Tensor decision trees for continual learning from drifting data streams
Data stream classification is one of the most vital areas of contemporary machine learning, as many real-life problems generate data continuously and in large volumes. However, most of research in this area focuses on vector-based representations, which are unsuitable for capturing properties of mor...
Saved in:
Published in | Machine learning Vol. 110; no. 11-12; pp. 3015 - 3035 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0885-6125 1573-0565 |
DOI | 10.1007/s10994-021-06054-y |
Cover
Abstract | Data stream classification is one of the most vital areas of contemporary machine learning, as many real-life problems generate data continuously and in large volumes. However, most of research in this area focuses on vector-based representations, which are unsuitable for capturing properties of more complex multi-dimensional structures, such as images and video sequences. In this paper, we propose a novel methodology for learning adaptive decision trees from data streams of tensors. We introduce Chordal Kernel Decision Tree for continual learning from tensor data streams. In order to maintain the tensor characteristics, we propose to train and update classifiers in the kernel space designed to work with tensor representation. We use chordal distance to compute similarities between tensors and then apply it as a new feature space in which decision trees are trained. This allows for a direct decision tree induction on tensors. In order to accommodate the streaming and drifting nature of data, we propose a concept drift detection scheme based on tensor representation. It allows us to reconstruct the kernel feature space every time when change is detected. The proposed approach allows for fast and efficient induction of decision trees on streaming data with tensor representation. Experimental study, conducted on 4 real-world and 52 artificial large-scale tensor data streams, shows that using the native tensor feature space leads to more accurate classification than outperforms the vectorized representations. |
---|---|
AbstractList | Data stream classification is one of the most vital areas of contemporary machine learning, as many real-life problems generate data continuously and in large volumes. However, most of research in this area focuses on vector-based representations, which are unsuitable for capturing properties of more complex multi-dimensional structures, such as images and video sequences. In this paper, we propose a novel methodology for learning adaptive decision trees from data streams of tensors. We introduce Chordal Kernel Decision Tree for continual learning from tensor data streams. In order to maintain the tensor characteristics, we propose to train and update classifiers in the kernel space designed to work with tensor representation. We use chordal distance to compute similarities between tensors and then apply it as a new feature space in which decision trees are trained. This allows for a direct decision tree induction on tensors. In order to accommodate the streaming and drifting nature of data, we propose a concept drift detection scheme based on tensor representation. It allows us to reconstruct the kernel feature space every time when change is detected. The proposed approach allows for fast and efficient induction of decision trees on streaming data with tensor representation. Experimental study, conducted on 4 real-world and 52 artificial large-scale tensor data streams, shows that using the native tensor feature space leads to more accurate classification than outperforms the vectorized representations. |
Author | Krawczyk, Bartosz |
Author_xml | – sequence: 1 givenname: Bartosz orcidid: 0000-0002-9774-0106 surname: Krawczyk fullname: Krawczyk, Bartosz email: bkrawczyk@vcu.edu organization: Department of Computer Science, Virginia Commonwealth University |
BookMark | eNp9kMFKAzEQhoNUsK2-gKcFz9FJNslmj1K0CgUv9RyS3WxJ2SY1SQ99e1MrCB56Gv5hvpnhm6GJD94idE_gkQA0T4lA2zIMlGAQwBk-XqEp4U2NgQs-QVOQkmNBKL9Bs5S2AECFFFO0XFufQqx627nkgq9ytDZVQ2l1wWfnD3qsRqujd35TDTHsqj66IZ9Sr7OuUgH0Lt2i60GPyd791jn6fH1ZL97w6mP5vnhe4Y7VdcaGNIZyTagQtiElcMmI0bJv2ABd21ngtaDGNNxIU_em1U3b1oOk2lormKzn6OG8dx_D18GmrLbhEH05qagAQjiTkpUpep7qYkgp2kHto9vpeFQE1EmYOgtTRZj6EaaOBZL_oM5lnYuUHLUbL6P1GU3ljt_Y-PfVBeobM4CCwg |
CitedBy_id | crossref_primary_10_1007_s10994_022_06168_x crossref_primary_10_1007_s10994_023_06353_6 crossref_primary_10_1007_s10994_024_06524_z |
Cites_doi | 10.1016/j.neunet.2019.01.012 10.1109/TSP.2015.2469642 10.1109/TCSS.2017.2732685 10.1007/s10618-019-00656-w 10.1109/HPEC.2018.8547700 10.1109/TKDE.2012.66 10.1609/aaai.v32i1.11681 10.1016/j.inffus.2020.09.004 10.1109/TNNLS.2017.2688466 10.24963/ijcai.2018/369 10.1145/1540276.1540284 10.1016/j.engappai.2015.08.001 10.1109/TPAMI.2014.2324568 10.1145/3373464.3373470 10.1145/3097983.3098007 10.1016/j.sigpro.2017.05.022 10.1109/CVPR.2019.01151 10.1145/3097983.3098087 10.1007/978-3-030-33778-0_29 10.1137/1.9781611976236.65 10.1137/1.9781611975321.10 10.1109/IJCNN48605.2020.9207377 10.1145/2523813 10.1137/19M1257718 10.1145/2939672.2939763 10.1016/j.procs.2016.05.511 10.1609/aaai.v32i1.11760 10.1109/ICDE51399.2021.00098 10.1016/j.inffus.2020.07.007 10.1137/1.9781611975673.75 10.1145/1409620.1409621 10.1109/TNNLS.2018.2860964 10.1016/j.inffus.2017.02.004 10.1109/MCI.2015.2471196 10.1016/j.inffus.2020.03.013 10.1109/TSP.2017.2690524 10.1109/TSP.2015.2417491 10.1016/j.neunet.2011.05.011 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10994-021-06054-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0565 |
EndPage | 3035 |
ExternalDocumentID | 10_1007_s10994_021_06054_y |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c433t-b17b25a1266e7117b5841ba8d74f0c9ce05362bb75b8b3db9a7993f82aeee6483 |
IEDL.DBID | AGYKE |
ISSN | 0885-6125 |
IngestDate | Fri Jul 25 01:59:58 EDT 2025 Tue Jul 01 00:46:07 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Fri Feb 21 02:45:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11-12 |
Keywords | Continual learning Decision trees Data stream mining Concept drift Online learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-b17b25a1266e7117b5841ba8d74f0c9ce05362bb75b8b3db9a7993f82aeee6483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9774-0106 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10994-021-06054-y.pdf |
PQID | 2601154884 |
PQPubID | 54194 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2601154884 crossref_primary_10_1007_s10994_021_06054_y crossref_citationtrail_10_1007_s10994_021_06054_y springer_journals_10_1007_s10994_021_06054_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Machine learning |
PublicationTitleAbbrev | Mach Learn |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Ashfahani, A., & Pratama, M. (2019). Autonomous deep learning: Continual learning approach for dynamic environments. In: Proceedings of the 2019 SIAM International Conference on Data Mining, SDM 2019, Calgary, Alberta, Canada, May 2–4, 2019, SIAM, (pp. 666–674). Maruhashi, K., Todoriki, M., Ohwa, T., Goto, K., Hasegawa, Y., Inakoshi, H., & Anai, H. (2018). Learning multi-way relations via tensor decomposition with neural networks. In: AAAI, AAAI Press. Lathauwer, L.D. (2009). A survey of tensor methods. In: ISCAS, IEEE, (pp. 2773–2776). Cyganek, B., & Wozniak, M. (2016). Efficient computation of the tensor chordal kernels. In: International Conference on Computational Science 2016, ICCS 2016, 6–8 June 2016, San Diego, California, USA, Elsevier, Procedia Computer Science, vol 80, (pp. 1702–1711). SagiORokachLExplainable decision forest: Transforming a decision forest into an interpretable treeInformation Fusion20206112413810.1016/j.inffus.2020.03.013 Shin, K., Hooi, B., Kim, J., & Faloutsos, C. (2017). Densealert: Incremental dense-subtensor detection in tensor streams. In: KDD, ACM, (pp. 1057–1066). BifetAHolmesGKirkbyRPfahringerBMOA: Massive online analysisJournal of Machine Learning Research20101116011604 GamaJZliobaiteIBifetAPechenizkiyMBouchachiaAA survey on concept drift adaptationACM Computing Survey201446444:144:3710.1145/2523813 Chhaya, R., Choudhari, J., Dasgupta, A., & Shit, S. (2020). Streaming coresets for symmetric tensor factorization. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event, PMLR, Proceedings of Machine Learning Research, vol 119, (pp. 1855–1865). FuXHuangKMaWSidiropoulosNDBroRJoint tensor factorization and outlying slab suppression with applicationsIEEE Transaction on Signal Processing2015632363156328342104110.1109/TSP.2015.2469642 GomesHMReadJBifetABarddalJPGamaJMachine learning for streaming data: State of the art, challenges, and opportunitiesSIGKDD Explore201921262210.1145/3373464.3373470 Song, Q., Huang, X., Ge, H., Caverlee, J., & Hu, X. (2017). Multi-aspect streaming tensor completion. In: KDD, ACM, (pp. 435–443). Fanaee-T, H., & Gama, J. (2016). Simtensor: A synthetic tensor data generator. CoRR abs/1612.03772. GonzálezSGarcíaSSerJDRokachLHerreraFA practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunitiesInformation Fusion20206420523710.1016/j.inffus.2020.07.007 YangSWangMFengZLiuZLiRDeep sparse tensor filtering network for synthetic aperture radar images classificationIEEE Transactions on Neural Networks and Learning Systems20182983919392410.1109/TNNLS.2017.2688466 RutkowskiLPietruczukLDudaPJaworskiMDecision trees for mining data streams based on the mcdiarmids boundIEEE Transactions on Knowledge and Data Engineering20132561272127910.1109/TKDE.2012.66 Yang, K., Gao, Y., Shen, Y., Zheng, B., & Chen, L. (2021). Dismastd: An efficient distributed multi-aspect streaming tensor decomposition. In: 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19–22, 2021 (pp. 1080–1091) IEEE. DitzlerGRoveriMAlippiCPolikarRLearning in nonstationary environments: A surveyComputational Intelligence Magazine2015104122510.1109/MCI.2015.2471196 ZyblewskiPSabourinRWozniakMPreprocessed dynamic classifier ensemble selection for highly imbalanced drifted data streamsInformation Fusion20216613815410.1016/j.inffus.2020.09.004 PinageFAdos SantosEMGamaJA drift detection method based on dynamic classifier selectionData Mining and Knowledge Discovery20203415074404940910.1007/s10618-019-00656-w Letourneau, P., Baskaran, M.M., Henretty, T., Ezick, J.R., & Lethin, R. (2018). Computationally efficient CP tensor decomposition update framework for emerging component discovery in streaming data. In: 2018 IEEE High Performance Extreme Computing Conference, HPEC 2018, Waltham, MA, USA, September 25–27, 2018, IEEE, (pp. 1–8). Rambhatla, S., Li, X., & Haupt, J.D. (2020). Provable online CP/PARAFAC decomposition of a structured tensor via dictionary learning. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6–12, 2020, virtual. SunYGuoYLuoCTroppJAUdellMLow-rank tucker approximation of a tensor from streaming dataSIAM Journal on Mathematics of Data Science20202411231150417273010.1137/19M1257718 ParisiGIKemkerRPartJLKananCWermterSContinual lifelong learning with neural networks: A reviewNeural Networks2019113547110.1016/j.neunet.2019.01.012 NakatsujiMZhangQLuXMakniBHendlerJASemantic social network analysis by cross-domain tensor factorizationIEEE Transactions on Computational Social Systems20174420721710.1109/TCSS.2017.2732685 SunJTaoDPapadimitriouSYuPSFaloutsosCIncremental tensor analysis: Theory and applicationsTKDD20082311:111:3710.1145/1409620.1409621 NieJKotlowskiWWarmuthMKOnline PCA with optimal regretJournal of Machine Learning Research201617173:1173:4935674411392.68360 Gujral, E., Theocharous, G., & Papalexakis, E.E. (2020). SPADE: streaming PARAFAC2 decomposition for large datasets. In: Demeniconi C, Chawla NV (eds) Proceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020, Cincinnati, Ohio, USA, May 7-9, 2020, SIAM, (pp. 577–585). Sahoo, D., Pham, Q., Lu, J., & Hoi, S.C.H. (2018). Online deep learning: Learning deep neural networks on the fly. In: Lang J (ed) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13–19, 2018, Stockholm, Sweden, ijcai.org. (pp 2660–2666). GuoHWuXFengWMulti-stream deep networks for human action classification with sequential tensor decompositionSignal Processing201714019820610.1016/j.sigpro.2017.05.022 da Silva Fernandes, S., Fanaee-T, H., & Gama, J. (2019). Evolving social networks analysis via tensor decompositions: From global event detection towards local pattern discovery and specification. In: Discovery Science - 22nd International Conference, DS 2019, Split, Croatia, October 28-30, 2019, Proceedings, Springer, Lecture Notes in Computer Science, vol 11828, (pp. 385–395). Gu, L., Zhou, N., & Zhao, Y. (2018). An euclidean distance based on tensor product graph diffusion related attribute value embedding for nominal data clustering. In: AAAI, AAAI Press. Aljundi, R., Kelchtermans, K., & Tuytelaars, T. (2019). Task-free continual learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, Computer Vision Foundation, IEEE, (pp. 11254–11263). LiQSchonfeldDMultilinear discriminant analysis for higher-order tensor data classificationIEEE Transactions on Pattern Analysis and Machine Intelligence201436122524253710.1109/TPAMI.2014.2324568 LiPFengJJinXZhangLXuXYanSOnline robust low-rank tensor modeling for streaming data analysisIEEE Transactions on Neural Networks and Learning Systems201930410611075394303710.1109/TNNLS.2018.2860964 KrawczykBMinkuLLGamaJStefanowskiJWozniakMEnsemble learning for data stream analysis: A surveyInformation Fusion20173713215610.1016/j.inffus.2017.02.004 SignorettoMLathauwerLDSuykensJAKA kernel-based framework to tensorial data analysisNeural Networks201124886187410.1016/j.neunet.2011.05.011 Smith, S., Huang, K., Sidiropoulos, N.D., & Karypis, G. (2018). Streaming tensor factorization for infinite data sources. In: SDM, SIAM, (pp. 81–89). Wang, S., & Minku, L.L. (2020). AUC estimation and concept drift detection for imbalanced data streams with multiple classes. In: 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, July 19–24, 2020, IEEE, (pp. 1–8). SunJIncremental pattern discovery on streams, graphs and tensorsSIGKDD Explorations2008102282910.1145/1540276.1540284 Zhou, S., Nguyen, X.V., Bailey, J., Jia, Y., & Davidson, I. (2016). Accelerating online CP decompositions for higher order tensors. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, ACM, (pp. 1375–1384). CyganekBKrawczykBWozniakMMultidimensional data classification with chordal distance based kernel and support vector machinesEngineering Application of Artificial Intelligence201546102210.1016/j.engappai.2015.08.001 MardaniMMateosGGiannakisGBSubspace learning and imputation for streaming big data matrices and tensorsIEEE Trans Signal Processing2015631026632677334176510.1109/TSP.2015.2417491 SidiropoulosNDLathauwerLDFuXHuangKPapalexakisEEFaloutsosCTensor decomposition for signal processing and machine learningIEEE Transactions on Signal Processing2017651335513582366658710.1109/TSP.2017.2690524 G Ditzler (6054_CR7) 2015; 10 GI Parisi (6054_CR25) 2019; 113 Q Li (6054_CR20) 2014; 36 L Rutkowski (6054_CR28) 2013; 25 A Bifet (6054_CR3) 2010; 11 P Zyblewski (6054_CR44) 2021; 66 X Fu (6054_CR9) 2015; 63 B Krawczyk (6054_CR16) 2017; 37 B Cyganek (6054_CR6) 2015; 46 P Li (6054_CR19) 2019; 30 J Nie (6054_CR24) 2016; 17 S González (6054_CR12) 2020; 64 Y Sun (6054_CR39) 2020; 2 6054_CR14 6054_CR36 M Nakatsuji (6054_CR23) 2017; 4 6054_CR17 6054_CR18 O Sagi (6054_CR29) 2020; 61 6054_CR1 J Sun (6054_CR37) 2008; 10 J Sun (6054_CR38) 2008; 2 6054_CR2 6054_CR4 6054_CR31 6054_CR34 6054_CR13 6054_CR35 S Yang (6054_CR42) 2018; 29 6054_CR5 6054_CR8 FA Pinage (6054_CR26) 2020; 34 cr-split#-6054_CR30.2 M Mardani (6054_CR21) 2015; 63 6054_CR27 cr-split#-6054_CR30.1 H Guo (6054_CR15) 2017; 140 ND Sidiropoulos (6054_CR32) 2017; 65 6054_CR40 J Gama (6054_CR10) 2014; 46 6054_CR41 M Signoretto (6054_CR33) 2011; 24 6054_CR43 6054_CR22 HM Gomes (6054_CR11) 2019; 21 |
References_xml | – reference: GamaJZliobaiteIBifetAPechenizkiyMBouchachiaAA survey on concept drift adaptationACM Computing Survey201446444:144:3710.1145/2523813 – reference: GomesHMReadJBifetABarddalJPGamaJMachine learning for streaming data: State of the art, challenges, and opportunitiesSIGKDD Explore201921262210.1145/3373464.3373470 – reference: PinageFAdos SantosEMGamaJA drift detection method based on dynamic classifier selectionData Mining and Knowledge Discovery20203415074404940910.1007/s10618-019-00656-w – reference: SunJTaoDPapadimitriouSYuPSFaloutsosCIncremental tensor analysis: Theory and applicationsTKDD20082311:111:3710.1145/1409620.1409621 – reference: GonzálezSGarcíaSSerJDRokachLHerreraFA practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunitiesInformation Fusion20206420523710.1016/j.inffus.2020.07.007 – reference: Lathauwer, L.D. (2009). A survey of tensor methods. In: ISCAS, IEEE, (pp. 2773–2776). – reference: MardaniMMateosGGiannakisGBSubspace learning and imputation for streaming big data matrices and tensorsIEEE Trans Signal Processing2015631026632677334176510.1109/TSP.2015.2417491 – reference: Wang, S., & Minku, L.L. (2020). AUC estimation and concept drift detection for imbalanced data streams with multiple classes. In: 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, July 19–24, 2020, IEEE, (pp. 1–8). – reference: CyganekBKrawczykBWozniakMMultidimensional data classification with chordal distance based kernel and support vector machinesEngineering Application of Artificial Intelligence201546102210.1016/j.engappai.2015.08.001 – reference: LiPFengJJinXZhangLXuXYanSOnline robust low-rank tensor modeling for streaming data analysisIEEE Transactions on Neural Networks and Learning Systems201930410611075394303710.1109/TNNLS.2018.2860964 – reference: da Silva Fernandes, S., Fanaee-T, H., & Gama, J. (2019). Evolving social networks analysis via tensor decompositions: From global event detection towards local pattern discovery and specification. In: Discovery Science - 22nd International Conference, DS 2019, Split, Croatia, October 28-30, 2019, Proceedings, Springer, Lecture Notes in Computer Science, vol 11828, (pp. 385–395). – reference: Ashfahani, A., & Pratama, M. (2019). Autonomous deep learning: Continual learning approach for dynamic environments. In: Proceedings of the 2019 SIAM International Conference on Data Mining, SDM 2019, Calgary, Alberta, Canada, May 2–4, 2019, SIAM, (pp. 666–674). – reference: KrawczykBMinkuLLGamaJStefanowskiJWozniakMEnsemble learning for data stream analysis: A surveyInformation Fusion20173713215610.1016/j.inffus.2017.02.004 – reference: BifetAHolmesGKirkbyRPfahringerBMOA: Massive online analysisJournal of Machine Learning Research20101116011604 – reference: Gujral, E., Theocharous, G., & Papalexakis, E.E. (2020). SPADE: streaming PARAFAC2 decomposition for large datasets. In: Demeniconi C, Chawla NV (eds) Proceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020, Cincinnati, Ohio, USA, May 7-9, 2020, SIAM, (pp. 577–585). – reference: Fanaee-T, H., & Gama, J. (2016). Simtensor: A synthetic tensor data generator. CoRR abs/1612.03772. – reference: SunJIncremental pattern discovery on streams, graphs and tensorsSIGKDD Explorations2008102282910.1145/1540276.1540284 – reference: Aljundi, R., Kelchtermans, K., & Tuytelaars, T. (2019). Task-free continual learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, Computer Vision Foundation, IEEE, (pp. 11254–11263). – reference: DitzlerGRoveriMAlippiCPolikarRLearning in nonstationary environments: A surveyComputational Intelligence Magazine2015104122510.1109/MCI.2015.2471196 – reference: Smith, S., Huang, K., Sidiropoulos, N.D., & Karypis, G. (2018). Streaming tensor factorization for infinite data sources. In: SDM, SIAM, (pp. 81–89). – reference: SidiropoulosNDLathauwerLDFuXHuangKPapalexakisEEFaloutsosCTensor decomposition for signal processing and machine learningIEEE Transactions on Signal Processing2017651335513582366658710.1109/TSP.2017.2690524 – reference: SunYGuoYLuoCTroppJAUdellMLow-rank tucker approximation of a tensor from streaming dataSIAM Journal on Mathematics of Data Science20202411231150417273010.1137/19M1257718 – reference: YangSWangMFengZLiuZLiRDeep sparse tensor filtering network for synthetic aperture radar images classificationIEEE Transactions on Neural Networks and Learning Systems20182983919392410.1109/TNNLS.2017.2688466 – reference: SignorettoMLathauwerLDSuykensJAKA kernel-based framework to tensorial data analysisNeural Networks201124886187410.1016/j.neunet.2011.05.011 – reference: ZyblewskiPSabourinRWozniakMPreprocessed dynamic classifier ensemble selection for highly imbalanced drifted data streamsInformation Fusion20216613815410.1016/j.inffus.2020.09.004 – reference: FuXHuangKMaWSidiropoulosNDBroRJoint tensor factorization and outlying slab suppression with applicationsIEEE Transaction on Signal Processing2015632363156328342104110.1109/TSP.2015.2469642 – reference: Song, Q., Huang, X., Ge, H., Caverlee, J., & Hu, X. (2017). Multi-aspect streaming tensor completion. In: KDD, ACM, (pp. 435–443). – reference: Rambhatla, S., Li, X., & Haupt, J.D. (2020). Provable online CP/PARAFAC decomposition of a structured tensor via dictionary learning. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6–12, 2020, virtual. – reference: Letourneau, P., Baskaran, M.M., Henretty, T., Ezick, J.R., & Lethin, R. (2018). Computationally efficient CP tensor decomposition update framework for emerging component discovery in streaming data. In: 2018 IEEE High Performance Extreme Computing Conference, HPEC 2018, Waltham, MA, USA, September 25–27, 2018, IEEE, (pp. 1–8). – reference: Zhou, S., Nguyen, X.V., Bailey, J., Jia, Y., & Davidson, I. (2016). Accelerating online CP decompositions for higher order tensors. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, ACM, (pp. 1375–1384). – reference: ParisiGIKemkerRPartJLKananCWermterSContinual lifelong learning with neural networks: A reviewNeural Networks2019113547110.1016/j.neunet.2019.01.012 – reference: Shin, K., Hooi, B., Kim, J., & Faloutsos, C. (2017). Densealert: Incremental dense-subtensor detection in tensor streams. In: KDD, ACM, (pp. 1057–1066). – reference: LiQSchonfeldDMultilinear discriminant analysis for higher-order tensor data classificationIEEE Transactions on Pattern Analysis and Machine Intelligence201436122524253710.1109/TPAMI.2014.2324568 – reference: NieJKotlowskiWWarmuthMKOnline PCA with optimal regretJournal of Machine Learning Research201617173:1173:4935674411392.68360 – reference: Cyganek, B., & Wozniak, M. (2016). Efficient computation of the tensor chordal kernels. In: International Conference on Computational Science 2016, ICCS 2016, 6–8 June 2016, San Diego, California, USA, Elsevier, Procedia Computer Science, vol 80, (pp. 1702–1711). – reference: Yang, K., Gao, Y., Shen, Y., Zheng, B., & Chen, L. (2021). Dismastd: An efficient distributed multi-aspect streaming tensor decomposition. In: 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19–22, 2021 (pp. 1080–1091) IEEE. – reference: NakatsujiMZhangQLuXMakniBHendlerJASemantic social network analysis by cross-domain tensor factorizationIEEE Transactions on Computational Social Systems20174420721710.1109/TCSS.2017.2732685 – reference: Chhaya, R., Choudhari, J., Dasgupta, A., & Shit, S. (2020). Streaming coresets for symmetric tensor factorization. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event, PMLR, Proceedings of Machine Learning Research, vol 119, (pp. 1855–1865). – reference: Maruhashi, K., Todoriki, M., Ohwa, T., Goto, K., Hasegawa, Y., Inakoshi, H., & Anai, H. (2018). Learning multi-way relations via tensor decomposition with neural networks. In: AAAI, AAAI Press. – reference: Gu, L., Zhou, N., & Zhao, Y. (2018). An euclidean distance based on tensor product graph diffusion related attribute value embedding for nominal data clustering. In: AAAI, AAAI Press. – reference: RutkowskiLPietruczukLDudaPJaworskiMDecision trees for mining data streams based on the mcdiarmids boundIEEE Transactions on Knowledge and Data Engineering20132561272127910.1109/TKDE.2012.66 – reference: Sahoo, D., Pham, Q., Lu, J., & Hoi, S.C.H. (2018). Online deep learning: Learning deep neural networks on the fly. In: Lang J (ed) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13–19, 2018, Stockholm, Sweden, ijcai.org. (pp 2660–2666). – reference: GuoHWuXFengWMulti-stream deep networks for human action classification with sequential tensor decompositionSignal Processing201714019820610.1016/j.sigpro.2017.05.022 – reference: SagiORokachLExplainable decision forest: Transforming a decision forest into an interpretable treeInformation Fusion20206112413810.1016/j.inffus.2020.03.013 – volume: 113 start-page: 54 year: 2019 ident: 6054_CR25 publication-title: Neural Networks doi: 10.1016/j.neunet.2019.01.012 – volume: 63 start-page: 6315 issue: 23 year: 2015 ident: 6054_CR9 publication-title: IEEE Transaction on Signal Processing doi: 10.1109/TSP.2015.2469642 – volume: 4 start-page: 207 issue: 4 year: 2017 ident: 6054_CR23 publication-title: IEEE Transactions on Computational Social Systems doi: 10.1109/TCSS.2017.2732685 – volume: 34 start-page: 50 issue: 1 year: 2020 ident: 6054_CR26 publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-019-00656-w – ident: 6054_CR18 doi: 10.1109/HPEC.2018.8547700 – volume: 25 start-page: 1272 issue: 6 year: 2013 ident: 6054_CR28 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2012.66 – ident: 6054_CR13 doi: 10.1609/aaai.v32i1.11681 – ident: 6054_CR27 – volume: 66 start-page: 138 year: 2021 ident: 6054_CR44 publication-title: Information Fusion doi: 10.1016/j.inffus.2020.09.004 – volume: 29 start-page: 3919 issue: 8 year: 2018 ident: 6054_CR42 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2688466 – ident: #cr-split#-6054_CR30.1 doi: 10.24963/ijcai.2018/369 – volume: 10 start-page: 28 issue: 2 year: 2008 ident: 6054_CR37 publication-title: SIGKDD Explorations doi: 10.1145/1540276.1540284 – volume: 46 start-page: 10 year: 2015 ident: 6054_CR6 publication-title: Engineering Application of Artificial Intelligence doi: 10.1016/j.engappai.2015.08.001 – volume: 36 start-page: 2524 issue: 12 year: 2014 ident: 6054_CR20 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2014.2324568 – volume: 21 start-page: 6 issue: 2 year: 2019 ident: 6054_CR11 publication-title: SIGKDD Explore doi: 10.1145/3373464.3373470 – ident: 6054_CR36 doi: 10.1145/3097983.3098007 – volume: 140 start-page: 198 year: 2017 ident: 6054_CR15 publication-title: Signal Processing doi: 10.1016/j.sigpro.2017.05.022 – ident: 6054_CR1 doi: 10.1109/CVPR.2019.01151 – ident: 6054_CR31 doi: 10.1145/3097983.3098087 – ident: 6054_CR34 doi: 10.1007/978-3-030-33778-0_29 – volume: 11 start-page: 1601 year: 2010 ident: 6054_CR3 publication-title: Journal of Machine Learning Research – ident: 6054_CR14 doi: 10.1137/1.9781611976236.65 – ident: 6054_CR4 – ident: 6054_CR8 – ident: 6054_CR35 doi: 10.1137/1.9781611975321.10 – ident: 6054_CR17 – ident: 6054_CR40 doi: 10.1109/IJCNN48605.2020.9207377 – volume: 46 start-page: 44:1 issue: 4 year: 2014 ident: 6054_CR10 publication-title: ACM Computing Survey doi: 10.1145/2523813 – volume: 2 start-page: 1123 issue: 4 year: 2020 ident: 6054_CR39 publication-title: SIAM Journal on Mathematics of Data Science doi: 10.1137/19M1257718 – ident: 6054_CR43 doi: 10.1145/2939672.2939763 – ident: 6054_CR5 doi: 10.1016/j.procs.2016.05.511 – ident: 6054_CR22 doi: 10.1609/aaai.v32i1.11760 – volume: 17 start-page: 173:1 year: 2016 ident: 6054_CR24 publication-title: Journal of Machine Learning Research – ident: 6054_CR41 doi: 10.1109/ICDE51399.2021.00098 – volume: 64 start-page: 205 year: 2020 ident: 6054_CR12 publication-title: Information Fusion doi: 10.1016/j.inffus.2020.07.007 – ident: 6054_CR2 doi: 10.1137/1.9781611975673.75 – volume: 2 start-page: 11:1 issue: 3 year: 2008 ident: 6054_CR38 publication-title: TKDD doi: 10.1145/1409620.1409621 – volume: 30 start-page: 1061 issue: 4 year: 2019 ident: 6054_CR19 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2860964 – volume: 37 start-page: 132 year: 2017 ident: 6054_CR16 publication-title: Information Fusion doi: 10.1016/j.inffus.2017.02.004 – volume: 10 start-page: 12 issue: 4 year: 2015 ident: 6054_CR7 publication-title: Computational Intelligence Magazine doi: 10.1109/MCI.2015.2471196 – volume: 61 start-page: 124 year: 2020 ident: 6054_CR29 publication-title: Information Fusion doi: 10.1016/j.inffus.2020.03.013 – volume: 65 start-page: 3551 issue: 13 year: 2017 ident: 6054_CR32 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2017.2690524 – volume: 63 start-page: 2663 issue: 10 year: 2015 ident: 6054_CR21 publication-title: IEEE Trans Signal Processing doi: 10.1109/TSP.2015.2417491 – ident: #cr-split#-6054_CR30.2 – volume: 24 start-page: 861 issue: 8 year: 2011 ident: 6054_CR33 publication-title: Neural Networks doi: 10.1016/j.neunet.2011.05.011 |
SSID | ssj0002686 |
Score | 2.3945312 |
Snippet | Data stream classification is one of the most vital areas of contemporary machine learning, as many real-life problems generate data continuously and in large... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3015 |
SubjectTerms | Artificial Intelligence Classification Computer Science Control Data transmission Decision trees Drift Graphical representations Kernel functions Machine Learning Mathematical analysis Mechatronics Natural Language Processing (NLP) Robotics Simulation and Modeling Special Issue: Foundations of Data Science Tensors Vectors (mathematics) |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BWVh4IwoFeWADi8ZxXhNCiLZCgqmVukW-2EGVoC1NGfrv8blOI5BgjBJbyvlxn3133wdwLaUJKH7FLZxHLk2oeWa6mivMktLI0h4pqN755TUejOTzOBr7C7fKp1XWe6LbqPWsoDvyO6K-Inidyvv5JyfVKIquegmNbdgJrKeheZ72-pudWMRO6dEupIiTJ_dFM750zpHiCsr7sbCFr346pgZt_gqQOr_TO4A9DxjZw3qED2HLTI9gvxZjYH5tHkN_aA-kswXTXjSHUbi5YhaTMkpHnxD1KPMaEW-MqkqYXkxKynpmlCbKqGpEfVQnMOo9DR8H3Ksk8EKG4ZJjkKCIFP2_SQL7YCFFgCrViSy7RVaQ9kMsEJMIUww1ZiqxmKRMhTLGxDINT6E1nU3NGbAIRWwyGafaoHVaoUKhtdQoi5KI-0wbgtpEeeEpxEnJ4j1vyI_JrLk1a-7Mmq_acLNpM18TaPz7dae2fO4XU5U3Q9-G23o0mtd_93b-f28XsCtoArjklA60losvc2khxhKv3Dz6BnmjzII priority: 102 providerName: ProQuest |
Title | Tensor decision trees for continual learning from drifting data streams |
URI | https://link.springer.com/article/10.1007/s10994-021-06054-y https://www.proquest.com/docview/2601154884 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vXixPrFayx686YrZbJLNsZWmRbGIGNBTyGY3ImorfRzqr3cn3bRaVPAUQjZLMvuYb5lvvgE44Vw7GL-iBs5LyrWraKgvFE1lGOSa5-ZIgfnON32_F_OrB-_BJoWNS7Z7GZIsduovyW6FjC1Dpo4BGnS2DlXPEaGoQLXVfbzuLHZg5hcVHs0C8ih6cJss83Mv3x3SEmWuBEYLfxPVIC6_dE4zeTmfTuR59rEi4vjfX9mCTQtASWs-Y7ZhTQ92oFYWdyB2re9C994ccIcjomwRHoLh6zExGJcgvf0ZpUyJrTnxRDBLhajRc44saoK0U4JZKOnbeA_iqHN_2aO26gLNuOtOqHQCybzUMZ5bB465MRDFkalQAc8vsjDDWhI-kzLwpJCukmEaGIyTC5ZqrX0u3H2oDIYDfQDEk8zXIfeF0tI4QTeVTCmuJM9yFALUdXBK0yeZlSTHyhivyVJMGS2VGEslhaWSWR1OF--8zwU5_mzdKEc0sYtznKCKGp7UBK_DWTlAy8e_93b4v-ZHsMFwjAvySwMqk9FUHxsIM5FNWBdRt2nmbdRu95t2_ppru9O_vTNPY9b6BG-j7DA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1Be4ALO6KsPsAJLIjjbAeE2Fu6CKFW6i3EsYMqQQtNEepP8Y14UocIJLj1GCXxYTKeec7MvAewz7mysH5FNZwXlCtb0kCdSBqJwEsUT_SRAuedmy232uF3Xac7A5_5LAy2VeYxMQvUchDjP_JjpL5CeO3zs9c3iqpRWF3NJTQmblFX4w99ZEtPa1f6-x4wdnPdvqxSoypAY27bIyosTzAnsnRmUp6lL3QKtkTkS48nJ3EQo1aCy4TwHOELW4og8nQOT3wWKaVc7tt63Vkoc5xoLUH54rp1__Ad-5mbaUvqretQxA5mTMcM62U0vAw7jTRQouOfqbDAt79Kslmmu1mCBQNRyfnEp5ZhRvVXYDGXfyAmGqzCbVsfgQdDIo1MD8ECd0o0CibYAN9DslNiVCmeCM6xEDnsJdhnTbAxleCcSvSSrkFnKhZch1J_0FcbQBzBXBVw15dK6DRpR4JJyaXgcYJUgaoCVm6iMDak5aid8RwWdMto1lCbNczMGo4rcPj9zuuEsuPfp7dzy4dm-6Zh4WwVOMq_RnH779U2_19tD-aq7WYjbNRa9S2YZ-gMWWvMNpRGw3e1owHOSOwaryLwOG1H_gJjwQq2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8MwDLVgSIgL34jBgBzgBBE0Tb8OCCFgGwwmDkzarTRNiibBNrYhtL_Gr8PuUiaQ4MaxapuD68TPtf0ewL6UxqH6FUc4r7g0ruaROdE8UVGQGZlhSkHzzndNv96SN22vPQMfxSwMtVUWZ2J-UOteSv_Ij4n6iuB1KI8z2xZxf1k9679yUpCiSmshpzFxkYYZv2P6Njy9vsRvfSBE9erhos6twgBPpeuOuHICJbzEwShlAgcvMBw7Kgl1ILOTNEpJN8EXSgWeCpWrVZQEGM-zUCTGGF-GLq47C3OBG0SU-IXV2lcUEH6uMomb2OOEIuzAjh3bywl5BfUcIWTi4-9BcYp0fxRn85hXXYZFC1bZ-cS7VmDGdFdhqRCCYPZcWIPaAybDvQHTVrCHUal7yBAPM2qF7xDtKbP6FE-MJlqYHnQy6rhm1KLKaGIleRmuQ-tf7LcBpW6vazaBeUr4JpJ-qI3CgOkmSmgttZJpRqSBpgxOYaI4tfTlpKLxHE-Jl8msMZo1zs0aj8tw-PVOf0Le8efTlcLysd3Iw3jqdmU4Kr7G9Pbvq239vdoezKP7xrfXzcY2LAjyhbxHpgKl0eDN7CDSGand3KUYPP63D38CHNsNhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+decision+trees+for+continual+learning+from+drifting+data+streams&rft.jtitle=Machine+learning&rft.au=Krawczyk%2C+Bartosz&rft.date=2021-12-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=110&rft.issue=11-12&rft.spage=3015&rft.epage=3035&rft_id=info:doi/10.1007%2Fs10994-021-06054-y&rft.externalDocID=10_1007_s10994_021_06054_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |