Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets

Identification of a previously overlooked spontaneous Hall effect mechanism creates opportunities in low-dissipation spintronics. Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more th...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 6; no. 23; p. eaaz8809
Main Authors Šmejkal, Libor, González-Hernández, Rafael, Jungwirth, T., Sinova, J.
Format Journal Article
LanguageEnglish
Published American Association for the Advancement of Science 05.06.2020
Subjects
Online AccessGet full text
ISSN2375-2548
2375-2548
DOI10.1126/sciadv.aaz8809

Cover

Loading…
Abstract Identification of a previously overlooked spontaneous Hall effect mechanism creates opportunities in low-dissipation spintronics. Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more than a century ago, has been understood in terms of the time-reversal symmetry breaking by the internal spin structure of a ferromagnetic, noncolinear antiferromagnetic, or skyrmionic form. Here, we identify previously overlooked robust Hall effect mechanism arising from collinear antiferromagnetism combined with nonmagnetic atoms at noncentrosymmetric positions. We predict a large magnitude of this crystal Hall effect in a room temperature collinear antiferromagnet RuO 2 and catalog, based on symmetry rules, extensive families of material candidates. We show that the crystal Hall effect is accompanied by the possibility to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization density distribution instead of the simplified spin structure sheds new light on symmetry breaking phenomena in magnets and opens an alternative avenue toward low-dissipation nanoelectronics.
AbstractList Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more than a century ago, has been understood in terms of the time-reversal symmetry breaking by the internal spin structure of a ferromagnetic, noncolinear antiferromagnetic, or skyrmionic form. Here, we identify previously overlooked robust Hall effect mechanism arising from collinear antiferromagnetism combined with nonmagnetic atoms at noncentrosymmetric positions. We predict a large magnitude of this crystal Hall effect in a room temperature collinear antiferromagnet RuO2 and catalog, based on symmetry rules, extensive families of material candidates. We show that the crystal Hall effect is accompanied by the possibility to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization density distribution instead of the simplified spin structure sheds new light on symmetry breaking phenomena in magnets and opens an alternative avenue toward low-dissipation nanoelectronics.Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more than a century ago, has been understood in terms of the time-reversal symmetry breaking by the internal spin structure of a ferromagnetic, noncolinear antiferromagnetic, or skyrmionic form. Here, we identify previously overlooked robust Hall effect mechanism arising from collinear antiferromagnetism combined with nonmagnetic atoms at noncentrosymmetric positions. We predict a large magnitude of this crystal Hall effect in a room temperature collinear antiferromagnet RuO2 and catalog, based on symmetry rules, extensive families of material candidates. We show that the crystal Hall effect is accompanied by the possibility to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization density distribution instead of the simplified spin structure sheds new light on symmetry breaking phenomena in magnets and opens an alternative avenue toward low-dissipation nanoelectronics.
Identification of a previously overlooked spontaneous Hall effect mechanism creates opportunities in low-dissipation spintronics. Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more than a century ago, has been understood in terms of the time-reversal symmetry breaking by the internal spin structure of a ferromagnetic, noncolinear antiferromagnetic, or skyrmionic form. Here, we identify previously overlooked robust Hall effect mechanism arising from collinear antiferromagnetism combined with nonmagnetic atoms at noncentrosymmetric positions. We predict a large magnitude of this crystal Hall effect in a room temperature collinear antiferromagnet RuO 2 and catalog, based on symmetry rules, extensive families of material candidates. We show that the crystal Hall effect is accompanied by the possibility to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization density distribution instead of the simplified spin structure sheds new light on symmetry breaking phenomena in magnets and opens an alternative avenue toward low-dissipation nanoelectronics.
Author González-Hernández, Rafael
Šmejkal, Libor
Jungwirth, T.
Sinova, J.
Author_xml – sequence: 1
  givenname: Libor
  orcidid: 0000-0003-1193-1372
  surname: Šmejkal
  fullname: Šmejkal, Libor
  organization: Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany., Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic., Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
– sequence: 2
  givenname: Rafael
  surname: González-Hernández
  fullname: González-Hernández, Rafael
  organization: Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany., Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla, Colombia
– sequence: 3
  givenname: T.
  orcidid: 0000-0002-9910-1674
  surname: Jungwirth
  fullname: Jungwirth, T.
  organization: Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic., School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
– sequence: 4
  givenname: J.
  orcidid: 0000-0002-9490-2333
  surname: Sinova
  fullname: Sinova, J.
  organization: Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany., Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
BookMark eNp1kc2LFDEQxYOsuB_u1XMfvfSYr-mkL4IM6goLXvQcqpPKGE0nY5IZGP96e5gRdMFTVaXe-1Hh3ZKrlBMS8orRFWN8eFNtAHdYAfzSmo7PyA0Xat3ztdRXf_XX5L7W75RSJodhzcYX5Fqc3vkgbwhsyrE2iF0LM_YFD1jqMtXjPGMrx24qCD9C2naQXFd3OTVImPe1e4AYO_QebetC6myOMSSEsghb8FhKnmGbsNWX5LmHWPH-Uu_I1w_vv2we-sfPHz9t3j32VgrR-okJN03MOXADV5aCEDjgmk-gNFXohB609VwLL93owU7WTp6rAemggdFR3JG3Z-5uP83oLKZWIJpdCTOUo8kQzL-bFL6ZbT4YxZVUo14Ary-Akn_usTYzh2oxxvOPDZdMSqq04ItUnqW25FoLemNDgxbyiRyiYdScAjLngMwloMW2emL7c91_DL8BITKbAQ
CitedBy_id crossref_primary_10_7566_JPSJ_92_033702
crossref_primary_10_1016_j_mtphys_2024_101539
crossref_primary_10_1063_5_0155794
crossref_primary_10_1103_PhysRevB_109_224430
crossref_primary_10_1088_1361_648X_ad9072
crossref_primary_10_1007_s11433_021_1821_1
crossref_primary_10_1016_j_physrep_2020_10_001
crossref_primary_10_1103_PhysRevB_109_174405
crossref_primary_10_1103_PhysRevB_109_L201109
crossref_primary_10_1103_PhysRevX_14_011019
crossref_primary_10_1146_annurev_conmatphys_042924_123620
crossref_primary_10_1103_PhysRevB_111_045409
crossref_primary_10_1103_PhysRevB_103_125114
crossref_primary_10_1103_PhysRevLett_133_236703
crossref_primary_10_1103_PhysRevB_109_085135
crossref_primary_10_1063_5_0160335
crossref_primary_10_1103_PhysRevB_109_104413
crossref_primary_10_1103_PhysRevLett_132_056701
crossref_primary_10_1103_PhysRevB_110_L220411
crossref_primary_10_1103_PhysRevMaterials_8_L041402
crossref_primary_10_1103_PhysRevResearch_6_043157
crossref_primary_10_1002_adfm_202214967
crossref_primary_10_1038_s41467_024_48493_w
crossref_primary_10_1103_PhysRevB_109_L220412
crossref_primary_10_1038_s41578_024_00706_w
crossref_primary_10_1038_s41524_023_01025_4
crossref_primary_10_1038_s44306_024_00038_z
crossref_primary_10_1103_PhysRevLett_133_156702
crossref_primary_10_1103_PhysRevB_109_134511
crossref_primary_10_1103_PhysRevX_12_011028
crossref_primary_10_1103_PhysRevB_110_024425
crossref_primary_10_1016_j_scib_2024_06_009
crossref_primary_10_1103_PhysRevB_103_224410
crossref_primary_10_1103_PhysRevB_110_205140
crossref_primary_10_1103_PhysRevB_110_094425
crossref_primary_10_1103_PhysRevB_110_214419
crossref_primary_10_1103_PhysRevB_110_174410
crossref_primary_10_1103_PhysRevB_110_214417
crossref_primary_10_1038_s41467_023_40877_8
crossref_primary_10_1088_1361_6463_acf589
crossref_primary_10_1103_PhysRevB_110_165141
crossref_primary_10_1038_s41467_021_22261_6
crossref_primary_10_1103_PhysRevB_109_144421
crossref_primary_10_1109_ACCESS_2023_3326448
crossref_primary_10_1103_PhysRevB_108_184505
crossref_primary_10_1038_s41535_024_00626_6
crossref_primary_10_1103_PhysRevB_110_054406
crossref_primary_10_1063_5_0161431
crossref_primary_10_1002_adma_202414876
crossref_primary_10_1103_PhysRevLett_133_226002
crossref_primary_10_1103_PhysRevB_111_064502
crossref_primary_10_1103_PhysRevB_110_L140506
crossref_primary_10_1103_PhysRevLett_133_236602
crossref_primary_10_1126_sciadv_adj4883
crossref_primary_10_1103_PhysRevB_110_L060508
crossref_primary_10_1103_PhysRevB_110_205114
crossref_primary_10_3390_condmat9040040
crossref_primary_10_1038_s41467_024_51565_6
crossref_primary_10_1063_5_0240434
crossref_primary_10_1063_5_0095819
crossref_primary_10_1103_PhysRevLett_133_106301
crossref_primary_10_1021_acsorginorgau_4c00064
crossref_primary_10_1038_s41524_021_00641_2
crossref_primary_10_1016_j_jmmm_2022_170176
crossref_primary_10_1088_1361_648X_ad906d
crossref_primary_10_1073_pnas_2108924118
crossref_primary_10_1103_PhysRevB_110_224436
crossref_primary_10_31857_S0370274X24090096
crossref_primary_10_1016_j_mtphys_2023_100991
crossref_primary_10_1103_PhysRevB_110_L100402
crossref_primary_10_1103_PhysRevLett_132_176702
crossref_primary_10_1103_PhysRevB_109_174438
crossref_primary_10_3390_nano14211729
crossref_primary_10_1103_PhysRevB_108_115138
crossref_primary_10_1103_PhysRevLett_132_176701
crossref_primary_10_1103_PhysRevB_105_014403
crossref_primary_10_1038_s43246_024_00525_0
crossref_primary_10_1103_PhysRevB_107_L161109
crossref_primary_10_7566_JPSJ_93_043702
crossref_primary_10_1038_s41567_025_02822_y
crossref_primary_10_1103_PhysRevB_106_014420
crossref_primary_10_1103_PhysRevLett_129_017203
crossref_primary_10_1088_1361_648X_acea12
crossref_primary_10_1103_PhysRevLett_128_197202
crossref_primary_10_1103_PhysRevB_107_184429
crossref_primary_10_1103_PhysRevLett_130_166702
crossref_primary_10_1038_s42254_022_00490_y
crossref_primary_10_1103_PhysRevB_110_054427
crossref_primary_10_7566_JPSJ_93_072001
crossref_primary_10_1103_PhysRevB_110_054446
crossref_primary_10_1103_PhysRevB_111_054442
crossref_primary_10_1021_acs_nanolett_4c02554
crossref_primary_10_1063_5_0069504
crossref_primary_10_1103_PhysRevB_111_064406
crossref_primary_10_1088_1361_648X_adad2a
crossref_primary_10_1103_PhysRevLett_133_236903
crossref_primary_10_1146_annurev_matsci_080222_030535
crossref_primary_10_1002_adma_202310379
crossref_primary_10_1088_1361_648X_ace2a5
crossref_primary_10_1103_PhysRevB_110_144412
crossref_primary_10_1103_PhysRevB_107_184413
crossref_primary_10_1021_acs_cgd_4c00271
crossref_primary_10_1088_1361_6463_ad632b
crossref_primary_10_1063_5_0252374
crossref_primary_10_1021_jacs_4c14503
crossref_primary_10_1103_PhysRevB_110_144410
crossref_primary_10_1103_PhysRevB_111_014434
crossref_primary_10_1016_j_commt_2024_100021
crossref_primary_10_1103_PhysRevB_104_184512
crossref_primary_10_1103_PhysRevB_102_075112
crossref_primary_10_1016_j_mtphys_2022_100878
crossref_primary_10_1103_PhysRevLett_131_076003
crossref_primary_10_1063_5_0184580
crossref_primary_10_1103_PhysRevB_108_174439
crossref_primary_10_21468_SciPostPhysCodeb_30_r1_0
crossref_primary_10_1002_adfm_202409327
crossref_primary_10_1103_PhysRevB_108_174437
crossref_primary_10_1103_PhysRevB_107_L100418
crossref_primary_10_1103_PhysRevB_110_024503
crossref_primary_10_1103_PhysRevB_111_064422
crossref_primary_10_1103_PhysRevLett_130_046401
crossref_primary_10_1103_PhysRevLett_131_216501
crossref_primary_10_1021_acs_nanolett_3c00047
crossref_primary_10_1088_1361_648X_adb674
crossref_primary_10_1103_PhysRevB_106_195433
crossref_primary_10_1002_adma_202211966
crossref_primary_10_1103_PhysRevLett_133_206702
crossref_primary_10_1103_PhysRevB_110_184407
crossref_primary_10_1103_PhysRevB_110_L220503
crossref_primary_10_1007_s11433_024_2567_6
crossref_primary_10_1103_PhysRevB_110_144421
crossref_primary_10_1088_0256_307X_41_4_047502
crossref_primary_10_1016_j_jmmm_2023_170420
crossref_primary_10_1103_PhysRevMaterials_5_124411
crossref_primary_10_1002_adma_202314076
crossref_primary_10_1103_PhysRevB_111_064311
crossref_primary_10_1103_PhysRevLett_131_106701
crossref_primary_10_1016_j_physb_2024_416602
crossref_primary_10_1039_D3CP04242A
crossref_primary_10_1103_PhysRevB_110_214428
crossref_primary_10_1103_PhysRevLett_134_096703
crossref_primary_10_1103_PhysRevLett_133_146602
crossref_primary_10_1021_acsami_3c12571
crossref_primary_10_1088_1361_648X_ad52dd
crossref_primary_10_1038_s41586_024_07023_w
crossref_primary_10_1103_PhysRevLett_126_127701
crossref_primary_10_1088_1361_6463_ac28fa
crossref_primary_10_1063_5_0252836
crossref_primary_10_1103_PhysRevLett_132_166702
crossref_primary_10_1038_s43246_022_00238_2
crossref_primary_10_1016_j_jmmm_2024_172358
crossref_primary_10_1038_s41928_022_00866_z
crossref_primary_10_1103_PhysRevLett_131_256703
crossref_primary_10_1103_PhysRevMaterials_9_034407
crossref_primary_10_1103_PhysRevLett_128_097702
crossref_primary_10_1103_PhysRevB_106_024421
crossref_primary_10_1103_PhysRevResearch_6_023100
crossref_primary_10_1038_s42005_025_01943_3
crossref_primary_10_1103_PhysRevLett_133_086503
crossref_primary_10_1103_PhysRevB_109_134418
crossref_primary_10_3390_cryst14060552
crossref_primary_10_1103_PhysRevB_109_115102
crossref_primary_10_1103_PhysRevB_109_024404
crossref_primary_10_1038_s41586_024_08436_3
crossref_primary_10_1103_PhysRevB_110_104423
crossref_primary_10_1103_PhysRevLett_132_263402
crossref_primary_10_1021_acs_nanolett_3c02489
crossref_primary_10_1103_PhysRevA_107_052216
crossref_primary_10_1038_s41565_025_01872_w
crossref_primary_10_1038_s41928_022_00744_8
crossref_primary_10_1103_PhysRevB_110_L220402
crossref_primary_10_1038_s41535_023_00594_3
crossref_primary_10_1126_sciadv_adn0479
crossref_primary_10_1016_j_xinn_2022_100343
crossref_primary_10_1103_PhysRevLett_133_056701
crossref_primary_10_1103_PhysRevB_105_L121102
crossref_primary_10_1103_PhysRevB_111_054520
crossref_primary_10_1103_PhysRevB_108_024410
crossref_primary_10_1103_PhysRevLett_132_196602
crossref_primary_10_1103_PhysRevB_108_L140408
crossref_primary_10_1103_PhysRevB_106_224421
crossref_primary_10_1038_s41467_023_43962_0
crossref_primary_10_1103_PhysRevLett_133_106601
crossref_primary_10_1002_adma_202309172
crossref_primary_10_1103_PhysRevB_111_094412
crossref_primary_10_1103_PhysRevLett_132_236701
crossref_primary_10_1103_PhysRevB_108_054511
crossref_primary_10_1103_PhysRevB_111_094411
crossref_primary_10_1063_5_0149955
crossref_primary_10_1103_PhysRevResearch_5_043171
crossref_primary_10_1038_s41567_023_02017_3
crossref_primary_10_1103_PhysRevB_107_085411
crossref_primary_10_7566_JPSJ_91_113702
crossref_primary_10_1038_s41467_021_26915_3
crossref_primary_10_1103_PhysRevB_111_L020407
crossref_primary_10_1038_s41567_023_02307_w
crossref_primary_10_1103_PhysRevB_104_024401
crossref_primary_10_1103_PhysRevB_110_245414
crossref_primary_10_1103_PhysRevLett_134_116701
crossref_primary_10_1016_j_physe_2021_115118
crossref_primary_10_1103_PhysRevB_106_024405
crossref_primary_10_1103_PhysRevB_108_224421
crossref_primary_10_1016_j_mtcomm_2022_103694
crossref_primary_10_1002_adma_202400301
crossref_primary_10_1103_PhysRevB_104_064428
crossref_primary_10_21468_SciPostPhys_18_3_109
crossref_primary_10_1088_1361_648X_ac70a0
crossref_primary_10_1103_PhysRevB_111_085145
crossref_primary_10_1021_jacs_4c14891
crossref_primary_10_1103_PhysRevB_108_L180401
crossref_primary_10_1103_PhysRevLett_133_216701
crossref_primary_10_1038_s41586_022_04412_x
crossref_primary_10_1103_PhysRevApplied_15_024057
crossref_primary_10_1002_advs_202400967
crossref_primary_10_1039_D3NR03681B
crossref_primary_10_1103_PhysRevB_104_104427
crossref_primary_10_1103_PhysRevB_105_L121107
crossref_primary_10_1103_PhysRevB_111_L020412
crossref_primary_10_1088_1361_6668_ad23fd
crossref_primary_10_1103_PhysRevResearch_4_013215
crossref_primary_10_1103_PhysRevB_109_125403
crossref_primary_10_1103_PhysRevB_111_054501
crossref_primary_10_1038_s41586_023_06907_7
crossref_primary_10_1038_s44306_024_00029_0
crossref_primary_10_1038_s41586_024_08234_x
crossref_primary_10_1103_PhysRevB_108_L121103
crossref_primary_10_1103_PhysRevB_109_L201404
crossref_primary_10_1103_PhysRevB_108_L100402
crossref_primary_10_3390_jlpea14030035
crossref_primary_10_1103_Physics_17_4
crossref_primary_10_1002_smll_202407722
crossref_primary_10_1103_PhysRevMaterials_9_024402
crossref_primary_10_1002_adom_202300177
crossref_primary_10_1103_PhysRevB_104_094418
crossref_primary_10_1103_PhysRevLett_133_106701
crossref_primary_10_1038_s41586_022_05463_w
crossref_primary_10_1103_PhysRevB_111_104416
crossref_primary_10_1039_D4SC04125A
crossref_primary_10_1038_s41563_024_02058_w
crossref_primary_10_1021_acs_nanolett_3c04330
crossref_primary_10_1103_PhysRevB_111_L020401
crossref_primary_10_1103_PhysRevApplied_21_034038
crossref_primary_10_1021_acs_jpcc_1c02653
crossref_primary_10_1103_PhysRevB_103_L180407
crossref_primary_10_1016_j_jmmm_2023_171163
crossref_primary_10_1038_s41467_024_53862_6
crossref_primary_10_1038_s41535_023_00603_5
crossref_primary_10_1038_s41563_024_02072_y
crossref_primary_10_1016_j_jmmm_2023_171043
crossref_primary_10_1021_jacsau_4c01150
crossref_primary_10_1038_s41467_024_46476_5
crossref_primary_10_1103_PhysRevX_14_031039
crossref_primary_10_1103_PhysRevX_14_031038
crossref_primary_10_1103_PhysRevB_111_045106
crossref_primary_10_1038_s41535_022_00455_5
crossref_primary_10_1002_smll_202408247
crossref_primary_10_1038_s43246_024_00617_x
crossref_primary_10_1103_PhysRevB_109_224502
crossref_primary_10_1103_PhysRevB_110_014442
crossref_primary_10_1103_PhysRevX_14_031037
crossref_primary_10_1002_adma_202312008
crossref_primary_10_1103_PhysRevB_111_035423
crossref_primary_10_1103_PhysRevMaterials_6_084802
crossref_primary_10_3390_ma17112780
crossref_primary_10_7566_JPSJ_93_114703
crossref_primary_10_1103_PhysRevLett_130_036702
crossref_primary_10_1088_0256_307X_42_1_017201
crossref_primary_10_1103_PhysRevB_107_155126
crossref_primary_10_7566_JPSJ_91_014701
crossref_primary_10_1038_s41535_022_00423_z
crossref_primary_10_1002_apxr_202400170
crossref_primary_10_1016_j_mtelec_2024_100101
crossref_primary_10_1063_5_0223004
crossref_primary_10_1088_0256_307X_42_2_027403
crossref_primary_10_1038_s44306_024_00066_9
crossref_primary_10_1103_PhysRevB_111_075141
crossref_primary_10_21468_SciPostPhysCodeb_30
crossref_primary_10_1103_PhysRevLett_133_046701
crossref_primary_10_1021_acs_jpclett_1c00282
crossref_primary_10_1038_s41524_023_01113_5
crossref_primary_10_1063_5_0147450
crossref_primary_10_1103_PhysRevX_12_040501
crossref_primary_10_1002_adfm_202008971
crossref_primary_10_1103_PhysRevB_106_195149
crossref_primary_10_1063_5_0213320
crossref_primary_10_1063_5_0235472
crossref_primary_10_1038_s41467_024_45951_3
crossref_primary_10_1103_PhysRevResearch_2_043090
crossref_primary_10_1103_PhysRevMaterials_8_084412
crossref_primary_10_1103_PhysRevB_109_094438
crossref_primary_10_1103_PhysRevB_110_224418
crossref_primary_10_1063_5_0034938
crossref_primary_10_1103_PhysRevB_109_094435
crossref_primary_10_1038_s44306_024_00055_y
crossref_primary_10_1103_PhysRevB_107_075411
crossref_primary_10_1103_PhysRevB_108_115118
crossref_primary_10_1103_PhysRevB_109_L180411
crossref_primary_10_7566_JPSJNC_21_22
crossref_primary_10_1103_PhysRevB_106_144402
crossref_primary_10_1063_5_0023614
crossref_primary_10_1002_advs_202307306
crossref_primary_10_1103_PhysRevB_107_224402
crossref_primary_10_1088_0256_307X_42_2_027301
crossref_primary_10_3390_sym16070926
crossref_primary_10_1134_S0021364024602926
crossref_primary_10_1038_s41535_024_00682_y
crossref_primary_10_1103_PhysRevB_103_214413
crossref_primary_10_1063_5_0242426
crossref_primary_10_1103_PhysRevB_106_L180404
crossref_primary_10_1103_PhysRevB_106_235116
crossref_primary_10_1002_qua_70031
crossref_primary_10_1103_PhysRevLett_133_166701
crossref_primary_10_1038_s41586_021_03679_w
crossref_primary_10_1103_PhysRevB_110_094508
crossref_primary_10_1103_PhysRevB_111_035404
crossref_primary_10_1002_admt_202300676
crossref_primary_10_1038_s44306_024_00042_3
crossref_primary_10_1038_s42005_021_00587_3
crossref_primary_10_1103_PhysRevB_107_155146
crossref_primary_10_1103_PhysRevB_109_094425
crossref_primary_10_1103_PhysRevB_110_L180403
crossref_primary_10_1103_PhysRevB_110_064426
crossref_primary_10_1103_PhysRevB_110_155125
crossref_primary_10_1103_PhysRevMaterials_8_075002
crossref_primary_10_1038_s41565_023_01397_0
crossref_primary_10_1103_PhysRevB_108_144418
crossref_primary_10_1103_PhysRevLett_130_266703
crossref_primary_10_1103_PhysRevB_110_235401
crossref_primary_10_1103_PhysRevX_12_031042
crossref_primary_10_1103_PhysRevB_110_064433
crossref_primary_10_1103_PhysRevB_111_125119
crossref_primary_10_1103_PhysRevLett_129_137201
crossref_primary_10_1038_s41586_022_05461_y
crossref_primary_10_1103_PhysRevB_110_064432
crossref_primary_10_1103_PhysRevB_107_064412
crossref_primary_10_1103_PhysRevMaterials_8_104407
crossref_primary_10_1088_2631_7990_ad87cb
crossref_primary_10_1103_PhysRevB_107_195125
crossref_primary_10_1088_1361_648X_ad2a0d
crossref_primary_10_1038_s41535_023_00587_2
crossref_primary_10_1103_PhysRevResearch_3_033214
crossref_primary_10_1038_s44306_024_00053_0
crossref_primary_10_1103_PhysRevB_106_094432
crossref_primary_10_12693_APhysPolA_145_93
crossref_primary_10_1103_PhysRevB_104_054412
crossref_primary_10_1103_PhysRevB_109_094413
crossref_primary_10_1016_j_jpcs_2023_111350
crossref_primary_10_1016_j_mtphys_2024_101389
crossref_primary_10_1038_s41578_022_00430_3
crossref_primary_10_1103_PhysRevB_110_174426
crossref_primary_10_1103_PhysRevLett_132_156502
crossref_primary_10_1103_PhysRevLett_133_026402
crossref_primary_10_1038_s41598_022_17766_z
crossref_primary_10_1103_PhysRevLett_130_216701
crossref_primary_10_1103_PhysRevLett_130_216702
crossref_primary_10_1103_PhysRevLett_128_117201
crossref_primary_10_1103_PhysRevLett_133_176401
crossref_primary_10_1103_PhysRevMaterials_7_024416
crossref_primary_10_1103_PhysRevLett_132_036702
Cites_doi 10.1038/s41567-018-0307-5
10.1038/s41563-018-0169-3
10.1103/PhysRevLett.118.077201
10.1016/j.cpc.2014.05.003
10.1038/s42254-018-0011-5
10.1107/S1600576716015491
10.1103/PhysRevLett.103.097203
10.1038/s41467-018-05756-7
10.1038/nnano.2013.243
10.1103/RevModPhys.82.1539
10.2307/2369245
10.1038/s41928-018-0040-1
10.1103/PhysRevB.1.1494
10.1103/PhysRevLett.122.017202
10.1103/PhysRevB.98.214440
10.1016/j.cpc.2017.09.033
10.1016/0038-1098(65)90178-X
10.1103/PhysRevB.95.094406
10.1103/PhysRevLett.92.037204
10.1038/nphys3831
10.1038/s41567-018-0064-5
10.1103/PhysRevLett.61.2015
10.1103/PhysRevLett.119.187204
10.1103/PhysRevB.95.075128
10.1038/s41563-018-0132-3
10.1126/sciadv.aar7880
10.1103/PhysRevB.92.155138
10.1103/PhysRevLett.112.017205
10.1088/0022-3719/16/14/016
10.1126/science.aar4265
10.1038/nature08680
10.1038/nmat2987
10.1103/PhysRevLett.118.106402
10.1103/PhysRevB.54.11169
10.1038/nature19099
10.1038/ncomms4400
10.1038/s41567-018-0234-5
10.1103/PhysRevLett.87.116801
10.1209/0295-5075/108/67001
10.1103/PhysRev.142.318
10.1126/sciadv.1501870
10.1107/S0108767393003770
10.1038/nature15723
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1126/sciadv.aaz8809
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2375-2548
ExternalDocumentID PMC7274798
10_1126_sciadv_aaz8809
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BKF
CITATION
EBS
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
RHI
RPM
TEORI
7X8
5PM
ID FETCH-LOGICAL-c433t-b13dbb1ddad627c0a33e6e52ba7807ed3868cf283f4d9facbccbf276e068a1093
IEDL.DBID M48
ISSN 2375-2548
IngestDate Thu Aug 21 18:24:08 EDT 2025
Fri Jul 11 09:47:12 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Tue Jul 01 03:52:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-b13dbb1ddad627c0a33e6e52ba7807ed3868cf283f4d9facbccbf276e068a1093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1193-1372
0000-0002-9490-2333
0000-0002-9910-1674
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.aaz8809
PMID 32548264
PQID 2414407832
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7274798
proquest_miscellaneous_2414407832
crossref_citationtrail_10_1126_sciadv_aaz8809
crossref_primary_10_1126_sciadv_aaz8809
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200605
PublicationDateYYYYMMDD 2020-06-05
PublicationDate_xml – month: 6
  year: 2020
  text: 20200605
  day: 5
PublicationDecade 2020
PublicationTitle Science advances
PublicationYear 2020
Publisher American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_46_2
Kzyaloshinskii I. E. (e_1_3_2_23_2) 1958; 6
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_22_2
  doi: 10.1038/s41567-018-0307-5
– ident: e_1_3_2_34_2
  doi: 10.1038/s41563-018-0169-3
– ident: e_1_3_2_27_2
  doi: 10.1103/PhysRevLett.118.077201
– ident: e_1_3_2_41_2
  doi: 10.1016/j.cpc.2014.05.003
– ident: e_1_3_2_39_2
  doi: 10.1038/s42254-018-0011-5
– ident: e_1_3_2_35_2
  doi: 10.1107/S1600576716015491
– ident: e_1_3_2_32_2
  doi: 10.1103/PhysRevLett.103.097203
– ident: e_1_3_2_18_2
  doi: 10.1038/s41467-018-05756-7
– ident: e_1_3_2_16_2
  doi: 10.1038/nnano.2013.243
– ident: e_1_3_2_3_2
  doi: 10.1103/RevModPhys.82.1539
– ident: e_1_3_2_2_2
  doi: 10.2307/2369245
– ident: e_1_3_2_13_2
  doi: 10.1038/s41928-018-0040-1
– ident: e_1_3_2_46_2
  doi: 10.1103/PhysRevB.1.1494
– ident: e_1_3_2_28_2
  doi: 10.1103/PhysRevLett.122.017202
– ident: e_1_3_2_37_2
  doi: 10.1103/PhysRevB.98.214440
– ident: e_1_3_2_42_2
  doi: 10.1016/j.cpc.2017.09.033
– ident: e_1_3_2_4_2
  doi: 10.1016/0038-1098(65)90178-X
– volume: 6
  start-page: 1120
  year: 1958
  ident: e_1_3_2_23_2
  article-title: The magnetic structure of fluorides of the transition metals
  publication-title: Sov. Phys. JETP
– ident: e_1_3_2_7_2
  doi: 10.1103/PhysRevB.95.094406
– ident: e_1_3_2_43_2
  doi: 10.1103/PhysRevLett.92.037204
– ident: e_1_3_2_21_2
  doi: 10.1038/nphys3831
– ident: e_1_3_2_36_2
  doi: 10.1038/s41567-018-0064-5
– ident: e_1_3_2_24_2
  doi: 10.1103/PhysRevLett.61.2015
– ident: e_1_3_2_45_2
  doi: 10.1103/PhysRevLett.119.187204
– ident: e_1_3_2_30_2
  doi: 10.1103/PhysRevB.95.075128
– ident: e_1_3_2_31_2
  doi: 10.1038/s41563-018-0132-3
– ident: e_1_3_2_29_2
  doi: 10.1126/sciadv.aar7880
– ident: e_1_3_2_6_2
  doi: 10.1103/PhysRevB.92.155138
– ident: e_1_3_2_9_2
  doi: 10.1103/PhysRevLett.112.017205
– ident: e_1_3_2_33_2
  doi: 10.1088/0022-3719/16/14/016
– ident: e_1_3_2_38_2
  doi: 10.1126/science.aar4265
– ident: e_1_3_2_14_2
  doi: 10.1038/nature08680
– ident: e_1_3_2_26_2
  doi: 10.1038/nmat2987
– ident: e_1_3_2_20_2
  doi: 10.1103/PhysRevLett.118.106402
– ident: e_1_3_2_40_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_2_25_2
  doi: 10.1038/nature19099
– ident: e_1_3_2_17_2
  doi: 10.1038/ncomms4400
– ident: e_1_3_2_44_2
  doi: 10.1038/s41567-018-0234-5
– ident: e_1_3_2_15_2
  doi: 10.1103/PhysRevLett.87.116801
– ident: e_1_3_2_10_2
  doi: 10.1209/0295-5075/108/67001
– ident: e_1_3_2_19_2
– ident: e_1_3_2_5_2
  doi: 10.1103/PhysRev.142.318
– ident: e_1_3_2_12_2
  doi: 10.1126/sciadv.1501870
– ident: e_1_3_2_8_2
  doi: 10.1107/S0108767393003770
– ident: e_1_3_2_11_2
  doi: 10.1038/nature15723
SSID ssj0001466519
Score 2.6363022
Snippet Identification of a previously overlooked spontaneous Hall effect mechanism creates opportunities in low-dissipation spintronics. Electrons, commonly moving...
Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect,...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage eaaz8809
SubjectTerms Condensed Matter Physics
Materials Science
SciAdv r-articles
Title Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets
URI https://www.proquest.com/docview/2414407832
https://pubmed.ncbi.nlm.nih.gov/PMC7274798
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBVteumlJE1Lt02CCoG0BwdbkiX7EEIITZdCcurC3oy-3Aa83tZ2Qja_PjOy8rG0hV4MxkKGkQa9J43eI2RfeOny0rukqHMGBEWopJTob2JLV3JUAAvHBecXcjoT3-b5_LH-KQaw_yu1Qz-pWdcc3vxeHUPCHz25AKPd9aHWtzAZy-fkBaxKCpP0PEL9sN8ipMyDzwfjKk-AFxVRw_HPLtbXqEfguV42-WQdOtskryKApCfjiG-RZ759TbZiivb0U9SR_rxN9Gm3AuzXUPSPT1CqqevhrV8tFn7oVhTIcLCiorp1FCtlASf65VVPp7pp6FjoQS9baoNuN2QENBywEqZbLvSP1g_9GzI7-_L9dJpER4XECs6HxGTcGZM5p51kyqaacy99zoxWRaq844UsbA2IoxaurLU11pqaKelTWWgUnnpLNtpl699hSVRqZM0ECnwJo7nJbJppiDwgLpd7NSHJfQwrG-XG0fWiqQLtYLIaY17FmE_IwUP7X6PQxj9bfrwfkgpyAQ84xvBU8HcRziXZhKi1sXroEtW017-0lz-DqrZCfl4W7_-j9w_kJUPajZsx-Q7ZGLorvwvYZDB7gdPD8-s82wsT8A7l0et6
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+time-reversal+symmetry+breaking+and+spontaneous+Hall+effect+in+collinear+antiferromagnets&rft.jtitle=Science+advances&rft.au=%C5%A0mejkal%2C+Libor&rft.au=Gonz%C3%A1lez-Hern%C3%A1ndez%2C+Rafael&rft.au=Jungwirth%2C+T&rft.au=Sinova%2C+J&rft.date=2020-06-05&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=6&rft.issue=23&rft.spage=eaaz8809&rft_id=info:doi/10.1126%2Fsciadv.aaz8809&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon