 10.1007/978-1-4757-3849-0
– ident: ref13
  doi: 10.1109/ICCV.2001.937679
– year: 2001
  ident: ref18
  publication-title: Probability and Random Processes With Applications to Signal Processing
– volume: 2
  start-page: 252
  year: 2001
  ident: ref27
  article-title: Multibody Grouping via Orthogonal Subspace Decomposition
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– ident: ref10
  doi: 10.1109/CVPR.2003.1211332
– ident: ref3
  doi: 10.1023/A:1008000628999
SSID ssj0014503
Score 2.4491549
Snippet This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample...
When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1945
SubjectTerms Algorithms
Application software
Applied sciences
Artificial Intelligence
Cluster Analysis
Clustering algorithms
Computer science; control theory; systems
Computer Simulation
Computer vision
Data points
Derivatives
dimensionality reduction
dynamic scenes and motion segmentation
Exact sciences and technology
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Index Terms- Principal component analysis (PCA)
Information Storage and Retrieval - methods
Iterative algorithms
Kernel
Machine learning
Mathematical analysis
Mathematical models
Matrix decomposition
Models, Statistical
Motion segmentation
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Polynomials
Principal Component Analysis
Principal components analysis
Segmentation
Studies
subspace segmentation
Subspaces
temporal video segmentation
Three dimensional
Vectors (mathematics)
Veronese map
Title Generalized principal component analysis (GPCA)
URI https://ieeexplore.ieee.org/document/1524987
https://www.ncbi.nlm.nih.gov/pubmed/16355661
https://www.proquest.com/docview/867671534
https://www.proquest.com/docview/28028619
https://www.proquest.com/docview/68897189
https://www.proquest.com/docview/896176851
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4FTvRQSmjLFgh7qASVusnu2mvsY4QID4mKA0jcVn5KVVGCmuTCr-_4kQQqInFbySPbOw_NjD3-BuC7UapisiSFc76FmaxZIQzqstC6csQxbU2o8v3FLu_p9UPz0IGfy7cw1tpQfGb7_jPc5ZuJnvujsgH6Goo58gZsYOIW32otbwxoE7ogYwSDFo5pRAJorEoxuLsd3lzF4xN0Zh4m1HtZxqpXvig0V_GlkXKK3HGxrcX6uDP4n9E23Cx2HstO_vTnM9XXz_-BOr731z7BxxSI5sOoOTvQseMubC-aPOTJ5rvw4QVi4S4MEkz172dr8qd4UI-z-ML0yRhXyGUCOclPLm7Phj8-w_3o_O7sskg9FwpNCZkVylDDiRNUqZqQ2kjeNI7IRlqP7KU4N8JZY5xgwps-pZoJIakWZa2JFZp8gc0xLrgHuZansnHOCscklUpKp7jhpdSVQTrCMygW3G91AiT3fTEe25CYlKINgvONMpsWBZfB8ZL-KUJxrKXc9RxeUUXmZtB7JdzV-GmNPppUGewvpN0mU5623EPaoV_AWY-Wo2iD_mJFju1kPm1rjlEaZqLrKRjnAqMApMjXUHCBsSTD-DeDr1HPVttL6vrt7d_ah62IJ-trbA5gc_Z3bg8xUpqpXjCRf0AZDnY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5Remh7gBZKWaCwh0ptpW6yu_Ya-xih0tASxCFI3FZ-SogqQU1y4dczfiSBikjcVvLI9s5DM2OPvwH4YpSqmCxJ4ZxvYSZrVgiDuiy0rhxxTFsTqnwvWP-K_r5urtfgx-ItjLU2FJ_Zjv8Md_lmrGf-qKyLvoZijvwKXqPfb-r4WmtxZ0Cb0AcZYxi0cUwkEkRjVYru8LI3OIsHKOjOPFCo97OMVU-8UWiv4osj5QT542Jji9WRZ_BAp5swmO89Fp7cdmZT1dH3_8E6vvTn3sNGCkXzXtSdD7BmR1uwOW_zkCer34J3jzALt6GbgKpv7q3J7-JRPc7iS9PHI1whlwnmJP_26_Kk9_0jXJ3-HJ70i9R1odCUkGmhDDWcOEGVqgmpjeRN44hspPXYXopzI5w1xgkmvPFTqpkQkmpR1ppYockOrI9wwV3ItTyWjXNWOCapVFI6xQ0vpa4M0hGeQTHnfqsTJLnvjPG3DalJKdogON8qs2lRcBl8XdDfRTCOlZTbnsNLqsjcDA6fCHc5flyjlyZVBvtzabfJmCct96B26Blw1qPFKFqhv1qRIzueTdqaY5yGuehqCsa5wDgAKfIVFFxgNMkwAs7gU9Sz5faSuu49_1tH8KY_HJy352cXf_bhbUSX9RU3B7A-_TeznzFumqrDYC4PfaQRwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+principal+component+analysis+%28GPCA%29&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Vidal%2C+R.&rft.au=Yi+Ma&rft.au=Sastry%2C+S.&rft.date=2005-12-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=27&rft.issue=12&rft.spage=1945&rft.epage=1959&rft_id=info:doi/10.1109%2FTPAMI.2005.244&rft_id=info%3Apmid%2F16355661&rft.externalDocID=1524987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon