Large-Scale Estimation of Hourly Surface Air Temperature Based on Observations from the FY-4A Geostationary Satellite

Spatially continuous surface air temperature (SAT) is of great significance for various research areas in geospatial communities, and it can be reconstructed by the SAT estimation models that integrate accurate point measurements of SAT at ground sites with wall-to-wall datasets derived from remotel...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 7; p. 1753
Main Authors Zhang, Zhenwei, Liang, Yanzhi, Zhang, Guangxia, Liang, Chen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatially continuous surface air temperature (SAT) is of great significance for various research areas in geospatial communities, and it can be reconstructed by the SAT estimation models that integrate accurate point measurements of SAT at ground sites with wall-to-wall datasets derived from remotely sensed observations of spaceborne instruments. As land surface temperature (LST) strongly correlates with SAT, estimation models are typically developed with LST as a primary input. Geostationary satellites are capable of observing the Earth’s surface across large-scale areas at very high frequencies. Compared to the substantial efforts to estimate SAT at daily or monthly scales using LST derived from MODIS, very limited studies have been performed to estimate SAT at high-temporal scales based on LST from geostationary satellites. Estimation models for hourly SAT based on the LST derived from FY-4A, the first geostationary satellite in China’s new-generation meteorological observation mission, were developed for the first time in this study. The models were fully cross-validated for a very large-scale region with diverse geographic settings using random forest, and specified differently to explore the influence of time and location variables on model performance. Overall predictive performance of the models is about 1.65–2.08 K for sample-based cross-validation, and 2.22–2.70 K for site-based cross-validation. Incorporating time or location variables into the hourly models significantly improves predictive performance, which is also confirmed by the analysis of predictive errors at temporal scales and across sites. The best-performing model with an average RMSE of 2.22 K was utilized for reconstructing maps of SAT for each hour. The hourly models developed in this study have general implications for future studies on large-scale estimating of hourly SAT based on geostationary LST datasets.
AbstractList Spatially continuous surface air temperature (SAT) is of great significance for various research areas in geospatial communities, and it can be reconstructed by the SAT estimation models that integrate accurate point measurements of SAT at ground sites with wall-to-wall datasets derived from remotely sensed observations of spaceborne instruments. As land surface temperature (LST) strongly correlates with SAT, estimation models are typically developed with LST as a primary input. Geostationary satellites are capable of observing the Earth’s surface across large-scale areas at very high frequencies. Compared to the substantial efforts to estimate SAT at daily or monthly scales using LST derived from MODIS, very limited studies have been performed to estimate SAT at high-temporal scales based on LST from geostationary satellites. Estimation models for hourly SAT based on the LST derived from FY-4A, the first geostationary satellite in China’s new-generation meteorological observation mission, were developed for the first time in this study. The models were fully cross-validated for a very large-scale region with diverse geographic settings using random forest, and specified differently to explore the influence of time and location variables on model performance. Overall predictive performance of the models is about 1.65–2.08 K for sample-based cross-validation, and 2.22–2.70 K for site-based cross-validation. Incorporating time or location variables into the hourly models significantly improves predictive performance, which is also confirmed by the analysis of predictive errors at temporal scales and across sites. The best-performing model with an average RMSE of 2.22 K was utilized for reconstructing maps of SAT for each hour. The hourly models developed in this study have general implications for future studies on large-scale estimating of hourly SAT based on geostationary LST datasets.
Audience Academic
Author Liang, Yanzhi
Liang, Chen
Zhang, Zhenwei
Zhang, Guangxia
Author_xml – sequence: 1
  givenname: Zhenwei
  orcidid: 0000-0002-3200-6525
  surname: Zhang
  fullname: Zhang, Zhenwei
– sequence: 2
  givenname: Yanzhi
  surname: Liang
  fullname: Liang, Yanzhi
– sequence: 3
  givenname: Guangxia
  surname: Zhang
  fullname: Zhang, Guangxia
– sequence: 4
  givenname: Chen
  orcidid: 0000-0002-4400-0411
  surname: Liang
  fullname: Liang, Chen
BookMark eNptUk1v1DAQjVCRKKUXfoElLggpxZ-xfVyqfkkr9dBy4GQ5znjxKokX20Hqv8fdIEAV9sGj8XvPfjPztjmZ4wxN857gC8Y0_pwyEVgSKdir5pRiSVtONT35J37TnOe8x3UxRjTmp82ytWkH7YOzI6CrXMJkS4gzih7dxiWNT-hhSd46QJuQ0CNMB0i2LAnQF5thQBV632dIP4-0jHyKEyrfAV1_a_kG3UDM5XhlU5WyBcYxFHjXvPZ2zHD--zxrvl5fPV7ettv7m7vLzbZ1nLHS9s673jHopeo9dJxr77mQdBiU47ha7aV2XAgOA6mBcpoOWureKUZV13F21tytukO0e3NI1V16MtEGc0zEtDM2leBGMJp7yxhTnWWWCyctA4W16qhSqudKVq2Pq9YhxR8L5GKmkF31Y2eISzYMc8wVFphU6IcX0H2t5VydGiq1llwKSivqYkXtau1NmH0sybq6B5iCq631oeY3UmBBGMHPP_i0ElyKOSfwfxwRbJ4nwPydgArGL8AurJ2or4Txf5RfPb-y_Q
CitedBy_id crossref_primary_10_3390_rs16244675
crossref_primary_10_1038_s41597_024_03980_z
crossref_primary_10_3390_rs16203754
crossref_primary_10_3390_rs16193612
crossref_primary_10_1038_s41598_024_78349_8
Cites_doi 10.1016/j.rse.2010.08.010
10.3390/rs9050398
10.1016/j.ecolmodel.2021.109692
10.1109/JSTARS.2014.2320762
10.5194/essd-13-4241-2021
10.1007/s00704-004-0079-y
10.3390/rs13132589
10.3390/atmos13121953
10.1016/j.uclim.2014.10.008
10.1016/S0034-4257(96)00216-7
10.1109/IGARSS47720.2021.9553394
10.1016/j.isprsjprs.2009.02.006
10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5
10.1016/j.rse.2012.10.034
10.1080/15481603.2020.1766768
10.1016/j.rse.2007.02.025
10.1111/0033-0124.00230
10.1016/j.rse.2009.10.002
10.1175/JTECH-D-11-00103.1
10.1016/j.isprsjprs.2018.01.018
10.1080/01431160310001624593
10.1016/j.rse.2012.08.025
10.1080/10106049.2020.1837261
10.1175/2011BAMS3015.1
10.1016/j.uclim.2020.100739
10.1016/j.rse.2020.111692
10.3390/rs12111722
10.1016/j.rse.2018.05.034
10.1016/j.ecolmodel.2019.108815
10.3390/rs11070767
10.3390/rs13122355
10.1007/s00376-021-0425-3
10.1002/2013JD020803
10.1016/j.rse.2020.111791
10.1109/TGRS.2008.2006180
10.1016/j.rse.2014.06.001
10.1016/j.rse.2019.111462
10.1016/j.isprsjprs.2021.10.022
10.1175/BAMS-D-16-0065.1
10.1111/ecog.02881
10.1016/j.scitotenv.2021.152538
10.1016/j.isprsjprs.2021.03.013
10.1007/s00704-011-0464-2
10.1002/joc.7060
10.1016/j.rse.2014.04.024
10.1175/JCLI-D-18-0094.1
10.1109/36.508406
10.1073/pnas.0606291103
10.1038/nature14539
10.1038/nclimate2237
10.1007/s13351-017-6161-z
10.3390/rs12111741
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15071753
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef


AGRICOLA
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_94fa33386a3a45c7a3e809862888b487
A750513107
10_3390_rs15071753
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-bcfcbc3eb78bfe6449ff4572dd8c40071b79c4554ed19c48c92d979bc83286643
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:25:58 EDT 2025
Fri Jul 11 11:28:16 EDT 2025
Fri Jul 25 11:58:42 EDT 2025
Tue Jun 10 20:57:15 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Tue Jul 01 03:11:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-bcfcbc3eb78bfe6449ff4572dd8c40071b79c4554ed19c48c92d979bc83286643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4400-0411
0000-0002-3200-6525
OpenAccessLink https://www.proquest.com/docview/2799747522?pq-origsite=%requestingapplication%
PQID 2799747522
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_94fa33386a3a45c7a3e809862888b487
proquest_miscellaneous_3040480501
proquest_journals_2799747522
gale_infotracacademiconefile_A750513107
crossref_primary_10_3390_rs15071753
crossref_citationtrail_10_3390_rs15071753
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Pichierri (ref_4) 2012; 127
Zhang (ref_29) 2022; 812
Chen (ref_50) 2021; 13
Zhang (ref_55) 2021; 97
Min (ref_37) 2017; 31
ref_11
Nieto (ref_31) 2011; 115
ref_53
Kilibarda (ref_21) 2014; 119
Zhu (ref_13) 2013; 130
Xian (ref_36) 2021; 38
Stisen (ref_30) 2007; 110
Hengl (ref_20) 2012; 107
Yoo (ref_24) 2018; 137
Prihodko (ref_14) 1997; 60
Alqasemi (ref_28) 2022; 37
Menne (ref_2) 2012; 29
ref_22
(ref_16) 2009; 64
Hansen (ref_1) 2006; 103
Cho (ref_52) 2020; 57
Menne (ref_3) 2018; 31
Shamir (ref_6) 2014; 152
Rao (ref_23) 2019; 234
Lutz (ref_7) 2014; 4
Arfer (ref_47) 2021; 41
Venter (ref_10) 2020; 242
Sun (ref_17) 2005; 80
ref_33
Zumwald (ref_51) 2021; 35
Li (ref_54) 2018; 215
Zhang (ref_27) 2022; 183
Meyer (ref_12) 2019; 78
Kloog (ref_19) 2014; 150
Wan (ref_38) 1996; 34
Shen (ref_25) 2020; 240
Wadoux (ref_45) 2021; 457
Meyer (ref_46) 2019; 411
Vancutsem (ref_9) 2010; 114
Yu (ref_39) 2009; 47
Vogt (ref_8) 1997; 17
Czajkowski (ref_15) 2000; 52
ref_43
ref_42
Roberts (ref_44) 2017; 40
ref_41
Trigo (ref_40) 2021; 175
Smith (ref_35) 2011; 92
Florio (ref_18) 2004; 25
Yang (ref_34) 2017; 98
ref_49
Schuster (ref_5) 2014; 10
ref_48
LeCun (ref_26) 2015; 521
Lazzarini (ref_32) 2014; 7
References_xml – volume: 115
  start-page: 107
  year: 2011
  ident: ref_31
  article-title: Air Temperature Estimation with MSG-SEVIRI Data: Calibration and Validation of the TVX Algorithm for the Iberian Peninsula
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.08.010
– ident: ref_22
  doi: 10.3390/rs9050398
– volume: 457
  start-page: 109692
  year: 2021
  ident: ref_45
  article-title: Spatial Cross-Validation Is Not the Right Way to Evaluate Map Accuracy
  publication-title: Ecol. Modell.
  doi: 10.1016/j.ecolmodel.2021.109692
– volume: 7
  start-page: 3093
  year: 2014
  ident: ref_32
  article-title: Toward a Near Real-Time Product of Air Temperature Maps from Satellite Data and In Situ Measurements in Arid Environments
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2320762
– volume: 13
  start-page: 4241
  year: 2021
  ident: ref_50
  article-title: An All-Sky 1 Km Daily Land Surface Air Temperature Product over Mainland China for 2003–2019 from MODIS and Ancillary Data
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-4241-2021
– volume: 80
  start-page: 37
  year: 2005
  ident: ref_17
  article-title: Air Temperature Retrieval from Remote Sensing Data Based on Thermodynamics
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-004-0079-y
– ident: ref_49
  doi: 10.3390/rs13132589
– ident: ref_42
– ident: ref_41
  doi: 10.3390/atmos13121953
– volume: 10
  start-page: 134
  year: 2014
  ident: ref_5
  article-title: Heat Mortality in Berlin—Spatial Variability at the Neighborhood Scale
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2014.10.008
– volume: 60
  start-page: 335
  year: 1997
  ident: ref_14
  article-title: Estimation of Air Temperature from Remotely Sensed Surface Observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00216-7
– ident: ref_43
  doi: 10.1109/IGARSS47720.2021.9553394
– volume: 64
  start-page: 414
  year: 2009
  ident: ref_16
  article-title: Parameterization of Air Temperature in High Temporal and Spatial Resolution from a Combination of the SEVIRI and MODIS Instruments
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.02.006
– volume: 17
  start-page: 1559
  year: 1997
  ident: ref_8
  article-title: Mapping Regional Air Temperature Fields Using Satellite-Derived Surface Skin Temperatures
  publication-title: Int. J. Climatol.
  doi: 10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5
– volume: 130
  start-page: 62
  year: 2013
  ident: ref_13
  article-title: Estimation of Daily Maximum and Minimum Air Temperature Using MODIS Land Surface Temperature Products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.10.034
– volume: 57
  start-page: 633
  year: 2020
  ident: ref_52
  article-title: Improvement of Spatial Interpolation Accuracy of Daily Maximum Air Temperature in Urban Areas Using a Stacking Ensemble Technique
  publication-title: GIsci. Remote Sens.
  doi: 10.1080/15481603.2020.1766768
– volume: 110
  start-page: 262
  year: 2007
  ident: ref_30
  article-title: Estimation of Diurnal Air Temperature Using MSG SEVIRI Data in West Africa
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.025
– volume: 52
  start-page: 345
  year: 2000
  ident: ref_15
  article-title: Thermal Remote Sensing of Near Surface Environmental Variables: Application Over the Oklahoma Mesonet
  publication-title: Prof. Geogr.
  doi: 10.1111/0033-0124.00230
– volume: 114
  start-page: 449
  year: 2010
  ident: ref_9
  article-title: Evaluation of MODIS Land Surface Temperature Data to Estimate Air Temperature in Different Ecosystems over Africa
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.10.002
– volume: 29
  start-page: 897
  year: 2012
  ident: ref_2
  article-title: An Overview of the Global Historical Climatology Network-Daily Database
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-11-00103.1
– volume: 137
  start-page: 149
  year: 2018
  ident: ref_24
  article-title: Estimation of Daily Maximum and Minimum Air Temperatures in Urban Landscapes Using MODIS Time Series Satellite Data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.01.018
– volume: 25
  start-page: 2979
  year: 2004
  ident: ref_18
  article-title: Integrating AVHRR Satellite Data and NOAA Ground Observations to Predict Surface Air Temperature: A Statistical Approach
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160310001624593
– volume: 127
  start-page: 130
  year: 2012
  ident: ref_4
  article-title: Satellite Air Temperature Estimation for Monitoring the Canopy Layer Heat Island of Milan
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.08.025
– volume: 37
  start-page: 2996
  year: 2022
  ident: ref_28
  article-title: Retrieval of Monthly Maximum and Minimum Air Temperature Using MODIS Aqua Land Surface Temperature Data over the United Arab Emirates
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2020.1837261
– volume: 92
  start-page: 704
  year: 2011
  ident: ref_35
  article-title: The Integrated Surface Database: Recent Developments and Partnerships
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/2011BAMS3015.1
– volume: 97
  start-page: 102295
  year: 2021
  ident: ref_55
  article-title: Creating 1-Km Long-Term (1980–2014) Daily Average Air Temperatures over the Tibetan Plateau by Integrating Eight Types of Reanalysis and Land Data Assimilation Products Downscaled with MODIS-Estimated Temperature Lapse Rates Based on Machine Learning
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 35
  start-page: 100739
  year: 2021
  ident: ref_51
  article-title: Mapping Urban Temperature Using Crowd-Sensing Data and Machine Learning
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2020.100739
– volume: 240
  start-page: 111692
  year: 2020
  ident: ref_25
  article-title: Deep Learning-Based Air Temperature Mapping by Fusing Remote Sensing, Station, Simulation and Socioeconomic Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111692
– ident: ref_53
  doi: 10.3390/rs12111722
– volume: 215
  start-page: 74
  year: 2018
  ident: ref_54
  article-title: Developing a 1 Km Resolution Daily Air Temperature Dataset for Urban and Surrounding Areas in the Conterminous United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.05.034
– volume: 78
  start-page: 261
  year: 2019
  ident: ref_12
  article-title: Hourly Gridded Air Temperatures of South Africa Derived from MSG SEVIRI
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 411
  start-page: 108815
  year: 2019
  ident: ref_46
  article-title: Importance of Spatial Predictor Variable Selection in Machine Learning Applications—Moving from Data Reproduction to Spatial Prediction
  publication-title: Ecol. Modell.
  doi: 10.1016/j.ecolmodel.2019.108815
– ident: ref_11
  doi: 10.3390/rs11070767
– ident: ref_48
  doi: 10.3390/rs13122355
– volume: 38
  start-page: 1267
  year: 2021
  ident: ref_36
  article-title: Fengyun Meteorological Satellite Products for Earth System Science Applications
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-021-0425-3
– volume: 119
  start-page: 2294
  year: 2014
  ident: ref_21
  article-title: Spatio-temporal Interpolation of Daily Temperatures for Global Land Areas at 1 Km Resolution
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2013JD020803
– volume: 242
  start-page: 111791
  year: 2020
  ident: ref_10
  article-title: Hyperlocal Mapping of Urban Air Temperature Using Remote Sensing and Crowdsourced Weather Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111791
– volume: 47
  start-page: 936
  year: 2009
  ident: ref_39
  article-title: Developing Algorithm for Operational GOES-R Land Surface Temperature Product
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2006180
– volume: 152
  start-page: 83
  year: 2014
  ident: ref_6
  article-title: MODIS Land Surface Temperature as an Index of Surface Air Temperature for Operational Snowpack Estimation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.06.001
– volume: 234
  start-page: 111462
  year: 2019
  ident: ref_23
  article-title: Estimating Daily Average Surface Air Temperature Using Satellite Land Surface Temperature and Top-of-Atmosphere Radiation Products over the Tibetan Plateau
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111462
– volume: 183
  start-page: 111
  year: 2022
  ident: ref_27
  article-title: Hourly Mapping of Surface Air Temperature by Blending Geostationary Datasets from the Two-Satellite System of GOES-R Series
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.10.022
– volume: 98
  start-page: 1637
  year: 2017
  ident: ref_34
  article-title: Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-16-0065.1
– volume: 40
  start-page: 913
  year: 2017
  ident: ref_44
  article-title: Cross-Validation Strategies for Data with Temporal, Spatial, Hierarchical, or Phylogenetic Structure
  publication-title: Ecography
  doi: 10.1111/ecog.02881
– volume: 812
  start-page: 152538
  year: 2022
  ident: ref_29
  article-title: Merging Framework for Estimating Daily Surface Air Temperature by Integrating Observations from Multiple Polar-Orbiting Satellites
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.152538
– volume: 175
  start-page: 282
  year: 2021
  ident: ref_40
  article-title: Validation and Consistency Assessment of Land Surface Temperature from Geostationary and Polar Orbit Platforms: SEVIRI/MSG and AVHRR/Metop
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.03.013
– volume: 107
  start-page: 265
  year: 2012
  ident: ref_20
  article-title: Spatio-Temporal Prediction of Daily Temperatures Using Time-Series of MODIS LST Images
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-011-0464-2
– volume: 41
  start-page: 4095
  year: 2021
  ident: ref_47
  article-title: A Spatiotemporal Reconstruction of Daily Ambient Temperature Using Satellite Data in the Megalopolis of Central Mexico from 2003 to 2019
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.7060
– volume: 150
  start-page: 132
  year: 2014
  ident: ref_19
  article-title: Predicting Spatiotemporal Mean Air Temperature Using MODIS Satellite Surface Temperature Measurements across the Northeastern USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.04.024
– volume: 31
  start-page: 9835
  year: 2018
  ident: ref_3
  article-title: The Global Historical Climatology Network Monthly Temperature Dataset, Version 4
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-18-0094.1
– volume: 34
  start-page: 892
  year: 1996
  ident: ref_38
  article-title: A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.508406
– volume: 103
  start-page: 14288
  year: 2006
  ident: ref_1
  article-title: Global Temperature Change
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0606291103
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_26
  article-title: Deep Learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 4
  start-page: 587
  year: 2014
  ident: ref_7
  article-title: Consistent Increase in High Asia’s Runoff Due to Increasing Glacier Melt and Precipitation
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2237
– volume: 31
  start-page: 708
  year: 2017
  ident: ref_37
  article-title: Developing the Science Product Algorithm Testbed for Chinese Next-Generation Geostationary Meteorological Satellites: Fengyun-4 Series
  publication-title: J. Meteorol. Res.
  doi: 10.1007/s13351-017-6161-z
– ident: ref_33
  doi: 10.3390/rs12111741
SSID ssj0000331904
Score 2.3656685
Snippet Spatially continuous surface air temperature (SAT) is of great significance for various research areas in geospatial communities, and it can be reconstructed...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1753
SubjectTerms Air temperature
Algorithms
Artificial satellites
Atmosphere
China
Comparative analysis
Computational linguistics
data collection
Datasets
Deep learning
Earth surface
Energy
Estimation
geostationary satellite
hourly resolution
Image processing
Land surface temperature
Language processing
large-scale estimation
Meteorological satellites
model validation
Natural language interfaces
Performance prediction
Remote sensing
Satellites
Sensors
Statistical methods
surface air temperature
surface temperature
Synchronous satellites
Variables
Vegetation
Very high frequencies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL3BBQEEsFOSqSIiD1SR2Yvu4RV2tEIVDW6mcLH-MBVK1WyW7h_57ZuJ0KRKIC7comSTOeMbzJrbfMPbO-lglq5KouiYJFVMnjLJZQNOmRoFqAOiH_tmXbnmpPl21V_dKfdGasEIPXBR3bFX2EvOozkuv2qi9BFNZQ1VyTUC0TaMvxrx7ydQ4Bks0rUoVPlKJef1xP4zQR7fytwg0EvX_bTgeY8ziCXs8gUM-L416yh7A6hl7ONUp_367z7afaeG2OEfFAj9F7ywbD_k68yXefH3Lz7d99hH4_EfPLwAxceFM5icYrRJH0a9h9x924LS5hCME5ItvQs05vmkoU_O-x0f5ka1zA8_Z5eL04uNSTIUTRFRSbkSIOYYoIWgTMiDisTmrVjcpmUh10OugbVQIJCDVeGCibZLVNkR0b9MhRnnB9lbrFbxkXGYVrK50A21SgNEdcqhobhRhWY3xb8Y-3CnTxYlVnIpbXDvMLkjx7pfiZ-xoJ3tTuDT-KHVCfbKTIP7r8QRahZuswv3LKmbsPfWoIy_F5kQ_bTbAjyK-KzdHoNTWCG1R8uCu093kvoNrtKU8C7HpjB3uLqPj0WyKX8F6OziJw58yVVvVr_5Hi1-zR1TJviwKOmB7m34LbxDvbMLb0bR_AsDt-xo
  priority: 102
  providerName: Directory of Open Access Journals
Title Large-Scale Estimation of Hourly Surface Air Temperature Based on Observations from the FY-4A Geostationary Satellite
URI https://www.proquest.com/docview/2799747522
https://www.proquest.com/docview/3040480501
https://doaj.org/article/94fa33386a3a45c7a3e809862888b487
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY-wAviPEhCqMyAgnxYC2JncR-QunWUqFtILpJ48ny50CampG0D_vvOSdupknAW5Rcvu58dz_f2XcIvRfKJFYwS5Iis4QZWxDOhCcuy23GHMucCwH907NiecG-XOaXMeDWxmWVO5vYGWpbmxAjP8xKEaAvwIVPN79J6BoVsquxhcYeGoMJ5nyExrP52bfvQ5QloTDEEtbXJaUwvz9s2g4ClTm954m6gv3_Msudr1k8QY8jSMRVL9V99MCtn6KHsV_5z9tnaHsSFnCTFTDY4Tloab8BEdceL-Hm61u82jZeGYerXw0-d4CN-9rJeAZey2Ig_aqHeGyLwyYTDFAQL34QVmF4U9un6FUDj1Jd1c6Ne44uFvPzoyWJDRSIYZRuiDbeaEOdLrn2DpCP8J7lZWYtN6EfeqpLYRgACmdTOOBGZFaUQhtQc14AVnmBRut67V4iTD3TokzKzOWWOfDyzusk5EgBnqXgByfo446Z0sTq4qHJxbWEWUZgvLxj_AS9G2hv-poaf6WaBZkMFKEOdneibq5kVCspmFcUZtmFoorlplTU8UTw0EOZa5iLTdCHIFEZtBU-x6i46QB-KtS9khUApjwFiAuUBzuhy6jGrbwbdBP0drgMChiyKmrt6m0rKZhBxpM8SV_9_xGv0aPQq75f9nOARptm694AotnoKdrji89TNK6OT09W0ziIp1184A9O0_i_
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWChgBQhysJraT2AeEttBlS7fl0K1UTsZPWqnalGRXaP8Uv5FxXhUScOstiidO4hnPfDO2ZxB6JbVNnOSOJDl1hFuXE8FlIJ5mjnLPqfcxoH94lE9P-OfT7HQD_erPwsRtlb1ObBS1K22Mke_QQkboC3Dh_eUPEqtGxdXVvoRGKxYHfv0TXLb63f5H4O9rSid78w9T0lUVIJYztiTGBmss86YQJniAAzIEnhXUOWFjkfDUFNJysLLepXAhrKROFtJYkH2RgwGHfm-gm9CXjM6emHwaYjoJA4FOeJsFFdqTnapuAFeRsT_sXlMe4F9GoLFskzvodgdJ8biVobtowy_uoa2uOvrZ-j5azeJ2cXIM7PR4D3RCe9wRlwFP4eGLNT5eVUFbj8fnFZ57QOJtpma8CzbSYSD9Yobob43jkRYMwBNPvhI-xvCmut0QoCvoSjc5Qpf-ATq5loF9iDYX5cI_QpgFbmSRFNRnjnvAFD6YJK7IAhhMweqO0Nt-MJXtcpnHkhoXCnyaOPDqauBH6OVAe9lm8Pgr1W7kyUARs243N8rqu-omsZI8aAY-fa6Z5pktNPMikSJWbBYGPL8RehM5qqJugM-xujviAD8Vs2ypMcCzLAVADZTbPdNVpzRqdSXiI_RiaIbpHtdw9MKXq1oxULpcJFmSPv5_F8_R1nR-OFOz_aODJ-gWBWzWbjjaRpvLauWfApZammeNAGP07bpnzG9yXjFN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgEXxFMEChgBQhyseG3vwweEEpoopSVUtJXak1m_AKnKlt1EKH-NX8d4XxUScOst2sx6dz2vb-zxDEIvZW6olcISmjBLhLEJyYT0xLHYMuEEcy4s6H9cJPMT8eE0Pt1Cv7qzMCGtsrOJtaG2hQlr5COWygB9AS6MfJsWcbg7e3fxg4QOUmGntWun0YjIvtv8hPCteru3C7x-xdhsevx-TtoOA8QIzldEG2-04U6nmfYOoIH0XsQpszYzoWF4pFNpBHhcZyP4kRnJrEylNqAHWQLOHMa9hrbTEBUN0PZkujj83K_wUA7iTUVTE5VzSUdlVcOvNOZ_eMG6WcC_XELt52a30a0WoOJxI1F30JZb3kU32l7p3zb30PogJI-TI2Cuw1OwEM3hR1x4PIebzzf4aF363Dg8_l7iYwe4vKnbjCfgMS0G0k-6XwuucDjgggGG4tkZEWMMT6qa9IC8hKHyumLoyt1HJ1cytQ_QYFks3UOEuRdapjRlLrbCAcJwXtOwPwvQMAIfPERvuslUpq1sHhpsnCuIcMLEq8uJH6IXPe1FU8_jr1STwJOeItTgri8U5VfVqrSSwuccIvwk57mITZpzl1GZhf7NmYY4cIheB46qYCngdUzeHniAjwo1t9QYwFocAbwGyp2O6ao1IZW6FPghet7_DcofdnTypSvWleJggkVGYxo9-v8Qz9B10BZ1sLfYf4xuMgBqTfbRDhqsyrV7AsBqpZ-2EozRl6tWmt-w2Dbf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Estimation+of+Hourly+Surface+Air+Temperature+Based+on+Observations+from+the+FY-4A+Geostationary+Satellite&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Zhenwei&rft.au=Liang%2C+Yanzhi&rft.au=Zhang%2C+Guangxia&rft.au=Chen%2C+Liang&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=7&rft.spage=1753&rft_id=info:doi/10.3390%2Frs15071753&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon