A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategies
Due to the limitations on carbon emissions, many countries are seeking potential clean, renewable and sustainable energy and fuels. Conversion of lignocellulose biomass to liquid fuel is one of the research hotpots because biomass is a renewable and sustainable resource. This paper outlines an attra...
Saved in:
Published in | Fuel processing technology Vol. 208; p. 106485 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.11.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0378-3820 1873-7188 |
DOI | 10.1016/j.fuproc.2020.106485 |
Cover
Abstract | Due to the limitations on carbon emissions, many countries are seeking potential clean, renewable and sustainable energy and fuels. Conversion of lignocellulose biomass to liquid fuel is one of the research hotpots because biomass is a renewable and sustainable resource. This paper outlines an attractive strategy for the production of liquid transport fuels from lignocellulose biomass. Specifically, hemicellulose and cellulose are converted to C5 and C6 alkanes (bio-gasoline) and C8–C15 alkanes (aviation fuel) via C5/C6 platform molecules, and lignin is converted to arenes and cyclanes via phenolic monomers and dimers through hydrodeoxygenation. The focus is to review the state-of-the-art technologies for the preparation of platform molecules, the synthesis of light/heavy alkanes, lignin depolymerization and catalytic hydrodeoxygenation. In addition, major challenges and promising prospects are also pointed out for the future development of the conversion of lignocellulose biomass to liquid transport fuels.
Integrated conversion is an attractive strategy for the production of hydrocarbon fuels from lignocellulose biomass. Hemicellulose and cellulose can be converted to bio-gasoline (C5 and C6 alkanes) and aviation fuel (C8–C15 alkanes) via C5/C6 platform molecules, and lignin can be converted to arenes and cyclanes via phenolic monomers and dimers through hydrodeoxygenation. This review provides a new perspective for utilization of lignocellulose biomass. [Display omitted]
•Technologies for bio-gasoline production from hemicellulose and cellulose were summarized.•The state-of-the-art technologies for synthesis of aviation fuel were reviewed.•Lignin was proposed to be the feedstock of arenes and cyclanes.•Challenges and prospects of utilization of lignocellulose biomass were discussed. |
---|---|
AbstractList | Due to the limitations on carbon emissions, many countries are seeking potential clean, renewable and sustainable energy and fuels. Conversion of lignocellulose biomass to liquid fuel is one of the research hotpots because biomass is a renewable and sustainable resource. This paper outlines an attractive strategy for the production of liquid transport fuels from lignocellulose biomass. Specifically, hemicellulose and cellulose are converted to C5 and C6 alkanes (bio-gasoline) and C8–C15 alkanes (aviation fuel) via C5/C6 platform molecules, and lignin is converted to arenes and cyclanes via phenolic monomers and dimers through hydrodeoxygenation. The focus is to review the state-of-the-art technologies for the preparation of platform molecules, the synthesis of light/heavy alkanes, lignin depolymerization and catalytic hydrodeoxygenation. In addition, major challenges and promising prospects are also pointed out for the future development of the conversion of lignocellulose biomass to liquid transport fuels. Due to the limitations on carbon emissions, many countries are seeking potential clean, renewable and sustainable energy and fuels. Conversion of lignocellulose biomass to liquid fuel is one of the research hotpots because biomass is a renewable and sustainable resource. This paper outlines an attractive strategy for the production of liquid transport fuels from lignocellulose biomass. Specifically, hemicellulose and cellulose are converted to C5 and C6 alkanes (bio-gasoline) and C8–C15 alkanes (aviation fuel) via C5/C6 platform molecules, and lignin is converted to arenes and cyclanes via phenolic monomers and dimers through hydrodeoxygenation. The focus is to review the state-of-the-art technologies for the preparation of platform molecules, the synthesis of light/heavy alkanes, lignin depolymerization and catalytic hydrodeoxygenation. In addition, major challenges and promising prospects are also pointed out for the future development of the conversion of lignocellulose biomass to liquid transport fuels. Integrated conversion is an attractive strategy for the production of hydrocarbon fuels from lignocellulose biomass. Hemicellulose and cellulose can be converted to bio-gasoline (C5 and C6 alkanes) and aviation fuel (C8–C15 alkanes) via C5/C6 platform molecules, and lignin can be converted to arenes and cyclanes via phenolic monomers and dimers through hydrodeoxygenation. This review provides a new perspective for utilization of lignocellulose biomass. [Display omitted] •Technologies for bio-gasoline production from hemicellulose and cellulose were summarized.•The state-of-the-art technologies for synthesis of aviation fuel were reviewed.•Lignin was proposed to be the feedstock of arenes and cyclanes.•Challenges and prospects of utilization of lignocellulose biomass were discussed. |
ArticleNumber | 106485 |
Author | Chen, Lungang Zhang, Qi Wang, Chenguang Liu, Qiang Ma, Longlong Zhang, Xinghua |
Author_xml | – sequence: 1 givenname: Chenguang surname: Wang fullname: Wang, Chenguang organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China – sequence: 2 givenname: Xinghua surname: Zhang fullname: Zhang, Xinghua email: zhangxh@ms.giec.ac.cn organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China – sequence: 3 givenname: Qiang surname: Liu fullname: Liu, Qiang organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China – sequence: 4 givenname: Qi surname: Zhang fullname: Zhang, Qi organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China – sequence: 5 givenname: Lungang surname: Chen fullname: Chen, Lungang organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China – sequence: 6 givenname: Longlong surname: Ma fullname: Ma, Longlong email: mall@ms.giec.ac.cn organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China |
BookMark | eNqFUb1qHDEYFMGBnJ28QQpBGjd71u-uLoXBGDsOGNIktdBKnw4de9JZ0tr47aNlU7lwKqHRzKCZOUdnMUVA6CslW0pof3XY-vmUk90ywhaoF0p-QBuqBt4NVKkztCF8UB1XjHxC56UcCCFS7oYNmm5whucALzh5bFN8hlxCisttCvuYLEzTPKUCeAzpaErBNbWXpzk4XLOJ5ZRyxX6GqeDxFYdYYZ9NBddsfYgh7nGpC7APUD6jj95MBb78Oy_Qn_u737cP3eOvHz9vbx47Kziv3Sg9l4x679ywk5w7wrzivRQNtLBjCpgfR-P94KiQlPHRg3LUGz7QBvX8Al2uvq2UpxlK1cdQliQmQpqLZjsle8IYo4367Q31kOYc2-80E2LgrTchGuv7yrI5ldKSaRuqqa2oli1MmhK9DKEPeh1CL0PodYgmFm_EpxyOJr_-T3a9ylq1y0JZFxsgWnAhg63apfC-wV-vl6hh |
CitedBy_id | crossref_primary_10_1016_j_indcrop_2024_118063 crossref_primary_10_3390_aerospace10020129 crossref_primary_10_1038_s41598_023_39441_7 crossref_primary_10_1039_D4SE01815J crossref_primary_10_1016_j_matpr_2022_11_226 crossref_primary_10_1039_D4RE00018H crossref_primary_10_1016_j_scitotenv_2024_172096 crossref_primary_10_1039_D3GC04082H crossref_primary_10_1016_j_cattod_2025_115211 crossref_primary_10_1016_j_scitotenv_2023_162214 crossref_primary_10_1016_j_fuproc_2021_106936 crossref_primary_10_1002_cctc_202300486 crossref_primary_10_3390_en14010119 crossref_primary_10_1016_j_fuproc_2021_106897 crossref_primary_10_1016_j_joei_2024_101591 crossref_primary_10_1007_s13399_022_02480_7 crossref_primary_10_1039_D1GC03330A crossref_primary_10_1016_j_rser_2023_113240 crossref_primary_10_1016_j_mcat_2021_111730 crossref_primary_10_1021_acssuschemeng_1c02875 crossref_primary_10_1007_s11356_023_30702_6 crossref_primary_10_1016_j_fuel_2022_126665 crossref_primary_10_3390_molecules28237920 crossref_primary_10_1021_acs_energyfuels_1c01700 crossref_primary_10_3390_recycling8040061 crossref_primary_10_1016_j_indcrop_2023_116435 crossref_primary_10_3390_su16073038 crossref_primary_10_1016_j_enconman_2024_119123 crossref_primary_10_1016_j_jechem_2024_04_024 crossref_primary_10_1016_j_applthermaleng_2021_117723 crossref_primary_10_1016_j_fuproc_2021_107097 crossref_primary_10_1016_j_fuproc_2021_107130 crossref_primary_10_1515_pac_2020_1011 crossref_primary_10_3103_S0361521921070053 crossref_primary_10_1016_j_fuel_2022_123361 crossref_primary_10_1016_j_biortech_2023_129438 crossref_primary_10_1016_j_ces_2024_119800 crossref_primary_10_1016_j_fuel_2022_125148 crossref_primary_10_1007_s10570_022_04434_8 crossref_primary_10_1016_j_fuel_2022_125668 crossref_primary_10_1021_acssuschemeng_4c00212 crossref_primary_10_1007_s10311_021_01273_0 crossref_primary_10_1002_ppap_202400064 crossref_primary_10_1016_j_biombioe_2021_106272 crossref_primary_10_2139_ssrn_3919664 crossref_primary_10_3389_fenrg_2022_868181 crossref_primary_10_1016_j_spc_2023_03_007 crossref_primary_10_1021_acs_energyfuels_2c00870 crossref_primary_10_1016_j_heliyon_2024_e34791 crossref_primary_10_2139_ssrn_4176338 crossref_primary_10_1016_j_ces_2024_121176 crossref_primary_10_1016_j_catcom_2021_106279 crossref_primary_10_1016_j_jechem_2024_10_024 crossref_primary_10_1016_j_rser_2021_111641 crossref_primary_10_1016_j_rser_2022_112115 crossref_primary_10_1016_j_cej_2022_139218 crossref_primary_10_1016_j_wasman_2021_03_016 crossref_primary_10_1016_j_apcatb_2023_123220 crossref_primary_10_1016_j_fuproc_2023_107799 crossref_primary_10_1007_s13399_021_02054_z crossref_primary_10_1039_D4CY01138D crossref_primary_10_1080_17597269_2023_2269735 crossref_primary_10_1016_j_fuproc_2021_107034 crossref_primary_10_1021_acssuschemeng_1c05771 crossref_primary_10_1080_00102202_2024_2343358 crossref_primary_10_1039_D1CS00039J crossref_primary_10_1016_j_ijhydene_2025_02_427 crossref_primary_10_1016_j_fuel_2021_122242 crossref_primary_10_1016_j_fuel_2022_123462 crossref_primary_10_1016_j_fuel_2022_126332 crossref_primary_10_1016_j_fuel_2022_124798 crossref_primary_10_3390_catal10101157 crossref_primary_10_1016_j_cattod_2021_12_013 crossref_primary_10_1016_j_energy_2022_126301 crossref_primary_10_1016_j_fuproc_2021_106739 crossref_primary_10_3389_fbioe_2022_895414 crossref_primary_10_1016_j_fuproc_2022_107564 crossref_primary_10_3390_catal10080895 crossref_primary_10_1016_j_powtec_2022_118066 crossref_primary_10_1016_j_fuproc_2023_107968 crossref_primary_10_1016_j_carbpol_2022_120291 crossref_primary_10_1016_j_cej_2023_141494 crossref_primary_10_1007_s10311_023_01613_2 crossref_primary_10_1016_j_biortech_2023_128653 crossref_primary_10_1186_s13068_022_02244_5 crossref_primary_10_3390_molecules26175411 crossref_primary_10_1016_j_ijbiomac_2024_132791 crossref_primary_10_1039_D1GC03836B crossref_primary_10_1016_j_gee_2024_11_009 crossref_primary_10_1016_S1872_2067_24_60148_8 crossref_primary_10_1080_01614940_2021_2003084 crossref_primary_10_1016_j_ces_2023_119055 crossref_primary_10_1021_acs_iecr_1c00736 crossref_primary_10_1016_j_joei_2023_101206 crossref_primary_10_1016_j_fuproc_2022_107276 crossref_primary_10_1016_j_fuproc_2020_106625 crossref_primary_10_1016_j_fuproc_2021_106724 crossref_primary_10_1039_D4RA07707E crossref_primary_10_1016_j_indcrop_2021_114179 crossref_primary_10_1016_j_mcat_2022_112317 crossref_primary_10_1016_j_fuel_2023_127685 crossref_primary_10_1016_j_fuel_2023_128895 crossref_primary_10_1002_cben_202400052 crossref_primary_10_1016_j_fuproc_2024_108077 crossref_primary_10_1039_D2SE01724E crossref_primary_10_1039_D3RA01939J crossref_primary_10_1016_j_fuel_2022_126719 crossref_primary_10_1016_j_fuproc_2020_106713 crossref_primary_10_1039_D2NJ03482D crossref_primary_10_3390_en16247975 crossref_primary_10_1016_j_seppur_2024_126308 crossref_primary_10_1016_j_indcrop_2024_118840 crossref_primary_10_3390_biomass3010003 crossref_primary_10_1016_j_chemosphere_2024_141891 crossref_primary_10_1021_acs_energyfuels_1c03271 crossref_primary_10_1016_j_energy_2024_130902 crossref_primary_10_1016_j_fuel_2022_124149 crossref_primary_10_1039_D4SE01151A crossref_primary_10_1016_j_ijbiomac_2022_01_036 crossref_primary_10_1016_j_jcou_2021_101681 crossref_primary_10_1016_j_indcrop_2022_116112 crossref_primary_10_1016_j_fuproc_2020_106687 |
Cites_doi | 10.1039/c0gc00401d 10.1002/anie.200353050 10.1016/j.apenergy.2015.02.077 10.1021/jz201182w 10.1039/C5CY01992C 10.1039/c3gc42018c 10.1016/j.apcatb.2011.12.032 10.1039/C2GC36456E 10.1021/ef100573q 10.1002/cssc.201100688 10.1126/science.aau1567 10.1016/j.rser.2017.05.178 10.1016/j.apcatb.2019.117826 10.1016/0021-9517(94)90012-4 10.1002/cssc.201403128 10.1002/jctb.4096 10.1002/cssc.201402094 10.1016/j.biortech.2011.05.040 10.1002/aic.15550 10.1002/cssc.201601522 10.1002/ceat.201400660 10.1039/C7GC01298E 10.1016/j.enconman.2008.02.020 10.1002/cssc.201300318 10.1016/j.indcrop.2018.10.028 10.1016/j.biortech.2018.09.072 10.1021/ie9015842 10.1002/cssc.200900281 10.1016/j.apenergy.2013.04.077 10.1016/j.fuel.2013.01.075 10.1002/cjce.5450780129 10.1038/s41467-017-00596-3 10.1016/j.joule.2019.02.005 10.1021/acscatal.8b00071 10.1016/S0920-5861(03)00040-3 10.1002/cssc.201601727 10.1039/C3GC42444H 10.1039/c001096k 10.1016/j.apcatb.2019.118425 10.1016/j.biortech.2007.06.023 10.1002/cssc.200900254 10.1016/j.catcom.2009.05.021 10.1016/j.catcom.2009.06.012 10.1021/acscatal.7b01992 10.1016/j.apcata.2019.117378 10.1016/j.cej.2012.01.092 10.1016/j.biortech.2017.06.004 10.1002/cssc.201000140 10.1016/j.chempr.2019.03.007 10.1016/j.biortech.2009.11.091 10.1126/science.1085597 10.1016/j.carres.2010.07.032 10.1021/ef801048b 10.1002/anie.200900404 10.1016/j.mcat.2017.04.034 10.1002/cssc.201000092 10.3390/catal7040118 10.1016/j.biortech.2012.12.018 10.1016/j.enconman.2015.01.054 10.1039/C0CC02263B 10.1016/j.apcata.2013.09.036 10.1016/j.apenergy.2014.12.025 10.1016/j.fuproc.2019.106140 10.1016/S0926-860X(99)00555-4 10.1021/ef2007613 10.1016/j.biortech.2015.12.017 10.1002/anie.201403440 10.1016/S1872-2067(12)60733-5 10.1039/c004654j 10.1002/cssc.201701789 10.1016/j.jcat.2014.09.012 10.1021/cr300182k 10.1002/cssc.201600386 10.1002/cssc.202001700 10.1039/C8SC03208D 10.1021/ja808537j 10.1016/j.fuel.2015.02.045 10.1016/j.apenergy.2011.03.034 10.1021/ja205436c 10.1039/D0GC00195C 10.1021/ie202118d 10.1016/j.biortech.2007.08.008 10.1021/sc5001463 10.1002/cssc.201100580 10.1038/nchem.1609 10.1016/j.apcata.2013.03.047 10.1021/acssuschemeng.7b02746 10.1016/j.cattod.2008.10.037 10.1016/j.fuel.2015.07.036 10.1126/science.1218930 10.1016/j.apcatb.2014.05.053 10.1016/j.fuproc.2003.11.027 10.1016/j.cattod.2015.09.055 10.1016/j.apcatb.2004.04.027 10.1016/j.catcom.2017.05.014 10.1006/jcat.1998.2261 10.1021/ef0202844 10.1016/j.cattod.2011.06.031 10.1021/ef100896q 10.1039/c0gc00263a 10.1002/cssc.200900033 10.1039/C4RA10834E 10.1039/C7CS00566K 10.1016/j.apcatb.2011.11.039 10.15376/biores.9.2.3347-3360 10.1002/anie.200601921 10.1016/j.cattod.2005.10.010 10.1039/C3CY01058A 10.1016/j.tetlet.2011.12.059 10.1016/j.apcatb.2006.03.001 10.1021/acssuschemeng.5b00256 10.1021/acscatal.5b02230 10.1016/j.apcata.2009.03.027 10.1021/cr068360d 10.1016/j.biortech.2013.03.170 10.1073/pnas.0912073107 10.1016/j.jaap.2018.09.020 10.1016/j.cattod.2018.06.042 10.1016/j.apcata.2015.10.043 10.1016/j.fuel.2015.12.007 10.1002/cssc.201100361 10.1016/j.carres.2008.09.008 10.1039/B607614A 10.1002/anie.200604274 10.1002/chem.201902668 10.1039/C4EE00890A 10.1002/anie.201906744 10.1016/j.cej.2018.10.058 10.1016/j.pecs.2017.05.004 10.1038/nchem.2740 10.1039/c0gc00181c 10.1021/i260025a021 10.1016/j.fuproc.2016.03.016 10.1016/j.jaap.2011.10.002 10.1016/j.apcatb.2010.10.031 10.1016/j.biortech.2016.07.021 10.1016/j.apcatb.2020.118690 10.1016/j.molcata.2008.09.001 10.1002/anie.200351664 10.1016/j.biortech.2014.12.021 10.1016/S1872-2067(12)60691-3 10.1039/C4RA14304C 10.3390/molecules23092201 10.1016/j.biortech.2013.02.039 10.1016/j.chempr.2019.05.021 10.1016/j.fuel.2011.06.046 10.1126/science.1194218 10.1039/c1gc15350a 10.1016/j.biombioe.2009.03.006 10.1016/j.renene.2019.12.094 10.1021/acssuschemeng.7b01766 10.1039/C6GC01853J 10.1016/j.apcata.2017.01.017 10.1016/S1351-4180(13)70471-9 10.1039/b919810p 10.1016/S0926-860X(98)00061-1 10.1016/j.biombioe.2020.105510 10.1039/c1ee01022k 10.1016/j.rser.2020.109763 10.1038/ncomms11162 10.1039/c1ee02012a 10.1038/nature13867 10.1126/science.1141199 10.1039/C9SC05892C 10.1016/j.biortech.2009.11.062 10.1016/j.biortech.2010.12.073 10.1016/S1872-5813(12)60035-8 10.1016/j.cattod.2008.04.019 10.1039/C5GC01120E 10.1016/j.biortech.2018.11.089 10.1016/j.apcatb.2015.08.052 10.1021/ie4011854 10.1021/sc400515x 10.1039/C9SC00691E 10.1016/j.apcatb.2013.11.016 10.1039/c000075b 10.1021/acs.energyfuels.6b01975 10.1016/j.fuproc.2019.05.028 10.1021/ef500676z 10.1039/C8GC00502H 10.1126/science.aaf7810 10.1021/ja062468t 10.1021/ef201756a 10.1002/cssc.201200228 10.1021/acs.chemrev.5b00155 10.1016/j.biortech.2016.02.108 10.1126/science.1111166 10.1016/j.ces.2015.12.002 10.1016/j.biortech.2013.03.054 10.1007/s11426-016-9035-1 10.1016/j.fuproc.2012.05.003 10.1039/C3EE43081B 10.1021/cr900354u 10.1016/j.fuel.2018.01.033 10.1002/aic.12503 10.1002/cssc.201200940 10.1016/S1872-2067(11)60501-9 10.1016/j.apcata.2005.07.061 10.1039/D0GC00243G 10.1016/j.cattod.2006.12.006 10.1016/j.biortech.2012.05.012 10.1515/HF.1999.101 10.1039/c1cc14859a 10.1016/j.catcom.2020.105987 10.1016/j.biortech.2013.10.099 10.1021/acs.iecr.8b03646 10.1002/adsc.200800614 10.1016/j.biortech.2017.08.077 10.1039/c2cc00122e 10.1039/C5GC02183A 10.1039/c3gc40667a 10.1016/j.apcata.2018.05.030 10.1016/j.biortech.2009.08.019 10.1016/j.apenergy.2014.06.035 10.1016/j.cattod.2013.09.061 10.1039/C3RA45396K 10.1039/C8RA01723A 10.1016/j.enconman.2012.02.010 10.3390/catal5042147 10.1002/cssc.200800080 10.1246/bcsj.67.2473 10.1039/c3ee24360e 10.1002/cssc.201601273 10.1016/j.cattod.2018.03.068 10.1039/C4EE01523A 10.1016/0021-9517(94)90032-9 10.1016/j.biotechadv.2012.01.016 10.1016/j.chempr.2019.05.022 10.1016/j.rser.2019.109400 10.1021/ef070044u 10.3390/catal7060169 10.1039/C1GC15972K 10.1002/cssc.201100695 10.1016/j.catcom.2010.02.002 10.1016/j.cattod.2018.05.013 10.1039/C4GC01314J 10.1002/cssc.200800001 10.21776/ub.jpacr.2016.005.02.263 10.1016/j.apcata.2011.08.046 10.1016/j.cep.2007.09.001 10.1039/C5GC01473E 10.1016/j.catcom.2014.11.003 10.1002/cssc.201100648 10.1039/C2EE23057G 10.1002/anie.201007508 10.1021/ie5016365 10.1039/C7SC03520A 10.1021/ef700292p 10.1002/cctc.201100508 10.1006/jcat.2001.3490 10.1016/j.jcat.2010.01.024 10.1038/s41929-018-0148-8 10.1016/j.rser.2018.12.010 10.1039/c1cc10422e |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Nov 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Nov 2020 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D L7M 7S9 L.6 |
DOI | 10.1016/j.fuproc.2020.106485 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7188 |
ExternalDocumentID | 10_1016_j_fuproc_2020_106485 S0378382020307761 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION GROUPED_DOAJ SSH 7TB 8FD EFKBS FR3 H8D L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-b5f3521ffdd79533d02f83654521ce928e2fbbaff7d145123bfe8d1fa3717d163 |
IEDL.DBID | AIKHN |
ISSN | 0378-3820 |
IngestDate | Fri Sep 05 09:28:43 EDT 2025 Sat Jul 26 03:32:15 EDT 2025 Tue Jul 01 03:04:38 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Fri Feb 23 02:46:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Depolymerization Hydrocarbons Hydrodeoxygenation Lignocellulosic biomass Platform molecule |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-b5f3521ffdd79533d02f83654521ce928e2fbbaff7d145123bfe8d1fa3717d163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2447303744 |
PQPubID | 2047467 |
ParticipantIDs | proquest_miscellaneous_2985602221 proquest_journals_2447303744 crossref_citationtrail_10_1016_j_fuproc_2020_106485 crossref_primary_10_1016_j_fuproc_2020_106485 elsevier_sciencedirect_doi_10_1016_j_fuproc_2020_106485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Fuel processing technology |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Huber, Iborra, Corma (bb0145) 2006; 106 Teong, Yi, Zhang (bb0640) 2014; 16 Xing, Qi, Huber (bb0450) 2011; 4 Gallzot, Cerino, Blanc, Flleche, Fuertes (bb0185) 1994; 146 Palkovits, Tajvidi, Procelewska, Rinaldi, Ruppert (bb0245) 2010; 12 PW Chen, Lee, Bhan (bb1215) 2016; 510 Guo, Miles-Barrett, Neal, Zhang, Li, Westwood (bb1095) 2018; 9 Gao, Zhou, Zhu (bb1065) 2015; 58 Zhang, Fan, Yang, Li (bb0820) 2018; 561 F. Chen, N. Li, S. Li, J. Yang, F. Liu, W. Wang, A. Wang, Y. Cong, X. Wang X, T. Zhang, Solvent-free synthesis of C9 and C10 branched alkanes with furfural and 3-pentanone from lignocellulose, Catal. Commun. 59 (2015) 229–232. Betancourt, Rives, Hubaut, Scotta, Goldwassera (bb0190) 1998; 170 Torr, van de Pas, Cazeils, Suckling (bb0930) 2011; 102 Zhao, Hu, Hao, Li, Zhi, He, Wang, Zhou, Liu (bb1255) 2020; 591 Kirilin, Tokarev, Murzina, Kustov, Mikkola, Murzin (bb0315) 2010; 3 Shi, Liu, Zhang, Wang, Ma (bb0610) 2013; 15 catalysts, Bioresour. Technol. 134 (2013) 73–80. Singh, Pant, Korres, Nizami, Prasad, Murphy (bb0055) 2010; 101 Lin, Chen, Zhao, Wang (bb0490) 2017; 31 Long, Xu, Wang, Yuan, Shu, Zhang, Ma (bb0990) 2015; 141 Mullen, Strahan, Boateng (bb0050) 2009; 23 Lee, Harris, Champagne, Jessop (bb0580) 2016; 18 S. Mukkamala, M.C. Wheeler, A.R.P.V. Heiningen, W.J. DeSisto, Formate-assisted fast pyrolysis of lignin, Energy Fuels 26 (2012)1380–1384. Fang, Sato, Smith, Inomata, Arai, Kozinsk (bb0920) 2008; 99 Kim, Chmely, Nimlos, Bomble, Foust, Paton, Beckham (bb1090) 2011; 2 X. Xie, J. Han, H. Wang, X. Zhu, X. Liu, Y. Niu, Z. Song, Q. Ge, Selective conversion of microcrystalline cellulose into hexitols over a Ru/[Bmim] Yang, Li, Li, Wang, Li, Wang, Wang, Cong, Zhang (bb0750) 2014; 16 S. Qin, B. Li, Z. Luo, C. Zhao, Conversion of high concentration of lignin to cyclic alkanes by introducing Pt/HAP into Ni/ASA catalyst, Green Chem. . Laurent, Delmon (bb1140) 1994; 46 Wang, Dai, Yang, Luo (bb0020) 2017; 62 K. Wu, W. Wang, H. Guo, Y. Yang, Y. Huang, W. Li, C. Li, Engineering Co nanoparticles supported on defect MoS Wang, Ru, Lin, Sun (bb0015) 2015; 150 Weng, Qiu, Wang, Ding, Chen, Zhang, Ma, Wang (bb0390) 2016; 170 Xi, Xia, Shao, Ding, Yang, Liu, Lu, Wang (bb0405) 2016; 181 Xi, Zhang, Xia, Liu, Ren, Lu, Wang (bb0280) 2013; 459 Rosatella, Simeonov, Frade, Afonso (bb0635) 2011; 13 Yoshikawa, Yagi, Shinohara, Fukunaga, Nakasaka (bb0885) 2013; 108 Jing, Xia, Liu, Wang (bb0805) 2017; 10 Song, Mobley, Motagamwala, Isaacs, Dumesic, Ralph, Lee, Wilson, Crocker (bb1025) 2018; 9 Davda, Dumesic (bb0310) 2003; 42 Gao, Li, Wang, Wang, Wang (bb1080) 2013; 34 Li, Zhang, Pan, Ji, Ren, Wang, Ji, Liu, Li (bb1275) 2020; 13 Kumar, Strezov, Weldekidan, He, Singh, Kan, Dastjerdi (bb0110) 2020; 123 Zhang, Qiu, Li, Jiang, Zhang, Ma, Wang (bb0345) 2011; 90 Liu, Okuyama, Tamura, Nakagawa, Imaib, Tomishige (bb0430) 2016; 18 Geboers, Van de Vyver, Carpentier, Jacobs, Sels (bb0260) 2011; 47 H Keskiväli, Wrigstedt, Lagerblom, Repo (bb0780) 2017; 534 Dong, Lin, Han, Si, Liu, Guo, Lu, Rudic, Parker, Yang, Wang (bb1240) 2019; 5 Furimsky (bb0080) 2000; 199 Gutierrez, Kaila, Honkela, Slioor, Krause (bb1175) 2009; 147 S.Li, M.T. Amiri, Y.M. Questell-Santiago, F. He'roguel, Y. Li, H. Kim, R. Meilan, C. Chapple, J. Ralph, J.S. Luterbacher, Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization, Science 354(2016)329–333. O Corma, de La Torre, Renz, Villandier (bb0755) 2011; 50 Zhang, Zhang, Chen, Xu, Wang, Ma (bb1195) 2014; 35 Si, Zhang, Wang, Ma, Dong (bb0065) 2017; 7 Howard, Rackemann, Bartley (bb0620) 2018; 6 Huber, Cortright, Dumesic (bb0320) 2004; 43 SO Pińkowska, Wolak, Zlocińska (bb0905) 2012; 187 Gallezot, Nicolaus, Fieche, Fuertes, Perrard (bb0200) 1998; 180 Li, Chen, Chen, Zhang, Liu (bb1250) 2020; 149 Sun, Chen, Weng, Wang, Qiu, Li, Wang, Zhang, Ma (bb0380) 2017; 99 Cai, Long, Li, Ye, Yin, France, Dong, Zheng, He, Liu, Tsang, Li (bb1085) 2019; 5 Tai, Kikukawa, Sugimura (bb0180) 1994; 67 Barrett, Chheda, Huber, Dumesic (bb0705) 2006; 66 Chheda, Dumesic (bb0665) 2007; 123 Gollakotaa, Kishoreb, Gua (bb0105) 2018; 81 Wang, Xi, Xia, Liu, Wang (bb0645) 2017; 60 Zhao, Holladay, Brown, Zhang (bb0525) 2007; 316 Xu, Li, Yang, Li, Wang, Cong, Wang, Zhang (bb0795) 2017; 7 Wang, Zhu, Li, Liu, Tan, Wang, Cai, Ma (bb0545) 2019; 103 Xu, Liu, Ma, Jameel, Chang, Ma (bb0510) 2016; 209 K. Okuda, M. Umetsu, S. Takami, T. Adschiri Disassembley of lignin and chemical recovery- rapid depolymerization of lignin without char formation in water-phenol mixtures, Fuel Process. Technol. 85 (2004) 803–813. Lange, van der Heide, van Buijtenen, Price (bb0445) 2012; 5 Zakzeski, Bruijnincx, Jongerius, Weckhuysen (bb0855) 2010; 110 Tang, Zhang, Guo (bb0935) 2010; 49 Partenheimer (bb1075) 2009; 351 Liu, Zhang, Shi, Zhang, Wang, Ma (bb0825) 2018; 8 Sugita, Tsuji, Mori (bb0950) 1988; 3 Ma, Yu, Wang, Jia, Lu, Xu (bb0205) 2013; 34 Yan, Zhao, Dyson, Wang, Liu, Kou (bb0215) 2008; 1 Shimizu, Uozumi, Satsuma (bb0555) 2009; 10 Yan, Mensah, Adesina, Kennedy, Stockenhuber (bb1265) 2020; 267 Hoffer, Crezee, Mooijman, van Langeveld, Kapteijn, Moulijn (bb0195) 2003; 79–80 Li, Liu, Liu, Wu, Wei (bb0300) 2019; 274 Chang, Zhao, Zheng, Li, Wang, Huang, He, Li (bb0040) 2013; 138 Tuck, Pérez, Horváth, Sheldon, Poliakoff (bb1130) 2012; 337 Schutyser, Renders, Van den Bosch, Koelewijn, Beckham, Sels (bb1125) 2018; 47 Yu, Hu, Abu-Omar (bb0600) 2012; 14 Zhu, Qiu, Zhao, Qian, Pang, Ouyang (bb1105) 2016; 218 Ghampson, Sepúlveda, García, Fierro, Escalona (bb1295) 2016; 6 Oasmaa, Kuoppala, Ardiyanti, Venderbosch, Heeres (bb0045) 2010; 24 S. De, B. Saha, R. Luque, Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels, Bioresour. Technol. 178 (2015)108–118. Huang, Zhang, Wang, Liu, Ma, Zhang (bb0675) 2012; 40 Palkovits, Tajvidi, Ruppert, Procelewska (bb0240) 2011; 47 Chatterjee, Matsushima, Ikushima, Sato, Yokoyama, Kawanami, Suzuki (bb0745) 2010; 12 Jing, Xia, Xie, Liu, Guo, Zou, Wang (bb0810) 2018; 8 Huang, Korányi, Boot, Hensen, Bruijnincx (bb1020) 2015; 17 Beims, Hu, Shui, Xu (bb0095) 2020; 135 Ma, Wang, Liu, Zhang, Ma, Zhang (bb0010) 2012; 30 Zeitsch (bb0460) 2000 HSO Zhao, Deng, Liao, Fu, Guo (bb0075) 2010; 24 Li, Zhao, Wang, Huber, Zhang (bb1120) 2015; 115 Zhang, Jiang, Li, Wang, Zhang, Zhang, Ma (bb0350) 2012; 4 Shu, Long, Yuan, Zhang, Wang, Wang, Ma (bb0960) 2015; 179 Nakagawa, Tamura, Tomishige (bb0140) 2019; 193 Qiao, Teng, Zhai, Na, Zhu (bb0170) 2018; 30 Deng, Zhang, Wu, Li, Zhang, Wang (bb1055) 2015; 17 as an efficient catalyst for direct liquefaction of bagasse lignin: decomposition properties of the inner structural units, Chem. Eng. Sci. 122 (2015) 24–33. Peleteiro, Rivas, Alonso, Santos, Parajó (bb0470) 2016; 202 Barta, Matson, Fettig, Scott, Iretskii, Ford (bb1000) 2010; 12 Deuss, Barta, de Vries (bb0210) 2014; 4 Xu, Miller, Agrawal, Jones (bb0925) 2012; 5 Rose, Palkovits (bb0220) 2015; 5 Contreras-Zarazúa, Sánchez-Ramírez, Vázquez-Castillo, Ponce-Ortega, Errico, Kiss, Segovia-Hernández (bb0465) 2019; 58 West, Liu, Peter, Gartner, Dumesic (bb0660) 2008; 296 Liu, Chen, Wang, Xu, Zhang, Ma, Liao, Shi (bb0230) 2014; 4 Weng, Qiu, Ma, Liu, Ding, Zhang, Zhang, Wang (bb0370) 2015; 54 Bunch, Ozkan (bb1145) 2002; 206 Jiang, Qi, Huang, Wang, Su, He (bb0595) 2014; 89 Hepditch, Thring (bb0945) 2000; 78 Chen, Lu, Si, Nie, Chen, Lu, Xu (bb1110) 2016; 9 Prasomsri, Nimmanwudipong, Roman-Leshkov (bb1205) 2013; 6 Lin, Xiong, Zhao, Chen, Wang (bb0550) 2017; 63 Elliott (bb1160) 2007; 21 Jing, Guo, Xia, Liu, Wang (bb0135) 2019; 5 Perkins, Batalha, Kumar, Bhaskar, Konarova (bb0090) 2019; 115 Liao, Koelewijn, Van den Bossche, Van Aelst, Van den Bosch, Renders, Navare, Nicolaï, Van Aelst, Maesen, Matsushima, Thevelein, Van Acker, Lagrain, Verboekend, Sels (bb1040) 2020; 367 X. Zhang, Q. Zhang, T. Wang, L. Ma, Y. Yu, L. Chen, HDO of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO Macala, Matson, Johnson, Lewis, Iretskii, Ford (bb0995) 2009; 2 Vispute, Zhang, Sanna, Xiao, Huber (bb1225) 2010; 330 Greenhalf, Nowakowski, Harms, Titiloye, Bridgwater (bb0035) 2013; 108 Fogassy, Thegarid, Schuurman, Mirodatos (bb1220) 2011; 4 Huang, Zhang, Wang, Ma, Zhang, Zhang, Yu, Zuo, Liu, Yang (bb0670) 2013; 41 Deng, Xu, Han, Pan, Wang, Zhang, Zou (bb0830) 2016; 148 Binder, Raines (bb0160) 2010; 107 Xia, Cuan, Liu, Gong, Lu, Wang (bb0765) 2014; 53 Binder, Gray, White, Zhang, Holladay (bb0970) 2009; 33 Ye, Zhang, Fan, Chang (bb0895) 2012; 51 Wang, Pu, Ragauskas, Yang (bb1045) 2019; 271 L. Ma, T. Wang, Z. Yuan, X. Zhang, X. Zhuang, C. Wu, T. Jiang, Q. Zhang, Process for hydrolysed reforming of liquous cellulose biomass to produce bio-gasoline, America Pat US008562697B2, 2013. Amiri, Karimi, Roodpeyma (bb0590) 2010; 345 Menegazzo, Ghedini, Signoretto (bb0650) 2018; 23 Ding, Wang, Zheng, Zhang (bb0295) 2010; 3 Li, Li, Wang, Sheng, Li, Wang, Cong, Wang, Zhang (bb0815) 2014; 28 Davda, Shabaker, Huber, Cortright, Dumesic (bb0115) 2005; 56 Faba, Díaz, Ordonez (bb0735) 2014; 160–161 Teong, Yi, Zhang (bb0455) 2014; 16 Yang, Gilbert, Xu (bb1135) 2009; 360 Binder, Raines (bb0530) 2009; 131 Huber, Shabaker, Dumesic (bb0155) 2003; 300 Demesa, Laari, Turunen, Sillanpää (bb1060) 2015; 38 Schutyser, Kruger, Robinson, Katahira, Brandner, Cleveland, Mittal, Peterson, Meilan, Román-Leshkov, Beckham (bb1050) 2018; 20 Fukuoka, Dhepe (bb0290) 2006; 45 West, Tucker, Braden (bb0335) 2009; 10 Li, Tompsett, Huber (bb0340) 2010; 3 Horácek, Homola, Kubicková, Kubicka (bb0940) 2012; 179 Huber, Dumesic (bb0150) 2006; 111 Amarasekara, Williams, Ebede (bb0540) 2008; 343 Yan, Zhao, Luo, Dyson, Liu, Kou (bb0225) 2006; 128 Zhang, Chen, Zhang, Wang, Ma, Xu (bb1310) 2018; 135 Yang, Li, Li, Wang, Wang, Wang, Cong, Zhang (bb0775) 2013; 6 Xia, Chen, Shao, Gong, Wang, Liu, Parker, Han, Yang, Wang (bb0410) 2016; 7 Peng, Li, Liu, Wang (bb0565) 2017; 441 Matson, Barta, Iretskii, Ford (bb1005) 2011; 133 Liu, Chen, Wang, Zhang, Long, Zhang, Ma (bb0395) 2015; 5 Han, Guo, Liu, Xia, Wang (bb0130) 2019; 319 Xu, Jiang, Li, Sun (bb1330) 2018; 221 Saisu, Sato, Watanabe, Adschiri, Arai (bb0890) 2003; 17 Wang, Zhao, Lin, Chen, Yan (10.1016/j.fuproc.2020.106485_bb0215) 2008; 1 Faba (10.1016/j.fuproc.2020.106485_bb0735) 2014; 160–161 Xia (10.1016/j.fuproc.2020.106485_bb0410) 2016; 7 Tang (10.1016/j.fuproc.2020.106485_bb0935) 2010; 49 Dashtban (10.1016/j.fuproc.2020.106485_bb0440) 2014; 4 Greenhalf (10.1016/j.fuproc.2020.106485_bb0035) 2013; 108 Han (10.1016/j.fuproc.2020.106485_bb0100) 2019; 195 Gao (10.1016/j.fuproc.2020.106485_bb1080) 2013; 34 Zhang (10.1016/j.fuproc.2020.106485_bb0235) 2013; 52 10.1016/j.fuproc.2020.106485_bb1305 Teong (10.1016/j.fuproc.2020.106485_bb0640) 2014; 16 Li (10.1016/j.fuproc.2020.106485_bb0835) 2017; 10 Jiang (10.1016/j.fuproc.2020.106485_bb0360) 2012; 59 Xu (10.1016/j.fuproc.2020.106485_bb0925) 2012; 5 Zhao (10.1016/j.fuproc.2020.106485_bb1255) 2020; 591 Luo (10.1016/j.fuproc.2020.106485_bb0520) 2017; 5 Tuck (10.1016/j.fuproc.2020.106485_bb1130) 2012; 337 Wang (10.1016/j.fuproc.2020.106485_bb0015) 2015; 150 Song (10.1016/j.fuproc.2020.106485_bb1025) 2018; 9 Zhang (10.1016/j.fuproc.2020.106485_bb0350) 2012; 4 Binder (10.1016/j.fuproc.2020.106485_bb0970) 2009; 33 Yoshikawa (10.1016/j.fuproc.2020.106485_bb0885) 2013; 108 Bejblová (10.1016/j.fuproc.2020.106485_bb1165) 2005; 296 Deng (10.1016/j.fuproc.2020.106485_bb0285) 2010; 271 Wang (10.1016/j.fuproc.2020.106485_bb1045) 2019; 271 Gallezot (10.1016/j.fuproc.2020.106485_bb0200) 1998; 180 Lin (10.1016/j.fuproc.2020.106485_bb0480) 2017; 7 Betancourt (10.1016/j.fuproc.2020.106485_bb0190) 1998; 170 Zakzeski (10.1016/j.fuproc.2020.106485_bb0855) 2010; 110 De Miguel Mercader (10.1016/j.fuproc.2020.106485_bb1335) 2011; 57 Beims (10.1016/j.fuproc.2020.106485_bb0095) 2020; 135 Tymchyshyn (10.1016/j.fuproc.2020.106485_bb0915) 2010; 101 Prasomsri (10.1016/j.fuproc.2020.106485_bb1205) 2013; 6 Keskiväli (10.1016/j.fuproc.2020.106485_bb0780) 2017; 534 Binder (10.1016/j.fuproc.2020.106485_bb0530) 2009; 131 West (10.1016/j.fuproc.2020.106485_bb0660) 2008; 296 Menegazzo (10.1016/j.fuproc.2020.106485_bb0650) 2018; 23 Dong (10.1016/j.fuproc.2020.106485_bb1240) 2019; 5 Aswathy (10.1016/j.fuproc.2020.106485_bb0060) 2010; 101 Prasomsri (10.1016/j.fuproc.2020.106485_bb1210) 2014; 7 10.1016/j.fuproc.2020.106485_bb0685 Fogassy (10.1016/j.fuproc.2020.106485_bb1220) 2011; 4 Laurent (10.1016/j.fuproc.2020.106485_bb1140) 1994; 46 10.1016/j.fuproc.2020.106485_bb0435 Huber (10.1016/j.fuproc.2020.106485_bb0320) 2004; 43 Addepally (10.1016/j.fuproc.2020.106485_bb0120) 2015; 159 Li (10.1016/j.fuproc.2020.106485_bb0475) 2017; 245 Xu (10.1016/j.fuproc.2020.106485_bb1330) 2018; 221 Gutierrez (10.1016/j.fuproc.2020.106485_bb1175) 2009; 147 Gollakotaa (10.1016/j.fuproc.2020.106485_bb0105) 2018; 81 Sun (10.1016/j.fuproc.2020.106485_bb0380) 2017; 99 10.1016/j.fuproc.2020.106485_bb0330 Li (10.1016/j.fuproc.2020.106485_bb0770) 2012; 5 Furimsky (10.1016/j.fuproc.2020.106485_bb0080) 2000; 199 Lange (10.1016/j.fuproc.2020.106485_bb0445) 2012; 5 Davda (10.1016/j.fuproc.2020.106485_bb0115) 2005; 56 Bui (10.1016/j.fuproc.2020.106485_bb1155) 2011; 101 Li (10.1016/j.fuproc.2020.106485_bb0300) 2019; 274 Wang (10.1016/j.fuproc.2020.106485_bb0545) 2019; 103 Huang (10.1016/j.fuproc.2020.106485_bb0670) 2013; 41 Yan (10.1016/j.fuproc.2020.106485_bb0225) 2006; 128 Li (10.1016/j.fuproc.2020.106485_bb0800) 2016; 9 Ben (10.1016/j.fuproc.2020.106485_bb0875) 2011; 25 Jiang (10.1016/j.fuproc.2020.106485_bb0355) 2012; 90 10.1016/j.fuproc.2020.106485_bb1190 Luo (10.1016/j.fuproc.2020.106485_bb0515) 2019; 319 Kim (10.1016/j.fuproc.2020.106485_bb1090) 2011; 2 Zeng (10.1016/j.fuproc.2020.106485_bb1070) 2015; 8 Qiao (10.1016/j.fuproc.2020.106485_bb0170) 2018; 30 Matson (10.1016/j.fuproc.2020.106485_bb1005) 2011; 133 Han (10.1016/j.fuproc.2020.106485_bb0130) 2019; 319 Palkovits (10.1016/j.fuproc.2020.106485_bb0245) 2010; 12 Si (10.1016/j.fuproc.2020.106485_bb0065) 2017; 7 10.1016/j.fuproc.2020.106485_bb0415 Li (10.1016/j.fuproc.2020.106485_bb0680) 2015; 160 Liu (10.1016/j.fuproc.2020.106485_bb0845) 2019; 3 Zeitsch (10.1016/j.fuproc.2020.106485_bb0460) 2000 Rey-Raap (10.1016/j.fuproc.2020.106485_bb0305) 2019; 256 Faba (10.1016/j.fuproc.2020.106485_bb0730) 2016; 269 Yu (10.1016/j.fuproc.2020.106485_bb0165) 2008; 22 Xi (10.1016/j.fuproc.2020.106485_bb0280) 2013; 459 Li (10.1016/j.fuproc.2020.106485_bb0815) 2014; 28 Bunch (10.1016/j.fuproc.2020.106485_bb1145) 2002; 206 Zhang (10.1016/j.fuproc.2020.106485_bb0495) 2013; 130 Mortensen (10.1016/j.fuproc.2020.106485_bb0070) 2011; 407 Lin (10.1016/j.fuproc.2020.106485_bb0490) 2017; 31 Fukuoka (10.1016/j.fuproc.2020.106485_bb0290) 2006; 45 10.1016/j.fuproc.2020.106485_bb0785 Barta (10.1016/j.fuproc.2020.106485_bb1000) 2010; 12 Shi (10.1016/j.fuproc.2020.106485_bb0615) 2014; 2 de Wild (10.1016/j.fuproc.2020.106485_bb0865) 2012; 93 Fang (10.1016/j.fuproc.2020.106485_bb0920) 2008; 99 Yan (10.1016/j.fuproc.2020.106485_bb1265) 2020; 267 Zhang (10.1016/j.fuproc.2020.106485_bb0500) 2014; 151 Zhao (10.1016/j.fuproc.2020.106485_bb0525) 2007; 316 Yang (10.1016/j.fuproc.2020.106485_bb1135) 2009; 360 Jing (10.1016/j.fuproc.2020.106485_bb0805) 2017; 10 10.1016/j.fuproc.2020.106485_bb0880 Santos (10.1016/j.fuproc.2020.106485_bb1260) 2020; 268 Xu (10.1016/j.fuproc.2020.106485_bb0695) 2011; 4 Ma (10.1016/j.fuproc.2020.106485_bb0205) 2013; 34 Li (10.1016/j.fuproc.2020.106485_bb1120) 2015; 115 Deng (10.1016/j.fuproc.2020.106485_bb0535) 2012; 48 Zhang (10.1016/j.fuproc.2020.106485_bb0955) 2014; 9 Zhang (10.1016/j.fuproc.2020.106485_bb1315) 2019; 319 Hoffer (10.1016/j.fuproc.2020.106485_bb0195) 2003; 79–80 Jing (10.1016/j.fuproc.2020.106485_bb0135) 2019; 5 Duan (10.1016/j.fuproc.2020.106485_bb1285) 2017; 8 Xi (10.1016/j.fuproc.2020.106485_bb0405) 2016; 181 Contreras-Zarazúa (10.1016/j.fuproc.2020.106485_bb0465) 2019; 58 Huang (10.1016/j.fuproc.2020.106485_bb1010) 2015; 5 Li (10.1016/j.fuproc.2020.106485_bb1275) 2020; 13 Davda (10.1016/j.fuproc.2020.106485_bb0310) 2003; 42 Pholjaroen (10.1016/j.fuproc.2020.106485_bb0790) 2014; 53 Wang (10.1016/j.fuproc.2020.106485_bb0585) 2011; 102 Wei (10.1016/j.fuproc.2020.106485_bb0560) 2017; 241 Perkins (10.1016/j.fuproc.2020.106485_bb0090) 2019; 115 Ohta (10.1016/j.fuproc.2020.106485_bb1290) 2019; 25 West (10.1016/j.fuproc.2020.106485_bb0335) 2009; 10 Haidegger (10.1016/j.fuproc.2020.106485_bb0175) 1968; 7 Macala (10.1016/j.fuproc.2020.106485_bb0995) 2009; 2 Sirous-Rezaei (10.1016/j.fuproc.2020.106485_bb1325) 2019; 377 Rinaldi (10.1016/j.fuproc.2020.106485_bb0570) 2010; 3 Rout (10.1016/j.fuproc.2020.106485_bb0655) 2016; 142 10.1016/j.fuproc.2020.106485_bb1150 Mullen (10.1016/j.fuproc.2020.106485_bb0050) 2009; 23 Nakagawa (10.1016/j.fuproc.2020.106485_bb0140) 2019; 193 Partenheimer (10.1016/j.fuproc.2020.106485_bb1075) 2009; 351 10.1016/j.fuproc.2020.106485_bb1035 Zhang (10.1016/j.fuproc.2020.106485_bb1195) 2014; 35 10.1016/j.fuproc.2020.106485_bb1030 Elliott (10.1016/j.fuproc.2020.106485_bb1160) 2007; 21 Liao (10.1016/j.fuproc.2020.106485_bb0265) 2014; 16 Xu (10.1016/j.fuproc.2020.106485_bb0510) 2016; 209 10.1016/j.fuproc.2020.106485_bb0860 Weng (10.1016/j.fuproc.2020.106485_bb0375) 2017; 9 Peng (10.1016/j.fuproc.2020.106485_bb0565) 2017; 441 10.1016/j.fuproc.2020.106485_bb0980 Ye (10.1016/j.fuproc.2020.106485_bb0895) 2012; 51 Hilgert (10.1016/j.fuproc.2020.106485_bb0270) 2013; 6 Weng (10.1016/j.fuproc.2020.106485_bb0390) 2016; 170 Shimizu (10.1016/j.fuproc.2020.106485_bb0555) 2009; 10 Schutyser (10.1016/j.fuproc.2020.106485_bb1125) 2018; 47 Howard (10.1016/j.fuproc.2020.106485_bb0620) 2018; 6 Guo (10.1016/j.fuproc.2020.106485_bb1095) 2018; 9 Zhang (10.1016/j.fuproc.2020.106485_bb1200) 2013; 112 Amiri (10.1016/j.fuproc.2020.106485_bb0590) 2010; 345 Tai (10.1016/j.fuproc.2020.106485_bb0180) 1994; 67 10.1016/j.fuproc.2020.106485_bb1280 Teong (10.1016/j.fuproc.2020.106485_bb0455) 2014; 16 Wang (10.1016/j.fuproc.2020.106485_bb0700) 2014; 136 Singh (10.1016/j.fuproc.2020.106485_bb0055) 2010; 101 Chheda (10.1016/j.fuproc.2020.106485_bb0665) 2007; 123 Ghampson (10.1016/j.fuproc.2020.106485_bb1295) 2016; 6 Gao (10.1016/j.fuproc.2020.106485_bb1065) 2015; 58 Xia (10.1016/j.fuproc.2020.106485_bb0760) 2017; 10 10.1016/j.fuproc.2020.106485_bb0870 Hepditch (10.1016/j.fuproc.2020.106485_bb0945) 2000; 78 Liu (10.1016/j.fuproc.2020.106485_bb0395) 2015; 5 Palkovits (10.1016/j.fuproc.2020.106485_bb0240) 2011; 47 Ohta (10.1016/j.fuproc.2020.106485_bb1180) 2011; 47 Ardiyanti (10.1016/j.fuproc.2020.106485_bb1185) 2012; 117–118 Chen (10.1016/j.fuproc.2020.106485_bb1110) 2016; 9 Geboers (10.1016/j.fuproc.2020.106485_bb0250) 2011; 13 Huang (10.1016/j.fuproc.2020.106485_bb1015) 2014; 7 Liu (10.1016/j.fuproc.2020.106485_bb1300) 2017; 9 Gallzot (10.1016/j.fuproc.2020.106485_bb0185) 1994; 146 Saisu (10.1016/j.fuproc.2020.106485_bb0890) 2003; 17 Liao (10.1016/j.fuproc.2020.106485_bb1040) 2020; 367 Sugita (10.1016/j.fuproc.2020.106485_bb0950) 1988; 3 Weng (10.1016/j.fuproc.2020.106485_bb0370) 2015; 54 Barrett (10.1016/j.fuproc.2020.106485_bb0705) 2006; 66 Li (10.1016/j.fuproc.2020.106485_bb0850) 2019; 58 Amarasekara (10.1016/j.fuproc.2020.106485_bb0540) 2008; 343 Yu (10.1016/j.fuproc.2020.106485_bb0600) 2012; 14 Rezaei (10.1016/j.fuproc.2020.106485_bb1230) 2014; 469 Mahfud (10.1016/j.fuproc.2020.106485_bb0725) 2016; 5 Zhu (10.1016/j.fuproc.2020.106485_bb1105) 2016; 218 van Putten (10.1016/j.fuproc.2020.106485_bb0630) 2013; 113 Corma (10.1016/j.fuproc.2020.106485_bb0755) 2011; 50 Shu (10.1016/j.fuproc.2020.106485_bb0960) 2015; 179 Cox (10.1016/j.fuproc.2020.106485_bb0975) 2012; 118 10.1016/j.fuproc.2020.106485_bb0720 Chen (10.1016/j.fuproc.2020.106485_bb0420) 2013; 6 10.1016/j.fuproc.2020.106485_bb0840 Huber (10.1016/j.fuproc.2020.106485_bb0155) 2003; 300 Shi (10.1016/j.fuproc.2020.106485_bb0610) 2013; 15 Xu (10.1016/j.fuproc.2020.106485_bb0690) 2010; 11 Demesa (10.1016/j.fuproc.2020.106485_bb1060) 2015; 38 Pińkowska (10.1016/j.fuproc.2020.106485_bb0905) 2012; 187 Saidi (10.1016/j.fuproc.2020.106485_bb1245) 2014; 7 Kleine (10.1016/j.fuproc.2020.106485_bb0985) 2013; 15 Li (10.1016/j.fuproc.2020.106485_bb0340) 2010; 3 Xing (10.1016/j.fuproc.2020.106485_bb0450) 2011; 4 Cai (10.1016/j.fuproc.2020.106485_bb1085) 2019; 5 Wang (10.1016/j.fuproc.2020.106485_bb0645) 2017; 60 Jiang (10.1016/j.fuproc.20 |
References_xml | – volume: 148–149 start-page: 499 year: 2014 end-page: 508 ident: bb0325 article-title: New bifunctional catalytic systems for sorbitol transformation into biofuels publication-title: Appl. Catal. B Environ. – volume: 3 start-page: 1154 year: 2010 end-page: 1157 ident: bb0340 article-title: Renewable high octane gasoline by aqueous phase hydrodeoxygenation of C5 and C6 carbohydrates over Pt/zirconium phosphate catalysts publication-title: ChemSusChem – volume: 319 start-page: 2 year: 2019 end-page: 13 ident: bb0130 article-title: Catalytic conversion of lignocellulosic biomass into hydrocarbons: a mini review publication-title: Catal. Today – volume: 3 start-page: 507 year: 1988 end-page: 510 ident: bb0950 article-title: Hydrolysis of lignin in a hydrogen-donor vehicle publication-title: Chem. Express – volume: 42 start-page: 4068 year: 2003 end-page: 4071 ident: bb0310 article-title: Catalytic reforming of oxygenated hydrocarbons for hydrogen with low levels of carbon monoxide publication-title: Angew. Chem. Int. Ed. – volume: 40 start-page: 973 year: 2012 end-page: 978 ident: bb0675 article-title: Production of jet fuel intermediates from furfural and acetone by aldol condensation over MgO/NaY publication-title: J. Fuel Chem. Technol. – volume: 53 start-page: 13618 year: 2014 end-page: 13625 ident: bb0790 article-title: Production of renewable jet fuel range branched alkanes with xylose and methyl isobutyl ketone publication-title: Ind. Eng. Chem. Res. – volume: 4 start-page: 2193 year: 2011 end-page: 2205 ident: bb0450 article-title: Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries publication-title: Energy Environ. Sci. – volume: 9 start-page: 1712 year: 2016 end-page: 1718 ident: bb0800 article-title: Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps publication-title: ChemSusChem – volume: 136 start-page: 515 year: 2013 end-page: 521 ident: bb0505 article-title: Solid acids as catalysts for the conversion of D-xylose, xylan and lignocellulosics into furfural in ionic liquid publication-title: Bioresour. Technol. – volume: 66 start-page: 111 year: 2006 end-page: 118 ident: bb0705 article-title: Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water publication-title: Appl. Catal. B Environ. – volume: 5 start-page: 1521 year: 2019 end-page: 1536 ident: bb1240 article-title: Breaking the limit of lignin monomer production via cleavage of interunit carbon–carbon linkages publication-title: Chem – volume: 45 start-page: 5161 year: 2006 end-page: 5163 ident: bb0290 article-title: Catalytic conversion of cellulose into sugar alcohols publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 1933 year: 2010 end-page: 1946 ident: bb0710 article-title: Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions publication-title: Green Chem. – volume: 179 start-page: 191 year: 2012 end-page: 198 ident: bb0940 article-title: Lignin to liquids over sulfided catalysts publication-title: Catal. Today – volume: 102 start-page: 7608 year: 2011 end-page: 7611 ident: bb0930 article-title: Mild hydrogenolysis of in-situ and isolated Pinus radiate lignins publication-title: Bioresour. Technol. – reference: A.D. Sutton, FD Waldie, R Wu, M Schlaf, A. Louis, J.C. Gordon, The hydrodeoxygenation of bioderived furans into alkanes, Nat. Chem. 5 (2013) 428–432. – volume: 3 start-page: 1745 year: 2015 end-page: 1755 ident: bb0400 article-title: One-pot catalytic conversion of raw lignocellulosic biomass into gasoline alkanes and chemicals over LiTaMoO publication-title: ACS Sustain. Chem. Eng. – volume: 138 start-page: 321 year: 2013 end-page: 328 ident: bb0040 article-title: Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor publication-title: Bioresour. Technol. – volume: 22 start-page: 46 year: 2008 end-page: 60 ident: bb0165 article-title: Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods publication-title: Energy Fuel – volume: 7 start-page: 169 year: 2017 end-page: 191 ident: bb0065 article-title: An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds publication-title: Catalysts – volume: 47 start-page: 12209 year: 2011 end-page: 12211 ident: bb1180 article-title: HDO of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts publication-title: Chem. Commun. – year: 2000 ident: bb0460 article-title: The Chemistry and Technology of Furfural and Its Many By-products – volume: 3 start-page: 708 year: 2010 end-page: 718 ident: bb0315 article-title: Reaction products and transformations of intermediates in the aqueous-phase reforming of sorbitol publication-title: ChemSusChem – volume: 459 start-page: 525 year: 2013 end-page: 528 ident: bb0280 article-title: Direct conversion of cellulose into sorbitol with high yield by a novel mesoporous niobium phosphate supported Ruthenium bifunctional catalyst publication-title: Appl. Catal. A Gen. – volume: 4 start-page: 5068 year: 2011 end-page: 5076 ident: bb1220 article-title: From biomass to bio-gasoline by FCC co-processing: effect of feed composition and catalyst structure on product quality publication-title: Energy Environ. Sci. – volume: 41 start-page: 79 year: 2013 end-page: 84 ident: bb0670 article-title: Catalytic performance of Raney Ni in the hydrogenation of di-furfural-acetone for producing long-chain alkane precursors publication-title: J. Fuel Chem. Technol. – volume: 561 start-page: 117 year: 2018 end-page: 126 ident: bb0820 article-title: Efficient conversion of furfural into cyclopentanone over high performing and stable Cu/ZrO publication-title: Appl. Catal. A:Gen. – volume: 9 start-page: 810 year: 2017 end-page: 816 ident: bb1300 article-title: MoS publication-title: Nat. Chem. – reference: J. Long, W. Lou, L. Wang, B. Yin, X. Li, [C – volume: 142 start-page: 318 year: 2016 end-page: 346 ident: bb0655 article-title: Synthesis of hydroxymethylfurfural from cellulose using green processes: a promising biochemical and biofuel feedstock publication-title: Chem. Eng. Sci. – volume: 51 start-page: 103 year: 2012 end-page: 110 ident: bb0895 article-title: Novel method for production of phenolics by combining lignin extraction with lignin depolymerization in aqueous ethanol publication-title: Ind. Eng. Chem. Res. – volume: 17 start-page: 4941 year: 2015 end-page: 4950 ident: bb1020 article-title: Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics publication-title: Green Chem. – volume: 351 start-page: 456 year: 2009 end-page: 466 ident: bb1075 article-title: The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures publication-title: Adv. Synth. Catal. – reference: Y. Shao, Q. Xia, L. Dong, X. Liu, X. Han, S.F. Parker, Y. Cheng, L.L. Daemen, A.J. Ramirez-Cuesta, S. Yang, Y. Wang, Selective production of arenes via direct lignin upgrading over a niobium-based catalyst, Nature Commun. 8 (2017) 16104. – volume: 241 start-page: 760 year: 2017 end-page: 766 ident: bb0560 article-title: Depolymerization of cellulose into high-value chemicals by using synergy of zinc chloride hydrate and sulfate ion promoted titania catalyst publication-title: Bioresour. Technol. – volume: 34 start-page: 492 year: 2013 end-page: 507 ident: bb0205 article-title: Advances in selective catalytic transformation of ployols to value-added chemicals publication-title: Chin. J. Catal. – volume: 268 start-page: 118425 year: 2020 ident: bb1260 article-title: Hydrodeoxygenation of vanillin over noble metal catalyst supported onbiochars: part II: catalytic behavior publication-title: Appl. Catal. B-Environ. – volume: 9 start-page: 3353 year: 2016 end-page: 3360 ident: bb1110 article-title: High yield production of natural phenolic alcohols from woody biomass using a Nickel-based catalyst publication-title: ChemSusChem – volume: 256 start-page: 117826 year: 2019 ident: bb0305 article-title: Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials publication-title: Appl. Catal. B Environ. – volume: 13 start-page: 1 year: 2020 end-page: 12 ident: bb1275 article-title: One-pot conversion of lignin into naphthenes catalyzed by a heterogeneous rhenium oxide-modified iridium compound publication-title: ChemSusChem – volume: 510 start-page: 42 year: 2016 end-page: 48 ident: bb1215 article-title: Mo publication-title: Appl. Catal. A Gen. – volume: 1 start-page: 626 year: 2008 end-page: 629 ident: bb0215 article-title: Selective degradation of wood lignin over noble-metal catalysts in a two-step process publication-title: ChemSusChem – volume: 89 start-page: 56 year: 2014 end-page: 64 ident: bb0595 article-title: Production enhancement of 5-hydroxymethyl furfural from fructose via mechanical stirring control and high-fructose solution addition publication-title: J. Chem. Technol. Biotechnol. – reference: SO – volume: 319 start-page: 41 year: 2019 end-page: 47 ident: bb1315 article-title: Hydrodeoxygenation of lignin-derived phenolic compounds into aromatic hydrocarbons under low hydrogen pressure using molybdenum oxide as catalyst publication-title: Catal. Today – volume: 5 start-page: 405 year: 2012 end-page: 410 ident: bb0605 article-title: Synthesis of furfural from xylose, xylan, and biomass using AlCl publication-title: ChemSusChem – volume: 5 start-page: 108 year: 2016 end-page: 115 ident: bb0725 article-title: Hydrogenation/deoxygenation (H/D) reaction of furfural-acetone condensation product using Ni/Al publication-title: J. Pure App. Chem. Res. – volume: 199 start-page: 147 year: 2000 end-page: 190 ident: bb0080 article-title: Catalytic hydrodeoxygenation publication-title: Appl. Catal. A Gen. – reference: H – reference: G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates, Science 308 (2005) 1446–1450. – volume: 78 start-page: 226 year: 2000 end-page: 231 ident: bb0945 article-title: Degradation of solvolysis lignin using Lewis acid catalysts publication-title: Can. J. Chem. Eng. – volume: 101 start-page: 2483 year: 2010 end-page: 2490 ident: bb0915 article-title: Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds publication-title: Bioresour. Technol. – volume: 271 start-page: 22 year: 2010 end-page: 32 ident: bb0285 article-title: Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts publication-title: J. Catal. – volume: 3 start-page: 818 year: 2010 end-page: 821 ident: bb0295 article-title: Selective transformation of cellulose into sorbitol by using a bifunctional nickel phosphide catalyst publication-title: ChemSusChem – volume: 135 start-page: 105510 year: 2020 ident: bb0095 article-title: Hydrothermal liquefaction of biomass to fuels and value-added chemicals: products applications and challenges to develop large-scale operations publication-title: Biomass Bioenergy – volume: 149 start-page: 609 year: 2020 end-page: 616 ident: bb1250 article-title: The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation publication-title: Renew. Energy – volume: 58 start-page: 79 year: 2015 end-page: 90 ident: bb1065 article-title: Catalytic conversion of kraft lignin using paper-like Co (salen) as an effective catalyst publication-title: Drewno Prace Naukowe Doniesienia Komunikaty – volume: 48 start-page: 5494 year: 2012 end-page: 5496 ident: bb0535 article-title: Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl publication-title: Chem. Commun. – volume: 209 start-page: 108 year: 2016 end-page: 114 ident: bb0510 article-title: Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone publication-title: Bioresour. Technol. – reference: V.N. Bui, D. Laurenti, P. Afanasiev, C. Geantet, HDO of guaiacol with CoMo catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity, Appl. Catal. B: Environ. 101(2011) 239–245. – volume: 54 start-page: 2147 year: 2015 end-page: 2160 ident: bb0370 article-title: Jet-fuel range hydrocarbons from biomass-derived sorbitol over Ni-HZSM-5/SBA-15 catalyst publication-title: Catalysts – volume: 140 start-page: 105987 year: 2020 ident: bb1270 article-title: Promoting selective hydrodeoxygenation of guaiacol over amorphous nanoporous NiMnO publication-title: Catal. Commun. – volume: 33 start-page: 1122 year: 2009 end-page: 1130 ident: bb0970 article-title: Reactions of lignin model compounds in ionic liquids publication-title: Biomass Bioenergy – volume: 7 start-page: 5880 year: 2017 end-page: 5886 ident: bb0795 article-title: Mn publication-title: ACS Catal. – volume: 5 start-page: 667 year: 2012 end-page: 675 ident: bb0925 article-title: Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid publication-title: ChemSusChem – reference: catalysts, Bioresour. Technol. 134 (2013) 73–80. – volume: 469 start-page: 490 year: 2014 end-page: 511 ident: bb1230 article-title: Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review publication-title: Appl. Catal. A Gen. – volume: 57 start-page: 3160 year: 2011 end-page: 3170 ident: bb1335 article-title: Competition between hydrotreating and polymerization reactions during pyrolysis oil hydrodeoxygenation publication-title: AICHE J. – volume: 16 start-page: 2015 year: 2014 end-page: 2026 ident: bb0640 article-title: Hydroxymethylfurfural production from bioresources: past, present and future publication-title: Green Chem. – volume: 11 start-page: 721 year: 2010 end-page: 726 ident: bb0690 article-title: A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation publication-title: Catal. Commun. – reference: -ZrO – volume: 90 start-page: 51 year: 2012 end-page: 57 ident: bb0355 article-title: Investgation on the xylitol aqueous-phase reforming performance for pentane production over Pt/HZSM-5 and Ni/HZSM-5 catalysts publication-title: Appl. Energy – volume: 23 start-page: 2201 year: 2018 ident: bb0650 article-title: 5-hydroxymethylfurfural (HMF) production from real biomasses publication-title: Molecules – volume: 117–118 start-page: 105 year: 2012 end-page: 117 ident: bb1185 article-title: Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al publication-title: Appl. Catal. B Environ. – volume: 9 start-page: 3347 year: 2014 end-page: 3360 ident: bb0955 article-title: Phenolics production through catalytic depolymerization of alkali lignin with metal chlorides publication-title: Bioresources – volume: 12 start-page: 1493 year: 2010 end-page: 1513 ident: bb0030 article-title: Catalytic conversion of biomass to biofuels publication-title: Green Chem. – volume: 337 start-page: 695 year: 2012 end-page: 699 ident: bb1130 article-title: Valorization of biomass: more value from waste publication-title: Science – volume: 316 start-page: 1597 year: 2007 end-page: 1599 ident: bb0525 article-title: Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural publication-title: Science – volume: 5 year: 2019 ident: bb0135 article-title: Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass publication-title: Chem – volume: 25 start-page: 14762 year: 2019 end-page: 14766 ident: bb1290 article-title: Surface modification of a supported Pt catalyst using ionic liquids for selective hydrodeoxygenation of phenols into arenes under mild conditions publication-title: Chem. Eur. J. – reference: O – volume: 8 start-page: 3280 year: 2018 end-page: 3285 ident: bb0810 article-title: Robinson annulation-directed synthesis of jet-fuel-ranged alkylcyclohexanes from biomass-derived chemicals publication-title: ACS Catal. – volume: 591 start-page: 117378 year: 2020 ident: bb1255 article-title: An efficient bifunctional Ru-NbOPO publication-title: Appl. Catal. A-Gen. – volume: 50 start-page: 2375 year: 2011 end-page: 2378 ident: bb0755 article-title: Production of high-quality diesel from biomass waste products publication-title: Angew. Chem. Int. Ed. – volume: 148 start-page: 361 year: 2016 end-page: 366 ident: bb0830 article-title: Efficient synthesis of high-density aviation biofuel via solvent-free aldol condensation of cyclic ketones and furanic aldehydes publication-title: Fuel Process. Technol. – volume: 367 start-page: 1385 year: 2020 end-page: 1390 ident: bb1040 article-title: A sustainable wood biorefinery for low-carbon footprint chemicals production publication-title: Science – volume: 146 start-page: 93 year: 1994 end-page: 102 ident: bb0185 article-title: Glucose hydrogenation on promoted Raney-Nickel catalyst publication-title: J. Catal. – volume: 15 start-page: 1967 year: 2013 end-page: 1974 ident: bb0610 article-title: High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system publication-title: Green Chem. – volume: 81 start-page: 1378 year: 2018 end-page: 1392 ident: bb0105 article-title: A review on hydrothermal liquefaction of biomass publication-title: Renew. Sust. Energ. Rev. – volume: 5 start-page: 167 year: 2015 end-page: 176 ident: bb0220 article-title: Isosorbide as a renewable platform chemical for versatile applications-Quo Vadis? publication-title: ChemSusChem – volume: 43 start-page: 1549 year: 2004 end-page: 1551 ident: bb0320 article-title: Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 2167 year: 2011 end-page: 2174 ident: bb0250 article-title: Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C publication-title: Green Chem. – volume: 5 start-page: 1958 year: 2012 end-page: 1966 ident: bb0770 article-title: Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose publication-title: ChemSusChem – volume: 4 start-page: 52402 year: 2014 end-page: 52409 ident: bb0230 article-title: Direct conversion of cellulose into C6 alditols over Ru/C combined with H publication-title: RSC Adv. – reference: T. Cai, Q. Deng, H. Peng, J. Zhong, R. Gao, J. Wang, Z. Zeng, J.-J. Zou, S. Deng, Synthesis of renewable C–C cyclic compounds and high-density biofuels using 5-hydromethylfurfural as a reactant, Green Chem. DOI: – volume: 99 start-page: 3424 year: 2008 end-page: 3430 ident: bb0920 article-title: Reaction chemistry and phase behaviour of lignin in high-temperature and supercritical water publication-title: Bioresour. Technol. – volume: 296 start-page: 169 year: 2005 end-page: 175 ident: bb1165 article-title: HDO of benzophenone on Pd catalysts publication-title: Appl. Catal. A Gen. – volume: 377 start-page: 120121 year: 2019 ident: bb1325 article-title: Insight into the effect of metal and support for mild hydrodeoxygenation of lignin-derived phenolics to BTX aromatics publication-title: Chem. Eng. J. – volume: 5 start-page: 7359 year: 2015 end-page: 7370 ident: bb1010 article-title: Role of Cu−Mg−Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol publication-title: ACS Catal. – volume: 206 start-page: 177 year: 2002 end-page: 187 ident: bb1145 article-title: Investigation of the reaction network of benzofuran HDO over sulfided and reduced Ni-Mo/Al publication-title: J. Catal. – volume: 221 start-page: 440 year: 2018 end-page: 446 ident: bb1330 article-title: BTX from anisole by hydrodeoxygenation and transalkylation at ambient pressure with zeolite catalysts publication-title: Fuel – reference: K. Okuda, M. Umetsu, S. Takami, T. Adschiri Disassembley of lignin and chemical recovery- rapid depolymerization of lignin without char formation in water-phenol mixtures, Fuel Process. Technol. 85 (2004) 803–813. – volume: 118 start-page: 584 year: 2012 end-page: 588 ident: bb0975 article-title: Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst publication-title: Bioresour. Technol. – reference: ]HSO – volume: 5 start-page: 8137 year: 2017 end-page: 8147 ident: bb0520 article-title: A simple two-step method for the selective conversion of hemicellulose in pubescens to furfural publication-title: ACS Sustain. Chem. Eng. – volume: 108 start-page: 69 year: 2013 end-page: 75 ident: bb0885 article-title: Production of phenols from lignin via depolymerization and catalytic cracking publication-title: Fuel Process. Technol. – volume: 6 start-page: 4356 year: 2016 end-page: 4369 ident: bb1295 article-title: Carbon nanofiber-supported ReOx catalysts for the hydrodeoxygenation of lignin-derived compounds publication-title: Catal. Sci. Technol. – volume: 14 start-page: 509 year: 2012 end-page: 513 ident: bb0600 article-title: Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl publication-title: Green Chem. – volume: 101 start-page: 925 year: 2010 end-page: 930 ident: bb0060 article-title: Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy publication-title: Bioresour. Technol. – reference: X. Shen, Q. Meng, Q. Mei, H. Liu, J. Yan, J. Song, D. Tan, B. Chen, Z. Zhang, G. Yang, B. Han, Selectively catalytic transformation of lignin with guaiacol as the only liquid product, Chem. Sci. 11(2020)1347. – volume: 17 start-page: 922 year: 2003 end-page: 928 ident: bb0890 article-title: Conversion of lignin with supercritical water-phenol mixtures publication-title: Energy Fuel – volume: 180 start-page: 51 year: 1998 end-page: 55 ident: bb0200 article-title: Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor publication-title: J. Catal. – volume: 15 start-page: 160 year: 2013 end-page: 166 ident: bb0985 article-title: Mechanochemical degradation of lignin and wood by solvent-free grinding in a reactive medium publication-title: Green Chem. – volume: 17 start-page: 5009 year: 2015 end-page: 5018 ident: bb1055 article-title: Oxidative conversion of lignin and lignin model compounds catalyzed by CeO publication-title: Green Chem. – volume: 245 start-page: 258 year: 2017 end-page: 265 ident: bb0475 article-title: Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst publication-title: Bioresour. Technol. – volume: 30 start-page: 859 year: 2012 end-page: 873 ident: bb0010 article-title: A review of thermal-chemical conversion of lignocellulosic biomass in China publication-title: Biotechnol. Adv. – volume: 46 start-page: 3577 year: 2010 end-page: 3579 ident: bb0255 article-title: Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon publication-title: Chem. Commun. – volume: 2 start-page: 637 year: 2014 end-page: 642 ident: bb0615 article-title: One-Pot degradation of cellulose into furfural compounds in hot compressed steam with dihydric phosphates publication-title: ACS Sustain. Chem. Eng. – volume: 24 start-page: 5264 year: 2010 end-page: 5272 ident: bb0045 article-title: Characterization of hydrotreated fast pyrolysis liquids publication-title: Energy Fuel – volume: 7 start-page: 107 year: 1968 end-page: 110 ident: bb0175 article-title: Production of sorbitol by the use of ammonia synthesis gas publication-title: Ind. Eng. Chem. Process. Des. Dev. – volume: 6 start-page: 4531 year: 2018 end-page: 4538 ident: bb0620 article-title: Conversion of sugar cane molasses to 5-hydroxymethylfurfural using molasses and bagasse-derived catalysts publication-title: ACS Sustain. Chem. Eng. – volume: 10 start-page: 4817 year: 2017 end-page: 4823 ident: bb0805 article-title: Production of low-freezing-point highly branched alkanes through Michael addition publication-title: ChemSusChem – reference: S. Qin, B. Li, Z. Luo, C. Zhao, Conversion of high concentration of lignin to cyclic alkanes by introducing Pt/HAP into Ni/ASA catalyst, Green Chem. – volume: 101 start-page: 5003 year: 2010 end-page: 5012 ident: bb0055 article-title: Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives publication-title: Bioresour. Technol. – volume: 300 start-page: 2075 year: 2003 end-page: 2077 ident: bb0155 article-title: Raney Ni-Sn catalyst for H publication-title: Science – volume: 108 start-page: 216 year: 2013 end-page: 230 ident: bb0035 article-title: A comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products publication-title: Fuel – volume: 30 start-page: 1415 year: 2018 end-page: 1426 ident: bb0170 article-title: High efficient hydrolysis of cellulose into sugar by chemical catalytic method publication-title: Prog. Chem. (Chinese) – volume: 12 start-page: 779 year: 2010 end-page: 782 ident: bb0745 article-title: Production of linear alkane via hydrogenative ring opening of a furfural-derived compound in supercritical carbon dioxide publication-title: Green Chem. – volume: 515 start-page: 249 year: 2014 end-page: 252 ident: bb1100 article-title: Formic-acid-induced depolymerization of oxidized lignin to aromatics publication-title: Nature – volume: 7 start-page: 2660 year: 2014 end-page: 2669 ident: bb1210 article-title: Insights into the catalytic activity and surface modification of MoO publication-title: Energy Environ. Sci. – reference: . – volume: 113–114 start-page: 201 year: 2012 end-page: 211 ident: bb0740 article-title: Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides publication-title: Appl. Catal. B Environ. – volume: 56 start-page: 171 year: 2005 end-page: 186 ident: bb0115 article-title: A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts publication-title: Appl. Catal. B Environ. – volume: 24 start-page: 5735 year: 2010 end-page: 5740 ident: bb0075 article-title: Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil publication-title: Energy Fuel – volume: 2 start-page: 215 year: 2009 end-page: 217 ident: bb0995 article-title: Hydrogen transfer from supercritical methanol over a solid base catalyst: a model for lignin depolymerization publication-title: ChemSusChem – volume: 136 start-page: 775 year: 2014 end-page: 780 ident: bb0700 article-title: Aviation fuel synthesis by catalytic conversion of biomass hydrolysate in aqueous phase publication-title: Appl. Energy – volume: 3 start-page: 266 year: 2010 end-page: 276 ident: bb0570 article-title: J. vom Stein, R. Palkovits, F. Schuth, Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? publication-title: ChemSusChem – volume: 150 start-page: 243 year: 2015 end-page: 251 ident: bb0015 article-title: Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods publication-title: Fuel – volume: 53 start-page: 983 year: 2012 end-page: 985 ident: bb0625 article-title: Conversion of D-glucose into 5-hydroxymethylfurfural (HMF) using zeolite in [Bmim]Cl or tetrabutylammonium chloride (TBAC)/CrCl publication-title: Tetrahedron Lett. – reference: A.D. Sutton, et al., Compounds and methods for the production of long chain hydrocarbons from biological sources: CT/US, 2012/055340 [P], 2012-09-14. – volume: 6 start-page: 1732 year: 2013 end-page: 1738 ident: bb1205 article-title: Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO publication-title: Energy Environ. Sci. – volume: 38 start-page: 2270 year: 2015 end-page: 2278 ident: bb1060 article-title: Alkaline partial wet oxidation of lignin for the production of carboxylic acids publication-title: Chem. Eng. Technol. – volume: 99 start-page: 2778 year: 2008 end-page: 2786 ident: bb0025 article-title: Comparative studies of products produced from four different biomass samples via deoxy-liquefaction publication-title: Bioresour. Technol. – volume: 10 start-page: 1743 year: 2009 end-page: 1746 ident: bb0335 article-title: Production of alkanes from biomass derived carbohydrates on bi-functional catalysts employing niobium-based supports publication-title: Catal. Commun. – volume: 112 start-page: 533 year: 2013 end-page: 538 ident: bb1200 article-title: Production of cyclohexane from lignin degradation compounds over Ni/ZrO publication-title: Appl. Energy – volume: 6 start-page: 1149 year: 2013 end-page: 1152 ident: bb0775 article-title: Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone publication-title: ChemSusChem – volume: 269 start-page: 132 year: 2016 end-page: 139 ident: bb0730 article-title: Hydrodeoxygenation of furfural-acetone condensation adducts to tridecane over platinum catalysts publication-title: Catal. Today – volume: 160–161 start-page: 436 year: 2014 end-page: 444 ident: bb0735 article-title: Hydrodeoxygenation of acetone–furfural condensation adducts over alumina-supported noble metal catalysts publication-title: Appl. Catal. B Environ. – volume: 319 start-page: 14 year: 2019 end-page: 24 ident: bb0515 article-title: The production of furfural directly from hemicellulose in lignocellulosic biomass: a review publication-title: Catal. Today – volume: 103 start-page: 227 year: 2019 end-page: 247 ident: bb0545 article-title: Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran publication-title: Renew. Sust. Energ. Rev. – volume: 8 start-page: 591 year: 2017 ident: bb1285 article-title: Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst publication-title: Nat. Commun. – volume: 106 start-page: 4044 year: 2006 end-page: 4098 ident: bb0145 article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering publication-title: Chem. Rev. – volume: 8 start-page: 861 year: 2015 end-page: 871 ident: bb1070 article-title: Biomimetic Fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids publication-title: ChemSusChem – volume: 7 start-page: 118 year: 2017 end-page: 131 ident: bb0480 article-title: SO publication-title: Catalysts – volume: 1 start-page: 417 year: 2008 end-page: 424 ident: bb0715 article-title: Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates publication-title: ChemSusChem – volume: 195 start-page: 106140 year: 2019 ident: bb0100 article-title: Hydrotreatment of pyrolysis bio-oil: a review publication-title: Fuel Process. Technol. – volume: 90 start-page: 3468 year: 2011 end-page: 3472 ident: bb0345 article-title: Isoparaffin production by aqueous phase processing of sorbitol over the Ni/HZSM-5 catalysts: effect of the calcinations temperature of the catalyst publication-title: Fuel – volume: 48 start-page: 3987 year: 2009 end-page: 3990 ident: bb1170 article-title: Highly selective catalytic conversion of phenolic bio-oil to alkanes publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 1819 year: 2014 end-page: 1827 ident: bb0425 article-title: One-pot conversion of cellulose into n-hexane over the Ir-ReO publication-title: ACS Sustain. Chem. Eng. – volume: 49 start-page: 2040 year: 2010 end-page: 2046 ident: bb0935 article-title: Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol publication-title: Ind. Eng. Chem. Res. – volume: 274 start-page: 190 year: 2019 end-page: 197 ident: bb0300 article-title: Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst publication-title: Bioresour. Technol. – volume: 147 start-page: 239 year: 2009 end-page: 246 ident: bb1175 article-title: HDO of guaiacol on noble metal catalysts publication-title: Catal. Today – volume: 60 start-page: 870 year: 2017 end-page: 886 ident: bb0645 article-title: Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes publication-title: Sci. China Chem. – volume: 16 start-page: 4879 year: 2014 end-page: 4884 ident: bb0750 article-title: Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions publication-title: Green Chem. – volume: 94 start-page: 95 year: 2015 end-page: 102 ident: bb0365 article-title: One-pot aqueous phase catalytic conversion of sorbitol to gasoline over nickel catalyst publication-title: Energy Convers. Manag. – volume: 10 start-page: 1849 year: 2009 end-page: 1853 ident: bb0555 article-title: Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods publication-title: Catal. Commun. – volume: 115 start-page: 109400 year: 2019 ident: bb0090 article-title: Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes publication-title: Renew. Sust. Energ. Rev. – volume: 52 start-page: 11799 year: 2013 end-page: 11815 ident: bb0235 article-title: Advances in the catalytic production and utilization of sorbitol publication-title: Ind. Eng. Chem. Res. – reference: L. Ma, T. Wang, Z. Yuan, X. Zhang, X. Zhuang, C. Wu, T. Jiang, Q. Zhang, Process for hydrolysed reforming of liquous cellulose biomass to produce bio-gasoline, America Pat US008562697B2, 2013. – volume: 3 year: 2019 ident: bb0845 article-title: Integrated conversion of cellulose to high-density aviation fuel publication-title: Joule – volume: 49 start-page: 2106 year: 2008 end-page: 2116 ident: bb0005 article-title: Biofuels sources, biofuel policy, biofuel economy and global biofuel projections publication-title: Energy Convers. Manag. – volume: 28 start-page: 5112 year: 2014 end-page: 5118 ident: bb0815 article-title: Synthesis of diesel or jet fuel range cycloalkanes with 2-methylfuran and cyclopentanone from lignocellulose publication-title: Energy Fuel – reference: catalyst under mild conditions, Catal. Today 233 (2014)70–76. – volume: 113 start-page: 1499 year: 2013 end-page: 1597 ident: bb0630 article-title: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources publication-title: Chem. Rev. – volume: 123 start-page: 59 year: 2007 end-page: 70 ident: bb0665 article-title: An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates publication-title: Catal. Today – volume: 47 start-page: 5590 year: 2011 end-page: 5592 ident: bb0260 article-title: Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid publication-title: Chem. Commun. – volume: 5 start-page: 2365 year: 2019 end-page: 2377 ident: bb1085 article-title: Selective production of diethyl maleate via oxidative cleavage of lignin aromatic unit publication-title: Chem – reference: S. De, B. Saha, R. Luque, Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels, Bioresour. Technol. 178 (2015)108–118. – volume: 111 start-page: 119 year: 2006 end-page: 132 ident: bb0150 article-title: An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery publication-title: Catal. Today – volume: 343 start-page: 3021 year: 2008 end-page: 3024 ident: bb0540 article-title: Mechanism of the dehydration of Dfructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 °C: an NMR study publication-title: Carbohydr. Res. – reference: PW – volume: 4 start-page: 1758 year: 2011 end-page: 1761 ident: bb0695 article-title: Effective production of octane from biomass derivatives under mild conditions publication-title: ChemSusChem – volume: 296 start-page: 18 year: 2008 end-page: 27 ident: bb0660 article-title: Carbon–carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system publication-title: J. Mol. Catal. A Chem. – volume: 123 start-page: 109763 year: 2020 ident: bb0110 article-title: Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels publication-title: Renew. Sust. Energ. Rev. – volume: 12 start-page: 1640 year: 2010 end-page: 1647 ident: bb1000 article-title: Catalytic disassemble of an organosolv lignin via hydrogen transfer from supercritical methanol publication-title: Green Chem. – volume: 7 start-page: 2276 year: 2014 end-page: 2285 ident: bb1015 article-title: ́ Catalytic depolymerization of lignin in supercritical ethanol publication-title: ChemSusChem – volume: 58 start-page: 12154 year: 2019 end-page: 12158 ident: bb0850 article-title: Making JP-10 superfuel affordable with a lignocellulosic platform compound publication-title: Angew. Chem. Int. Ed. – volume: 31 start-page: 3929 year: 2017 end-page: 3934 ident: bb0490 article-title: Conversion of C5 carbohydrates into furfural catalyzed by SO publication-title: Energy Fuel – reference: S. Mukkamala, M.C. Wheeler, A.R.P.V. Heiningen, W.J. DeSisto, Formate-assisted fast pyrolysis of lignin, Energy Fuels 26 (2012)1380–1384. – volume: 53 start-page: 611 year: 1999 end-page: 616 ident: bb0900 article-title: Lignin depolymerization in hydrogen-donor solvents publication-title: Holzforschung – volume: 6 start-page: 613 year: 2013 end-page: 621 ident: bb0420 article-title: One-Pot Conversion of sugar and sugar polyols to n-alkanes without C-C dissociation over the Ir-ReOx/SiO publication-title: ChemSusChem – volume: 193 start-page: 404 year: 2019 end-page: 422 ident: bb0140 article-title: Recent development of production technology of diesel- and jet-fuel-range hydrocarbons from inedible biomass publication-title: Fuel Process. Technol. – reference: S.Li, M.T. Amiri, Y.M. Questell-Santiago, F. He'roguel, Y. Li, H. Kim, R. Meilan, C. Chapple, J. Ralph, J.S. Luterbacher, Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization, Science 354(2016)329–333. – volume: 6 start-page: 92 year: 2013 end-page: 96 ident: bb0270 article-title: Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols publication-title: Energy Environ. Sci. – volume: 58 start-page: 6105 year: 2019 end-page: 6120 ident: bb0465 article-title: Inherently safer design and optimization of intensified separation processes for furfural production publication-title: Ind. Eng. Chem. Res. – volume: 4 start-page: 1084 year: 2012 end-page: 1087 ident: bb0350 article-title: Highly selective sorbitol hydrogenolysis to liquid alkanes over Ni/HZSM-5 catalysts modified with pure silica MCM-41 publication-title: ChemCatChem – volume: 10 start-page: 747 year: 2017 end-page: 753 ident: bb0760 article-title: Selective one-pot production of high-grade diesel-range alkanes from furfural and 2-methylfuran over Pd/NbOPO publication-title: ChemSusChem – volume: 9 start-page: 63 year: 2007 end-page: 69 ident: bb0965 article-title: Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride publication-title: Green Chem. – volume: 330 start-page: 1222 year: 2010 end-page: 1227 ident: bb1225 article-title: Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils publication-title: Science – volume: 102 start-page: 4179 year: 2011 end-page: 4183 ident: bb0585 article-title: Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid publication-title: Bioresour. Technol. – volume: 79–80 start-page: 35 year: 2003 end-page: 41 ident: bb0195 article-title: Carbon supported Ru catalysts as promising alternative for Raney type Ni in the selective hydrogenation of D-glucose publication-title: Catal. Today – volume: 46 start-page: 281 year: 1994 end-page: 285 ident: bb1140 article-title: Influence of water in the deactivation of a sulfide NiMo/γ-Al publication-title: J. Catal. – volume: 151 start-page: 355 year: 2014 end-page: 360 ident: bb0500 article-title: Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl publication-title: Bioresour. Technol. – volume: 12 start-page: 972 year: 2010 end-page: 978 ident: bb0245 article-title: Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts publication-title: Green Chem. – volume: 4 start-page: 2037 year: 2014 end-page: 2050 ident: bb0440 article-title: Recent advancements in the production of hydroxymethylfurfural publication-title: RSC Adv. – volume: 107 start-page: 4516 year: 2010 end-page: 4521 ident: bb0160 article-title: Fermentable sugars by chemical hydrolysis of biomass publication-title: P. Natl. Acad. Sci. USA – volume: 62 start-page: 33 year: 2017 end-page: 86 ident: bb0020 article-title: Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review publication-title: Prog. Energ. Combust. – volume: 181 start-page: 699 year: 2016 end-page: 706 ident: bb0405 article-title: Production of hexane from sorbitol in aqueous medium over Pt/NbOPO publication-title: Appl. Catal. B Environ. – reference: X. Wu, X. Fan, S. Xie, J. Lin, J. Cheng, Q. Zhang, L. Chen, Y. Wang, Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions, Nat. Catal. 1(2018)772. – volume: 23 start-page: 2707 year: 2009 end-page: 2718 ident: bb0050 article-title: Characterization of various fast-pyrolysis bio-oils by NMR spectroscopy publication-title: Energy Fuel – volume: 13 start-page: 754 year: 2011 end-page: 793 ident: bb0635 article-title: 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications publication-title: Green Chem. – volume: 534 start-page: 40 year: 2017 end-page: 45 ident: bb0780 article-title: One-step Pd/C and Eu(OTf) publication-title: Appl. Catal. A Gen. – volume: 47 start-page: 1609 year: 2008 end-page: 1619 ident: bb0910 article-title: Goto, Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water publication-title: Chem. Eng. Process. – volume: 16 start-page: 2015 year: 2014 end-page: 2026 ident: bb0455 article-title: Hydroxymethylfurfural production from bioresources: past, present and future publication-title: Green Chem. – volume: 9 start-page: 1 year: 2017 end-page: 9 ident: bb0375 article-title: Aqueous-phase hydrodeoxygenation of biomass sugar alcohol into renewable alkanes over a carbon-supported ruthenium with phosphoric acid catalytic system publication-title: ChemCatChem – volume: 179 start-page: 84 year: 2015 end-page: 90 ident: bb0960 article-title: Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C publication-title: Bioresour. Technol. – volume: 131 start-page: 1979 year: 2009 end-page: 1985 ident: bb0530 article-title: Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 4458 year: 2019 end-page: 4468 ident: bb1320 article-title: Selective cleavage of lignin and lignin model compounds without external hydrogen, catalyzed by heterogeneous nickel catalysts publication-title: Chem. Sci. – volume: 16 start-page: 3305 year: 2014 end-page: 3312 ident: bb0265 article-title: Zirconium phosphate combined with Ru/C as a highly efficient catalyst for direct transformation of cellulose to C6 alditols publication-title: Green Chem. – volume: 9 start-page: 8127 year: 2018 end-page: 8133 ident: bb1025 article-title: Gold-catalyzed conversion of lignin to low molecular weight aromatics publication-title: Chem. Sci. – volume: 47 start-page: 852 year: 2018 end-page: 908 ident: bb1125 article-title: Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading publication-title: Chem. Soc. Rev. – volume: 21 start-page: 1792 year: 2007 end-page: 1815 ident: bb1160 article-title: Historical developments in hydroprocessing bio-oils publication-title: Energy Fuel – volume: 7 start-page: 11162 year: 2016 ident: bb0410 article-title: Direct hydrodeoxygenation of raw woody biomass into liquid alkanes publication-title: Nat. Commun. – volume: 35 start-page: 302 year: 2014 end-page: 309 ident: bb1195 article-title: Preparation of Ni/SiO publication-title: Chin. J. Catal. – volume: 67 start-page: 2473 year: 1994 end-page: 2477 ident: bb0180 article-title: An improved asyrmnearically-modified nickel catalyst prepared from ultrasonieted Raney nickel publication-title: Bull. Chem. Soc. Jpn. – reference: X. Xie, J. Han, H. Wang, X. Zhu, X. Liu, Y. Niu, Z. Song, Q. Ge, Selective conversion of microcrystalline cellulose into hexitols over a Ru/[Bmim] – volume: 63 start-page: 257 year: 2017 end-page: 265 ident: bb0550 article-title: Conversion of carbohydrates into 5-hydroxymethylfurfural in a green reaction system of CO publication-title: AICHE J. – volume: 25 start-page: 4662 year: 2011 end-page: 4668 ident: bb0875 article-title: Pyrolysis of kraft lignin with additives publication-title: Energy Fuel – volume: 218 start-page: 718 year: 2016 end-page: 722 ident: bb1105 article-title: Depolymerization of lignin by microwave-assisted methylation of benzylic alcohols publication-title: Bioresour. Technol. – volume: 170 start-page: 77 year: 2016 end-page: 83 ident: bb0390 article-title: Optimization of renewable C5 and C6 alkane production from acidic biomass hydrolysate over Ru/C catalyst publication-title: Fuel – volume: 4 start-page: 1174 year: 2014 end-page: 1196 ident: bb0210 article-title: Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals publication-title: Catal. Sci. Technol. – volume: 18 start-page: 165 year: 2016 end-page: 175 ident: bb0430 article-title: Selective transformation of hemicellulose (xylan) into n-pentane, pentanols or xylitol over a rhenium-modified iridium catalyst combined with acids publication-title: Green Chem. – reference: K. Wu, W. Wang, H. Guo, Y. Yang, Y. Huang, W. Li, C. Li, Engineering Co nanoparticles supported on defect MoS – volume: 360 start-page: 242 year: 2009 end-page: 249 ident: bb1135 article-title: HDO of bio-crude in supercritical hexane with sulfide CoMo and CoMoP catalysts supported on MgO: a model compound study using phenol publication-title: Appl. Catal. A Gen. – volume: 126 start-page: 151 year: 2018 end-page: 157 ident: bb0575 article-title: Effectively enhancing conversion of cellulose to HMF by combining in-situ carbonic acid from CO publication-title: Ind. Crop. Prod. – reference: as an efficient catalyst for direct liquefaction of bagasse lignin: decomposition properties of the inner structural units, Chem. Eng. Sci. 122 (2015) 24–33. – volume: 34 start-page: 1811 year: 2013 end-page: 1815 ident: bb1080 article-title: Perovskite hollow nanospheres for the catalytic wet air oxidation of lignin publication-title: Chin. J. Catal. – volume: 5 start-page: 150 year: 2012 end-page: 166 ident: bb0445 article-title: Furfural--a promising platform for lignocellulosic biofuels publication-title: ChemSusChem – volume: 19 start-page: 3869 year: 2017 end-page: 3879 ident: bb0485 article-title: Conversion of C5 carbohydrates into furfural catalyzed by a Lewis acidic ionic liquid in renewable γ-valerolactone publication-title: Green Chem. – volume: 135 start-page: 60 year: 2018 end-page: 66 ident: bb1310 article-title: Conversion of pyrolytic lignin to aromatic hydrocarbons by hydrocracking over pristine MoO publication-title: J. Anal. Appl. Pyrolysis – volume: 128 start-page: 8714 year: 2006 end-page: 8715 ident: bb0225 article-title: One-step conversion of cellobiose to C6-alcohols using a Ruthenium nanocluster catalyst publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 3828 year: 2018 end-page: 3844 ident: bb1050 article-title: Revisiting alkaline aerobic lignin oxidation publication-title: Green Chem. – volume: 5 start-page: 11649 year: 2015 end-page: 11657 ident: bb0395 article-title: High yield of renewable hexanes by direct hydrolysis-hydrodeoxygenation of cellulose in an aqueous phase catalytic system publication-title: RSC Adv. – volume: 133 start-page: 14090 year: 2011 end-page: 14097 ident: bb1005 article-title: One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels publication-title: J. Am. Chem. Soc. – volume: 187 start-page: 410 year: 2012 end-page: 414 ident: bb0905 article-title: Hydrothermal decomposition of alkali lignin in sub- and supercritical water publication-title: Chem. Eng. J. – volume: 59 start-page: 58 year: 2012 end-page: 65 ident: bb0360 article-title: High yield of pentane production by aqueous-phase reforming of xylitol over Ni/HZSM-5 and Ni/MCM-22 Catalysts publication-title: Energy Convers. Manag. – volume: 345 start-page: 2133 year: 2010 end-page: 2138 ident: bb0590 article-title: Production of furans from rice straw by single-phase and biphasic system publication-title: Carbohydr. Res. – volume: 110 start-page: 3552 year: 2010 end-page: 3599 ident: bb0855 article-title: The catalytic valorization of lignin for the production of renewable chemicals publication-title: Chem. Rev. – volume: 99 start-page: 30 year: 2017 end-page: 33 ident: bb0380 article-title: Transformation of biomass polyol into hydrocarbon fuels in aqueous medium over Ru-Mo/CNT catalyst publication-title: Catal. Commun. – volume: 9 start-page: 702 year: 2018 end-page: 711 ident: bb1095 article-title: Unravelling the enigma of lignin publication-title: Chem. Sci. – reference: –x for mild deoxygenation of lignin–derived phenols to arenes, ACS Energy Lett. – volume: 53 start-page: 9755 year: 2014 end-page: 9760 ident: bb0765 article-title: Pd/NbOPO publication-title: Angew. Chem. Int. Ed. – volume: 93 start-page: 95 year: 2012 end-page: 103 ident: bb0865 article-title: Pyrolysis of wheat straw-derived organosolv lignin publication-title: J. Anal. Appl. Pyrolysis – volume: 407 start-page: 1 year: 2011 end-page: 19 ident: bb0070 article-title: A review of catalytic upgrading of bio-oil to engine fuels publication-title: Appl. Catal. A Gen. – volume: 441 start-page: 72 year: 2017 end-page: 80 ident: bb0565 article-title: Hydrothermally stable Nb-SBA-15 catalysts applied in carbohydrate conversion to 5-hydroxymethyl furfural publication-title: Mol. Catal. – reference: L.D. Rogatis, T. Montini, A. Cognigni, L. Olivi, P. Fornasiero, Methane partial oxidation on NiCu-based catalysts, Catal. Today 145 (2009) 176–185. – reference: F. Chen, N. Li, S. Li, J. Yang, F. Liu, W. Wang, A. Wang, Y. Cong, X. Wang X, T. Zhang, Solvent-free synthesis of C9 and C10 branched alkanes with furfural and 3-pentanone from lignocellulose, Catal. Commun. 59 (2015) 229–232. – volume: 130 start-page: 110 year: 2013 end-page: 116 ident: bb0495 article-title: Conversion of xylan, D-xylose and lignocelllulosic biomass into furfural using AlCl publication-title: Bioresour. Technol. – volume: 18 start-page: 6305 year: 2016 end-page: 6310 ident: bb0580 article-title: CO publication-title: Green Chem. – volume: 46 start-page: 7164 year: 2007 end-page: 7183 ident: bb0085 article-title: Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 711 year: 2017 end-page: 719 ident: bb0835 article-title: Synthesis of renewable triketones, diketones, and jet-fuel range cycloalkanes with 5-hydroxymethylfurfural and ketones publication-title: ChemSusChem – volume: 159 start-page: 935 year: 2015 end-page: 942 ident: bb0120 article-title: Recent progress in production of fuel range liquid hydrocarbons from biomass-derived furanics via strategic catalytic routes publication-title: Fuel – volume: 202 start-page: 181 year: 2016 end-page: 191 ident: bb0470 article-title: Furfural production using ionic liquids: a review publication-title: Bioresour. Technol. – volume: 7 start-page: 103 year: 2014 end-page: 129 ident: bb1245 article-title: Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation publication-title: Energy Environ. Sci. – volume: 267 start-page: 118690 year: 2020 ident: bb1265 article-title: Highly-dispersed Ni on BEA catalyst prepared by ion-exchange-depositionprecipitation for improved hydrodeoxygenation activity publication-title: Appl. Catal. B-Environ. – reference: L. Vilcocq, A. Cabiac, C. Especel, S. Lacombe, D. Duprez, New insights into the mechanism of sorbitol transformation over an original bifunctional catalytic system, J. Catal. 320 (2014)16–25. – reference: B.O. de Beeck, M. Dusselier, J. Geboers, J. Holsbeek, E. Morr'e, S. Oswald, B. Giebeler, B.F. Sels, Direct catalytic conversion of cellulose to liquid straight-chain alkanes, Energy Environ. Sci. 8 (2015) 230–240. – volume: 115 start-page: 11559 year: 2015 end-page: 11624 ident: bb1120 article-title: Catalytic transformation of lignin for the production of chemicals and fuels publication-title: Chem. Rev. – reference: X. Zhang, Q. Zhang, T. Wang, L. Ma, Y. Yu, L. Chen, HDO of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO – volume: 2 start-page: 2846 year: 2011 end-page: 2852 ident: bb1090 article-title: Computational study of bond dissociation enthalpies for a large range of native and modified lignins publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 13686 year: 2018 end-page: 13696 ident: bb0825 article-title: Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones publication-title: RSC Adv. – volume: 141 start-page: 70 year: 2015 end-page: 79 ident: bb0990 article-title: Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination publication-title: Appl. Energy – volume: 47 start-page: 576 year: 2011 end-page: 578 ident: bb0240 article-title: Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols publication-title: Chem. Commun. – volume: 271 start-page: 449 year: 2019 end-page: 461 ident: bb1045 article-title: From lignin to valuable products-strategies, challenges, and prospects publication-title: Bioresour. Technol. – volume: 101 start-page: 246 year: 2011 end-page: 255 ident: bb1155 article-title: HDO of guaiacol Part II: support effect for CoMoS catalysts on HDO activity and selectivity publication-title: Appl. Catal. B Environ. – volume: 170 start-page: 307 year: 1998 end-page: 314 ident: bb0190 article-title: A study of ruthenium-alumina system publication-title: Appl. Catal. A Gen. – volume: 160 start-page: 990 year: 2015 end-page: 998 ident: bb0680 article-title: Hydrogenation and hydrodeoxygenation of difurfurylidene acetone to liquid alkanes over Raney Ni and the supported Pt catalysts publication-title: Appl. Energy – volume: 13 start-page: 754 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb0635 article-title: 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications publication-title: Green Chem. doi: 10.1039/c0gc00401d – volume: 43 start-page: 1549 year: 2004 ident: 10.1016/j.fuproc.2020.106485_bb0320 article-title: Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200353050 – volume: 160 start-page: 990 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb0680 article-title: Hydrogenation and hydrodeoxygenation of difurfurylidene acetone to liquid alkanes over Raney Ni and the supported Pt catalysts publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.02.077 – volume: 2 start-page: 2846 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb1090 article-title: Computational study of bond dissociation enthalpies for a large range of native and modified lignins publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201182w – volume: 6 start-page: 4356 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb1295 article-title: Carbon nanofiber-supported ReOx catalysts for the hydrodeoxygenation of lignin-derived compounds publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY01992C – volume: 16 start-page: 2015 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0455 article-title: Hydroxymethylfurfural production from bioresources: past, present and future publication-title: Green Chem. doi: 10.1039/c3gc42018c – volume: 117–118 start-page: 105 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb1185 article-title: Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al2O3 support publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2011.12.032 – year: 2000 ident: 10.1016/j.fuproc.2020.106485_bb0460 – volume: 15 start-page: 160 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0985 article-title: Mechanochemical degradation of lignin and wood by solvent-free grinding in a reactive medium publication-title: Green Chem. doi: 10.1039/C2GC36456E – volume: 24 start-page: 5264 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0045 article-title: Characterization of hydrotreated fast pyrolysis liquids publication-title: Energy Fuel doi: 10.1021/ef100573q – volume: 5 start-page: 405 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0605 article-title: Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose publication-title: ChemSusChem doi: 10.1002/cssc.201100688 – volume: 367 start-page: 1385 year: 2020 ident: 10.1016/j.fuproc.2020.106485_bb1040 article-title: A sustainable wood biorefinery for low-carbon footprint chemicals production publication-title: Science doi: 10.1126/science.aau1567 – volume: 81 start-page: 1378 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb0105 article-title: A review on hydrothermal liquefaction of biomass publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2017.05.178 – volume: 256 start-page: 117826 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb0305 article-title: Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117826 – volume: 146 start-page: 93 year: 1994 ident: 10.1016/j.fuproc.2020.106485_bb0185 article-title: Glucose hydrogenation on promoted Raney-Nickel catalyst publication-title: J. Catal. doi: 10.1016/0021-9517(94)90012-4 – volume: 8 start-page: 861 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb1070 article-title: Biomimetic Fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids publication-title: ChemSusChem doi: 10.1002/cssc.201403128 – volume: 89 start-page: 56 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0595 article-title: Production enhancement of 5-hydroxymethyl furfural from fructose via mechanical stirring control and high-fructose solution addition publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4096 – volume: 7 start-page: 2276 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb1015 article-title: ́ Catalytic depolymerization of lignin in supercritical ethanol publication-title: ChemSusChem doi: 10.1002/cssc.201402094 – volume: 102 start-page: 7608 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb0930 article-title: Mild hydrogenolysis of in-situ and isolated Pinus radiate lignins publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.05.040 – volume: 63 start-page: 257 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0550 article-title: Conversion of carbohydrates into 5-hydroxymethylfurfural in a green reaction system of CO2-water-isopropanol publication-title: AICHE J. doi: 10.1002/aic.15550 – volume: 10 start-page: 747 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0760 article-title: Selective one-pot production of high-grade diesel-range alkanes from furfural and 2-methylfuran over Pd/NbOPO4 publication-title: ChemSusChem doi: 10.1002/cssc.201601522 – volume: 38 start-page: 2270 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb1060 article-title: Alkaline partial wet oxidation of lignin for the production of carboxylic acids publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201400660 – volume: 19 start-page: 3869 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0485 article-title: Conversion of C5 carbohydrates into furfural catalyzed by a Lewis acidic ionic liquid in renewable γ-valerolactone publication-title: Green Chem. doi: 10.1039/C7GC01298E – volume: 49 start-page: 2106 year: 2008 ident: 10.1016/j.fuproc.2020.106485_bb0005 article-title: Biofuels sources, biofuel policy, biofuel economy and global biofuel projections publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2008.02.020 – volume: 6 start-page: 1149 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0775 article-title: Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone publication-title: ChemSusChem doi: 10.1002/cssc.201300318 – volume: 126 start-page: 151 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb0575 article-title: Effectively enhancing conversion of cellulose to HMF by combining in-situ carbonic acid from CO2 and metal oxides publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2018.10.028 – volume: 30 start-page: 1415 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb0170 article-title: High efficient hydrolysis of cellulose into sugar by chemical catalytic method publication-title: Prog. Chem. (Chinese) – volume: 271 start-page: 449 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb1045 article-title: From lignin to valuable products-strategies, challenges, and prospects publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.09.072 – volume: 49 start-page: 2040 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0935 article-title: Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9015842 – volume: 3 start-page: 266 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0570 article-title: J. vom Stein, R. Palkovits, F. Schuth, Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? publication-title: ChemSusChem doi: 10.1002/cssc.200900281 – volume: 112 start-page: 533 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb1200 article-title: Production of cyclohexane from lignin degradation compounds over Ni/ZrO2-SiO2 catalysts publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.04.077 – volume: 41 start-page: 79 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0670 article-title: Catalytic performance of Raney Ni in the hydrogenation of di-furfural-acetone for producing long-chain alkane precursors publication-title: J. Fuel Chem. Technol. – volume: 108 start-page: 216 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0035 article-title: A comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products publication-title: Fuel doi: 10.1016/j.fuel.2013.01.075 – volume: 78 start-page: 226 year: 2000 ident: 10.1016/j.fuproc.2020.106485_bb0945 article-title: Degradation of solvolysis lignin using Lewis acid catalysts publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450780129 – volume: 8 start-page: 591 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb1285 article-title: Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-017-00596-3 – volume: 3 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb0845 article-title: Integrated conversion of cellulose to high-density aviation fuel publication-title: Joule doi: 10.1016/j.joule.2019.02.005 – volume: 8 start-page: 3280 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb0810 article-title: Robinson annulation-directed synthesis of jet-fuel-ranged alkylcyclohexanes from biomass-derived chemicals publication-title: ACS Catal. doi: 10.1021/acscatal.8b00071 – volume: 79–80 start-page: 35 year: 2003 ident: 10.1016/j.fuproc.2020.106485_bb0195 article-title: Carbon supported Ru catalysts as promising alternative for Raney type Ni in the selective hydrogenation of D-glucose publication-title: Catal. Today doi: 10.1016/S0920-5861(03)00040-3 – volume: 10 start-page: 711 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0835 article-title: Synthesis of renewable triketones, diketones, and jet-fuel range cycloalkanes with 5-hydroxymethylfurfural and ketones publication-title: ChemSusChem doi: 10.1002/cssc.201601727 – volume: 16 start-page: 3305 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0265 article-title: Zirconium phosphate combined with Ru/C as a highly efficient catalyst for direct transformation of cellulose to C6 alditols publication-title: Green Chem. doi: 10.1039/C3GC42444H – volume: 46 start-page: 3577 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0255 article-title: Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon publication-title: Chem. Commun. doi: 10.1039/c001096k – volume: 268 start-page: 118425 year: 2020 ident: 10.1016/j.fuproc.2020.106485_bb1260 article-title: Hydrodeoxygenation of vanillin over noble metal catalyst supported onbiochars: part II: catalytic behavior publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.118425 – volume: 99 start-page: 2778 year: 2008 ident: 10.1016/j.fuproc.2020.106485_bb0025 article-title: Comparative studies of products produced from four different biomass samples via deoxy-liquefaction publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.06.023 – volume: 3 start-page: 708 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0315 article-title: Reaction products and transformations of intermediates in the aqueous-phase reforming of sorbitol publication-title: ChemSusChem doi: 10.1002/cssc.200900254 – volume: 10 start-page: 1743 year: 2009 ident: 10.1016/j.fuproc.2020.106485_bb0335 article-title: Production of alkanes from biomass derived carbohydrates on bi-functional catalysts employing niobium-based supports publication-title: Catal. Commun. doi: 10.1016/j.catcom.2009.05.021 – volume: 10 start-page: 1849 year: 2009 ident: 10.1016/j.fuproc.2020.106485_bb0555 article-title: Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods publication-title: Catal. Commun. doi: 10.1016/j.catcom.2009.06.012 – ident: 10.1016/j.fuproc.2020.106485_bb0720 – volume: 7 start-page: 5880 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0795 article-title: Mn2O3-synthesis of diesel and jet fuel range alkanes with furfural and angelica lactone publication-title: ACS Catal. doi: 10.1021/acscatal.7b01992 – ident: 10.1016/j.fuproc.2020.106485_bb0980 – volume: 591 start-page: 117378 year: 2020 ident: 10.1016/j.fuproc.2020.106485_bb1255 article-title: An efficient bifunctional Ru-NbOPO4 catalyst for the hydrodeoxygenation of aromatic ethers, phenols and real bio-oil publication-title: Appl. Catal. A-Gen. doi: 10.1016/j.apcata.2019.117378 – volume: 187 start-page: 410 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0905 article-title: Hydrothermal decomposition of alkali lignin in sub- and supercritical water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.01.092 – volume: 241 start-page: 760 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0560 article-title: Depolymerization of cellulose into high-value chemicals by using synergy of zinc chloride hydrate and sulfate ion promoted titania catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.004 – volume: 3 start-page: 1154 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0340 article-title: Renewable high octane gasoline by aqueous phase hydrodeoxygenation of C5 and C6 carbohydrates over Pt/zirconium phosphate catalysts publication-title: ChemSusChem doi: 10.1002/cssc.201000140 – volume: 5 start-page: 1521 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb1240 article-title: Breaking the limit of lignin monomer production via cleavage of interunit carbon–carbon linkages publication-title: Chem doi: 10.1016/j.chempr.2019.03.007 – volume: 101 start-page: 2483 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0915 article-title: Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.11.091 – volume: 300 start-page: 2075 year: 2003 ident: 10.1016/j.fuproc.2020.106485_bb0155 article-title: Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons publication-title: Science doi: 10.1126/science.1085597 – volume: 345 start-page: 2133 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0590 article-title: Production of furans from rice straw by single-phase and biphasic system publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2010.07.032 – volume: 23 start-page: 2707 year: 2009 ident: 10.1016/j.fuproc.2020.106485_bb0050 article-title: Characterization of various fast-pyrolysis bio-oils by NMR spectroscopy publication-title: Energy Fuel doi: 10.1021/ef801048b – volume: 48 start-page: 3987 year: 2009 ident: 10.1016/j.fuproc.2020.106485_bb1170 article-title: Highly selective catalytic conversion of phenolic bio-oil to alkanes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200900404 – volume: 441 start-page: 72 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0565 article-title: Hydrothermally stable Nb-SBA-15 catalysts applied in carbohydrate conversion to 5-hydroxymethyl furfural publication-title: Mol. Catal. doi: 10.1016/j.mcat.2017.04.034 – volume: 3 start-page: 818 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0295 article-title: Selective transformation of cellulose into sorbitol by using a bifunctional nickel phosphide catalyst publication-title: ChemSusChem doi: 10.1002/cssc.201000092 – volume: 7 start-page: 118 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0480 article-title: SO42−/Sn-MMT solid acid catalyst for xylose and xylan conversion into furfural in the biphasic system publication-title: Catalysts doi: 10.3390/catal7040118 – ident: 10.1016/j.fuproc.2020.106485_bb0125 – volume: 130 start-page: 110 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0495 article-title: Conversion of xylan, D-xylose and lignocelllulosic biomass into furfural using AlCl3 as catalyst in ionic liquid publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.018 – volume: 94 start-page: 95 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb0365 article-title: One-pot aqueous phase catalytic conversion of sorbitol to gasoline over nickel catalyst publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.01.054 – volume: 47 start-page: 576 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb0240 article-title: Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols publication-title: Chem. Commun. doi: 10.1039/C0CC02263B – volume: 3 start-page: 507 year: 1988 ident: 10.1016/j.fuproc.2020.106485_bb0950 article-title: Hydrolysis of lignin in a hydrogen-donor vehicle publication-title: Chem. Express – volume: 469 start-page: 490 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb1230 article-title: Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2013.09.036 – volume: 141 start-page: 70 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb0990 article-title: Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.12.025 – volume: 58 start-page: 79 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb1065 article-title: Catalytic conversion of kraft lignin using paper-like Co (salen) as an effective catalyst publication-title: Drewno Prace Naukowe Doniesienia Komunikaty – volume: 195 start-page: 106140 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb0100 article-title: Hydrotreatment of pyrolysis bio-oil: a review publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.106140 – volume: 199 start-page: 147 year: 2000 ident: 10.1016/j.fuproc.2020.106485_bb0080 article-title: Catalytic hydrodeoxygenation publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(99)00555-4 – volume: 25 start-page: 4662 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb0875 article-title: Pyrolysis of kraft lignin with additives publication-title: Energy Fuel doi: 10.1021/ef2007613 – volume: 202 start-page: 181 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb0470 article-title: Furfural production using ionic liquids: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.12.017 – volume: 53 start-page: 9755 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0765 article-title: Pd/NbOPO4 multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201403440 – volume: 35 start-page: 302 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb1195 article-title: Preparation of Ni/SiO2-ZrO2 catalyst and its catalytic performance for HDO of guaiacol publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(12)60733-5 – volume: 12 start-page: 1493 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0030 article-title: Catalytic conversion of biomass to biofuels publication-title: Green Chem. doi: 10.1039/c004654j – volume: 10 start-page: 4817 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0805 article-title: Production of low-freezing-point highly branched alkanes through Michael addition publication-title: ChemSusChem doi: 10.1002/cssc.201701789 – ident: 10.1016/j.fuproc.2020.106485_bb0330 doi: 10.1016/j.jcat.2014.09.012 – volume: 113 start-page: 1499 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0630 article-title: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources publication-title: Chem. Rev. doi: 10.1021/cr300182k – volume: 9 start-page: 1712 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb0800 article-title: Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps publication-title: ChemSusChem doi: 10.1002/cssc.201600386 – volume: 13 start-page: 1 year: 2020 ident: 10.1016/j.fuproc.2020.106485_bb1275 article-title: One-pot conversion of lignin into naphthenes catalyzed by a heterogeneous rhenium oxide-modified iridium compound publication-title: ChemSusChem doi: 10.1002/cssc.202001700 – volume: 9 start-page: 8127 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb1025 article-title: Gold-catalyzed conversion of lignin to low molecular weight aromatics publication-title: Chem. Sci. doi: 10.1039/C8SC03208D – volume: 131 start-page: 1979 year: 2009 ident: 10.1016/j.fuproc.2020.106485_bb0530 article-title: Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808537j – volume: 150 start-page: 243 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb0015 article-title: Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods publication-title: Fuel doi: 10.1016/j.fuel.2015.02.045 – volume: 90 start-page: 51 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0355 article-title: Investgation on the xylitol aqueous-phase reforming performance for pentane production over Pt/HZSM-5 and Ni/HZSM-5 catalysts publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.03.034 – volume: 133 start-page: 14090 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb1005 article-title: One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205436c – ident: 10.1016/j.fuproc.2020.106485_bb0840 doi: 10.1039/D0GC00195C – volume: 16 start-page: 2015 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0640 article-title: Hydroxymethylfurfural production from bioresources: past, present and future publication-title: Green Chem. doi: 10.1039/c3gc42018c – volume: 51 start-page: 103 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0895 article-title: Novel method for production of phenolics by combining lignin extraction with lignin depolymerization in aqueous ethanol publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie202118d – volume: 99 start-page: 3424 year: 2008 ident: 10.1016/j.fuproc.2020.106485_bb0920 article-title: Reaction chemistry and phase behaviour of lignin in high-temperature and supercritical water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.08.008 – volume: 2 start-page: 1819 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0425 article-title: One-pot conversion of cellulose into n-hexane over the Ir-ReOx/SiO2 catalyst combined with HZSM-5 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc5001463 – volume: 5 start-page: 167 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb0220 article-title: Isosorbide as a renewable platform chemical for versatile applications-Quo Vadis? publication-title: ChemSusChem doi: 10.1002/cssc.201100580 – ident: 10.1016/j.fuproc.2020.106485_bb0685 doi: 10.1038/nchem.1609 – volume: 459 start-page: 525 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0280 article-title: Direct conversion of cellulose into sorbitol with high yield by a novel mesoporous niobium phosphate supported Ruthenium bifunctional catalyst publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2013.03.047 – volume: 6 start-page: 4531 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb0620 article-title: Conversion of sugar cane molasses to 5-hydroxymethylfurfural using molasses and bagasse-derived catalysts publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02746 – volume: 147 start-page: 239 year: 2009 ident: 10.1016/j.fuproc.2020.106485_bb1175 article-title: HDO of guaiacol on noble metal catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2008.10.037 – volume: 159 start-page: 935 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb0120 article-title: Recent progress in production of fuel range liquid hydrocarbons from biomass-derived furanics via strategic catalytic routes publication-title: Fuel doi: 10.1016/j.fuel.2015.07.036 – volume: 337 start-page: 695 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb1130 article-title: Valorization of biomass: more value from waste publication-title: Science doi: 10.1126/science.1218930 – volume: 160–161 start-page: 436 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0735 article-title: Hydrodeoxygenation of acetone–furfural condensation adducts over alumina-supported noble metal catalysts publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.05.053 – ident: 10.1016/j.fuproc.2020.106485_bb0880 doi: 10.1016/j.fuproc.2003.11.027 – volume: 269 start-page: 132 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb0730 article-title: Hydrodeoxygenation of furfural-acetone condensation adducts to tridecane over platinum catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2015.09.055 – volume: 56 start-page: 171 year: 2005 ident: 10.1016/j.fuproc.2020.106485_bb0115 article-title: A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2004.04.027 – volume: 99 start-page: 30 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0380 article-title: Transformation of biomass polyol into hydrocarbon fuels in aqueous medium over Ru-Mo/CNT catalyst publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.05.014 – volume: 180 start-page: 51 year: 1998 ident: 10.1016/j.fuproc.2020.106485_bb0200 article-title: Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor publication-title: J. Catal. doi: 10.1006/jcat.1998.2261 – volume: 17 start-page: 922 year: 2003 ident: 10.1016/j.fuproc.2020.106485_bb0890 article-title: Conversion of lignin with supercritical water-phenol mixtures publication-title: Energy Fuel doi: 10.1021/ef0202844 – volume: 179 start-page: 191 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0940 article-title: Lignin to liquids over sulfided catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2011.06.031 – volume: 24 start-page: 5735 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0075 article-title: Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil publication-title: Energy Fuel doi: 10.1021/ef100896q – volume: 12 start-page: 1933 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0710 article-title: Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions publication-title: Green Chem. doi: 10.1039/c0gc00263a – volume: 2 start-page: 215 year: 2009 ident: 10.1016/j.fuproc.2020.106485_bb0995 article-title: Hydrogen transfer from supercritical methanol over a solid base catalyst: a model for lignin depolymerization publication-title: ChemSusChem doi: 10.1002/cssc.200900033 – volume: 4 start-page: 52402 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0230 article-title: Direct conversion of cellulose into C6 alditols over Ru/C combined with H+-released boron phosphate in an aqueous phase publication-title: RSC Adv. doi: 10.1039/C4RA10834E – volume: 47 start-page: 852 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb1125 article-title: Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00566K – volume: 113–114 start-page: 201 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0740 article-title: Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2011.11.039 – volume: 9 start-page: 3347 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0955 article-title: Phenolics production through catalytic depolymerization of alkali lignin with metal chlorides publication-title: Bioresources doi: 10.15376/biores.9.2.3347-3360 – volume: 45 start-page: 5161 year: 2006 ident: 10.1016/j.fuproc.2020.106485_bb0290 article-title: Catalytic conversion of cellulose into sugar alcohols publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200601921 – volume: 111 start-page: 119 year: 2006 ident: 10.1016/j.fuproc.2020.106485_bb0150 article-title: An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery publication-title: Catal. Today doi: 10.1016/j.cattod.2005.10.010 – volume: 4 start-page: 1174 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0210 article-title: Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals publication-title: Catal. Sci. Technol. doi: 10.1039/C3CY01058A – volume: 53 start-page: 983 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0625 article-title: Conversion of D-glucose into 5-hydroxymethylfurfural (HMF) using zeolite in [Bmim]Cl or tetrabutylammonium chloride (TBAC)/CrCl2 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2011.12.059 – volume: 66 start-page: 111 year: 2006 ident: 10.1016/j.fuproc.2020.106485_bb0705 article-title: Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2006.03.001 – volume: 3 start-page: 1745 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb0400 article-title: One-pot catalytic conversion of raw lignocellulosic biomass into gasoline alkanes and chemicals over LiTaMoO6 and Ru/C in aqueous phosphoric acid publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00256 – volume: 5 start-page: 7359 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb1010 article-title: Role of Cu−Mg−Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol publication-title: ACS Catal. doi: 10.1021/acscatal.5b02230 – volume: 360 start-page: 242 year: 2009 ident: 10.1016/j.fuproc.2020.106485_bb1135 article-title: HDO of bio-crude in supercritical hexane with sulfide CoMo and CoMoP catalysts supported on MgO: a model compound study using phenol publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2009.03.027 – volume: 106 start-page: 4044 year: 2006 ident: 10.1016/j.fuproc.2020.106485_bb0145 article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering publication-title: Chem. Rev. doi: 10.1021/cr068360d – volume: 138 start-page: 321 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0040 article-title: Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.170 – volume: 107 start-page: 4516 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0160 article-title: Fermentable sugars by chemical hydrolysis of biomass publication-title: P. Natl. Acad. Sci. USA doi: 10.1073/pnas.0912073107 – volume: 135 start-page: 60 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb1310 article-title: Conversion of pyrolytic lignin to aromatic hydrocarbons by hydrocracking over pristine MoO3 catalyst publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2018.09.020 – volume: 319 start-page: 14 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb0515 article-title: The production of furfural directly from hemicellulose in lignocellulosic biomass: a review publication-title: Catal. Today doi: 10.1016/j.cattod.2018.06.042 – volume: 510 start-page: 42 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb1215 article-title: Mo2C catalyzed vapor phase hydrodeoxygenation of lignin-derived phenolic compound mixtures to aromatics under ambient pressure publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2015.10.043 – volume: 170 start-page: 77 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb0390 article-title: Optimization of renewable C5 and C6 alkane production from acidic biomass hydrolysate over Ru/C catalyst publication-title: Fuel doi: 10.1016/j.fuel.2015.12.007 – volume: 4 start-page: 1758 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb0695 article-title: Effective production of octane from biomass derivatives under mild conditions publication-title: ChemSusChem doi: 10.1002/cssc.201100361 – volume: 343 start-page: 3021 year: 2008 ident: 10.1016/j.fuproc.2020.106485_bb0540 article-title: Mechanism of the dehydration of Dfructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 °C: an NMR study publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2008.09.008 – volume: 9 start-page: 63 year: 2007 ident: 10.1016/j.fuproc.2020.106485_bb0965 article-title: Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride publication-title: Green Chem. doi: 10.1039/B607614A – ident: 10.1016/j.fuproc.2020.106485_bb1150 – volume: 46 start-page: 7164 year: 2007 ident: 10.1016/j.fuproc.2020.106485_bb0085 article-title: Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200604274 – volume: 25 start-page: 14762 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb1290 article-title: Surface modification of a supported Pt catalyst using ionic liquids for selective hydrodeoxygenation of phenols into arenes under mild conditions publication-title: Chem. Eur. J. doi: 10.1002/chem.201902668 – volume: 7 start-page: 2660 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb1210 article-title: Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00890A – volume: 58 start-page: 12154 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb0850 article-title: Making JP-10 superfuel affordable with a lignocellulosic platform compound publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906744 – volume: 377 start-page: 120121 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb1325 article-title: Insight into the effect of metal and support for mild hydrodeoxygenation of lignin-derived phenolics to BTX aromatics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.10.058 – volume: 62 start-page: 33 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0020 article-title: Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review publication-title: Prog. Energ. Combust. doi: 10.1016/j.pecs.2017.05.004 – volume: 9 start-page: 810 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb1300 article-title: MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction publication-title: Nat. Chem. doi: 10.1038/nchem.2740 – volume: 12 start-page: 1640 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb1000 article-title: Catalytic disassemble of an organosolv lignin via hydrogen transfer from supercritical methanol publication-title: Green Chem. doi: 10.1039/c0gc00181c – volume: 7 start-page: 107 year: 1968 ident: 10.1016/j.fuproc.2020.106485_bb0175 article-title: Production of sorbitol by the use of ammonia synthesis gas publication-title: Ind. Eng. Chem. Process. Des. Dev. doi: 10.1021/i260025a021 – volume: 148 start-page: 361 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb0830 article-title: Efficient synthesis of high-density aviation biofuel via solvent-free aldol condensation of cyclic ketones and furanic aldehydes publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.03.016 – volume: 93 start-page: 95 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0865 article-title: Pyrolysis of wheat straw-derived organosolv lignin publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2011.10.002 – volume: 101 start-page: 246 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb1155 article-title: HDO of guaiacol Part II: support effect for CoMoS catalysts on HDO activity and selectivity publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2010.10.031 – volume: 218 start-page: 718 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb1105 article-title: Depolymerization of lignin by microwave-assisted methylation of benzylic alcohols publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.07.021 – volume: 267 start-page: 118690 year: 2020 ident: 10.1016/j.fuproc.2020.106485_bb1265 article-title: Highly-dispersed Ni on BEA catalyst prepared by ion-exchange-depositionprecipitation for improved hydrodeoxygenation activity publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2020.118690 – volume: 296 start-page: 18 year: 2008 ident: 10.1016/j.fuproc.2020.106485_bb0660 article-title: Carbon–carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2008.09.001 – volume: 42 start-page: 4068 year: 2003 ident: 10.1016/j.fuproc.2020.106485_bb0310 article-title: Catalytic reforming of oxygenated hydrocarbons for hydrogen with low levels of carbon monoxide publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200351664 – volume: 179 start-page: 84 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb0960 article-title: Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.12.021 – volume: 34 start-page: 1811 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb1080 article-title: Perovskite hollow nanospheres for the catalytic wet air oxidation of lignin publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(12)60691-3 – volume: 5 start-page: 11649 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb0395 article-title: High yield of renewable hexanes by direct hydrolysis-hydrodeoxygenation of cellulose in an aqueous phase catalytic system publication-title: RSC Adv. doi: 10.1039/C4RA14304C – volume: 23 start-page: 2201 issue: 2018 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb0650 article-title: 5-hydroxymethylfurfural (HMF) production from real biomasses publication-title: Molecules doi: 10.3390/molecules23092201 – ident: 10.1016/j.fuproc.2020.106485_bb0860 doi: 10.1016/j.biortech.2013.02.039 – volume: 5 start-page: 2365 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb1085 article-title: Selective production of diethyl maleate via oxidative cleavage of lignin aromatic unit publication-title: Chem doi: 10.1016/j.chempr.2019.05.021 – volume: 90 start-page: 3468 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb0345 article-title: Isoparaffin production by aqueous phase processing of sorbitol over the Ni/HZSM-5 catalysts: effect of the calcinations temperature of the catalyst publication-title: Fuel doi: 10.1016/j.fuel.2011.06.046 – volume: 330 start-page: 1222 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb1225 article-title: Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils publication-title: Science doi: 10.1126/science.1194218 – volume: 13 start-page: 2167 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb0250 article-title: Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C publication-title: Green Chem. doi: 10.1039/c1gc15350a – volume: 33 start-page: 1122 year: 2009 ident: 10.1016/j.fuproc.2020.106485_bb0970 article-title: Reactions of lignin model compounds in ionic liquids publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2009.03.006 – volume: 149 start-page: 609 year: 2020 ident: 10.1016/j.fuproc.2020.106485_bb1250 article-title: The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation publication-title: Renew. Energy doi: 10.1016/j.renene.2019.12.094 – volume: 5 start-page: 8137 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0520 article-title: A simple two-step method for the selective conversion of hemicellulose in pubescens to furfural publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b01766 – volume: 18 start-page: 6305 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb0580 article-title: CO2-catalysed conversion of carbohydrates to 5-hydroxymethyl furfural publication-title: Green Chem. doi: 10.1039/C6GC01853J – volume: 534 start-page: 40 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0780 article-title: One-step Pd/C and Eu(OTf)3 catalyzed hydrodeoxygenation of branched C11 and C12 biomass-based furans to the corresponding alkanes publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2017.01.017 – ident: 10.1016/j.fuproc.2020.106485_bb0385 doi: 10.1016/S1351-4180(13)70471-9 – volume: 12 start-page: 779 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0745 article-title: Production of linear alkane via hydrogenative ring opening of a furfural-derived compound in supercritical carbon dioxide publication-title: Green Chem. doi: 10.1039/b919810p – volume: 170 start-page: 307 year: 1998 ident: 10.1016/j.fuproc.2020.106485_bb0190 article-title: A study of ruthenium-alumina system publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(98)00061-1 – volume: 135 start-page: 105510 year: 2020 ident: 10.1016/j.fuproc.2020.106485_bb0095 article-title: Hydrothermal liquefaction of biomass to fuels and value-added chemicals: products applications and challenges to develop large-scale operations publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2020.105510 – volume: 4 start-page: 2193 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb0450 article-title: Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01022k – volume: 123 start-page: 109763 year: 2020 ident: 10.1016/j.fuproc.2020.106485_bb0110 article-title: Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2020.109763 – volume: 7 start-page: 11162 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb0410 article-title: Direct hydrodeoxygenation of raw woody biomass into liquid alkanes publication-title: Nat. Commun. doi: 10.1038/ncomms11162 – volume: 4 start-page: 5068 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb1220 article-title: From biomass to bio-gasoline by FCC co-processing: effect of feed composition and catalyst structure on product quality publication-title: Energy Environ. Sci. doi: 10.1039/c1ee02012a – volume: 515 start-page: 249 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb1100 article-title: Formic-acid-induced depolymerization of oxidized lignin to aromatics publication-title: Nature doi: 10.1038/nature13867 – volume: 316 start-page: 1597 year: 2007 ident: 10.1016/j.fuproc.2020.106485_bb0525 article-title: Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural publication-title: Science doi: 10.1126/science.1141199 – ident: 10.1016/j.fuproc.2020.106485_bb1030 doi: 10.1039/C9SC05892C – volume: 101 start-page: 5003 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0055 article-title: Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.11.062 – volume: 102 start-page: 4179 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb0585 article-title: Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.12.073 – volume: 40 start-page: 973 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0675 article-title: Production of jet fuel intermediates from furfural and acetone by aldol condensation over MgO/NaY publication-title: J. Fuel Chem. Technol. doi: 10.1016/S1872-5813(12)60035-8 – ident: 10.1016/j.fuproc.2020.106485_bb1190 doi: 10.1016/j.cattod.2008.04.019 – volume: 17 start-page: 4941 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb1020 article-title: Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics publication-title: Green Chem. doi: 10.1039/C5GC01120E – ident: 10.1016/j.fuproc.2020.106485_bb1235 – volume: 274 start-page: 190 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb0300 article-title: Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.11.089 – volume: 181 start-page: 699 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb0405 article-title: Production of hexane from sorbitol in aqueous medium over Pt/NbOPO4 catalyst publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.08.052 – volume: 52 start-page: 11799 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0235 article-title: Advances in the catalytic production and utilization of sorbitol publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie4011854 – volume: 2 start-page: 637 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0615 article-title: One-Pot degradation of cellulose into furfural compounds in hot compressed steam with dihydric phosphates publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc400515x – volume: 10 start-page: 4458 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb1320 article-title: Selective cleavage of lignin and lignin model compounds without external hydrogen, catalyzed by heterogeneous nickel catalysts publication-title: Chem. Sci. doi: 10.1039/C9SC00691E – volume: 148–149 start-page: 499 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0325 article-title: New bifunctional catalytic systems for sorbitol transformation into biofuels publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.11.016 – volume: 12 start-page: 972 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0245 article-title: Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts publication-title: Green Chem. doi: 10.1039/c000075b – volume: 31 start-page: 3929 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0490 article-title: Conversion of C5 carbohydrates into furfural catalyzed by SO3H-functionalized ionic liquid in renewable γ-valerolactone publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.6b01975 – volume: 193 start-page: 404 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb0140 article-title: Recent development of production technology of diesel- and jet-fuel-range hydrocarbons from inedible biomass publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.05.028 – volume: 28 start-page: 5112 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0815 article-title: Synthesis of diesel or jet fuel range cycloalkanes with 2-methylfuran and cyclopentanone from lignocellulose publication-title: Energy Fuel doi: 10.1021/ef500676z – volume: 20 start-page: 3828 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb1050 article-title: Revisiting alkaline aerobic lignin oxidation publication-title: Green Chem. doi: 10.1039/C8GC00502H – ident: 10.1016/j.fuproc.2020.106485_bb1115 doi: 10.1126/science.aaf7810 – volume: 128 start-page: 8714 year: 2006 ident: 10.1016/j.fuproc.2020.106485_bb0225 article-title: One-step conversion of cellobiose to C6-alcohols using a Ruthenium nanocluster catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062468t – ident: 10.1016/j.fuproc.2020.106485_bb0870 doi: 10.1021/ef201756a – volume: 5 start-page: 1958 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0770 article-title: Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose publication-title: ChemSusChem doi: 10.1002/cssc.201200228 – volume: 115 start-page: 11559 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb1120 article-title: Catalytic transformation of lignin for the production of chemicals and fuels publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00155 – volume: 209 start-page: 108 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb0510 article-title: Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.02.108 – ident: 10.1016/j.fuproc.2020.106485_bb0435 doi: 10.1126/science.1111166 – volume: 142 start-page: 318 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb0655 article-title: Synthesis of hydroxymethylfurfural from cellulose using green processes: a promising biochemical and biofuel feedstock publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.12.002 – volume: 136 start-page: 515 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0505 article-title: Solid acids as catalysts for the conversion of D-xylose, xylan and lignocellulosics into furfural in ionic liquid publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.054 – volume: 60 start-page: 870 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0645 article-title: Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes publication-title: Sci. China Chem. doi: 10.1007/s11426-016-9035-1 – volume: 108 start-page: 69 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0885 article-title: Production of phenols from lignin via depolymerization and catalytic cracking publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2012.05.003 – volume: 7 start-page: 103 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb1245 article-title: Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43081B – volume: 110 start-page: 3552 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0855 article-title: The catalytic valorization of lignin for the production of renewable chemicals publication-title: Chem. Rev. doi: 10.1021/cr900354u – volume: 221 start-page: 440 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb1330 article-title: BTX from anisole by hydrodeoxygenation and transalkylation at ambient pressure with zeolite catalysts publication-title: Fuel doi: 10.1016/j.fuel.2018.01.033 – volume: 57 start-page: 3160 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb1335 article-title: Competition between hydrotreating and polymerization reactions during pyrolysis oil hydrodeoxygenation publication-title: AICHE J. doi: 10.1002/aic.12503 – volume: 6 start-page: 613 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0420 article-title: One-Pot Conversion of sugar and sugar polyols to n-alkanes without C-C dissociation over the Ir-ReOx/SiO2 catalyst combined with H-ZSM-5 publication-title: ChemSusChem doi: 10.1002/cssc.201200940 – volume: 9 start-page: 1 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0375 article-title: Aqueous-phase hydrodeoxygenation of biomass sugar alcohol into renewable alkanes over a carbon-supported ruthenium with phosphoric acid catalytic system publication-title: ChemCatChem – volume: 34 start-page: 492 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0205 article-title: Advances in selective catalytic transformation of ployols to value-added chemicals publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(11)60501-9 – volume: 296 start-page: 169 year: 2005 ident: 10.1016/j.fuproc.2020.106485_bb1165 article-title: HDO of benzophenone on Pd catalysts publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2005.07.061 – ident: 10.1016/j.fuproc.2020.106485_bb1280 doi: 10.1039/D0GC00243G – volume: 123 start-page: 59 year: 2007 ident: 10.1016/j.fuproc.2020.106485_bb0665 article-title: An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates publication-title: Catal. Today doi: 10.1016/j.cattod.2006.12.006 – volume: 118 start-page: 584 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0975 article-title: Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.05.012 – volume: 53 start-page: 611 year: 1999 ident: 10.1016/j.fuproc.2020.106485_bb0900 article-title: Lignin depolymerization in hydrogen-donor solvents publication-title: Holzforschung doi: 10.1515/HF.1999.101 – volume: 47 start-page: 12209 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb1180 article-title: HDO of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts publication-title: Chem. Commun. doi: 10.1039/c1cc14859a – volume: 140 start-page: 105987 year: 2020 ident: 10.1016/j.fuproc.2020.106485_bb1270 article-title: Promoting selective hydrodeoxygenation of guaiacol over amorphous nanoporous NiMnO2 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2020.105987 – volume: 151 start-page: 355 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0500 article-title: Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·3H2O as catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.10.099 – volume: 58 start-page: 6105 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb0465 article-title: Inherently safer design and optimization of intensified separation processes for furfural production publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b03646 – volume: 351 start-page: 456 year: 2009 ident: 10.1016/j.fuproc.2020.106485_bb1075 article-title: The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200800614 – volume: 245 start-page: 258 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0475 article-title: Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.077 – volume: 48 start-page: 5494 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0535 article-title: Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water publication-title: Chem. Commun. doi: 10.1039/c2cc00122e – volume: 18 start-page: 165 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb0430 article-title: Selective transformation of hemicellulose (xylan) into n-pentane, pentanols or xylitol over a rhenium-modified iridium catalyst combined with acids publication-title: Green Chem. doi: 10.1039/C5GC02183A – volume: 15 start-page: 1967 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0610 article-title: High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system publication-title: Green Chem. doi: 10.1039/c3gc40667a – volume: 561 start-page: 117 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb0820 article-title: Efficient conversion of furfural into cyclopentanone over high performing and stable Cu/ZrO2 catalysts publication-title: Appl. Catal. A:Gen. doi: 10.1016/j.apcata.2018.05.030 – volume: 101 start-page: 925 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0060 article-title: Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.08.019 – volume: 136 start-page: 775 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0700 article-title: Aviation fuel synthesis by catalytic conversion of biomass hydrolysate in aqueous phase publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.06.035 – ident: 10.1016/j.fuproc.2020.106485_bb0275 doi: 10.1016/j.cattod.2013.09.061 – volume: 4 start-page: 2037 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0440 article-title: Recent advancements in the production of hydroxymethylfurfural publication-title: RSC Adv. doi: 10.1039/C3RA45396K – volume: 8 start-page: 13686 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb0825 article-title: Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones publication-title: RSC Adv. doi: 10.1039/C8RA01723A – volume: 59 start-page: 58 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0360 article-title: High yield of pentane production by aqueous-phase reforming of xylitol over Ni/HZSM-5 and Ni/MCM-22 Catalysts publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2012.02.010 – volume: 54 start-page: 2147 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb0370 article-title: Jet-fuel range hydrocarbons from biomass-derived sorbitol over Ni-HZSM-5/SBA-15 catalyst publication-title: Catalysts doi: 10.3390/catal5042147 – ident: 10.1016/j.fuproc.2020.106485_bb1305 – volume: 1 start-page: 626 year: 2008 ident: 10.1016/j.fuproc.2020.106485_bb0215 article-title: Selective degradation of wood lignin over noble-metal catalysts in a two-step process publication-title: ChemSusChem doi: 10.1002/cssc.200800080 – volume: 67 start-page: 2473 year: 1994 ident: 10.1016/j.fuproc.2020.106485_bb0180 article-title: An improved asyrmnearically-modified nickel catalyst prepared from ultrasonieted Raney nickel publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.67.2473 – volume: 6 start-page: 1732 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb1205 article-title: Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures publication-title: Energy Environ. Sci. doi: 10.1039/c3ee24360e – volume: 9 start-page: 3353 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb1110 article-title: High yield production of natural phenolic alcohols from woody biomass using a Nickel-based catalyst publication-title: ChemSusChem doi: 10.1002/cssc.201601273 – volume: 319 start-page: 41 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb1315 article-title: Hydrodeoxygenation of lignin-derived phenolic compounds into aromatic hydrocarbons under low hydrogen pressure using molybdenum oxide as catalyst publication-title: Catal. Today doi: 10.1016/j.cattod.2018.03.068 – ident: 10.1016/j.fuproc.2020.106485_bb0415 doi: 10.1039/C4EE01523A – volume: 46 start-page: 281 year: 1994 ident: 10.1016/j.fuproc.2020.106485_bb1140 article-title: Influence of water in the deactivation of a sulfide NiMo/γ-Al2O3 catalyst during HDO publication-title: J. Catal. doi: 10.1016/0021-9517(94)90032-9 – volume: 30 start-page: 859 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0010 article-title: A review of thermal-chemical conversion of lignocellulosic biomass in China publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2012.01.016 – volume: 5 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb0135 article-title: Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass publication-title: Chem doi: 10.1016/j.chempr.2019.05.022 – volume: 115 start-page: 109400 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb0090 article-title: Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2019.109400 – volume: 21 start-page: 1792 year: 2007 ident: 10.1016/j.fuproc.2020.106485_bb1160 article-title: Historical developments in hydroprocessing bio-oils publication-title: Energy Fuel doi: 10.1021/ef070044u – volume: 7 start-page: 169 year: 2017 ident: 10.1016/j.fuproc.2020.106485_bb0065 article-title: An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds publication-title: Catalysts doi: 10.3390/catal7060169 – volume: 14 start-page: 509 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0600 article-title: Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3 6H2O catalyst in a biphasic solvent system publication-title: Green Chem. doi: 10.1039/C1GC15972K – volume: 5 start-page: 667 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0925 article-title: Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid publication-title: ChemSusChem doi: 10.1002/cssc.201100695 – volume: 11 start-page: 721 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0690 article-title: A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation publication-title: Catal. Commun. doi: 10.1016/j.catcom.2010.02.002 – volume: 319 start-page: 2 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb0130 article-title: Catalytic conversion of lignocellulosic biomass into hydrocarbons: a mini review publication-title: Catal. Today doi: 10.1016/j.cattod.2018.05.013 – volume: 16 start-page: 4879 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0750 article-title: Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions publication-title: Green Chem. doi: 10.1039/C4GC01314J – volume: 1 start-page: 417 year: 2008 ident: 10.1016/j.fuproc.2020.106485_bb0715 article-title: Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates publication-title: ChemSusChem doi: 10.1002/cssc.200800001 – volume: 5 start-page: 108 year: 2016 ident: 10.1016/j.fuproc.2020.106485_bb0725 article-title: Hydrogenation/deoxygenation (H/D) reaction of furfural-acetone condensation product using Ni/Al2O3-ZrO2 catalyst publication-title: J. Pure App. Chem. Res. doi: 10.21776/ub.jpacr.2016.005.02.263 – volume: 407 start-page: 1 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb0070 article-title: A review of catalytic upgrading of bio-oil to engine fuels publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2011.08.046 – volume: 47 start-page: 1609 year: 2008 ident: 10.1016/j.fuproc.2020.106485_bb0910 article-title: Goto, Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2007.09.001 – volume: 17 start-page: 5009 year: 2015 ident: 10.1016/j.fuproc.2020.106485_bb1055 article-title: Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles publication-title: Green Chem. doi: 10.1039/C5GC01473E – ident: 10.1016/j.fuproc.2020.106485_bb0785 doi: 10.1016/j.catcom.2014.11.003 – volume: 5 start-page: 150 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0445 article-title: Furfural--a promising platform for lignocellulosic biofuels publication-title: ChemSusChem doi: 10.1002/cssc.201100648 – volume: 6 start-page: 92 year: 2013 ident: 10.1016/j.fuproc.2020.106485_bb0270 article-title: Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols publication-title: Energy Environ. Sci. doi: 10.1039/C2EE23057G – volume: 50 start-page: 2375 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb0755 article-title: Production of high-quality diesel from biomass waste products publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201007508 – volume: 53 start-page: 13618 year: 2014 ident: 10.1016/j.fuproc.2020.106485_bb0790 article-title: Production of renewable jet fuel range branched alkanes with xylose and methyl isobutyl ketone publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie5016365 – volume: 9 start-page: 702 year: 2018 ident: 10.1016/j.fuproc.2020.106485_bb1095 article-title: Unravelling the enigma of ligninOX: can the oxidation of lignin be controlled? publication-title: Chem. Sci. doi: 10.1039/C7SC03520A – volume: 22 start-page: 46 year: 2008 ident: 10.1016/j.fuproc.2020.106485_bb0165 article-title: Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods publication-title: Energy Fuel doi: 10.1021/ef700292p – volume: 4 start-page: 1084 year: 2012 ident: 10.1016/j.fuproc.2020.106485_bb0350 article-title: Highly selective sorbitol hydrogenolysis to liquid alkanes over Ni/HZSM-5 catalysts modified with pure silica MCM-41 publication-title: ChemCatChem doi: 10.1002/cctc.201100508 – volume: 206 start-page: 177 year: 2002 ident: 10.1016/j.fuproc.2020.106485_bb1145 article-title: Investigation of the reaction network of benzofuran HDO over sulfided and reduced Ni-Mo/Al2O3 catalysts publication-title: J. Catal. doi: 10.1006/jcat.2001.3490 – volume: 271 start-page: 22 year: 2010 ident: 10.1016/j.fuproc.2020.106485_bb0285 article-title: Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2010.01.024 – ident: 10.1016/j.fuproc.2020.106485_bb1035 doi: 10.1038/s41929-018-0148-8 – volume: 103 start-page: 227 year: 2019 ident: 10.1016/j.fuproc.2020.106485_bb0545 article-title: Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2018.12.010 – volume: 47 start-page: 5590 year: 2011 ident: 10.1016/j.fuproc.2020.106485_bb0260 article-title: Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid publication-title: Chem. Commun. doi: 10.1039/c1cc10422e |
SSID | ssj0005597 |
Score | 2.6217144 |
SecondaryResourceType | review_article |
Snippet | Due to the limitations on carbon emissions, many countries are seeking potential clean, renewable and sustainable energy and fuels. Conversion of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106485 |
SubjectTerms | Alkanes Aromatic compounds aromatic hydrocarbons Aviation fuel Biomass Biomass energy production carbon catalytic activity cellulose Chemical synthesis Clean energy Conversion Depolymerization Dimers emissions fuels Gasoline hemicellulose Hydrocarbons Hydrodeoxygenation Lignin Lignocellulose Lignocellulosic biomass Liquid fuels liquids Platform molecule refining renewable energy sources State-of-the-art reviews |
Title | A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategies |
URI | https://dx.doi.org/10.1016/j.fuproc.2020.106485 https://www.proquest.com/docview/2447303744 https://www.proquest.com/docview/2985602221 |
Volume | 208 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QUOiPIQC6UyEtd0E9tJnOOqotoWqReo1Ju1fgxatEpaNjlw4bczk8fyEFKlHuNXrLE989ma-QbgQxpRM097UubaJxp9TFyK7GUltTeh0n5g-7wqVtf68ia_OYCzKRaG3SpH3T_o9F5bjyWLUZqL281m8TlVpVFkwCTv05KvQIdSVUU-g8PlxafV1W9Pj7zPscLtE-4wRdD1bl7YsaU45WGoqNCcVPn_FuofXd0boPNn8HREjmI5TO4IDmL9HJ78wSf4ArZLMYSiiAZF70_eP4bx13bztW74lb7bNrsoOOqeYLNoG6q56zZBtBPLucCOZiPcD7Gnkgg0LPaZJMSunbglXsL1-ccvZ6tkTKeQeK1Um7gcCW1liCGU7FQaUolGFZxkPPOxkiZKdG6NWAZO3yuVw2hChmtFV75AuO0VzOqmjq9BGBkKpTRGma81LXDlCl8YpzyqMg3KzEFNIrR-5BrnlBdbOzmVfbOD4C0L3g6Cn0Oy73U7cG3c076cVsf-tWcsmYN7eh5Pi2nHM7uzBHRI3alS6zm831fTaePFWdex6ahNZQgiEqbK3jz452_hMX8NAY3HMGu_d_EdIZvWncCj05_Zybh_fwHryfnx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDI4QHIAD4rVieAZpr2U6TdpkjgiBhudlQeIWTR5eDRq17E574MJvx-5jBAgJiWMTJ43sxHaizzZjv-MAkvK0RyqVLpLgQmRjIJRVIp32Q-mabJ932ehBXj2mjwvsrIuFIVhlq_sbnV5r67al33Kz_zyZ9P_EQmmBBiyhfaroCrQkU6EI13fy-g7nkdYVVog6IvIufq4GeUFFduKEJsGmTFJJ5a_t0ydNXZufi3W21vqN_LRZ2gZbCPkmW32XTXCLTU95E4jCC-A1mrx-CqOv6eRvXtAbfTUtZoFTzD06zbwssOdfNfG87HKcc6hwNdy-8HkiCY_TQl1Hgs_KLrPENnu4OL8_G0VtMYXISSHKyKaAvtYAwHtFkFIfJ6BFRiXGBy4MEx0SsHYMoDwV702EhaD9AMYCL3wevbZfbDEv8rDDuE58JoSEkKRjieId2sxl2goHQsVe6B4THQuNazONU8GLqekgZU-mYbwhxpuG8T0WzUc9N5k2vqFXnXTMhx1j0Bh8M3K_E6ZpT-zMoJuDyk4oKXvseN6NZ42EM85DUSHNUKODiB7VYPfHPz9iy6P72xtzc3l3vcdWqKcJbdxni-X_Khygj1Paw3oPvwEN4fq8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+conversion+of+lignocellulose+biomass+to+liquid+transport+fuels+by+integrated+refining+strategies&rft.jtitle=Fuel+processing+technology&rft.au=Wang%2C+Chenguang&rft.au=Zhang%2C+Xinghua&rft.au=Liu%2C+Qiang&rft.au=Zhang%2C+Qi&rft.date=2020-11-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-3820&rft.eissn=1873-7188&rft.volume=208&rft.spage=1&rft_id=info:doi/10.1016%2Fj.fuproc.2020.106485&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |