Tensor decision trees for continual learning from drifting data streams

Data stream classification is one of the most vital areas of contemporary machine learning, as many real-life problems generate data continuously and in large volumes. However, most of research in this area focuses on vector-based representations, which are unsuitable for capturing properties of mor...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 110; no. 11-12; pp. 3015 - 3035
Main Author Krawczyk, Bartosz
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
DOI10.1007/s10994-021-06054-y

Cover

Abstract Data stream classification is one of the most vital areas of contemporary machine learning, as many real-life problems generate data continuously and in large volumes. However, most of research in this area focuses on vector-based representations, which are unsuitable for capturing properties of more complex multi-dimensional structures, such as images and video sequences. In this paper, we propose a novel methodology for learning adaptive decision trees from data streams of tensors. We introduce Chordal Kernel Decision Tree for continual learning from tensor data streams. In order to maintain the tensor characteristics, we propose to train and update classifiers in the kernel space designed to work with tensor representation. We use chordal distance to compute similarities between tensors and then apply it as a new feature space in which decision trees are trained. This allows for a direct decision tree induction on tensors. In order to accommodate the streaming and drifting nature of data, we propose a concept drift detection scheme based on tensor representation. It allows us to reconstruct the kernel feature space every time when change is detected. The proposed approach allows for fast and efficient induction of decision trees on streaming data with tensor representation. Experimental study, conducted on 4 real-world and 52 artificial large-scale tensor data streams, shows that using the native tensor feature space leads to more accurate classification than outperforms the vectorized representations.
AbstractList Data stream classification is one of the most vital areas of contemporary machine learning, as many real-life problems generate data continuously and in large volumes. However, most of research in this area focuses on vector-based representations, which are unsuitable for capturing properties of more complex multi-dimensional structures, such as images and video sequences. In this paper, we propose a novel methodology for learning adaptive decision trees from data streams of tensors. We introduce Chordal Kernel Decision Tree for continual learning from tensor data streams. In order to maintain the tensor characteristics, we propose to train and update classifiers in the kernel space designed to work with tensor representation. We use chordal distance to compute similarities between tensors and then apply it as a new feature space in which decision trees are trained. This allows for a direct decision tree induction on tensors. In order to accommodate the streaming and drifting nature of data, we propose a concept drift detection scheme based on tensor representation. It allows us to reconstruct the kernel feature space every time when change is detected. The proposed approach allows for fast and efficient induction of decision trees on streaming data with tensor representation. Experimental study, conducted on 4 real-world and 52 artificial large-scale tensor data streams, shows that using the native tensor feature space leads to more accurate classification than outperforms the vectorized representations.
Author Krawczyk, Bartosz
Author_xml – sequence: 1
  givenname: Bartosz
  orcidid: 0000-0002-9774-0106
  surname: Krawczyk
  fullname: Krawczyk, Bartosz
  email: bkrawczyk@vcu.edu
  organization: Department of Computer Science, Virginia Commonwealth University
BookMark eNp9kMFKAzEQhoNUsK2-gKcFz9FJNslmj1K0CgUv9RyS3WxJ2SY1SQ99e1MrCB56Gv5hvpnhm6GJD94idE_gkQA0T4lA2zIMlGAQwBk-XqEp4U2NgQs-QVOQkmNBKL9Bs5S2AECFFFO0XFufQqx627nkgq9ytDZVQ2l1wWfnD3qsRqujd35TDTHsqj66IZ9Sr7OuUgH0Lt2i60GPyd791jn6fH1ZL97w6mP5vnhe4Y7VdcaGNIZyTagQtiElcMmI0bJv2ABd21ngtaDGNNxIU_em1U3b1oOk2lormKzn6OG8dx_D18GmrLbhEH05qagAQjiTkpUpep7qYkgp2kHto9vpeFQE1EmYOgtTRZj6EaaOBZL_oM5lnYuUHLUbL6P1GU3ljt_Y-PfVBeobM4CCwg
CitedBy_id crossref_primary_10_1007_s10994_022_06168_x
crossref_primary_10_1007_s10994_023_06353_6
crossref_primary_10_1007_s10994_024_06524_z
Cites_doi 10.1016/j.neunet.2019.01.012
10.1109/TSP.2015.2469642
10.1109/TCSS.2017.2732685
10.1007/s10618-019-00656-w
10.1109/HPEC.2018.8547700
10.1109/TKDE.2012.66
10.1609/aaai.v32i1.11681
10.1016/j.inffus.2020.09.004
10.1109/TNNLS.2017.2688466
10.24963/ijcai.2018/369
10.1145/1540276.1540284
10.1016/j.engappai.2015.08.001
10.1109/TPAMI.2014.2324568
10.1145/3373464.3373470
10.1145/3097983.3098007
10.1016/j.sigpro.2017.05.022
10.1109/CVPR.2019.01151
10.1145/3097983.3098087
10.1007/978-3-030-33778-0_29
10.1137/1.9781611976236.65
10.1137/1.9781611975321.10
10.1109/IJCNN48605.2020.9207377
10.1145/2523813
10.1137/19M1257718
10.1145/2939672.2939763
10.1016/j.procs.2016.05.511
10.1609/aaai.v32i1.11760
10.1109/ICDE51399.2021.00098
10.1016/j.inffus.2020.07.007
10.1137/1.9781611975673.75
10.1145/1409620.1409621
10.1109/TNNLS.2018.2860964
10.1016/j.inffus.2017.02.004
10.1109/MCI.2015.2471196
10.1016/j.inffus.2020.03.013
10.1109/TSP.2017.2690524
10.1109/TSP.2015.2417491
10.1016/j.neunet.2011.05.011
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-021-06054-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 3035
ExternalDocumentID 10_1007_s10994_021_06054_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c433t-b17b25a1266e7117b5841ba8d74f0c9ce05362bb75b8b3db9a7993f82aeee6483
IEDL.DBID AGYKE
ISSN 0885-6125
IngestDate Fri Jul 25 01:59:58 EDT 2025
Tue Jul 01 00:46:07 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Fri Feb 21 02:45:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11-12
Keywords Continual learning
Decision trees
Data stream mining
Concept drift
Online learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-b17b25a1266e7117b5841ba8d74f0c9ce05362bb75b8b3db9a7993f82aeee6483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9774-0106
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10994-021-06054-y.pdf
PQID 2601154884
PQPubID 54194
PageCount 21
ParticipantIDs proquest_journals_2601154884
crossref_primary_10_1007_s10994_021_06054_y
crossref_citationtrail_10_1007_s10994_021_06054_y
springer_journals_10_1007_s10994_021_06054_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ashfahani, A., & Pratama, M. (2019). Autonomous deep learning: Continual learning approach for dynamic environments. In: Proceedings of the 2019 SIAM International Conference on Data Mining, SDM 2019, Calgary, Alberta, Canada, May 2–4, 2019, SIAM, (pp. 666–674).
Maruhashi, K., Todoriki, M., Ohwa, T., Goto, K., Hasegawa, Y., Inakoshi, H., & Anai, H. (2018). Learning multi-way relations via tensor decomposition with neural networks. In: AAAI, AAAI Press.
Lathauwer, L.D. (2009). A survey of tensor methods. In: ISCAS, IEEE, (pp. 2773–2776).
Cyganek, B., & Wozniak, M. (2016). Efficient computation of the tensor chordal kernels. In: International Conference on Computational Science 2016, ICCS 2016, 6–8 June 2016, San Diego, California, USA, Elsevier, Procedia Computer Science, vol 80, (pp. 1702–1711).
SagiORokachLExplainable decision forest: Transforming a decision forest into an interpretable treeInformation Fusion20206112413810.1016/j.inffus.2020.03.013
Shin, K., Hooi, B., Kim, J., & Faloutsos, C. (2017). Densealert: Incremental dense-subtensor detection in tensor streams. In: KDD, ACM, (pp. 1057–1066).
BifetAHolmesGKirkbyRPfahringerBMOA: Massive online analysisJournal of Machine Learning Research20101116011604
GamaJZliobaiteIBifetAPechenizkiyMBouchachiaAA survey on concept drift adaptationACM Computing Survey201446444:144:3710.1145/2523813
Chhaya, R., Choudhari, J., Dasgupta, A., & Shit, S. (2020). Streaming coresets for symmetric tensor factorization. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event, PMLR, Proceedings of Machine Learning Research, vol 119, (pp. 1855–1865).
FuXHuangKMaWSidiropoulosNDBroRJoint tensor factorization and outlying slab suppression with applicationsIEEE Transaction on Signal Processing2015632363156328342104110.1109/TSP.2015.2469642
GomesHMReadJBifetABarddalJPGamaJMachine learning for streaming data: State of the art, challenges, and opportunitiesSIGKDD Explore201921262210.1145/3373464.3373470
Song, Q., Huang, X., Ge, H., Caverlee, J., & Hu, X. (2017). Multi-aspect streaming tensor completion. In: KDD, ACM, (pp. 435–443).
Fanaee-T, H., & Gama, J. (2016). Simtensor: A synthetic tensor data generator. CoRR abs/1612.03772.
GonzálezSGarcíaSSerJDRokachLHerreraFA practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunitiesInformation Fusion20206420523710.1016/j.inffus.2020.07.007
YangSWangMFengZLiuZLiRDeep sparse tensor filtering network for synthetic aperture radar images classificationIEEE Transactions on Neural Networks and Learning Systems20182983919392410.1109/TNNLS.2017.2688466
RutkowskiLPietruczukLDudaPJaworskiMDecision trees for mining data streams based on the mcdiarmids boundIEEE Transactions on Knowledge and Data Engineering20132561272127910.1109/TKDE.2012.66
Yang, K., Gao, Y., Shen, Y., Zheng, B., & Chen, L. (2021). Dismastd: An efficient distributed multi-aspect streaming tensor decomposition. In: 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19–22, 2021 (pp. 1080–1091) IEEE.
DitzlerGRoveriMAlippiCPolikarRLearning in nonstationary environments: A surveyComputational Intelligence Magazine2015104122510.1109/MCI.2015.2471196
ZyblewskiPSabourinRWozniakMPreprocessed dynamic classifier ensemble selection for highly imbalanced drifted data streamsInformation Fusion20216613815410.1016/j.inffus.2020.09.004
PinageFAdos SantosEMGamaJA drift detection method based on dynamic classifier selectionData Mining and Knowledge Discovery20203415074404940910.1007/s10618-019-00656-w
Letourneau, P., Baskaran, M.M., Henretty, T., Ezick, J.R., & Lethin, R. (2018). Computationally efficient CP tensor decomposition update framework for emerging component discovery in streaming data. In: 2018 IEEE High Performance Extreme Computing Conference, HPEC 2018, Waltham, MA, USA, September 25–27, 2018, IEEE, (pp. 1–8).
Rambhatla, S., Li, X., & Haupt, J.D. (2020). Provable online CP/PARAFAC decomposition of a structured tensor via dictionary learning. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6–12, 2020, virtual.
SunYGuoYLuoCTroppJAUdellMLow-rank tucker approximation of a tensor from streaming dataSIAM Journal on Mathematics of Data Science20202411231150417273010.1137/19M1257718
ParisiGIKemkerRPartJLKananCWermterSContinual lifelong learning with neural networks: A reviewNeural Networks2019113547110.1016/j.neunet.2019.01.012
NakatsujiMZhangQLuXMakniBHendlerJASemantic social network analysis by cross-domain tensor factorizationIEEE Transactions on Computational Social Systems20174420721710.1109/TCSS.2017.2732685
SunJTaoDPapadimitriouSYuPSFaloutsosCIncremental tensor analysis: Theory and applicationsTKDD20082311:111:3710.1145/1409620.1409621
NieJKotlowskiWWarmuthMKOnline PCA with optimal regretJournal of Machine Learning Research201617173:1173:4935674411392.68360
Gujral, E., Theocharous, G., & Papalexakis, E.E. (2020). SPADE: streaming PARAFAC2 decomposition for large datasets. In: Demeniconi C, Chawla NV (eds) Proceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020, Cincinnati, Ohio, USA, May 7-9, 2020, SIAM, (pp. 577–585).
Sahoo, D., Pham, Q., Lu, J., & Hoi, S.C.H. (2018). Online deep learning: Learning deep neural networks on the fly. In: Lang J (ed) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13–19, 2018, Stockholm, Sweden, ijcai.org. (pp 2660–2666).
GuoHWuXFengWMulti-stream deep networks for human action classification with sequential tensor decompositionSignal Processing201714019820610.1016/j.sigpro.2017.05.022
da Silva Fernandes, S., Fanaee-T, H., & Gama, J. (2019). Evolving social networks analysis via tensor decompositions: From global event detection towards local pattern discovery and specification. In: Discovery Science - 22nd International Conference, DS 2019, Split, Croatia, October 28-30, 2019, Proceedings, Springer, Lecture Notes in Computer Science, vol 11828, (pp. 385–395).
Gu, L., Zhou, N., & Zhao, Y. (2018). An euclidean distance based on tensor product graph diffusion related attribute value embedding for nominal data clustering. In: AAAI, AAAI Press.
Aljundi, R., Kelchtermans, K., & Tuytelaars, T. (2019). Task-free continual learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, Computer Vision Foundation, IEEE, (pp. 11254–11263).
LiQSchonfeldDMultilinear discriminant analysis for higher-order tensor data classificationIEEE Transactions on Pattern Analysis and Machine Intelligence201436122524253710.1109/TPAMI.2014.2324568
LiPFengJJinXZhangLXuXYanSOnline robust low-rank tensor modeling for streaming data analysisIEEE Transactions on Neural Networks and Learning Systems201930410611075394303710.1109/TNNLS.2018.2860964
KrawczykBMinkuLLGamaJStefanowskiJWozniakMEnsemble learning for data stream analysis: A surveyInformation Fusion20173713215610.1016/j.inffus.2017.02.004
SignorettoMLathauwerLDSuykensJAKA kernel-based framework to tensorial data analysisNeural Networks201124886187410.1016/j.neunet.2011.05.011
Smith, S., Huang, K., Sidiropoulos, N.D., & Karypis, G. (2018). Streaming tensor factorization for infinite data sources. In: SDM, SIAM, (pp. 81–89).
Wang, S., & Minku, L.L. (2020). AUC estimation and concept drift detection for imbalanced data streams with multiple classes. In: 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, July 19–24, 2020, IEEE, (pp. 1–8).
SunJIncremental pattern discovery on streams, graphs and tensorsSIGKDD Explorations2008102282910.1145/1540276.1540284
Zhou, S., Nguyen, X.V., Bailey, J., Jia, Y., & Davidson, I. (2016). Accelerating online CP decompositions for higher order tensors. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, ACM, (pp. 1375–1384).
CyganekBKrawczykBWozniakMMultidimensional data classification with chordal distance based kernel and support vector machinesEngineering Application of Artificial Intelligence201546102210.1016/j.engappai.2015.08.001
MardaniMMateosGGiannakisGBSubspace learning and imputation for streaming big data matrices and tensorsIEEE Trans Signal Processing2015631026632677334176510.1109/TSP.2015.2417491
SidiropoulosNDLathauwerLDFuXHuangKPapalexakisEEFaloutsosCTensor decomposition for signal processing and machine learningIEEE Transactions on Signal Processing2017651335513582366658710.1109/TSP.2017.2690524
G Ditzler (6054_CR7) 2015; 10
GI Parisi (6054_CR25) 2019; 113
Q Li (6054_CR20) 2014; 36
L Rutkowski (6054_CR28) 2013; 25
A Bifet (6054_CR3) 2010; 11
P Zyblewski (6054_CR44) 2021; 66
X Fu (6054_CR9) 2015; 63
B Krawczyk (6054_CR16) 2017; 37
B Cyganek (6054_CR6) 2015; 46
P Li (6054_CR19) 2019; 30
J Nie (6054_CR24) 2016; 17
S González (6054_CR12) 2020; 64
Y Sun (6054_CR39) 2020; 2
6054_CR14
6054_CR36
M Nakatsuji (6054_CR23) 2017; 4
6054_CR17
6054_CR18
O Sagi (6054_CR29) 2020; 61
6054_CR1
J Sun (6054_CR37) 2008; 10
J Sun (6054_CR38) 2008; 2
6054_CR2
6054_CR4
6054_CR31
6054_CR34
6054_CR13
6054_CR35
S Yang (6054_CR42) 2018; 29
6054_CR5
6054_CR8
FA Pinage (6054_CR26) 2020; 34
cr-split#-6054_CR30.2
M Mardani (6054_CR21) 2015; 63
6054_CR27
cr-split#-6054_CR30.1
H Guo (6054_CR15) 2017; 140
ND Sidiropoulos (6054_CR32) 2017; 65
6054_CR40
J Gama (6054_CR10) 2014; 46
6054_CR41
M Signoretto (6054_CR33) 2011; 24
6054_CR43
6054_CR22
HM Gomes (6054_CR11) 2019; 21
References_xml – reference: GamaJZliobaiteIBifetAPechenizkiyMBouchachiaAA survey on concept drift adaptationACM Computing Survey201446444:144:3710.1145/2523813
– reference: GomesHMReadJBifetABarddalJPGamaJMachine learning for streaming data: State of the art, challenges, and opportunitiesSIGKDD Explore201921262210.1145/3373464.3373470
– reference: PinageFAdos SantosEMGamaJA drift detection method based on dynamic classifier selectionData Mining and Knowledge Discovery20203415074404940910.1007/s10618-019-00656-w
– reference: SunJTaoDPapadimitriouSYuPSFaloutsosCIncremental tensor analysis: Theory and applicationsTKDD20082311:111:3710.1145/1409620.1409621
– reference: GonzálezSGarcíaSSerJDRokachLHerreraFA practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunitiesInformation Fusion20206420523710.1016/j.inffus.2020.07.007
– reference: Lathauwer, L.D. (2009). A survey of tensor methods. In: ISCAS, IEEE, (pp. 2773–2776).
– reference: MardaniMMateosGGiannakisGBSubspace learning and imputation for streaming big data matrices and tensorsIEEE Trans Signal Processing2015631026632677334176510.1109/TSP.2015.2417491
– reference: Wang, S., & Minku, L.L. (2020). AUC estimation and concept drift detection for imbalanced data streams with multiple classes. In: 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, July 19–24, 2020, IEEE, (pp. 1–8).
– reference: CyganekBKrawczykBWozniakMMultidimensional data classification with chordal distance based kernel and support vector machinesEngineering Application of Artificial Intelligence201546102210.1016/j.engappai.2015.08.001
– reference: LiPFengJJinXZhangLXuXYanSOnline robust low-rank tensor modeling for streaming data analysisIEEE Transactions on Neural Networks and Learning Systems201930410611075394303710.1109/TNNLS.2018.2860964
– reference: da Silva Fernandes, S., Fanaee-T, H., & Gama, J. (2019). Evolving social networks analysis via tensor decompositions: From global event detection towards local pattern discovery and specification. In: Discovery Science - 22nd International Conference, DS 2019, Split, Croatia, October 28-30, 2019, Proceedings, Springer, Lecture Notes in Computer Science, vol 11828, (pp. 385–395).
– reference: Ashfahani, A., & Pratama, M. (2019). Autonomous deep learning: Continual learning approach for dynamic environments. In: Proceedings of the 2019 SIAM International Conference on Data Mining, SDM 2019, Calgary, Alberta, Canada, May 2–4, 2019, SIAM, (pp. 666–674).
– reference: KrawczykBMinkuLLGamaJStefanowskiJWozniakMEnsemble learning for data stream analysis: A surveyInformation Fusion20173713215610.1016/j.inffus.2017.02.004
– reference: BifetAHolmesGKirkbyRPfahringerBMOA: Massive online analysisJournal of Machine Learning Research20101116011604
– reference: Gujral, E., Theocharous, G., & Papalexakis, E.E. (2020). SPADE: streaming PARAFAC2 decomposition for large datasets. In: Demeniconi C, Chawla NV (eds) Proceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020, Cincinnati, Ohio, USA, May 7-9, 2020, SIAM, (pp. 577–585).
– reference: Fanaee-T, H., & Gama, J. (2016). Simtensor: A synthetic tensor data generator. CoRR abs/1612.03772.
– reference: SunJIncremental pattern discovery on streams, graphs and tensorsSIGKDD Explorations2008102282910.1145/1540276.1540284
– reference: Aljundi, R., Kelchtermans, K., & Tuytelaars, T. (2019). Task-free continual learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, Computer Vision Foundation, IEEE, (pp. 11254–11263).
– reference: DitzlerGRoveriMAlippiCPolikarRLearning in nonstationary environments: A surveyComputational Intelligence Magazine2015104122510.1109/MCI.2015.2471196
– reference: Smith, S., Huang, K., Sidiropoulos, N.D., & Karypis, G. (2018). Streaming tensor factorization for infinite data sources. In: SDM, SIAM, (pp. 81–89).
– reference: SidiropoulosNDLathauwerLDFuXHuangKPapalexakisEEFaloutsosCTensor decomposition for signal processing and machine learningIEEE Transactions on Signal Processing2017651335513582366658710.1109/TSP.2017.2690524
– reference: SunYGuoYLuoCTroppJAUdellMLow-rank tucker approximation of a tensor from streaming dataSIAM Journal on Mathematics of Data Science20202411231150417273010.1137/19M1257718
– reference: YangSWangMFengZLiuZLiRDeep sparse tensor filtering network for synthetic aperture radar images classificationIEEE Transactions on Neural Networks and Learning Systems20182983919392410.1109/TNNLS.2017.2688466
– reference: SignorettoMLathauwerLDSuykensJAKA kernel-based framework to tensorial data analysisNeural Networks201124886187410.1016/j.neunet.2011.05.011
– reference: ZyblewskiPSabourinRWozniakMPreprocessed dynamic classifier ensemble selection for highly imbalanced drifted data streamsInformation Fusion20216613815410.1016/j.inffus.2020.09.004
– reference: FuXHuangKMaWSidiropoulosNDBroRJoint tensor factorization and outlying slab suppression with applicationsIEEE Transaction on Signal Processing2015632363156328342104110.1109/TSP.2015.2469642
– reference: Song, Q., Huang, X., Ge, H., Caverlee, J., & Hu, X. (2017). Multi-aspect streaming tensor completion. In: KDD, ACM, (pp. 435–443).
– reference: Rambhatla, S., Li, X., & Haupt, J.D. (2020). Provable online CP/PARAFAC decomposition of a structured tensor via dictionary learning. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6–12, 2020, virtual.
– reference: Letourneau, P., Baskaran, M.M., Henretty, T., Ezick, J.R., & Lethin, R. (2018). Computationally efficient CP tensor decomposition update framework for emerging component discovery in streaming data. In: 2018 IEEE High Performance Extreme Computing Conference, HPEC 2018, Waltham, MA, USA, September 25–27, 2018, IEEE, (pp. 1–8).
– reference: Zhou, S., Nguyen, X.V., Bailey, J., Jia, Y., & Davidson, I. (2016). Accelerating online CP decompositions for higher order tensors. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, ACM, (pp. 1375–1384).
– reference: ParisiGIKemkerRPartJLKananCWermterSContinual lifelong learning with neural networks: A reviewNeural Networks2019113547110.1016/j.neunet.2019.01.012
– reference: Shin, K., Hooi, B., Kim, J., & Faloutsos, C. (2017). Densealert: Incremental dense-subtensor detection in tensor streams. In: KDD, ACM, (pp. 1057–1066).
– reference: LiQSchonfeldDMultilinear discriminant analysis for higher-order tensor data classificationIEEE Transactions on Pattern Analysis and Machine Intelligence201436122524253710.1109/TPAMI.2014.2324568
– reference: NieJKotlowskiWWarmuthMKOnline PCA with optimal regretJournal of Machine Learning Research201617173:1173:4935674411392.68360
– reference: Cyganek, B., & Wozniak, M. (2016). Efficient computation of the tensor chordal kernels. In: International Conference on Computational Science 2016, ICCS 2016, 6–8 June 2016, San Diego, California, USA, Elsevier, Procedia Computer Science, vol 80, (pp. 1702–1711).
– reference: Yang, K., Gao, Y., Shen, Y., Zheng, B., & Chen, L. (2021). Dismastd: An efficient distributed multi-aspect streaming tensor decomposition. In: 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19–22, 2021 (pp. 1080–1091) IEEE.
– reference: NakatsujiMZhangQLuXMakniBHendlerJASemantic social network analysis by cross-domain tensor factorizationIEEE Transactions on Computational Social Systems20174420721710.1109/TCSS.2017.2732685
– reference: Chhaya, R., Choudhari, J., Dasgupta, A., & Shit, S. (2020). Streaming coresets for symmetric tensor factorization. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event, PMLR, Proceedings of Machine Learning Research, vol 119, (pp. 1855–1865).
– reference: Maruhashi, K., Todoriki, M., Ohwa, T., Goto, K., Hasegawa, Y., Inakoshi, H., & Anai, H. (2018). Learning multi-way relations via tensor decomposition with neural networks. In: AAAI, AAAI Press.
– reference: Gu, L., Zhou, N., & Zhao, Y. (2018). An euclidean distance based on tensor product graph diffusion related attribute value embedding for nominal data clustering. In: AAAI, AAAI Press.
– reference: RutkowskiLPietruczukLDudaPJaworskiMDecision trees for mining data streams based on the mcdiarmids boundIEEE Transactions on Knowledge and Data Engineering20132561272127910.1109/TKDE.2012.66
– reference: Sahoo, D., Pham, Q., Lu, J., & Hoi, S.C.H. (2018). Online deep learning: Learning deep neural networks on the fly. In: Lang J (ed) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13–19, 2018, Stockholm, Sweden, ijcai.org. (pp 2660–2666).
– reference: GuoHWuXFengWMulti-stream deep networks for human action classification with sequential tensor decompositionSignal Processing201714019820610.1016/j.sigpro.2017.05.022
– reference: SagiORokachLExplainable decision forest: Transforming a decision forest into an interpretable treeInformation Fusion20206112413810.1016/j.inffus.2020.03.013
– volume: 113
  start-page: 54
  year: 2019
  ident: 6054_CR25
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.01.012
– volume: 63
  start-page: 6315
  issue: 23
  year: 2015
  ident: 6054_CR9
  publication-title: IEEE Transaction on Signal Processing
  doi: 10.1109/TSP.2015.2469642
– volume: 4
  start-page: 207
  issue: 4
  year: 2017
  ident: 6054_CR23
  publication-title: IEEE Transactions on Computational Social Systems
  doi: 10.1109/TCSS.2017.2732685
– volume: 34
  start-page: 50
  issue: 1
  year: 2020
  ident: 6054_CR26
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-019-00656-w
– ident: 6054_CR18
  doi: 10.1109/HPEC.2018.8547700
– volume: 25
  start-page: 1272
  issue: 6
  year: 2013
  ident: 6054_CR28
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2012.66
– ident: 6054_CR13
  doi: 10.1609/aaai.v32i1.11681
– ident: 6054_CR27
– volume: 66
  start-page: 138
  year: 2021
  ident: 6054_CR44
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.09.004
– volume: 29
  start-page: 3919
  issue: 8
  year: 2018
  ident: 6054_CR42
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2688466
– ident: #cr-split#-6054_CR30.1
  doi: 10.24963/ijcai.2018/369
– volume: 10
  start-page: 28
  issue: 2
  year: 2008
  ident: 6054_CR37
  publication-title: SIGKDD Explorations
  doi: 10.1145/1540276.1540284
– volume: 46
  start-page: 10
  year: 2015
  ident: 6054_CR6
  publication-title: Engineering Application of Artificial Intelligence
  doi: 10.1016/j.engappai.2015.08.001
– volume: 36
  start-page: 2524
  issue: 12
  year: 2014
  ident: 6054_CR20
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2014.2324568
– volume: 21
  start-page: 6
  issue: 2
  year: 2019
  ident: 6054_CR11
  publication-title: SIGKDD Explore
  doi: 10.1145/3373464.3373470
– ident: 6054_CR36
  doi: 10.1145/3097983.3098007
– volume: 140
  start-page: 198
  year: 2017
  ident: 6054_CR15
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2017.05.022
– ident: 6054_CR1
  doi: 10.1109/CVPR.2019.01151
– ident: 6054_CR31
  doi: 10.1145/3097983.3098087
– ident: 6054_CR34
  doi: 10.1007/978-3-030-33778-0_29
– volume: 11
  start-page: 1601
  year: 2010
  ident: 6054_CR3
  publication-title: Journal of Machine Learning Research
– ident: 6054_CR14
  doi: 10.1137/1.9781611976236.65
– ident: 6054_CR4
– ident: 6054_CR8
– ident: 6054_CR35
  doi: 10.1137/1.9781611975321.10
– ident: 6054_CR17
– ident: 6054_CR40
  doi: 10.1109/IJCNN48605.2020.9207377
– volume: 46
  start-page: 44:1
  issue: 4
  year: 2014
  ident: 6054_CR10
  publication-title: ACM Computing Survey
  doi: 10.1145/2523813
– volume: 2
  start-page: 1123
  issue: 4
  year: 2020
  ident: 6054_CR39
  publication-title: SIAM Journal on Mathematics of Data Science
  doi: 10.1137/19M1257718
– ident: 6054_CR43
  doi: 10.1145/2939672.2939763
– ident: 6054_CR5
  doi: 10.1016/j.procs.2016.05.511
– ident: 6054_CR22
  doi: 10.1609/aaai.v32i1.11760
– volume: 17
  start-page: 173:1
  year: 2016
  ident: 6054_CR24
  publication-title: Journal of Machine Learning Research
– ident: 6054_CR41
  doi: 10.1109/ICDE51399.2021.00098
– volume: 64
  start-page: 205
  year: 2020
  ident: 6054_CR12
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.07.007
– ident: 6054_CR2
  doi: 10.1137/1.9781611975673.75
– volume: 2
  start-page: 11:1
  issue: 3
  year: 2008
  ident: 6054_CR38
  publication-title: TKDD
  doi: 10.1145/1409620.1409621
– volume: 30
  start-page: 1061
  issue: 4
  year: 2019
  ident: 6054_CR19
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2860964
– volume: 37
  start-page: 132
  year: 2017
  ident: 6054_CR16
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.02.004
– volume: 10
  start-page: 12
  issue: 4
  year: 2015
  ident: 6054_CR7
  publication-title: Computational Intelligence Magazine
  doi: 10.1109/MCI.2015.2471196
– volume: 61
  start-page: 124
  year: 2020
  ident: 6054_CR29
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.03.013
– volume: 65
  start-page: 3551
  issue: 13
  year: 2017
  ident: 6054_CR32
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2017.2690524
– volume: 63
  start-page: 2663
  issue: 10
  year: 2015
  ident: 6054_CR21
  publication-title: IEEE Trans Signal Processing
  doi: 10.1109/TSP.2015.2417491
– ident: #cr-split#-6054_CR30.2
– volume: 24
  start-page: 861
  issue: 8
  year: 2011
  ident: 6054_CR33
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2011.05.011
SSID ssj0002686
Score 2.3945312
Snippet Data stream classification is one of the most vital areas of contemporary machine learning, as many real-life problems generate data continuously and in large...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3015
SubjectTerms Artificial Intelligence
Classification
Computer Science
Control
Data transmission
Decision trees
Drift
Graphical representations
Kernel functions
Machine Learning
Mathematical analysis
Mechatronics
Natural Language Processing (NLP)
Robotics
Simulation and Modeling
Special Issue: Foundations of Data Science
Tensors
Vectors (mathematics)
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BWVh4IwoFeWADi8ZxXhNCiLZCgqmVukW-2EGVoC1NGfrv8blOI5BgjBJbyvlxn3133wdwLaUJKH7FLZxHLk2oeWa6mivMktLI0h4pqN755TUejOTzOBr7C7fKp1XWe6LbqPWsoDvyO6K-Inidyvv5JyfVKIquegmNbdgJrKeheZ72-pudWMRO6dEupIiTJ_dFM750zpHiCsr7sbCFr346pgZt_gqQOr_TO4A9DxjZw3qED2HLTI9gvxZjYH5tHkN_aA-kswXTXjSHUbi5YhaTMkpHnxD1KPMaEW-MqkqYXkxKynpmlCbKqGpEfVQnMOo9DR8H3Ksk8EKG4ZJjkKCIFP2_SQL7YCFFgCrViSy7RVaQ9kMsEJMIUww1ZiqxmKRMhTLGxDINT6E1nU3NGbAIRWwyGafaoHVaoUKhtdQoi5KI-0wbgtpEeeEpxEnJ4j1vyI_JrLk1a-7Mmq_acLNpM18TaPz7dae2fO4XU5U3Q9-G23o0mtd_93b-f28XsCtoArjklA60losvc2khxhKv3Dz6BnmjzII
  priority: 102
  providerName: ProQuest
Title Tensor decision trees for continual learning from drifting data streams
URI https://link.springer.com/article/10.1007/s10994-021-06054-y
https://www.proquest.com/docview/2601154884
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vXixPrFayx686YrZbJLNsZWmRbGIGNBTyGY3ImorfRzqr3cn3bRaVPAUQjZLMvuYb5lvvgE44Vw7GL-iBs5LyrWraKgvFE1lGOSa5-ZIgfnON32_F_OrB-_BJoWNS7Z7GZIsduovyW6FjC1Dpo4BGnS2DlXPEaGoQLXVfbzuLHZg5hcVHs0C8ih6cJss83Mv3x3SEmWuBEYLfxPVIC6_dE4zeTmfTuR59rEi4vjfX9mCTQtASWs-Y7ZhTQ92oFYWdyB2re9C994ccIcjomwRHoLh6zExGJcgvf0ZpUyJrTnxRDBLhajRc44saoK0U4JZKOnbeA_iqHN_2aO26gLNuOtOqHQCybzUMZ5bB465MRDFkalQAc8vsjDDWhI-kzLwpJCukmEaGIyTC5ZqrX0u3H2oDIYDfQDEk8zXIfeF0tI4QTeVTCmuJM9yFALUdXBK0yeZlSTHyhivyVJMGS2VGEslhaWSWR1OF--8zwU5_mzdKEc0sYtznKCKGp7UBK_DWTlAy8e_93b4v-ZHsMFwjAvySwMqk9FUHxsIM5FNWBdRt2nmbdRu95t2_ppru9O_vTNPY9b6BG-j7DA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1Be4ALO6KsPsAJLIjjbAeE2Fu6CKFW6i3EsYMqQQtNEepP8Y14UocIJLj1GCXxYTKeec7MvAewz7mysH5FNZwXlCtb0kCdSBqJwEsUT_SRAuedmy232uF3Xac7A5_5LAy2VeYxMQvUchDjP_JjpL5CeO3zs9c3iqpRWF3NJTQmblFX4w99ZEtPa1f6-x4wdnPdvqxSoypAY27bIyosTzAnsnRmUp6lL3QKtkTkS48nJ3EQo1aCy4TwHOELW4og8nQOT3wWKaVc7tt63Vkoc5xoLUH54rp1__Ad-5mbaUvqretQxA5mTMcM62U0vAw7jTRQouOfqbDAt79Kslmmu1mCBQNRyfnEp5ZhRvVXYDGXfyAmGqzCbVsfgQdDIo1MD8ECd0o0CibYAN9DslNiVCmeCM6xEDnsJdhnTbAxleCcSvSSrkFnKhZch1J_0FcbQBzBXBVw15dK6DRpR4JJyaXgcYJUgaoCVm6iMDak5aid8RwWdMto1lCbNczMGo4rcPj9zuuEsuPfp7dzy4dm-6Zh4WwVOMq_RnH779U2_19tD-aq7WYjbNRa9S2YZ-gMWWvMNpRGw3e1owHOSOwaryLwOG1H_gJjwQq2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8MwDLVgSIgL34jBgBzgBBE0Tb8OCCFgGwwmDkzarTRNiibBNrYhtL_Gr8PuUiaQ4MaxapuD68TPtf0ewL6UxqH6FUc4r7g0ruaROdE8UVGQGZlhSkHzzndNv96SN22vPQMfxSwMtVUWZ2J-UOteSv_Ij4n6iuB1KI8z2xZxf1k9679yUpCiSmshpzFxkYYZv2P6Njy9vsRvfSBE9erhos6twgBPpeuOuHICJbzEwShlAgcvMBw7Kgl1ILOTNEpJN8EXSgWeCpWrVZQEGM-zUCTGGF-GLq47C3OBG0SU-IXV2lcUEH6uMomb2OOEIuzAjh3bywl5BfUcIWTi4-9BcYp0fxRn85hXXYZFC1bZ-cS7VmDGdFdhqRCCYPZcWIPaAybDvQHTVrCHUal7yBAPM2qF7xDtKbP6FE-MJlqYHnQy6rhm1KLKaGIleRmuQ-tf7LcBpW6vazaBeUr4JpJ-qI3CgOkmSmgttZJpRqSBpgxOYaI4tfTlpKLxHE-Jl8msMZo1zs0aj8tw-PVOf0Le8efTlcLysd3Iw3jqdmU4Kr7G9Pbvq239vdoezKP7xrfXzcY2LAjyhbxHpgKl0eDN7CDSGand3KUYPP63D38CHNsNhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+decision+trees+for+continual+learning+from+drifting+data+streams&rft.jtitle=Machine+learning&rft.au=Krawczyk%2C+Bartosz&rft.date=2021-12-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=110&rft.issue=11-12&rft.spage=3015&rft.epage=3035&rft_id=info:doi/10.1007%2Fs10994-021-06054-y&rft.externalDocID=10_1007_s10994_021_06054_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon