Large-Scale Estimation of Hourly Surface Air Temperature Based on Observations from the FY-4A Geostationary Satellite
Spatially continuous surface air temperature (SAT) is of great significance for various research areas in geospatial communities, and it can be reconstructed by the SAT estimation models that integrate accurate point measurements of SAT at ground sites with wall-to-wall datasets derived from remotel...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 7; p. 1753 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatially continuous surface air temperature (SAT) is of great significance for various research areas in geospatial communities, and it can be reconstructed by the SAT estimation models that integrate accurate point measurements of SAT at ground sites with wall-to-wall datasets derived from remotely sensed observations of spaceborne instruments. As land surface temperature (LST) strongly correlates with SAT, estimation models are typically developed with LST as a primary input. Geostationary satellites are capable of observing the Earth’s surface across large-scale areas at very high frequencies. Compared to the substantial efforts to estimate SAT at daily or monthly scales using LST derived from MODIS, very limited studies have been performed to estimate SAT at high-temporal scales based on LST from geostationary satellites. Estimation models for hourly SAT based on the LST derived from FY-4A, the first geostationary satellite in China’s new-generation meteorological observation mission, were developed for the first time in this study. The models were fully cross-validated for a very large-scale region with diverse geographic settings using random forest, and specified differently to explore the influence of time and location variables on model performance. Overall predictive performance of the models is about 1.65–2.08 K for sample-based cross-validation, and 2.22–2.70 K for site-based cross-validation. Incorporating time or location variables into the hourly models significantly improves predictive performance, which is also confirmed by the analysis of predictive errors at temporal scales and across sites. The best-performing model with an average RMSE of 2.22 K was utilized for reconstructing maps of SAT for each hour. The hourly models developed in this study have general implications for future studies on large-scale estimating of hourly SAT based on geostationary LST datasets. |
---|---|
AbstractList | Spatially continuous surface air temperature (SAT) is of great significance for various research areas in geospatial communities, and it can be reconstructed by the SAT estimation models that integrate accurate point measurements of SAT at ground sites with wall-to-wall datasets derived from remotely sensed observations of spaceborne instruments. As land surface temperature (LST) strongly correlates with SAT, estimation models are typically developed with LST as a primary input. Geostationary satellites are capable of observing the Earth’s surface across large-scale areas at very high frequencies. Compared to the substantial efforts to estimate SAT at daily or monthly scales using LST derived from MODIS, very limited studies have been performed to estimate SAT at high-temporal scales based on LST from geostationary satellites. Estimation models for hourly SAT based on the LST derived from FY-4A, the first geostationary satellite in China’s new-generation meteorological observation mission, were developed for the first time in this study. The models were fully cross-validated for a very large-scale region with diverse geographic settings using random forest, and specified differently to explore the influence of time and location variables on model performance. Overall predictive performance of the models is about 1.65–2.08 K for sample-based cross-validation, and 2.22–2.70 K for site-based cross-validation. Incorporating time or location variables into the hourly models significantly improves predictive performance, which is also confirmed by the analysis of predictive errors at temporal scales and across sites. The best-performing model with an average RMSE of 2.22 K was utilized for reconstructing maps of SAT for each hour. The hourly models developed in this study have general implications for future studies on large-scale estimating of hourly SAT based on geostationary LST datasets. |
Audience | Academic |
Author | Liang, Yanzhi Liang, Chen Zhang, Zhenwei Zhang, Guangxia |
Author_xml | – sequence: 1 givenname: Zhenwei orcidid: 0000-0002-3200-6525 surname: Zhang fullname: Zhang, Zhenwei – sequence: 2 givenname: Yanzhi surname: Liang fullname: Liang, Yanzhi – sequence: 3 givenname: Guangxia surname: Zhang fullname: Zhang, Guangxia – sequence: 4 givenname: Chen orcidid: 0000-0002-4400-0411 surname: Liang fullname: Liang, Chen |
BookMark | eNptUk1v1DAQjVCRKKUXfoElLggpxZ-xfVyqfkkr9dBy4GQ5znjxKokX20Hqv8fdIEAV9sGj8XvPfjPztjmZ4wxN857gC8Y0_pwyEVgSKdir5pRiSVtONT35J37TnOe8x3UxRjTmp82ytWkH7YOzI6CrXMJkS4gzih7dxiWNT-hhSd46QJuQ0CNMB0i2LAnQF5thQBV632dIP4-0jHyKEyrfAV1_a_kG3UDM5XhlU5WyBcYxFHjXvPZ2zHD--zxrvl5fPV7ettv7m7vLzbZ1nLHS9s673jHopeo9dJxr77mQdBiU47ha7aV2XAgOA6mBcpoOWureKUZV13F21tytukO0e3NI1V16MtEGc0zEtDM2leBGMJp7yxhTnWWWCyctA4W16qhSqudKVq2Pq9YhxR8L5GKmkF31Y2eISzYMc8wVFphU6IcX0H2t5VydGiq1llwKSivqYkXtau1NmH0sybq6B5iCq631oeY3UmBBGMHPP_i0ElyKOSfwfxwRbJ4nwPydgArGL8AurJ2or4Txf5RfPb-y_Q |
CitedBy_id | crossref_primary_10_3390_rs16244675 crossref_primary_10_1038_s41597_024_03980_z crossref_primary_10_3390_rs16203754 crossref_primary_10_3390_rs16193612 crossref_primary_10_1038_s41598_024_78349_8 |
Cites_doi | 10.1016/j.rse.2010.08.010 10.3390/rs9050398 10.1016/j.ecolmodel.2021.109692 10.1109/JSTARS.2014.2320762 10.5194/essd-13-4241-2021 10.1007/s00704-004-0079-y 10.3390/rs13132589 10.3390/atmos13121953 10.1016/j.uclim.2014.10.008 10.1016/S0034-4257(96)00216-7 10.1109/IGARSS47720.2021.9553394 10.1016/j.isprsjprs.2009.02.006 10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5 10.1016/j.rse.2012.10.034 10.1080/15481603.2020.1766768 10.1016/j.rse.2007.02.025 10.1111/0033-0124.00230 10.1016/j.rse.2009.10.002 10.1175/JTECH-D-11-00103.1 10.1016/j.isprsjprs.2018.01.018 10.1080/01431160310001624593 10.1016/j.rse.2012.08.025 10.1080/10106049.2020.1837261 10.1175/2011BAMS3015.1 10.1016/j.uclim.2020.100739 10.1016/j.rse.2020.111692 10.3390/rs12111722 10.1016/j.rse.2018.05.034 10.1016/j.ecolmodel.2019.108815 10.3390/rs11070767 10.3390/rs13122355 10.1007/s00376-021-0425-3 10.1002/2013JD020803 10.1016/j.rse.2020.111791 10.1109/TGRS.2008.2006180 10.1016/j.rse.2014.06.001 10.1016/j.rse.2019.111462 10.1016/j.isprsjprs.2021.10.022 10.1175/BAMS-D-16-0065.1 10.1111/ecog.02881 10.1016/j.scitotenv.2021.152538 10.1016/j.isprsjprs.2021.03.013 10.1007/s00704-011-0464-2 10.1002/joc.7060 10.1016/j.rse.2014.04.024 10.1175/JCLI-D-18-0094.1 10.1109/36.508406 10.1073/pnas.0606291103 10.1038/nature14539 10.1038/nclimate2237 10.1007/s13351-017-6161-z 10.3390/rs12111741 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15071753 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_94fa33386a3a45c7a3e809862888b487 A750513107 10_3390_rs15071753 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-bcfcbc3eb78bfe6449ff4572dd8c40071b79c4554ed19c48c92d979bc83286643 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:25:58 EDT 2025 Fri Jul 11 11:28:16 EDT 2025 Fri Jul 25 11:58:42 EDT 2025 Tue Jun 10 20:57:15 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Tue Jul 01 03:11:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-bcfcbc3eb78bfe6449ff4572dd8c40071b79c4554ed19c48c92d979bc83286643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4400-0411 0000-0002-3200-6525 |
OpenAccessLink | https://www.proquest.com/docview/2799747522?pq-origsite=%requestingapplication% |
PQID | 2799747522 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_94fa33386a3a45c7a3e809862888b487 proquest_miscellaneous_3040480501 proquest_journals_2799747522 gale_infotracacademiconefile_A750513107 crossref_primary_10_3390_rs15071753 crossref_citationtrail_10_3390_rs15071753 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Pichierri (ref_4) 2012; 127 Zhang (ref_29) 2022; 812 Chen (ref_50) 2021; 13 Zhang (ref_55) 2021; 97 Min (ref_37) 2017; 31 ref_11 Nieto (ref_31) 2011; 115 ref_53 Kilibarda (ref_21) 2014; 119 Zhu (ref_13) 2013; 130 Xian (ref_36) 2021; 38 Stisen (ref_30) 2007; 110 Hengl (ref_20) 2012; 107 Yoo (ref_24) 2018; 137 Prihodko (ref_14) 1997; 60 Alqasemi (ref_28) 2022; 37 Menne (ref_2) 2012; 29 ref_22 (ref_16) 2009; 64 Hansen (ref_1) 2006; 103 Cho (ref_52) 2020; 57 Menne (ref_3) 2018; 31 Shamir (ref_6) 2014; 152 Rao (ref_23) 2019; 234 Lutz (ref_7) 2014; 4 Arfer (ref_47) 2021; 41 Venter (ref_10) 2020; 242 Sun (ref_17) 2005; 80 ref_33 Zumwald (ref_51) 2021; 35 Li (ref_54) 2018; 215 Zhang (ref_27) 2022; 183 Meyer (ref_12) 2019; 78 Kloog (ref_19) 2014; 150 Wan (ref_38) 1996; 34 Shen (ref_25) 2020; 240 Wadoux (ref_45) 2021; 457 Meyer (ref_46) 2019; 411 Vancutsem (ref_9) 2010; 114 Yu (ref_39) 2009; 47 Vogt (ref_8) 1997; 17 Czajkowski (ref_15) 2000; 52 ref_43 ref_42 Roberts (ref_44) 2017; 40 ref_41 Trigo (ref_40) 2021; 175 Smith (ref_35) 2011; 92 Florio (ref_18) 2004; 25 Yang (ref_34) 2017; 98 ref_49 Schuster (ref_5) 2014; 10 ref_48 LeCun (ref_26) 2015; 521 Lazzarini (ref_32) 2014; 7 |
References_xml | – volume: 115 start-page: 107 year: 2011 ident: ref_31 article-title: Air Temperature Estimation with MSG-SEVIRI Data: Calibration and Validation of the TVX Algorithm for the Iberian Peninsula publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.08.010 – ident: ref_22 doi: 10.3390/rs9050398 – volume: 457 start-page: 109692 year: 2021 ident: ref_45 article-title: Spatial Cross-Validation Is Not the Right Way to Evaluate Map Accuracy publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2021.109692 – volume: 7 start-page: 3093 year: 2014 ident: ref_32 article-title: Toward a Near Real-Time Product of Air Temperature Maps from Satellite Data and In Situ Measurements in Arid Environments publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2320762 – volume: 13 start-page: 4241 year: 2021 ident: ref_50 article-title: An All-Sky 1 Km Daily Land Surface Air Temperature Product over Mainland China for 2003–2019 from MODIS and Ancillary Data publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-4241-2021 – volume: 80 start-page: 37 year: 2005 ident: ref_17 article-title: Air Temperature Retrieval from Remote Sensing Data Based on Thermodynamics publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-004-0079-y – ident: ref_49 doi: 10.3390/rs13132589 – ident: ref_42 – ident: ref_41 doi: 10.3390/atmos13121953 – volume: 10 start-page: 134 year: 2014 ident: ref_5 article-title: Heat Mortality in Berlin—Spatial Variability at the Neighborhood Scale publication-title: Urban Clim. doi: 10.1016/j.uclim.2014.10.008 – volume: 60 start-page: 335 year: 1997 ident: ref_14 article-title: Estimation of Air Temperature from Remotely Sensed Surface Observations publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00216-7 – ident: ref_43 doi: 10.1109/IGARSS47720.2021.9553394 – volume: 64 start-page: 414 year: 2009 ident: ref_16 article-title: Parameterization of Air Temperature in High Temporal and Spatial Resolution from a Combination of the SEVIRI and MODIS Instruments publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.02.006 – volume: 17 start-page: 1559 year: 1997 ident: ref_8 article-title: Mapping Regional Air Temperature Fields Using Satellite-Derived Surface Skin Temperatures publication-title: Int. J. Climatol. doi: 10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5 – volume: 130 start-page: 62 year: 2013 ident: ref_13 article-title: Estimation of Daily Maximum and Minimum Air Temperature Using MODIS Land Surface Temperature Products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.10.034 – volume: 57 start-page: 633 year: 2020 ident: ref_52 article-title: Improvement of Spatial Interpolation Accuracy of Daily Maximum Air Temperature in Urban Areas Using a Stacking Ensemble Technique publication-title: GIsci. Remote Sens. doi: 10.1080/15481603.2020.1766768 – volume: 110 start-page: 262 year: 2007 ident: ref_30 article-title: Estimation of Diurnal Air Temperature Using MSG SEVIRI Data in West Africa publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.025 – volume: 52 start-page: 345 year: 2000 ident: ref_15 article-title: Thermal Remote Sensing of Near Surface Environmental Variables: Application Over the Oklahoma Mesonet publication-title: Prof. Geogr. doi: 10.1111/0033-0124.00230 – volume: 114 start-page: 449 year: 2010 ident: ref_9 article-title: Evaluation of MODIS Land Surface Temperature Data to Estimate Air Temperature in Different Ecosystems over Africa publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.10.002 – volume: 29 start-page: 897 year: 2012 ident: ref_2 article-title: An Overview of the Global Historical Climatology Network-Daily Database publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-11-00103.1 – volume: 137 start-page: 149 year: 2018 ident: ref_24 article-title: Estimation of Daily Maximum and Minimum Air Temperatures in Urban Landscapes Using MODIS Time Series Satellite Data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.01.018 – volume: 25 start-page: 2979 year: 2004 ident: ref_18 article-title: Integrating AVHRR Satellite Data and NOAA Ground Observations to Predict Surface Air Temperature: A Statistical Approach publication-title: Int. J. Remote Sens. doi: 10.1080/01431160310001624593 – volume: 127 start-page: 130 year: 2012 ident: ref_4 article-title: Satellite Air Temperature Estimation for Monitoring the Canopy Layer Heat Island of Milan publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.08.025 – volume: 37 start-page: 2996 year: 2022 ident: ref_28 article-title: Retrieval of Monthly Maximum and Minimum Air Temperature Using MODIS Aqua Land Surface Temperature Data over the United Arab Emirates publication-title: Geocarto Int. doi: 10.1080/10106049.2020.1837261 – volume: 92 start-page: 704 year: 2011 ident: ref_35 article-title: The Integrated Surface Database: Recent Developments and Partnerships publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/2011BAMS3015.1 – volume: 97 start-page: 102295 year: 2021 ident: ref_55 article-title: Creating 1-Km Long-Term (1980–2014) Daily Average Air Temperatures over the Tibetan Plateau by Integrating Eight Types of Reanalysis and Land Data Assimilation Products Downscaled with MODIS-Estimated Temperature Lapse Rates Based on Machine Learning publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 35 start-page: 100739 year: 2021 ident: ref_51 article-title: Mapping Urban Temperature Using Crowd-Sensing Data and Machine Learning publication-title: Urban Clim. doi: 10.1016/j.uclim.2020.100739 – volume: 240 start-page: 111692 year: 2020 ident: ref_25 article-title: Deep Learning-Based Air Temperature Mapping by Fusing Remote Sensing, Station, Simulation and Socioeconomic Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111692 – ident: ref_53 doi: 10.3390/rs12111722 – volume: 215 start-page: 74 year: 2018 ident: ref_54 article-title: Developing a 1 Km Resolution Daily Air Temperature Dataset for Urban and Surrounding Areas in the Conterminous United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.05.034 – volume: 78 start-page: 261 year: 2019 ident: ref_12 article-title: Hourly Gridded Air Temperatures of South Africa Derived from MSG SEVIRI publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 411 start-page: 108815 year: 2019 ident: ref_46 article-title: Importance of Spatial Predictor Variable Selection in Machine Learning Applications—Moving from Data Reproduction to Spatial Prediction publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2019.108815 – ident: ref_11 doi: 10.3390/rs11070767 – ident: ref_48 doi: 10.3390/rs13122355 – volume: 38 start-page: 1267 year: 2021 ident: ref_36 article-title: Fengyun Meteorological Satellite Products for Earth System Science Applications publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-021-0425-3 – volume: 119 start-page: 2294 year: 2014 ident: ref_21 article-title: Spatio-temporal Interpolation of Daily Temperatures for Global Land Areas at 1 Km Resolution publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2013JD020803 – volume: 242 start-page: 111791 year: 2020 ident: ref_10 article-title: Hyperlocal Mapping of Urban Air Temperature Using Remote Sensing and Crowdsourced Weather Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111791 – volume: 47 start-page: 936 year: 2009 ident: ref_39 article-title: Developing Algorithm for Operational GOES-R Land Surface Temperature Product publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2006180 – volume: 152 start-page: 83 year: 2014 ident: ref_6 article-title: MODIS Land Surface Temperature as an Index of Surface Air Temperature for Operational Snowpack Estimation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.001 – volume: 234 start-page: 111462 year: 2019 ident: ref_23 article-title: Estimating Daily Average Surface Air Temperature Using Satellite Land Surface Temperature and Top-of-Atmosphere Radiation Products over the Tibetan Plateau publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111462 – volume: 183 start-page: 111 year: 2022 ident: ref_27 article-title: Hourly Mapping of Surface Air Temperature by Blending Geostationary Datasets from the Two-Satellite System of GOES-R Series publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.10.022 – volume: 98 start-page: 1637 year: 2017 ident: ref_34 article-title: Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-16-0065.1 – volume: 40 start-page: 913 year: 2017 ident: ref_44 article-title: Cross-Validation Strategies for Data with Temporal, Spatial, Hierarchical, or Phylogenetic Structure publication-title: Ecography doi: 10.1111/ecog.02881 – volume: 812 start-page: 152538 year: 2022 ident: ref_29 article-title: Merging Framework for Estimating Daily Surface Air Temperature by Integrating Observations from Multiple Polar-Orbiting Satellites publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.152538 – volume: 175 start-page: 282 year: 2021 ident: ref_40 article-title: Validation and Consistency Assessment of Land Surface Temperature from Geostationary and Polar Orbit Platforms: SEVIRI/MSG and AVHRR/Metop publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.03.013 – volume: 107 start-page: 265 year: 2012 ident: ref_20 article-title: Spatio-Temporal Prediction of Daily Temperatures Using Time-Series of MODIS LST Images publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-011-0464-2 – volume: 41 start-page: 4095 year: 2021 ident: ref_47 article-title: A Spatiotemporal Reconstruction of Daily Ambient Temperature Using Satellite Data in the Megalopolis of Central Mexico from 2003 to 2019 publication-title: Int. J. Climatol. doi: 10.1002/joc.7060 – volume: 150 start-page: 132 year: 2014 ident: ref_19 article-title: Predicting Spatiotemporal Mean Air Temperature Using MODIS Satellite Surface Temperature Measurements across the Northeastern USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.04.024 – volume: 31 start-page: 9835 year: 2018 ident: ref_3 article-title: The Global Historical Climatology Network Monthly Temperature Dataset, Version 4 publication-title: J. Clim. doi: 10.1175/JCLI-D-18-0094.1 – volume: 34 start-page: 892 year: 1996 ident: ref_38 article-title: A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.508406 – volume: 103 start-page: 14288 year: 2006 ident: ref_1 article-title: Global Temperature Change publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0606291103 – volume: 521 start-page: 436 year: 2015 ident: ref_26 article-title: Deep Learning publication-title: Nature doi: 10.1038/nature14539 – volume: 4 start-page: 587 year: 2014 ident: ref_7 article-title: Consistent Increase in High Asia’s Runoff Due to Increasing Glacier Melt and Precipitation publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2237 – volume: 31 start-page: 708 year: 2017 ident: ref_37 article-title: Developing the Science Product Algorithm Testbed for Chinese Next-Generation Geostationary Meteorological Satellites: Fengyun-4 Series publication-title: J. Meteorol. Res. doi: 10.1007/s13351-017-6161-z – ident: ref_33 doi: 10.3390/rs12111741 |
SSID | ssj0000331904 |
Score | 2.3656685 |
Snippet | Spatially continuous surface air temperature (SAT) is of great significance for various research areas in geospatial communities, and it can be reconstructed... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1753 |
SubjectTerms | Air temperature Algorithms Artificial satellites Atmosphere China Comparative analysis Computational linguistics data collection Datasets Deep learning Earth surface Energy Estimation geostationary satellite hourly resolution Image processing Land surface temperature Language processing large-scale estimation Meteorological satellites model validation Natural language interfaces Performance prediction Remote sensing Satellites Sensors Statistical methods surface air temperature surface temperature Synchronous satellites Variables Vegetation Very high frequencies |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL3BBQEEsFOSqSIiD1SR2Yvu4RV2tEIVDW6mcLH-MBVK1WyW7h_57ZuJ0KRKIC7comSTOeMbzJrbfMPbO-lglq5KouiYJFVMnjLJZQNOmRoFqAOiH_tmXbnmpPl21V_dKfdGasEIPXBR3bFX2EvOozkuv2qi9BFNZQ1VyTUC0TaMvxrx7ydQ4Bks0rUoVPlKJef1xP4zQR7fytwg0EvX_bTgeY8ziCXs8gUM-L416yh7A6hl7ONUp_367z7afaeG2OEfFAj9F7ywbD_k68yXefH3Lz7d99hH4_EfPLwAxceFM5icYrRJH0a9h9x924LS5hCME5ItvQs05vmkoU_O-x0f5ka1zA8_Z5eL04uNSTIUTRFRSbkSIOYYoIWgTMiDisTmrVjcpmUh10OugbVQIJCDVeGCibZLVNkR0b9MhRnnB9lbrFbxkXGYVrK50A21SgNEdcqhobhRhWY3xb8Y-3CnTxYlVnIpbXDvMLkjx7pfiZ-xoJ3tTuDT-KHVCfbKTIP7r8QRahZuswv3LKmbsPfWoIy_F5kQ_bTbAjyK-KzdHoNTWCG1R8uCu093kvoNrtKU8C7HpjB3uLqPj0WyKX8F6OziJw58yVVvVr_5Hi1-zR1TJviwKOmB7m34LbxDvbMLb0bR_AsDt-xo priority: 102 providerName: Directory of Open Access Journals |
Title | Large-Scale Estimation of Hourly Surface Air Temperature Based on Observations from the FY-4A Geostationary Satellite |
URI | https://www.proquest.com/docview/2799747522 https://www.proquest.com/docview/3040480501 https://doaj.org/article/94fa33386a3a45c7a3e809862888b487 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY-wAviPEhCqMyAgnxYC2JncR-QunWUqFtILpJ48ny50CampG0D_vvOSdupknAW5Rcvu58dz_f2XcIvRfKJFYwS5Iis4QZWxDOhCcuy23GHMucCwH907NiecG-XOaXMeDWxmWVO5vYGWpbmxAjP8xKEaAvwIVPN79J6BoVsquxhcYeGoMJ5nyExrP52bfvQ5QloTDEEtbXJaUwvz9s2g4ClTm954m6gv3_Msudr1k8QY8jSMRVL9V99MCtn6KHsV_5z9tnaHsSFnCTFTDY4Tloab8BEdceL-Hm61u82jZeGYerXw0-d4CN-9rJeAZey2Ig_aqHeGyLwyYTDFAQL34QVmF4U9un6FUDj1Jd1c6Ne44uFvPzoyWJDRSIYZRuiDbeaEOdLrn2DpCP8J7lZWYtN6EfeqpLYRgACmdTOOBGZFaUQhtQc14AVnmBRut67V4iTD3TokzKzOWWOfDyzusk5EgBnqXgByfo446Z0sTq4qHJxbWEWUZgvLxj_AS9G2hv-poaf6WaBZkMFKEOdneibq5kVCspmFcUZtmFoorlplTU8UTw0EOZa5iLTdCHIFEZtBU-x6i46QB-KtS9khUApjwFiAuUBzuhy6jGrbwbdBP0drgMChiyKmrt6m0rKZhBxpM8SV_9_xGv0aPQq75f9nOARptm694AotnoKdrji89TNK6OT09W0ziIp1184A9O0_i_ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWChgBQhysJraT2AeEttBlS7fl0K1UTsZPWqnalGRXaP8Uv5FxXhUScOstiidO4hnPfDO2ZxB6JbVNnOSOJDl1hFuXE8FlIJ5mjnLPqfcxoH94lE9P-OfT7HQD_erPwsRtlb1ObBS1K22Mke_QQkboC3Dh_eUPEqtGxdXVvoRGKxYHfv0TXLb63f5H4O9rSid78w9T0lUVIJYztiTGBmss86YQJniAAzIEnhXUOWFjkfDUFNJysLLepXAhrKROFtJYkH2RgwGHfm-gm9CXjM6emHwaYjoJA4FOeJsFFdqTnapuAFeRsT_sXlMe4F9GoLFskzvodgdJ8biVobtowy_uoa2uOvrZ-j5azeJ2cXIM7PR4D3RCe9wRlwFP4eGLNT5eVUFbj8fnFZ57QOJtpma8CzbSYSD9Yobob43jkRYMwBNPvhI-xvCmut0QoCvoSjc5Qpf-ATq5loF9iDYX5cI_QpgFbmSRFNRnjnvAFD6YJK7IAhhMweqO0Nt-MJXtcpnHkhoXCnyaOPDqauBH6OVAe9lm8Pgr1W7kyUARs243N8rqu-omsZI8aAY-fa6Z5pktNPMikSJWbBYGPL8RehM5qqJugM-xujviAD8Vs2ypMcCzLAVADZTbPdNVpzRqdSXiI_RiaIbpHtdw9MKXq1oxULpcJFmSPv5_F8_R1nR-OFOz_aODJ-gWBWzWbjjaRpvLauWfApZammeNAGP07bpnzG9yXjFN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgEXxFMEChgBQhyseG3vwweEEpoopSVUtJXak1m_AKnKlt1EKH-NX8d4XxUScOst2sx6dz2vb-zxDEIvZW6olcISmjBLhLEJyYT0xLHYMuEEcy4s6H9cJPMT8eE0Pt1Cv7qzMCGtsrOJtaG2hQlr5COWygB9AS6MfJsWcbg7e3fxg4QOUmGntWun0YjIvtv8hPCteru3C7x-xdhsevx-TtoOA8QIzldEG2-04U6nmfYOoIH0XsQpszYzoWF4pFNpBHhcZyP4kRnJrEylNqAHWQLOHMa9hrbTEBUN0PZkujj83K_wUA7iTUVTE5VzSUdlVcOvNOZ_eMG6WcC_XELt52a30a0WoOJxI1F30JZb3kU32l7p3zb30PogJI-TI2Cuw1OwEM3hR1x4PIebzzf4aF363Dg8_l7iYwe4vKnbjCfgMS0G0k-6XwuucDjgggGG4tkZEWMMT6qa9IC8hKHyumLoyt1HJ1cytQ_QYFks3UOEuRdapjRlLrbCAcJwXtOwPwvQMAIfPERvuslUpq1sHhpsnCuIcMLEq8uJH6IXPe1FU8_jr1STwJOeItTgri8U5VfVqrSSwuccIvwk57mITZpzl1GZhf7NmYY4cIheB46qYCngdUzeHniAjwo1t9QYwFocAbwGyp2O6ao1IZW6FPghet7_DcofdnTypSvWleJggkVGYxo9-v8Qz9B10BZ1sLfYf4xuMgBqTfbRDhqsyrV7AsBqpZ-2EozRl6tWmt-w2Dbf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Estimation+of+Hourly+Surface+Air+Temperature+Based+on+Observations+from+the+FY-4A+Geostationary+Satellite&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Zhenwei&rft.au=Liang%2C+Yanzhi&rft.au=Zhang%2C+Guangxia&rft.au=Chen%2C+Liang&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=7&rft.spage=1753&rft_id=info:doi/10.3390%2Frs15071753&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |