Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets
Identification of a previously overlooked spontaneous Hall effect mechanism creates opportunities in low-dissipation spintronics. Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more th...
Saved in:
Published in | Science advances Vol. 6; no. 23; p. eaaz8809 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Association for the Advancement of Science
05.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2375-2548 2375-2548 |
DOI | 10.1126/sciadv.aaz8809 |
Cover
Loading…
Abstract | Identification of a previously overlooked spontaneous Hall effect mechanism creates opportunities in low-dissipation spintronics.
Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more than a century ago, has been understood in terms of the time-reversal symmetry breaking by the internal spin structure of a ferromagnetic, noncolinear antiferromagnetic, or skyrmionic form. Here, we identify previously overlooked robust Hall effect mechanism arising from collinear antiferromagnetism combined with nonmagnetic atoms at noncentrosymmetric positions. We predict a large magnitude of this crystal Hall effect in a room temperature collinear antiferromagnet RuO
2
and catalog, based on symmetry rules, extensive families of material candidates. We show that the crystal Hall effect is accompanied by the possibility to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization density distribution instead of the simplified spin structure sheds new light on symmetry breaking phenomena in magnets and opens an alternative avenue toward low-dissipation nanoelectronics. |
---|---|
AbstractList | Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more than a century ago, has been understood in terms of the time-reversal symmetry breaking by the internal spin structure of a ferromagnetic, noncolinear antiferromagnetic, or skyrmionic form. Here, we identify previously overlooked robust Hall effect mechanism arising from collinear antiferromagnetism combined with nonmagnetic atoms at noncentrosymmetric positions. We predict a large magnitude of this crystal Hall effect in a room temperature collinear antiferromagnet RuO2 and catalog, based on symmetry rules, extensive families of material candidates. We show that the crystal Hall effect is accompanied by the possibility to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization density distribution instead of the simplified spin structure sheds new light on symmetry breaking phenomena in magnets and opens an alternative avenue toward low-dissipation nanoelectronics.Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more than a century ago, has been understood in terms of the time-reversal symmetry breaking by the internal spin structure of a ferromagnetic, noncolinear antiferromagnetic, or skyrmionic form. Here, we identify previously overlooked robust Hall effect mechanism arising from collinear antiferromagnetism combined with nonmagnetic atoms at noncentrosymmetric positions. We predict a large magnitude of this crystal Hall effect in a room temperature collinear antiferromagnet RuO2 and catalog, based on symmetry rules, extensive families of material candidates. We show that the crystal Hall effect is accompanied by the possibility to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization density distribution instead of the simplified spin structure sheds new light on symmetry breaking phenomena in magnets and opens an alternative avenue toward low-dissipation nanoelectronics. Identification of a previously overlooked spontaneous Hall effect mechanism creates opportunities in low-dissipation spintronics. Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more than a century ago, has been understood in terms of the time-reversal symmetry breaking by the internal spin structure of a ferromagnetic, noncolinear antiferromagnetic, or skyrmionic form. Here, we identify previously overlooked robust Hall effect mechanism arising from collinear antiferromagnetism combined with nonmagnetic atoms at noncentrosymmetric positions. We predict a large magnitude of this crystal Hall effect in a room temperature collinear antiferromagnet RuO 2 and catalog, based on symmetry rules, extensive families of material candidates. We show that the crystal Hall effect is accompanied by the possibility to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization density distribution instead of the simplified spin structure sheds new light on symmetry breaking phenomena in magnets and opens an alternative avenue toward low-dissipation nanoelectronics. |
Author | González-Hernández, Rafael Šmejkal, Libor Jungwirth, T. Sinova, J. |
Author_xml | – sequence: 1 givenname: Libor orcidid: 0000-0003-1193-1372 surname: Šmejkal fullname: Šmejkal, Libor organization: Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany., Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic., Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic – sequence: 2 givenname: Rafael surname: González-Hernández fullname: González-Hernández, Rafael organization: Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany., Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla, Colombia – sequence: 3 givenname: T. orcidid: 0000-0002-9910-1674 surname: Jungwirth fullname: Jungwirth, T. organization: Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic., School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK – sequence: 4 givenname: J. orcidid: 0000-0002-9490-2333 surname: Sinova fullname: Sinova, J. organization: Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany., Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic |
BookMark | eNp1kc2LFDEQxYOsuB_u1XMfvfSYr-mkL4IM6goLXvQcqpPKGE0nY5IZGP96e5gRdMFTVaXe-1Hh3ZKrlBMS8orRFWN8eFNtAHdYAfzSmo7PyA0Xat3ztdRXf_XX5L7W75RSJodhzcYX5Fqc3vkgbwhsyrE2iF0LM_YFD1jqMtXjPGMrx24qCD9C2naQXFd3OTVImPe1e4AYO_QebetC6myOMSSEsghb8FhKnmGbsNWX5LmHWPH-Uu_I1w_vv2we-sfPHz9t3j32VgrR-okJN03MOXADV5aCEDjgmk-gNFXohB609VwLL93owU7WTp6rAemggdFR3JG3Z-5uP83oLKZWIJpdCTOUo8kQzL-bFL6ZbT4YxZVUo14Ary-Akn_usTYzh2oxxvOPDZdMSqq04ItUnqW25FoLemNDgxbyiRyiYdScAjLngMwloMW2emL7c91_DL8BITKbAQ |
CitedBy_id | crossref_primary_10_7566_JPSJ_92_033702 crossref_primary_10_1016_j_mtphys_2024_101539 crossref_primary_10_1063_5_0155794 crossref_primary_10_1103_PhysRevB_109_224430 crossref_primary_10_1088_1361_648X_ad9072 crossref_primary_10_1007_s11433_021_1821_1 crossref_primary_10_1016_j_physrep_2020_10_001 crossref_primary_10_1103_PhysRevB_109_174405 crossref_primary_10_1103_PhysRevB_109_L201109 crossref_primary_10_1103_PhysRevX_14_011019 crossref_primary_10_1146_annurev_conmatphys_042924_123620 crossref_primary_10_1103_PhysRevB_111_045409 crossref_primary_10_1103_PhysRevB_103_125114 crossref_primary_10_1103_PhysRevLett_133_236703 crossref_primary_10_1103_PhysRevB_109_085135 crossref_primary_10_1063_5_0160335 crossref_primary_10_1103_PhysRevB_109_104413 crossref_primary_10_1103_PhysRevLett_132_056701 crossref_primary_10_1103_PhysRevB_110_L220411 crossref_primary_10_1103_PhysRevMaterials_8_L041402 crossref_primary_10_1103_PhysRevResearch_6_043157 crossref_primary_10_1002_adfm_202214967 crossref_primary_10_1038_s41467_024_48493_w crossref_primary_10_1103_PhysRevB_109_L220412 crossref_primary_10_1038_s41578_024_00706_w crossref_primary_10_1038_s41524_023_01025_4 crossref_primary_10_1038_s44306_024_00038_z crossref_primary_10_1103_PhysRevLett_133_156702 crossref_primary_10_1103_PhysRevB_109_134511 crossref_primary_10_1103_PhysRevX_12_011028 crossref_primary_10_1103_PhysRevB_110_024425 crossref_primary_10_1016_j_scib_2024_06_009 crossref_primary_10_1103_PhysRevB_103_224410 crossref_primary_10_1103_PhysRevB_110_205140 crossref_primary_10_1103_PhysRevB_110_094425 crossref_primary_10_1103_PhysRevB_110_214419 crossref_primary_10_1103_PhysRevB_110_174410 crossref_primary_10_1103_PhysRevB_110_214417 crossref_primary_10_1038_s41467_023_40877_8 crossref_primary_10_1088_1361_6463_acf589 crossref_primary_10_1103_PhysRevB_110_165141 crossref_primary_10_1038_s41467_021_22261_6 crossref_primary_10_1103_PhysRevB_109_144421 crossref_primary_10_1109_ACCESS_2023_3326448 crossref_primary_10_1103_PhysRevB_108_184505 crossref_primary_10_1038_s41535_024_00626_6 crossref_primary_10_1103_PhysRevB_110_054406 crossref_primary_10_1063_5_0161431 crossref_primary_10_1002_adma_202414876 crossref_primary_10_1103_PhysRevLett_133_226002 crossref_primary_10_1103_PhysRevB_111_064502 crossref_primary_10_1103_PhysRevB_110_L140506 crossref_primary_10_1103_PhysRevLett_133_236602 crossref_primary_10_1126_sciadv_adj4883 crossref_primary_10_1103_PhysRevB_110_L060508 crossref_primary_10_1103_PhysRevB_110_205114 crossref_primary_10_3390_condmat9040040 crossref_primary_10_1038_s41467_024_51565_6 crossref_primary_10_1063_5_0240434 crossref_primary_10_1063_5_0095819 crossref_primary_10_1103_PhysRevLett_133_106301 crossref_primary_10_1021_acsorginorgau_4c00064 crossref_primary_10_1038_s41524_021_00641_2 crossref_primary_10_1016_j_jmmm_2022_170176 crossref_primary_10_1088_1361_648X_ad906d crossref_primary_10_1073_pnas_2108924118 crossref_primary_10_1103_PhysRevB_110_224436 crossref_primary_10_31857_S0370274X24090096 crossref_primary_10_1016_j_mtphys_2023_100991 crossref_primary_10_1103_PhysRevB_110_L100402 crossref_primary_10_1103_PhysRevLett_132_176702 crossref_primary_10_1103_PhysRevB_109_174438 crossref_primary_10_3390_nano14211729 crossref_primary_10_1103_PhysRevB_108_115138 crossref_primary_10_1103_PhysRevLett_132_176701 crossref_primary_10_1103_PhysRevB_105_014403 crossref_primary_10_1038_s43246_024_00525_0 crossref_primary_10_1103_PhysRevB_107_L161109 crossref_primary_10_7566_JPSJ_93_043702 crossref_primary_10_1038_s41567_025_02822_y crossref_primary_10_1103_PhysRevB_106_014420 crossref_primary_10_1103_PhysRevLett_129_017203 crossref_primary_10_1088_1361_648X_acea12 crossref_primary_10_1103_PhysRevLett_128_197202 crossref_primary_10_1103_PhysRevB_107_184429 crossref_primary_10_1103_PhysRevLett_130_166702 crossref_primary_10_1038_s42254_022_00490_y crossref_primary_10_1103_PhysRevB_110_054427 crossref_primary_10_7566_JPSJ_93_072001 crossref_primary_10_1103_PhysRevB_110_054446 crossref_primary_10_1103_PhysRevB_111_054442 crossref_primary_10_1021_acs_nanolett_4c02554 crossref_primary_10_1063_5_0069504 crossref_primary_10_1103_PhysRevB_111_064406 crossref_primary_10_1088_1361_648X_adad2a crossref_primary_10_1103_PhysRevLett_133_236903 crossref_primary_10_1146_annurev_matsci_080222_030535 crossref_primary_10_1002_adma_202310379 crossref_primary_10_1088_1361_648X_ace2a5 crossref_primary_10_1103_PhysRevB_110_144412 crossref_primary_10_1103_PhysRevB_107_184413 crossref_primary_10_1021_acs_cgd_4c00271 crossref_primary_10_1088_1361_6463_ad632b crossref_primary_10_1063_5_0252374 crossref_primary_10_1021_jacs_4c14503 crossref_primary_10_1103_PhysRevB_110_144410 crossref_primary_10_1103_PhysRevB_111_014434 crossref_primary_10_1016_j_commt_2024_100021 crossref_primary_10_1103_PhysRevB_104_184512 crossref_primary_10_1103_PhysRevB_102_075112 crossref_primary_10_1016_j_mtphys_2022_100878 crossref_primary_10_1103_PhysRevLett_131_076003 crossref_primary_10_1063_5_0184580 crossref_primary_10_1103_PhysRevB_108_174439 crossref_primary_10_21468_SciPostPhysCodeb_30_r1_0 crossref_primary_10_1002_adfm_202409327 crossref_primary_10_1103_PhysRevB_108_174437 crossref_primary_10_1103_PhysRevB_107_L100418 crossref_primary_10_1103_PhysRevB_110_024503 crossref_primary_10_1103_PhysRevB_111_064422 crossref_primary_10_1103_PhysRevLett_130_046401 crossref_primary_10_1103_PhysRevLett_131_216501 crossref_primary_10_1021_acs_nanolett_3c00047 crossref_primary_10_1088_1361_648X_adb674 crossref_primary_10_1103_PhysRevB_106_195433 crossref_primary_10_1002_adma_202211966 crossref_primary_10_1103_PhysRevLett_133_206702 crossref_primary_10_1103_PhysRevB_110_184407 crossref_primary_10_1103_PhysRevB_110_L220503 crossref_primary_10_1007_s11433_024_2567_6 crossref_primary_10_1103_PhysRevB_110_144421 crossref_primary_10_1088_0256_307X_41_4_047502 crossref_primary_10_1016_j_jmmm_2023_170420 crossref_primary_10_1103_PhysRevMaterials_5_124411 crossref_primary_10_1002_adma_202314076 crossref_primary_10_1103_PhysRevB_111_064311 crossref_primary_10_1103_PhysRevLett_131_106701 crossref_primary_10_1016_j_physb_2024_416602 crossref_primary_10_1039_D3CP04242A crossref_primary_10_1103_PhysRevB_110_214428 crossref_primary_10_1103_PhysRevLett_134_096703 crossref_primary_10_1103_PhysRevLett_133_146602 crossref_primary_10_1021_acsami_3c12571 crossref_primary_10_1088_1361_648X_ad52dd crossref_primary_10_1038_s41586_024_07023_w crossref_primary_10_1103_PhysRevLett_126_127701 crossref_primary_10_1088_1361_6463_ac28fa crossref_primary_10_1063_5_0252836 crossref_primary_10_1103_PhysRevLett_132_166702 crossref_primary_10_1038_s43246_022_00238_2 crossref_primary_10_1016_j_jmmm_2024_172358 crossref_primary_10_1038_s41928_022_00866_z crossref_primary_10_1103_PhysRevLett_131_256703 crossref_primary_10_1103_PhysRevMaterials_9_034407 crossref_primary_10_1103_PhysRevLett_128_097702 crossref_primary_10_1103_PhysRevB_106_024421 crossref_primary_10_1103_PhysRevResearch_6_023100 crossref_primary_10_1038_s42005_025_01943_3 crossref_primary_10_1103_PhysRevLett_133_086503 crossref_primary_10_1103_PhysRevB_109_134418 crossref_primary_10_3390_cryst14060552 crossref_primary_10_1103_PhysRevB_109_115102 crossref_primary_10_1103_PhysRevB_109_024404 crossref_primary_10_1038_s41586_024_08436_3 crossref_primary_10_1103_PhysRevB_110_104423 crossref_primary_10_1103_PhysRevLett_132_263402 crossref_primary_10_1021_acs_nanolett_3c02489 crossref_primary_10_1103_PhysRevA_107_052216 crossref_primary_10_1038_s41565_025_01872_w crossref_primary_10_1038_s41928_022_00744_8 crossref_primary_10_1103_PhysRevB_110_L220402 crossref_primary_10_1038_s41535_023_00594_3 crossref_primary_10_1126_sciadv_adn0479 crossref_primary_10_1016_j_xinn_2022_100343 crossref_primary_10_1103_PhysRevLett_133_056701 crossref_primary_10_1103_PhysRevB_105_L121102 crossref_primary_10_1103_PhysRevB_111_054520 crossref_primary_10_1103_PhysRevB_108_024410 crossref_primary_10_1103_PhysRevLett_132_196602 crossref_primary_10_1103_PhysRevB_108_L140408 crossref_primary_10_1103_PhysRevB_106_224421 crossref_primary_10_1038_s41467_023_43962_0 crossref_primary_10_1103_PhysRevLett_133_106601 crossref_primary_10_1002_adma_202309172 crossref_primary_10_1103_PhysRevB_111_094412 crossref_primary_10_1103_PhysRevLett_132_236701 crossref_primary_10_1103_PhysRevB_108_054511 crossref_primary_10_1103_PhysRevB_111_094411 crossref_primary_10_1063_5_0149955 crossref_primary_10_1103_PhysRevResearch_5_043171 crossref_primary_10_1038_s41567_023_02017_3 crossref_primary_10_1103_PhysRevB_107_085411 crossref_primary_10_7566_JPSJ_91_113702 crossref_primary_10_1038_s41467_021_26915_3 crossref_primary_10_1103_PhysRevB_111_L020407 crossref_primary_10_1038_s41567_023_02307_w crossref_primary_10_1103_PhysRevB_104_024401 crossref_primary_10_1103_PhysRevB_110_245414 crossref_primary_10_1103_PhysRevLett_134_116701 crossref_primary_10_1016_j_physe_2021_115118 crossref_primary_10_1103_PhysRevB_106_024405 crossref_primary_10_1103_PhysRevB_108_224421 crossref_primary_10_1016_j_mtcomm_2022_103694 crossref_primary_10_1002_adma_202400301 crossref_primary_10_1103_PhysRevB_104_064428 crossref_primary_10_21468_SciPostPhys_18_3_109 crossref_primary_10_1088_1361_648X_ac70a0 crossref_primary_10_1103_PhysRevB_111_085145 crossref_primary_10_1021_jacs_4c14891 crossref_primary_10_1103_PhysRevB_108_L180401 crossref_primary_10_1103_PhysRevLett_133_216701 crossref_primary_10_1038_s41586_022_04412_x crossref_primary_10_1103_PhysRevApplied_15_024057 crossref_primary_10_1002_advs_202400967 crossref_primary_10_1039_D3NR03681B crossref_primary_10_1103_PhysRevB_104_104427 crossref_primary_10_1103_PhysRevB_105_L121107 crossref_primary_10_1103_PhysRevB_111_L020412 crossref_primary_10_1088_1361_6668_ad23fd crossref_primary_10_1103_PhysRevResearch_4_013215 crossref_primary_10_1103_PhysRevB_109_125403 crossref_primary_10_1103_PhysRevB_111_054501 crossref_primary_10_1038_s41586_023_06907_7 crossref_primary_10_1038_s44306_024_00029_0 crossref_primary_10_1038_s41586_024_08234_x crossref_primary_10_1103_PhysRevB_108_L121103 crossref_primary_10_1103_PhysRevB_109_L201404 crossref_primary_10_1103_PhysRevB_108_L100402 crossref_primary_10_3390_jlpea14030035 crossref_primary_10_1103_Physics_17_4 crossref_primary_10_1002_smll_202407722 crossref_primary_10_1103_PhysRevMaterials_9_024402 crossref_primary_10_1002_adom_202300177 crossref_primary_10_1103_PhysRevB_104_094418 crossref_primary_10_1103_PhysRevLett_133_106701 crossref_primary_10_1038_s41586_022_05463_w crossref_primary_10_1103_PhysRevB_111_104416 crossref_primary_10_1039_D4SC04125A crossref_primary_10_1038_s41563_024_02058_w crossref_primary_10_1021_acs_nanolett_3c04330 crossref_primary_10_1103_PhysRevB_111_L020401 crossref_primary_10_1103_PhysRevApplied_21_034038 crossref_primary_10_1021_acs_jpcc_1c02653 crossref_primary_10_1103_PhysRevB_103_L180407 crossref_primary_10_1016_j_jmmm_2023_171163 crossref_primary_10_1038_s41467_024_53862_6 crossref_primary_10_1038_s41535_023_00603_5 crossref_primary_10_1038_s41563_024_02072_y crossref_primary_10_1016_j_jmmm_2023_171043 crossref_primary_10_1021_jacsau_4c01150 crossref_primary_10_1038_s41467_024_46476_5 crossref_primary_10_1103_PhysRevX_14_031039 crossref_primary_10_1103_PhysRevX_14_031038 crossref_primary_10_1103_PhysRevB_111_045106 crossref_primary_10_1038_s41535_022_00455_5 crossref_primary_10_1002_smll_202408247 crossref_primary_10_1038_s43246_024_00617_x crossref_primary_10_1103_PhysRevB_109_224502 crossref_primary_10_1103_PhysRevB_110_014442 crossref_primary_10_1103_PhysRevX_14_031037 crossref_primary_10_1002_adma_202312008 crossref_primary_10_1103_PhysRevB_111_035423 crossref_primary_10_1103_PhysRevMaterials_6_084802 crossref_primary_10_3390_ma17112780 crossref_primary_10_7566_JPSJ_93_114703 crossref_primary_10_1103_PhysRevLett_130_036702 crossref_primary_10_1088_0256_307X_42_1_017201 crossref_primary_10_1103_PhysRevB_107_155126 crossref_primary_10_7566_JPSJ_91_014701 crossref_primary_10_1038_s41535_022_00423_z crossref_primary_10_1002_apxr_202400170 crossref_primary_10_1016_j_mtelec_2024_100101 crossref_primary_10_1063_5_0223004 crossref_primary_10_1088_0256_307X_42_2_027403 crossref_primary_10_1038_s44306_024_00066_9 crossref_primary_10_1103_PhysRevB_111_075141 crossref_primary_10_21468_SciPostPhysCodeb_30 crossref_primary_10_1103_PhysRevLett_133_046701 crossref_primary_10_1021_acs_jpclett_1c00282 crossref_primary_10_1038_s41524_023_01113_5 crossref_primary_10_1063_5_0147450 crossref_primary_10_1103_PhysRevX_12_040501 crossref_primary_10_1002_adfm_202008971 crossref_primary_10_1103_PhysRevB_106_195149 crossref_primary_10_1063_5_0213320 crossref_primary_10_1063_5_0235472 crossref_primary_10_1038_s41467_024_45951_3 crossref_primary_10_1103_PhysRevResearch_2_043090 crossref_primary_10_1103_PhysRevMaterials_8_084412 crossref_primary_10_1103_PhysRevB_109_094438 crossref_primary_10_1103_PhysRevB_110_224418 crossref_primary_10_1063_5_0034938 crossref_primary_10_1103_PhysRevB_109_094435 crossref_primary_10_1038_s44306_024_00055_y crossref_primary_10_1103_PhysRevB_107_075411 crossref_primary_10_1103_PhysRevB_108_115118 crossref_primary_10_1103_PhysRevB_109_L180411 crossref_primary_10_7566_JPSJNC_21_22 crossref_primary_10_1103_PhysRevB_106_144402 crossref_primary_10_1063_5_0023614 crossref_primary_10_1002_advs_202307306 crossref_primary_10_1103_PhysRevB_107_224402 crossref_primary_10_1088_0256_307X_42_2_027301 crossref_primary_10_3390_sym16070926 crossref_primary_10_1134_S0021364024602926 crossref_primary_10_1038_s41535_024_00682_y crossref_primary_10_1103_PhysRevB_103_214413 crossref_primary_10_1063_5_0242426 crossref_primary_10_1103_PhysRevB_106_L180404 crossref_primary_10_1103_PhysRevB_106_235116 crossref_primary_10_1002_qua_70031 crossref_primary_10_1103_PhysRevLett_133_166701 crossref_primary_10_1038_s41586_021_03679_w crossref_primary_10_1103_PhysRevB_110_094508 crossref_primary_10_1103_PhysRevB_111_035404 crossref_primary_10_1002_admt_202300676 crossref_primary_10_1038_s44306_024_00042_3 crossref_primary_10_1038_s42005_021_00587_3 crossref_primary_10_1103_PhysRevB_107_155146 crossref_primary_10_1103_PhysRevB_109_094425 crossref_primary_10_1103_PhysRevB_110_L180403 crossref_primary_10_1103_PhysRevB_110_064426 crossref_primary_10_1103_PhysRevB_110_155125 crossref_primary_10_1103_PhysRevMaterials_8_075002 crossref_primary_10_1038_s41565_023_01397_0 crossref_primary_10_1103_PhysRevB_108_144418 crossref_primary_10_1103_PhysRevLett_130_266703 crossref_primary_10_1103_PhysRevB_110_235401 crossref_primary_10_1103_PhysRevX_12_031042 crossref_primary_10_1103_PhysRevB_110_064433 crossref_primary_10_1103_PhysRevB_111_125119 crossref_primary_10_1103_PhysRevLett_129_137201 crossref_primary_10_1038_s41586_022_05461_y crossref_primary_10_1103_PhysRevB_110_064432 crossref_primary_10_1103_PhysRevB_107_064412 crossref_primary_10_1103_PhysRevMaterials_8_104407 crossref_primary_10_1088_2631_7990_ad87cb crossref_primary_10_1103_PhysRevB_107_195125 crossref_primary_10_1088_1361_648X_ad2a0d crossref_primary_10_1038_s41535_023_00587_2 crossref_primary_10_1103_PhysRevResearch_3_033214 crossref_primary_10_1038_s44306_024_00053_0 crossref_primary_10_1103_PhysRevB_106_094432 crossref_primary_10_12693_APhysPolA_145_93 crossref_primary_10_1103_PhysRevB_104_054412 crossref_primary_10_1103_PhysRevB_109_094413 crossref_primary_10_1016_j_jpcs_2023_111350 crossref_primary_10_1016_j_mtphys_2024_101389 crossref_primary_10_1038_s41578_022_00430_3 crossref_primary_10_1103_PhysRevB_110_174426 crossref_primary_10_1103_PhysRevLett_132_156502 crossref_primary_10_1103_PhysRevLett_133_026402 crossref_primary_10_1038_s41598_022_17766_z crossref_primary_10_1103_PhysRevLett_130_216701 crossref_primary_10_1103_PhysRevLett_130_216702 crossref_primary_10_1103_PhysRevLett_128_117201 crossref_primary_10_1103_PhysRevLett_133_176401 crossref_primary_10_1103_PhysRevMaterials_7_024416 crossref_primary_10_1103_PhysRevLett_132_036702 |
Cites_doi | 10.1038/s41567-018-0307-5 10.1038/s41563-018-0169-3 10.1103/PhysRevLett.118.077201 10.1016/j.cpc.2014.05.003 10.1038/s42254-018-0011-5 10.1107/S1600576716015491 10.1103/PhysRevLett.103.097203 10.1038/s41467-018-05756-7 10.1038/nnano.2013.243 10.1103/RevModPhys.82.1539 10.2307/2369245 10.1038/s41928-018-0040-1 10.1103/PhysRevB.1.1494 10.1103/PhysRevLett.122.017202 10.1103/PhysRevB.98.214440 10.1016/j.cpc.2017.09.033 10.1016/0038-1098(65)90178-X 10.1103/PhysRevB.95.094406 10.1103/PhysRevLett.92.037204 10.1038/nphys3831 10.1038/s41567-018-0064-5 10.1103/PhysRevLett.61.2015 10.1103/PhysRevLett.119.187204 10.1103/PhysRevB.95.075128 10.1038/s41563-018-0132-3 10.1126/sciadv.aar7880 10.1103/PhysRevB.92.155138 10.1103/PhysRevLett.112.017205 10.1088/0022-3719/16/14/016 10.1126/science.aar4265 10.1038/nature08680 10.1038/nmat2987 10.1103/PhysRevLett.118.106402 10.1103/PhysRevB.54.11169 10.1038/nature19099 10.1038/ncomms4400 10.1038/s41567-018-0234-5 10.1103/PhysRevLett.87.116801 10.1209/0295-5075/108/67001 10.1103/PhysRev.142.318 10.1126/sciadv.1501870 10.1107/S0108767393003770 10.1038/nature15723 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1126/sciadv.aaz8809 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2375-2548 |
ExternalDocumentID | PMC7274798 10_1126_sciadv_aaz8809 |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BKF CITATION EBS FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD RHI RPM TEORI 7X8 5PM |
ID | FETCH-LOGICAL-c433t-b13dbb1ddad627c0a33e6e52ba7807ed3868cf283f4d9facbccbf276e068a1093 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Thu Aug 21 18:24:08 EDT 2025 Fri Jul 11 09:47:12 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 Tue Jul 01 03:52:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-b13dbb1ddad627c0a33e6e52ba7807ed3868cf283f4d9facbccbf276e068a1093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1193-1372 0000-0002-9490-2333 0000-0002-9910-1674 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.aaz8809 |
PMID | 32548264 |
PQID | 2414407832 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7274798 proquest_miscellaneous_2414407832 crossref_citationtrail_10_1126_sciadv_aaz8809 crossref_primary_10_1126_sciadv_aaz8809 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200605 |
PublicationDateYYYYMMDD | 2020-06-05 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200605 day: 5 |
PublicationDecade | 2020 |
PublicationTitle | Science advances |
PublicationYear | 2020 |
Publisher | American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_46_2 Kzyaloshinskii I. E. (e_1_3_2_23_2) 1958; 6 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_22_2 doi: 10.1038/s41567-018-0307-5 – ident: e_1_3_2_34_2 doi: 10.1038/s41563-018-0169-3 – ident: e_1_3_2_27_2 doi: 10.1103/PhysRevLett.118.077201 – ident: e_1_3_2_41_2 doi: 10.1016/j.cpc.2014.05.003 – ident: e_1_3_2_39_2 doi: 10.1038/s42254-018-0011-5 – ident: e_1_3_2_35_2 doi: 10.1107/S1600576716015491 – ident: e_1_3_2_32_2 doi: 10.1103/PhysRevLett.103.097203 – ident: e_1_3_2_18_2 doi: 10.1038/s41467-018-05756-7 – ident: e_1_3_2_16_2 doi: 10.1038/nnano.2013.243 – ident: e_1_3_2_3_2 doi: 10.1103/RevModPhys.82.1539 – ident: e_1_3_2_2_2 doi: 10.2307/2369245 – ident: e_1_3_2_13_2 doi: 10.1038/s41928-018-0040-1 – ident: e_1_3_2_46_2 doi: 10.1103/PhysRevB.1.1494 – ident: e_1_3_2_28_2 doi: 10.1103/PhysRevLett.122.017202 – ident: e_1_3_2_37_2 doi: 10.1103/PhysRevB.98.214440 – ident: e_1_3_2_42_2 doi: 10.1016/j.cpc.2017.09.033 – ident: e_1_3_2_4_2 doi: 10.1016/0038-1098(65)90178-X – volume: 6 start-page: 1120 year: 1958 ident: e_1_3_2_23_2 article-title: The magnetic structure of fluorides of the transition metals publication-title: Sov. Phys. JETP – ident: e_1_3_2_7_2 doi: 10.1103/PhysRevB.95.094406 – ident: e_1_3_2_43_2 doi: 10.1103/PhysRevLett.92.037204 – ident: e_1_3_2_21_2 doi: 10.1038/nphys3831 – ident: e_1_3_2_36_2 doi: 10.1038/s41567-018-0064-5 – ident: e_1_3_2_24_2 doi: 10.1103/PhysRevLett.61.2015 – ident: e_1_3_2_45_2 doi: 10.1103/PhysRevLett.119.187204 – ident: e_1_3_2_30_2 doi: 10.1103/PhysRevB.95.075128 – ident: e_1_3_2_31_2 doi: 10.1038/s41563-018-0132-3 – ident: e_1_3_2_29_2 doi: 10.1126/sciadv.aar7880 – ident: e_1_3_2_6_2 doi: 10.1103/PhysRevB.92.155138 – ident: e_1_3_2_9_2 doi: 10.1103/PhysRevLett.112.017205 – ident: e_1_3_2_33_2 doi: 10.1088/0022-3719/16/14/016 – ident: e_1_3_2_38_2 doi: 10.1126/science.aar4265 – ident: e_1_3_2_14_2 doi: 10.1038/nature08680 – ident: e_1_3_2_26_2 doi: 10.1038/nmat2987 – ident: e_1_3_2_20_2 doi: 10.1103/PhysRevLett.118.106402 – ident: e_1_3_2_40_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_2_25_2 doi: 10.1038/nature19099 – ident: e_1_3_2_17_2 doi: 10.1038/ncomms4400 – ident: e_1_3_2_44_2 doi: 10.1038/s41567-018-0234-5 – ident: e_1_3_2_15_2 doi: 10.1103/PhysRevLett.87.116801 – ident: e_1_3_2_10_2 doi: 10.1209/0295-5075/108/67001 – ident: e_1_3_2_19_2 – ident: e_1_3_2_5_2 doi: 10.1103/PhysRev.142.318 – ident: e_1_3_2_12_2 doi: 10.1126/sciadv.1501870 – ident: e_1_3_2_8_2 doi: 10.1107/S0108767393003770 – ident: e_1_3_2_11_2 doi: 10.1038/nature15723 |
SSID | ssj0001466519 |
Score | 2.6363022 |
Snippet | Identification of a previously overlooked spontaneous Hall effect mechanism creates opportunities in low-dissipation spintronics.
Electrons, commonly moving... Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect,... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | eaaz8809 |
SubjectTerms | Condensed Matter Physics Materials Science SciAdv r-articles |
Title | Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets |
URI | https://www.proquest.com/docview/2414407832 https://pubmed.ncbi.nlm.nih.gov/PMC7274798 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBVteumlJE1Lt02CCoG0BwdbkiX7EEIITZdCcurC3oy-3Aa83tZ2Qja_PjOy8rG0hV4MxkKGkQa9J43eI2RfeOny0rukqHMGBEWopJTob2JLV3JUAAvHBecXcjoT3-b5_LH-KQaw_yu1Qz-pWdcc3vxeHUPCHz25AKPd9aHWtzAZy-fkBaxKCpP0PEL9sN8ipMyDzwfjKk-AFxVRw_HPLtbXqEfguV42-WQdOtskryKApCfjiG-RZ759TbZiivb0U9SR_rxN9Gm3AuzXUPSPT1CqqevhrV8tFn7oVhTIcLCiorp1FCtlASf65VVPp7pp6FjoQS9baoNuN2QENBywEqZbLvSP1g_9GzI7-_L9dJpER4XECs6HxGTcGZM5p51kyqaacy99zoxWRaq844UsbA2IoxaurLU11pqaKelTWWgUnnpLNtpl699hSVRqZM0ECnwJo7nJbJppiDwgLpd7NSHJfQwrG-XG0fWiqQLtYLIaY17FmE_IwUP7X6PQxj9bfrwfkgpyAQ84xvBU8HcRziXZhKi1sXroEtW017-0lz-DqrZCfl4W7_-j9w_kJUPajZsx-Q7ZGLorvwvYZDB7gdPD8-s82wsT8A7l0et6 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+time-reversal+symmetry+breaking+and+spontaneous+Hall+effect+in+collinear+antiferromagnets&rft.jtitle=Science+advances&rft.au=%C5%A0mejkal%2C+Libor&rft.au=Gonz%C3%A1lez-Hern%C3%A1ndez%2C+Rafael&rft.au=Jungwirth%2C+T&rft.au=Sinova%2C+J&rft.date=2020-06-05&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=6&rft.issue=23&rft.spage=eaaz8809&rft_id=info:doi/10.1126%2Fsciadv.aaz8809&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |