Generalized principal component analysis (GPCA)
This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 27; no. 12; pp. 1945 - 1959 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Los Alamitos, CA
IEEE
01.12.2005
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a data point give normal vectors to the subspace passing through the point. When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to classifying one point per subspace. We select these points optimally from the data set by minimizing certain distance function, thus dealing automatically with moderate noise in the data. A basis for the complement of each subspace is then recovered by applying standard PCA to the collection of derivatives (normal vectors). Extensions of GPCA that deal with data in a high-dimensional space and with an unknown number of subspaces are also presented. Our experiments on low-dimensional data show that GPCA outperforms existing algebraic algorithms based on polynomial factorization and provides a good initialization to iterative techniques such as k-subspaces and expectation maximization. We also present applications of GPCA to computer vision problems such as face clustering, temporal video segmentation, and 3D motion segmentation from point correspondences in multiple affine views. |
---|---|
AbstractList | When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to classifying one point per subspace. This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a data point give normal vectors to the subspace passing through the point. When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to classifying one point per subspace. We select these points optimally from the data set by minimizing certain distance function, thus dealing automatically with moderate noise in the data. A basis for the complement of each subspace is then recovered by applying standard PCA to the collection of derivatives (normal vectors). Extensions of GPCA that deal with data in a high-dimensional space and with an unknown number of subspaces are also presented. Our experiments on low-dimensional data show that GPCA outperforms existing algebraic algorithms based on polynomial factorization and provides a good initialization to iterative techniques such as K-subspaces and Expectation Maximization. We also present applications of GPCA to computer vision problems such as face clustering, temporal video segmentation, and 3D motion segmentation from point correspondences in multiple affine views. This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a data point give normal vectors to the subspace passing through the point. When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to classifying one point per subspace. We select these points optimally from the data set by minimizing certain distance function, thus dealing automatically with moderate noise in the data. A basis for the complement of each subspace is then recovered by applying standard PCA to the collection of derivatives (normal vectors). Extensions of GPCA that deal with data in a high-dimensional space and with an unknown number of subspaces are also presented. Our experiments on low-dimensional data show that GPCA outperforms existing algebraic algorithms based on polynomial factorization and provides a good initialization to iterative techniques such as K-subspaces and Expectation Maximization. We also present applications of GPCA to computer vision problems such as face clustering, temporal video segmentation, and 3D motion segmentation from point correspondences in multiple affine views.This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a data point give normal vectors to the subspace passing through the point. When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to classifying one point per subspace. We select these points optimally from the data set by minimizing certain distance function, thus dealing automatically with moderate noise in the data. A basis for the complement of each subspace is then recovered by applying standard PCA to the collection of derivatives (normal vectors). Extensions of GPCA that deal with data in a high-dimensional space and with an unknown number of subspaces are also presented. Our experiments on low-dimensional data show that GPCA outperforms existing algebraic algorithms based on polynomial factorization and provides a good initialization to iterative techniques such as K-subspaces and Expectation Maximization. We also present applications of GPCA to computer vision problems such as face clustering, temporal video segmentation, and 3D motion segmentation from point correspondences in multiple affine views. |
Author | Vidal, R. Sastry, S. Yi Ma |
Author_xml | – sequence: 1 givenname: R. surname: Vidal fullname: Vidal, R. organization: Dept. of Biomed. Eng., Johns Hopkins Univ., Baltimore, MD, USA – sequence: 2 surname: Yi Ma fullname: Yi Ma – sequence: 3 givenname: S. surname: Sastry fullname: Sastry, S. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17247131$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16355661$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1LIzEYBvAgLlo_rl4EKcJ-eJiaN1_z5ljKbldQ1oOeQyaTgch0pibTg_71ptu6grB6yuX3vIHnOSC7Xd95Qk6ATgCovry7nd5cTRilcsKE2CEj0FwXXHK9S0YUFCsQGe6Tg5QeKAUhKd8j-6C4lErBiFzOfeejbcOzr8fLGDoXlrYdu36xzB91w9h2tn1KIY1_zG9n04sj8qWxbfLH2_eQ3P_6eTf7XVz_mV_NpteFE5wPRVWLGnmjRVUxzlltUcqGW2k9BYQKsdaNr-tGKy0QqRBOaW2F05Q57rXjh-T75u4y9o8rnwazCMn5trWd71fJoFZQKpSQ5bcPpULUJaD-FDKkDBWs4fk7-NCvYu4hf6tKVYLkIqOzLVpVC1-b3N3CxifzWm0GX7fAJmfbJtrcbXpzJRMl8LUTG-din1L0jXFhsEPouyHa0BqgZr20-bu0WS9t8tI5NnkX-3f5f4HTTSB479-wZEJjyV8Ax4GvNA |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1016_j_cviu_2012_09_004 crossref_primary_10_1002_rnc_4968 crossref_primary_10_1016_j_acha_2013_12_001 crossref_primary_10_1016_j_patcog_2016_02_006 crossref_primary_10_1155_2013_878417 crossref_primary_10_1109_TNNLS_2021_3071797 crossref_primary_10_1007_s10489_021_02409_z crossref_primary_10_1109_ACCESS_2017_2736058 crossref_primary_10_1109_LSP_2014_2303122 crossref_primary_10_1109_TCSVT_2016_2595328 crossref_primary_10_1190_geo2015_0047_1 crossref_primary_10_1016_j_dsp_2023_104338 crossref_primary_10_3934_bdia_2016001 crossref_primary_10_1109_JSTSP_2011_2155032 crossref_primary_10_1109_TIP_2017_2767785 crossref_primary_10_1109_TPAMI_2018_2871850 crossref_primary_10_1049_iet_cvi_2013_0224 crossref_primary_10_1109_TMM_2017_2771477 crossref_primary_10_1007_s10586_023_04033_7 crossref_primary_10_1109_TPAMI_2014_2339851 crossref_primary_10_14710_jtsiskom_2020_13422 crossref_primary_10_1155_2013_417492 crossref_primary_10_1007_s11263_013_0694_0 crossref_primary_10_1016_j_automatica_2024_111643 crossref_primary_10_1186_s40537_023_00872_8 crossref_primary_10_3390_electronics11213637 crossref_primary_10_1016_j_knosys_2019_105029 crossref_primary_10_1016_j_ifacol_2017_08_1846 crossref_primary_10_1109_ACCESS_2023_3257357 crossref_primary_10_1016_j_sigpro_2021_108082 crossref_primary_10_1109_TPAMI_2017_2748579 crossref_primary_10_1016_j_eswa_2023_119977 crossref_primary_10_1007_s00521_022_06909_y crossref_primary_10_3233_JIFS_189587 crossref_primary_10_1109_LCSYS_2020_3045664 crossref_primary_10_1111_mice_12063 crossref_primary_10_5902_2179460X90532 crossref_primary_10_3390_math11081777 crossref_primary_10_1016_j_patcog_2012_09_013 crossref_primary_10_1016_j_asoc_2024_112303 crossref_primary_10_1109_TSP_2015_2472372 crossref_primary_10_1016_j_asoc_2024_111576 crossref_primary_10_1109_TASL_2012_2234110 crossref_primary_10_1109_JSTSP_2015_2402643 crossref_primary_10_1109_TIT_2016_2573311 crossref_primary_10_1016_j_measurement_2016_04_078 crossref_primary_10_1109_LSP_2017_2757901 crossref_primary_10_1109_TIP_2014_2362052 crossref_primary_10_1109_TNNLS_2020_2968848 crossref_primary_10_1109_LSP_2017_2777997 crossref_primary_10_1016_j_neucom_2019_12_019 crossref_primary_10_1109_TSMC_2021_3138550 crossref_primary_10_1109_ACCESS_2019_2911723 crossref_primary_10_1109_TIP_2011_2176743 crossref_primary_10_1109_JPROC_2009_2037655 crossref_primary_10_3390_s17071633 crossref_primary_10_1016_j_patcog_2012_02_033 crossref_primary_10_1109_ACCESS_2020_2999457 crossref_primary_10_1631_FITEE_1700667 crossref_primary_10_1016_j_neucom_2015_05_049 crossref_primary_10_1142_S0218213018500203 crossref_primary_10_1016_j_ins_2020_03_033 crossref_primary_10_1016_j_knosys_2021_107053 crossref_primary_10_1109_TCYB_2019_2943691 crossref_primary_10_1109_TIT_2018_2879912 crossref_primary_10_1016_j_knosys_2016_11_013 crossref_primary_10_1016_j_neucom_2017_02_019 crossref_primary_10_1016_j_acha_2013_11_003 crossref_primary_10_1016_j_patrec_2019_02_024 crossref_primary_10_1007_s11042_022_12943_8 crossref_primary_10_1016_j_patrec_2019_02_023 crossref_primary_10_1016_j_neucom_2017_10_060 crossref_primary_10_1016_j_dsp_2016_09_006 crossref_primary_10_1007_s11263_021_01544_x crossref_primary_10_1142_S021969132250028X crossref_primary_10_1155_2024_9655008 crossref_primary_10_1109_TCSVT_2021_3069094 crossref_primary_10_1007_s10489_021_02749_w crossref_primary_10_1016_j_patcog_2018_07_002 crossref_primary_10_1109_TPAMI_2024_3446537 crossref_primary_10_1007_s10851_015_0629_1 crossref_primary_10_3390_en12122229 crossref_primary_10_1080_17517575_2018_1442934 crossref_primary_10_1109_TCSVT_2022_3232604 crossref_primary_10_1109_TCSVT_2016_2630731 crossref_primary_10_1016_j_neunet_2020_06_022 crossref_primary_10_1109_LSP_2023_3271828 crossref_primary_10_1109_ACCESS_2018_2872733 crossref_primary_10_1177_1748302620983690 crossref_primary_10_1016_j_ifacol_2020_12_1320 crossref_primary_10_1109_TPAMI_2023_3257407 crossref_primary_10_11118_actaun201058010013 crossref_primary_10_1007_s11263_007_0099_z crossref_primary_10_1109_TCYB_2016_2536752 crossref_primary_10_3233_JIFS_210274 crossref_primary_10_1109_ACCESS_2019_2920688 crossref_primary_10_1109_TETC_2021_3074242 crossref_primary_10_1109_TSMC_2019_2899398 crossref_primary_10_1109_TPAMI_2020_2992392 crossref_primary_10_3390_s19132936 crossref_primary_10_1109_MSP_2010_939739 crossref_primary_10_1016_j_measurement_2023_113138 crossref_primary_10_1016_j_comgeo_2019_101606 crossref_primary_10_1186_s41074_016_0002_3 crossref_primary_10_1109_TIP_2020_2984893 crossref_primary_10_1109_TPAMI_2018_2877660 crossref_primary_10_1088_1361_6501_abfbaa crossref_primary_10_1016_j_geomat_2024_100031 crossref_primary_10_1109_JSEN_2022_3154594 crossref_primary_10_1007_s10208_009_9043_7 crossref_primary_10_1109_JIOT_2021_3071152 crossref_primary_10_1371_journal_pone_0117341 crossref_primary_10_1016_j_ipm_2013_01_004 crossref_primary_10_1587_transinf_2020EDP7086 crossref_primary_10_1109_TSP_2016_2613070 crossref_primary_10_3390_rs9101017 crossref_primary_10_1088_1361_6420_aa7773 crossref_primary_10_1007_s13171_021_00247_2 crossref_primary_10_1109_TCYB_2016_2618852 crossref_primary_10_1016_j_ifacol_2020_12_1300 crossref_primary_10_1016_j_measurement_2013_10_026 crossref_primary_10_1007_s00521_017_3259_2 crossref_primary_10_1214_24_AOAS1877 crossref_primary_10_1007_s12559_015_9373_5 crossref_primary_10_1007_s00500_015_1869_0 crossref_primary_10_1016_j_measurement_2017_02_031 crossref_primary_10_1214_12_AOS1034 crossref_primary_10_1109_JSTSP_2018_2867446 crossref_primary_10_1109_TITS_2016_2596296 crossref_primary_10_1155_2015_572753 crossref_primary_10_1016_j_knosys_2023_110874 crossref_primary_10_1016_j_commatsci_2024_112896 crossref_primary_10_1016_j_meatsci_2024_109533 crossref_primary_10_1016_j_patcog_2016_07_008 crossref_primary_10_1016_j_sigpro_2019_05_017 crossref_primary_10_1109_TIP_2006_884921 crossref_primary_10_1016_j_image_2021_116137 crossref_primary_10_1109_TIP_2017_2691557 crossref_primary_10_1016_j_patcog_2018_01_018 crossref_primary_10_1109_TPAMI_2019_2929146 crossref_primary_10_1371_journal_pone_0176769 crossref_primary_10_1107_S2052252518013519 crossref_primary_10_1109_TCYB_2018_2878069 crossref_primary_10_1007_s11356_022_21118_9 crossref_primary_10_1016_j_patcog_2019_03_028 crossref_primary_10_1016_j_neuroimage_2021_118531 crossref_primary_10_1515_cait_2016_0088 crossref_primary_10_1016_j_cviu_2018_04_004 crossref_primary_10_1109_TSG_2020_3011266 crossref_primary_10_1109_TIP_2015_2456504 crossref_primary_10_1016_j_jvcir_2019_04_003 crossref_primary_10_1109_TCSVT_2023_3298319 crossref_primary_10_1109_ACCESS_2021_3087575 crossref_primary_10_1016_j_patrec_2017_12_020 crossref_primary_10_1109_TPAMI_2007_1179 crossref_primary_10_1016_j_ymssp_2018_04_003 crossref_primary_10_1016_j_knosys_2017_02_031 crossref_primary_10_1109_TAC_2011_2166295 crossref_primary_10_1007_s00138_018_0918_y crossref_primary_10_1109_TBDATA_2023_3301389 crossref_primary_10_1088_1361_6501_ab5b65 crossref_primary_10_1214_13_AOS1199 crossref_primary_10_1016_j_cma_2022_115760 crossref_primary_10_1016_j_jocs_2021_101408 crossref_primary_10_1109_ACCESS_2020_3022706 crossref_primary_10_1109_TPAMI_2017_2678477 crossref_primary_10_1109_LSP_2018_2849590 crossref_primary_10_1016_j_neucom_2016_04_010 crossref_primary_10_1109_TRO_2023_3335693 crossref_primary_10_1016_j_patcog_2019_107145 crossref_primary_10_1109_TBCAS_2020_2969910 crossref_primary_10_1016_j_patrec_2015_09_001 crossref_primary_10_1109_LGRS_2023_3235714 crossref_primary_10_3389_frai_2023_1274830 crossref_primary_10_1214_11_AOS914 crossref_primary_10_1109_TSP_2020_3018665 crossref_primary_10_1007_s10489_023_04830_y crossref_primary_10_1007_s11063_018_9859_8 crossref_primary_10_1016_j_patcog_2017_07_018 crossref_primary_10_3390_rs14236017 crossref_primary_10_1016_j_ymssp_2022_109372 crossref_primary_10_1109_TAFFC_2022_3168834 crossref_primary_10_1016_j_imavis_2014_04_004 crossref_primary_10_1016_j_jpaa_2019_04_013 crossref_primary_10_1109_TGRS_2018_2862899 crossref_primary_10_1007_s13042_021_01456_9 crossref_primary_10_1016_j_sigpro_2013_03_020 crossref_primary_10_3390_biom13030526 crossref_primary_10_1109_LGRS_2017_2705703 crossref_primary_10_1016_j_patcog_2022_109085 crossref_primary_10_1016_j_cma_2022_115420 crossref_primary_10_1109_TFUZZ_2022_3215566 crossref_primary_10_1109_TAC_2022_3144135 crossref_primary_10_1109_TGRS_2018_2872416 crossref_primary_10_1142_S0218001421510095 crossref_primary_10_3390_su122310010 crossref_primary_10_1016_j_jmva_2024_105333 crossref_primary_10_1109_TSP_2017_2781649 crossref_primary_10_1109_TPAMI_2007_1123 crossref_primary_10_1039_c0ib00036a crossref_primary_10_1002_pamm_201410486 crossref_primary_10_1016_j_neucom_2017_11_021 crossref_primary_10_1109_JSTSP_2018_2877041 crossref_primary_10_1109_TPAMI_2012_265 crossref_primary_10_1016_j_neunet_2015_11_011 crossref_primary_10_1016_j_inffus_2025_103012 crossref_primary_10_1080_10618600_2021_2000420 crossref_primary_10_1016_j_ifacol_2016_10_088 crossref_primary_10_1049_iet_cta_2008_0274 crossref_primary_10_1016_j_engappai_2024_109055 crossref_primary_10_1109_TPAMI_2011_216 crossref_primary_10_1016_j_knosys_2015_12_006 crossref_primary_10_1109_TSP_2012_2187642 crossref_primary_10_1007_s11036_021_01889_0 crossref_primary_10_1109_TMM_2023_3330093 crossref_primary_10_1109_JPROC_2010_2040551 crossref_primary_10_1109_TSP_2015_2469637 crossref_primary_10_4236_jilsa_2011_31006 crossref_primary_10_1016_j_knosys_2014_10_004 crossref_primary_10_1016_j_jprocont_2016_01_008 crossref_primary_10_1109_TSP_2009_2036477 crossref_primary_10_1145_3177853 crossref_primary_10_1016_j_tele_2022_101853 crossref_primary_10_1007_s10489_023_04697_z crossref_primary_10_1016_j_oceaneng_2023_116310 crossref_primary_10_1109_TIT_2015_2472520 crossref_primary_10_1137_18M1169321 crossref_primary_10_1109_TSP_2017_2749206 crossref_primary_10_1109_TITS_2021_3055766 crossref_primary_10_1016_j_sigpro_2018_02_010 crossref_primary_10_1109_TPDS_2020_2975550 crossref_primary_10_1109_TPAMI_2019_2913863 crossref_primary_10_1177_0278364908096316 crossref_primary_10_1007_s10489_024_06073_x crossref_primary_10_1016_j_patcog_2012_06_011 crossref_primary_10_1007_s41095_019_0149_9 crossref_primary_10_1016_j_dsp_2021_103121 crossref_primary_10_1016_j_neucom_2019_02_055 crossref_primary_10_1016_j_patcog_2019_04_029 crossref_primary_10_1016_j_neunet_2022_06_003 crossref_primary_10_1109_TSP_2015_2425803 crossref_primary_10_1016_j_neucom_2018_08_054 crossref_primary_10_1007_s10044_018_00774_z crossref_primary_10_1109_TPAMI_2022_3168882 crossref_primary_10_1016_j_sigpro_2014_03_047 crossref_primary_10_1109_TCSVT_2018_2805838 crossref_primary_10_1007_s00521_023_09388_x crossref_primary_10_1109_ACCESS_2022_3200482 crossref_primary_10_3389_fams_2018_00065 crossref_primary_10_1007_s11263_005_4839_7 crossref_primary_10_1109_TIP_2009_2038778 crossref_primary_10_1109_TPAMI_2012_52 crossref_primary_10_1109_TCBB_2018_2834371 crossref_primary_10_1109_TGRS_2014_2363101 crossref_primary_10_1016_j_acha_2017_08_006 crossref_primary_10_1109_TCYB_2018_2811764 crossref_primary_10_1007_s10773_014_2406_0 crossref_primary_10_1109_TSTE_2013_2295402 crossref_primary_10_3390_genes12121847 crossref_primary_10_1093_imaiai_iaaa019 crossref_primary_10_1016_j_patrec_2013_08_005 crossref_primary_10_1016_j_patrec_2013_08_006 crossref_primary_10_1109_TPAMI_2013_57 crossref_primary_10_1016_j_cviu_2015_04_003 crossref_primary_10_1016_j_patcog_2022_108918 crossref_primary_10_1109_LGRS_2019_2955737 crossref_primary_10_1016_j_comgeo_2011_05_002 crossref_primary_10_1109_TSP_2024_3457529 crossref_primary_10_1016_j_patrec_2017_08_023 crossref_primary_10_1109_TPAMI_2017_2652452 crossref_primary_10_1093_mnras_staa319 crossref_primary_10_1117_1_JEI_26_3_033021 crossref_primary_10_1142_S0218001413500043 crossref_primary_10_1109_TCSVT_2022_3207484 crossref_primary_10_1109_TMM_2007_898949 crossref_primary_10_1016_j_engappai_2018_09_008 crossref_primary_10_1016_j_acha_2018_03_003 crossref_primary_10_1109_JSAIT_2020_3039170 crossref_primary_10_3389_fgene_2023_1110899 crossref_primary_10_1109_MSP_2010_940005 crossref_primary_10_1016_j_ins_2019_11_031 crossref_primary_10_1109_TPAMI_2016_2614980 crossref_primary_10_1007_s00521_022_08056_w crossref_primary_10_3390_fi11090190 crossref_primary_10_1109_TIT_2016_2549040 crossref_primary_10_1137_15M1054201 crossref_primary_10_1016_j_engappai_2020_103722 crossref_primary_10_1109_TCSVT_2008_2005805 crossref_primary_10_1016_j_eswa_2024_124619 crossref_primary_10_1109_TNN_2011_2147798 crossref_primary_10_1109_TCYB_2021_3113520 crossref_primary_10_1109_TPAMI_2009_191 crossref_primary_10_1007_s10618_023_00976_y crossref_primary_10_1109_TPAMI_2018_2794348 crossref_primary_10_1515_bmt_2010_057 crossref_primary_10_3724_SP_J_1224_2014_00259 crossref_primary_10_1111_rssb_12410 crossref_primary_10_1049_iet_spr_2018_5207 crossref_primary_10_3934_mine_2022028 crossref_primary_10_3934_fods_2021024 crossref_primary_10_3390_app13169345 crossref_primary_10_1007_s11263_016_0928_z crossref_primary_10_1007_s00521_019_04688_7 crossref_primary_10_1049_iet_cvi_20080027 crossref_primary_10_1109_TPAMI_2007_1085 crossref_primary_10_1109_TSP_2020_3003423 crossref_primary_10_1016_j_patcog_2020_107261 crossref_primary_10_1007_s11434_016_1041_y crossref_primary_10_1016_j_aei_2024_102654 crossref_primary_10_1007_s10994_015_5501_4 crossref_primary_10_1007_s10044_024_01336_2 crossref_primary_10_1109_JSTSP_2018_2879743 crossref_primary_10_1016_j_petrol_2021_108362 crossref_primary_10_1109_TNNLS_2018_2876327 crossref_primary_10_1109_TPAMI_2023_3250325 crossref_primary_10_1109_JSTARS_2020_2987951 crossref_primary_10_1016_j_neucom_2018_02_098 crossref_primary_10_3390_app10124252 crossref_primary_10_1007_s11263_009_0314_1 crossref_primary_10_1007_s00500_022_07092_x crossref_primary_10_1016_j_ins_2015_03_010 crossref_primary_10_1109_TCYB_2013_2286106 crossref_primary_10_1186_s40537_020_00320_x crossref_primary_10_1016_j_cosrev_2021_100435 crossref_primary_10_1016_j_jbi_2019_103357 crossref_primary_10_5050_KSNVE_2021_31_6_604 crossref_primary_10_1109_TIP_2006_882016 crossref_primary_10_1109_TNNLS_2013_2253123 crossref_primary_10_1109_TSP_2017_2725227 crossref_primary_10_1016_j_eswa_2021_116359 crossref_primary_10_1016_j_patrec_2010_10_009 crossref_primary_10_1109_TIE_2019_2931243 crossref_primary_10_1109_TNNLS_2014_2374631 crossref_primary_10_1016_j_patcog_2023_109438 crossref_primary_10_1016_j_dsp_2023_104082 crossref_primary_10_1109_TKDE_2020_2995896 crossref_primary_10_1080_10618600_2022_2034636 crossref_primary_10_1177_0962280220921912 crossref_primary_10_1007_s11042_023_16846_0 crossref_primary_10_1371_journal_pone_0137986 crossref_primary_10_1109_ACCESS_2019_2920592 crossref_primary_10_1007_s11263_008_0178_9 crossref_primary_10_1080_24725854_2022_2040761 crossref_primary_10_1109_ACCESS_2017_2765688 crossref_primary_10_1007_s00521_018_3617_8 crossref_primary_10_1016_j_jcmds_2025_100113 crossref_primary_10_1371_journal_pone_0206607 crossref_primary_10_1016_j_patrec_2019_03_019 crossref_primary_10_1109_TCSVT_2018_2793359 crossref_primary_10_1364_JOCN_402884 crossref_primary_10_1109_TIT_2019_2891628 crossref_primary_10_1109_TMM_2023_3301280 crossref_primary_10_1016_j_jsc_2018_02_003 crossref_primary_10_3390_e20110830 crossref_primary_10_1016_j_ins_2019_03_069 crossref_primary_10_1007_s11063_018_9963_9 crossref_primary_10_1109_TPAMI_2020_3027968 crossref_primary_10_1109_TPAMI_2014_2377740 crossref_primary_10_1002_cjs_11642 crossref_primary_10_1007_s11263_008_0144_6 crossref_primary_10_1371_journal_pone_0059377 crossref_primary_10_1007_s11263_006_9352_0 crossref_primary_10_1016_j_neucom_2013_03_015 crossref_primary_10_1109_TCYB_2018_2832171 crossref_primary_10_1109_TGRS_2024_3374597 crossref_primary_10_1137_20M1335571 crossref_primary_10_1016_j_neucom_2015_08_077 crossref_primary_10_1137_20M1323448 crossref_primary_10_1016_j_neucom_2018_01_006 crossref_primary_10_1109_TKDE_2023_3249765 crossref_primary_10_1111_cgf_12255 crossref_primary_10_1098_rspa_2023_0320 crossref_primary_10_1109_TNNLS_2014_2315571 crossref_primary_10_3390_app14146081 crossref_primary_10_1007_s11263_012_0535_6 crossref_primary_10_1016_j_dsp_2023_104060 crossref_primary_10_1049_iet_cim_2019_0003 crossref_primary_10_1109_TSMC_2024_3465039 crossref_primary_10_1007_s10827_010_0307_7 crossref_primary_10_1016_j_knosys_2024_112538 crossref_primary_10_1109_ACCESS_2020_3036132 crossref_primary_10_1088_0031_9155_57_1_173 crossref_primary_10_1587_transinf_2017EDL8129 crossref_primary_10_1016_j_imavis_2013_06_005 crossref_primary_10_3390_electronics12194042 crossref_primary_10_1016_j_neunet_2017_04_005 crossref_primary_10_1109_LSP_2012_2214211 crossref_primary_10_1109_MSP_2010_939041 crossref_primary_10_1007_BF03549538 crossref_primary_10_1007_s11042_016_3385_3 crossref_primary_10_1109_ACCESS_2019_2944427 crossref_primary_10_1007_s00454_020_00206_y crossref_primary_10_1016_j_neunet_2014_06_005 crossref_primary_10_1007_s10898_014_0225_8 crossref_primary_10_1109_TSP_2016_2539143 crossref_primary_10_1109_TNNLS_2015_2472284 crossref_primary_10_1109_TNNLS_2017_2691725 crossref_primary_10_3390_app8030454 crossref_primary_10_1109_TIT_2019_2915593 crossref_primary_10_1007_s10586_023_03978_z crossref_primary_10_1016_j_bbcan_2021_188588 crossref_primary_10_1186_s13634_021_00717_7 crossref_primary_10_1007_s44163_021_00013_1 crossref_primary_10_1016_j_neucom_2015_12_009 crossref_primary_10_1109_TIA_2018_2873576 crossref_primary_10_1145_3465056 crossref_primary_10_3182_20120711_3_BE_2027_00430 crossref_primary_10_1109_ACCESS_2019_2958648 crossref_primary_10_1016_j_neucom_2015_12_123 crossref_primary_10_1109_JSTSP_2018_2873147 crossref_primary_10_1109_TASLP_2014_2371544 crossref_primary_10_4236_jdaip_2021_93013 crossref_primary_10_1109_TIP_2009_2019307 crossref_primary_10_1109_TPAMI_2015_2511743 crossref_primary_10_1007_s00521_019_04317_3 crossref_primary_10_1016_j_patrec_2019_10_007 crossref_primary_10_1109_ACCESS_2018_2886824 crossref_primary_10_1016_j_automatica_2014_10_101 crossref_primary_10_1524_auto_2007_55_10_503 crossref_primary_10_1162_NECO_a_00762 crossref_primary_10_1109_TNSE_2022_3210233 crossref_primary_10_1016_j_compbiomed_2010_06_007 crossref_primary_10_1089_cmb_2015_0084 crossref_primary_10_1007_s40031_022_00818_3 crossref_primary_10_1109_JSTARS_2019_2895508 crossref_primary_10_1109_TNNLS_2022_3164540 crossref_primary_10_1109_TCYB_2015_2454521 crossref_primary_10_1109_ACCESS_2022_3175199 crossref_primary_10_1007_s10898_018_0684_4 crossref_primary_10_1109_TSP_2019_2935914 crossref_primary_10_1016_j_inffus_2020_01_005 crossref_primary_10_1016_j_ins_2023_119143 crossref_primary_10_1109_TNNLS_2012_2189581 crossref_primary_10_1190_geo2014_0525_1 crossref_primary_10_1016_j_imavis_2023_104769 crossref_primary_10_3390_biom13060923 crossref_primary_10_1016_j_patcog_2018_05_020 crossref_primary_10_1016_j_inffus_2017_05_002 crossref_primary_10_1109_MCSE_2014_52 crossref_primary_10_1080_00207543_2022_2086083 crossref_primary_10_3390_math11020436 crossref_primary_10_1007_s10851_006_8286_z crossref_primary_10_1109_TCYB_2018_2882924 crossref_primary_10_1587_transinf_2019EDP7138 crossref_primary_10_1016_j_ins_2015_12_038 crossref_primary_10_1016_j_jpaa_2006_05_032 crossref_primary_10_1016_j_neunet_2022_03_039 crossref_primary_10_1007_s11263_018_1129_8 |
Cites_doi | 10.1007/978-1-4684-9449-5 10.1016/S0031-3203(01)00198-4 10.1145/358669.358692 10.1109/CVPR.2003.1211482 10.1109/CVPR.2003.1211411 10.1109/CVPR.2004.1315075 10.1007/BF02288367 10.1137/S0036139998338583 10.1162/089976698300017467 10.1162/089976699300016728 10.1109/34.910882 10.1109/CVPR.1991.139704 10.1007/978-0-8176-4771-1 10.1007/978-1-4757-1904-8 10.1007/s11263-005-4839-7 10.1111/1467-9868.00196 10.1007/978-1-4757-2189-8 10.1007/978-1-4757-3849-0 10.1109/ICCV.2001.937679 10.1109/CVPR.2003.1211332 10.1023/A:1008000628999 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
DOI | 10.1109/TPAMI.2005.244 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database MEDLINE Computer and Information Systems Abstracts MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 1939-3539 |
EndPage | 1959 |
ExternalDocumentID | 2352141721 16355661 17247131 10_1109_TPAMI_2005_244 1524987 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYOK AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM PKN RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c433t-bd4d83f94bb2332da855f3a5ae0181b88d9feddf969488044c699a4c902c3e9c3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 |
IngestDate | Fri Jul 11 06:24:57 EDT 2025 Fri Jul 11 08:15:39 EDT 2025 Fri Jul 11 05:57:38 EDT 2025 Mon Jun 30 04:12:50 EDT 2025 Wed Feb 19 01:44:56 EST 2025 Mon Jul 21 09:15:41 EDT 2025 Tue Jul 01 03:18:16 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Tue Aug 26 16:40:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | subspace segmentation Computer vision dynamic scenes and motion segmentation Veronese map temporal video segmentation Multiple view Index Terms-Principal component analysis (PCA) Image segmentation Dimension reduction dimensionality reduction Multidimensional database Scene analysis Tridimensional image EM algorithm Pattern analysis Principal component analysis |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-bd4d83f94bb2332da855f3a5ae0181b88d9feddf969488044c699a4c902c3e9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 16355661 |
PQID | 867671534 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | ieee_primary_1524987 proquest_journals_867671534 proquest_miscellaneous_68897189 pubmed_primary_16355661 pascalfrancis_primary_17247131 crossref_primary_10_1109_TPAMI_2005_244 proquest_miscellaneous_896176851 proquest_miscellaneous_28028619 crossref_citationtrail_10_1109_TPAMI_2005_244 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-12-01 |
PublicationDateYYYYMMDD | 2005-12-01 |
PublicationDate_xml | – month: 12 year: 2005 text: 2005-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Los Alamitos, CA |
PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2005 |
Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 hartshorne (ref8) 1977 vidal (ref26) 2004 ref15 harris (ref7) 1992 ref10 ref1 ref17 ref16 ref19 kanatani (ref14) 2003 vidal (ref22) 2004; ii jolliffe (ref12) 1986 wu (ref27) 2001; 2 ref24 stark (ref18) 2001 ref23 ref25 ref20 ref21 ref28 ref4 ref3 huang (ref11) 2004; 2 ref6 collins (ref2) 2001; 14 hirsch (ref9) 1976 ref5 |
References_xml | – year: 1976 ident: ref9 publication-title: Differential Topology doi: 10.1007/978-1-4684-9449-5 – ident: ref15 doi: 10.1016/S0031-3203(01)00198-4 – ident: ref5 doi: 10.1145/358669.358692 – ident: ref28 doi: 10.1109/CVPR.2003.1211482 – volume: 14 year: 2001 ident: ref2 article-title: A Generalization of Principal Component Analysis to the Exponential Family publication-title: Advances in neural information processing systems – ident: ref24 doi: 10.1109/CVPR.2003.1211411 – ident: ref23 doi: 10.1109/CVPR.2004.1315075 – ident: ref4 doi: 10.1007/BF02288367 – start-page: 1 year: 2004 ident: ref26 article-title: A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation publication-title: Proc European Conf Computer Vision – ident: ref1 doi: 10.1137/S0036139998338583 – ident: ref16 doi: 10.1162/089976698300017467 – ident: ref19 doi: 10.1162/089976699300016728 – ident: ref21 doi: 10.1109/34.910882 – volume: ii start-page: 310 year: 2004 ident: ref22 article-title: Motion Segmentation with Missing Data by PowerFactorization and Generalized PCA publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – ident: ref17 doi: 10.1109/CVPR.1991.139704 – ident: ref6 doi: 10.1007/978-0-8176-4771-1 – year: 1986 ident: ref12 publication-title: Principal Component Analysis doi: 10.1007/978-1-4757-1904-8 – start-page: 335 year: 2003 ident: ref14 article-title: Multi-Stage Optimization for Multi-Body Motion Segmentation publication-title: Proc Australia-Japan Advanced Workshop Computer Vision – ident: ref25 doi: 10.1007/s11263-005-4839-7 – ident: ref20 doi: 10.1111/1467-9868.00196 – year: 1992 ident: ref7 publication-title: Algebraic Geometry A First Course doi: 10.1007/978-1-4757-2189-8 – volume: 2 start-page: 631 year: 2004 ident: ref11 article-title: Minimum Effective Dimension for Mixtures of Subspaces: A Robust GPCA Algorithm and Its Applications publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – year: 1977 ident: ref8 publication-title: Algebraic Geometry doi: 10.1007/978-1-4757-3849-0 – ident: ref13 doi: 10.1109/ICCV.2001.937679 – year: 2001 ident: ref18 publication-title: Probability and Random Processes With Applications to Signal Processing – volume: 2 start-page: 252 year: 2001 ident: ref27 article-title: Multibody Grouping via Orthogonal Subspace Decomposition publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – ident: ref10 doi: 10.1109/CVPR.2003.1211332 – ident: ref3 doi: 10.1023/A:1008000628999 |
SSID | ssj0014503 |
Score | 2.4491549 |
Snippet | This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample... When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1945 |
SubjectTerms | Algorithms Application software Applied sciences Artificial Intelligence Cluster Analysis Clustering algorithms Computer science; control theory; systems Computer Simulation Computer vision Data points Derivatives dimensionality reduction dynamic scenes and motion segmentation Exact sciences and technology Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Index Terms- Principal component analysis (PCA) Information Storage and Retrieval - methods Iterative algorithms Kernel Machine learning Mathematical analysis Mathematical models Matrix decomposition Models, Statistical Motion segmentation Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Polynomials Principal Component Analysis Principal components analysis Segmentation Studies subspace segmentation Subspaces temporal video segmentation Three dimensional Vectors (mathematics) Veronese map |
Title | Generalized principal component analysis (GPCA) |
URI | https://ieeexplore.ieee.org/document/1524987 https://www.ncbi.nlm.nih.gov/pubmed/16355661 https://www.proquest.com/docview/867671534 https://www.proquest.com/docview/28028619 https://www.proquest.com/docview/68897189 https://www.proquest.com/docview/896176851 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4FTvRQSmjLFgh7qASVusnu2mvsY4QID4mKA0jcVn5KVVGCmuTCr-_4kQQqInFbySPbOw_NjD3-BuC7UapisiSFc76FmaxZIQzqstC6csQxbU2o8v3FLu_p9UPz0IGfy7cw1tpQfGb7_jPc5ZuJnvujsgH6Goo58gZsYOIW32otbwxoE7ogYwSDFo5pRAJorEoxuLsd3lzF4xN0Zh4m1HtZxqpXvig0V_GlkXKK3HGxrcX6uDP4n9E23Cx2HstO_vTnM9XXz_-BOr731z7BxxSI5sOoOTvQseMubC-aPOTJ5rvw4QVi4S4MEkz172dr8qd4UI-z-ML0yRhXyGUCOclPLm7Phj8-w_3o_O7sskg9FwpNCZkVylDDiRNUqZqQ2kjeNI7IRlqP7KU4N8JZY5xgwps-pZoJIakWZa2JFZp8gc0xLrgHuZansnHOCscklUpKp7jhpdSVQTrCMygW3G91AiT3fTEe25CYlKINgvONMpsWBZfB8ZL-KUJxrKXc9RxeUUXmZtB7JdzV-GmNPppUGewvpN0mU5623EPaoV_AWY-Wo2iD_mJFju1kPm1rjlEaZqLrKRjnAqMApMjXUHCBsSTD-DeDr1HPVttL6vrt7d_ah62IJ-trbA5gc_Z3bg8xUpqpXjCRf0AZDnY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5Remh7gBZKWaCwh0ptpW6yu_Ya-xih0tASxCFI3FZ-SogqQU1y4dczfiSBikjcVvLI9s5DM2OPvwH4YpSqmCxJ4ZxvYSZrVgiDuiy0rhxxTFsTqnwvWP-K_r5urtfgx-ItjLU2FJ_Zjv8Md_lmrGf-qKyLvoZijvwKXqPfb-r4WmtxZ0Cb0AcZYxi0cUwkEkRjVYru8LI3OIsHKOjOPFCo97OMVU-8UWiv4osj5QT542Jji9WRZ_BAp5swmO89Fp7cdmZT1dH3_8E6vvTn3sNGCkXzXtSdD7BmR1uwOW_zkCer34J3jzALt6GbgKpv7q3J7-JRPc7iS9PHI1whlwnmJP_26_Kk9_0jXJ3-HJ70i9R1odCUkGmhDDWcOEGVqgmpjeRN44hspPXYXopzI5w1xgkmvPFTqpkQkmpR1ppYockOrI9wwV3ItTyWjXNWOCapVFI6xQ0vpa4M0hGeQTHnfqsTJLnvjPG3DalJKdogON8qs2lRcBl8XdDfRTCOlZTbnsNLqsjcDA6fCHc5flyjlyZVBvtzabfJmCct96B26Blw1qPFKFqhv1qRIzueTdqaY5yGuehqCsa5wDgAKfIVFFxgNMkwAs7gU9Sz5faSuu49_1tH8KY_HJy352cXf_bhbUSX9RU3B7A-_TeznzFumqrDYC4PfaQRwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+principal+component+analysis+%28GPCA%29&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Vidal%2C+R.&rft.au=Yi+Ma&rft.au=Sastry%2C+S.&rft.date=2005-12-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=27&rft.issue=12&rft.spage=1945&rft.epage=1959&rft_id=info:doi/10.1109%2FTPAMI.2005.244&rft_id=info%3Apmid%2F16355661&rft.externalDocID=1524987 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |