3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM

•A new form of orchard mapping framework integrating eye-in-hand stereovision and SLAM is proposed.•Large-scale, high-accuracy, and detailed global maps supporting high-quality orchard picking are obtained.•The proposed hand-eye calibration method is efficient and beats the compared methods.•The pro...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 187; p. 106237
Main Authors Chen, Mingyou, Tang, Yunchao, Zou, Xiangjun, Huang, Zhaofeng, Zhou, Hao, Chen, Siyu
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.08.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A new form of orchard mapping framework integrating eye-in-hand stereovision and SLAM is proposed.•Large-scale, high-accuracy, and detailed global maps supporting high-quality orchard picking are obtained.•The proposed hand-eye calibration method is efficient and beats the compared methods.•The proposed stereo matching method is highly adapted to dynamic and complex orchard environment.•The framework generates a more detailed global map than the commercial products used for comparison. Large-scale, high-accuracy, and adaptive three-dimensional (3D) perception are the basic technical requirements for constructing a practical and stable fruit-picking robot. The latest vision-based fruit-picking robots have been able to adapt to the complex background, uneven lighting and low color contrast of the orchard environment. However, most of them have, until now, been limited to a small field of view or rigid sampling manners. Although the simultaneous localization and mapping (SLAM) methods have the potential to realize large scale sensing, it was critically revealed in this study that the classic SLAM pipeline is not completely adapted to orchard picking tasks. In this study, the eye-in-hand stereo vision and SLAM system were integrated to provide detailed global map supporting long-term, flexible and large-scale orchard picking. To be specific, a mobile robot based on eye-in-hand vision was built and an effective hand-eye calibration method was proposed; a state-of-the-art object detection network was trained and used to establish a dynamic stereo matching method adapted well to complex orchard environments; a SLAM system was deployed and combined with the above eye-in-hand stereo vision system to obtain a detailed, wide 3D orchard map. The main contribution of this work is to build a new global mapping framework compatible to the nature of orchard picking tasks. Compared with the existing studies, this work pays more attention to the structural details of the orchard. Experimental results indicated that the constructed global map achieved both large-scale and high-resolution. This is an exploratory work providing theoretical and technical references for the future research on more stable, accurate and practical mobile fruit picking robots.
AbstractList Large-scale, high-accuracy, and adaptive three-dimensional (3D) perception are the basic technical requirements for constructing a practical and stable fruit-picking robot. The latest vision-based fruit-picking robots have been able to adapt to the complex background, uneven lighting and low color contrast of the orchard environment. However, most of them have, until now, been limited to a small field of view or rigid sampling manners. Although the simultaneous localization and mapping (SLAM) methods have the potential to realize large scale sensing, it was critically revealed in this study that the classic SLAM pipeline is not completely adapted to orchard picking tasks. In this study, the eye-in-hand stereo vision and SLAM system were integrated to provide detailed global map supporting long-term, flexible and large-scale orchard picking. To be specific, a mobile robot based on eye-in-hand vision was built and an effective hand-eye calibration method was proposed; a state-of-the-art object detection network was trained and used to establish a dynamic stereo matching method adapted well to complex orchard environments; a SLAM system was deployed and combined with the above eye-in-hand stereo vision system to obtain a detailed, wide 3D orchard map. The main contribution of this work is to build a new global mapping framework compatible to the nature of orchard picking tasks. Compared with the existing studies, this work pays more attention to the structural details of the orchard. Experimental results indicated that the constructed global map achieved both large-scale and high-resolution. This is an exploratory work providing theoretical and technical references for the future research on more stable, accurate and practical mobile fruit picking robots.
•A new form of orchard mapping framework integrating eye-in-hand stereovision and SLAM is proposed.•Large-scale, high-accuracy, and detailed global maps supporting high-quality orchard picking are obtained.•The proposed hand-eye calibration method is efficient and beats the compared methods.•The proposed stereo matching method is highly adapted to dynamic and complex orchard environment.•The framework generates a more detailed global map than the commercial products used for comparison. Large-scale, high-accuracy, and adaptive three-dimensional (3D) perception are the basic technical requirements for constructing a practical and stable fruit-picking robot. The latest vision-based fruit-picking robots have been able to adapt to the complex background, uneven lighting and low color contrast of the orchard environment. However, most of them have, until now, been limited to a small field of view or rigid sampling manners. Although the simultaneous localization and mapping (SLAM) methods have the potential to realize large scale sensing, it was critically revealed in this study that the classic SLAM pipeline is not completely adapted to orchard picking tasks. In this study, the eye-in-hand stereo vision and SLAM system were integrated to provide detailed global map supporting long-term, flexible and large-scale orchard picking. To be specific, a mobile robot based on eye-in-hand vision was built and an effective hand-eye calibration method was proposed; a state-of-the-art object detection network was trained and used to establish a dynamic stereo matching method adapted well to complex orchard environments; a SLAM system was deployed and combined with the above eye-in-hand stereo vision system to obtain a detailed, wide 3D orchard map. The main contribution of this work is to build a new global mapping framework compatible to the nature of orchard picking tasks. Compared with the existing studies, this work pays more attention to the structural details of the orchard. Experimental results indicated that the constructed global map achieved both large-scale and high-resolution. This is an exploratory work providing theoretical and technical references for the future research on more stable, accurate and practical mobile fruit picking robots.
ArticleNumber 106237
Author Zhou, Hao
Zou, Xiangjun
Chen, Mingyou
Tang, Yunchao
Chen, Siyu
Huang, Zhaofeng
Author_xml – sequence: 1
  givenname: Mingyou
  surname: Chen
  fullname: Chen, Mingyou
  organization: Key Laboratory of Key Technology on Agricultural Machine and Equipment, College of Engineering, South China Agricultural University, Guangzhou 510642, China
– sequence: 2
  givenname: Yunchao
  surname: Tang
  fullname: Tang, Yunchao
  email: ryan.twain@zhku.edu.cn
  organization: College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510006, China
– sequence: 3
  givenname: Xiangjun
  surname: Zou
  fullname: Zou, Xiangjun
  email: xjzou1@163.com
  organization: Key Laboratory of Key Technology on Agricultural Machine and Equipment, College of Engineering, South China Agricultural University, Guangzhou 510642, China
– sequence: 4
  givenname: Zhaofeng
  surname: Huang
  fullname: Huang, Zhaofeng
  organization: Key Laboratory of Key Technology on Agricultural Machine and Equipment, College of Engineering, South China Agricultural University, Guangzhou 510642, China
– sequence: 5
  givenname: Hao
  surname: Zhou
  fullname: Zhou, Hao
  organization: Key Laboratory of Key Technology on Agricultural Machine and Equipment, College of Engineering, South China Agricultural University, Guangzhou 510642, China
– sequence: 6
  givenname: Siyu
  surname: Chen
  fullname: Chen, Siyu
  organization: Key Laboratory of Key Technology on Agricultural Machine and Equipment, College of Engineering, South China Agricultural University, Guangzhou 510642, China
BookMark eNqFkE1v1DAQhi1UJLaFf8DBEhcu2forccwBqWqhIC3iAJwtx56kXmXtYDuV-u_xKpx6gNNoRs_7avRcoosQAyD0lpI9JbS7Pu5tPC1m2jPCaD11jMsXaEd7yRpJibxAu4r1De2UeoUucz6Suqte7pDjd3ia42BmfDLL4sOE44hnkyZosjUz4DXkklZb1gQOx2QfTHLYhwJTMuXMwxM0PjQPJjicCySI-NFnHwM-X34cbr69Ri9HM2d483deoV-fP_28_dIcvt9_vb05NFZwXhoztB0TzClKJRlaLlhvRufkoBw1oFqqBqI6CoQw2xI5jkwIQlonW8FdK3p-hd5vvUuKv1fIRZ98tjDPJkBcs2Zt7ehbzmVF3z1Dj3FNoX5XqY6qTjBBKiU2yqaYc4JRL8mfTHrSlOizen3Um3p9Vq839TX24VnM-lJlxVCS8fP_wh-3MFRTjx6SztZDsOB8Alu0i_7fBX8AZT-iKg
CitedBy_id crossref_primary_10_1016_j_autcon_2023_105262
crossref_primary_10_3390_agronomy11122440
crossref_primary_10_3390_agriculture15040407
crossref_primary_10_1016_j_compag_2022_107197
crossref_primary_10_3390_app13158790
crossref_primary_10_1109_LRA_2022_3176448
crossref_primary_10_1111_jfpe_14117
crossref_primary_10_1155_2021_5256940
crossref_primary_10_3390_s21196467
crossref_primary_10_1016_j_compag_2023_108446
crossref_primary_10_3390_rs14030716
crossref_primary_10_1088_1361_6501_ac4f01
crossref_primary_10_1016_j_compag_2022_107584
crossref_primary_10_1016_j_aei_2025_103224
crossref_primary_10_3390_agriengineering6030193
crossref_primary_10_1155_2021_6221119
crossref_primary_10_1016_j_jksus_2022_102298
crossref_primary_10_1016_j_engappai_2022_105703
crossref_primary_10_3390_rs14030681
crossref_primary_10_3390_agronomy12071520
crossref_primary_10_1016_j_compag_2024_109487
crossref_primary_10_1016_j_compag_2023_108298
crossref_primary_10_1016_j_compag_2023_108453
crossref_primary_10_1016_j_dt_2021_12_010
crossref_primary_10_1016_j_compag_2023_108217
crossref_primary_10_1016_j_robot_2023_104514
crossref_primary_10_1109_ACCESS_2021_3111021
crossref_primary_10_3390_electronics11040647
crossref_primary_10_1109_ACCESS_2021_3110978
crossref_primary_10_3390_s23052640
crossref_primary_10_1016_j_compag_2023_107691
crossref_primary_10_1016_j_compag_2024_108621
crossref_primary_10_1016_j_asej_2021_101675
crossref_primary_10_1002_rob_22077
crossref_primary_10_1007_s11119_022_09981_5
crossref_primary_10_1016_j_compag_2022_106800
crossref_primary_10_3390_rs14020431
crossref_primary_10_3389_fpls_2022_881904
crossref_primary_10_1371_journal_pone_0282297
crossref_primary_10_1016_j_engappai_2023_105826
crossref_primary_10_1016_j_measurement_2024_115924
crossref_primary_10_1109_ACCESS_2023_3331815
crossref_primary_10_3390_rs14020396
crossref_primary_10_1016_j_compag_2024_109141
crossref_primary_10_3390_rs13173547
crossref_primary_10_1109_JSEN_2024_3369657
crossref_primary_10_3389_fpls_2022_1042035
crossref_primary_10_1002_rob_22187
crossref_primary_10_1016_j_compag_2021_106586
crossref_primary_10_1016_j_compag_2023_107834
crossref_primary_10_1155_2021_3224164
crossref_primary_10_3390_agronomy12020391
crossref_primary_10_1016_j_engappai_2022_104709
crossref_primary_10_3390_electronics12030665
crossref_primary_10_3390_rs13173455
crossref_primary_10_3390_agronomy14040697
crossref_primary_10_1016_j_compag_2024_109177
crossref_primary_10_1049_tje2_12419
crossref_primary_10_1155_2021_1392362
crossref_primary_10_3390_agronomy14061279
crossref_primary_10_1016_j_compag_2024_109736
crossref_primary_10_1002_rob_22297
crossref_primary_10_1002_rob_22166
crossref_primary_10_3389_fpls_2024_1337638
crossref_primary_10_3390_agriculture12071008
crossref_primary_10_3390_s22218407
crossref_primary_10_3390_s21154986
crossref_primary_10_3390_agronomy13092237
crossref_primary_10_3390_jimaging9120258
crossref_primary_10_1016_j_jag_2022_102759
crossref_primary_10_3389_fpls_2022_972445
crossref_primary_10_1016_j_fbp_2024_12_007
crossref_primary_10_1016_j_engappai_2022_105733
crossref_primary_10_3389_fpls_2022_955256
crossref_primary_10_3389_fpls_2022_960686
crossref_primary_10_3390_s22010160
crossref_primary_10_3390_machines9100233
crossref_primary_10_3390_rs14061374
crossref_primary_10_3389_fpls_2021_705021
crossref_primary_10_1109_ACCESS_2024_3440183
crossref_primary_10_3390_s22052031
crossref_primary_10_37221_eaef_17_1_1
crossref_primary_10_3390_agronomy12123054
crossref_primary_10_3390_rs14184465
crossref_primary_10_24003_emitter_v10i2_700
crossref_primary_10_1007_s11119_023_10009_9
crossref_primary_10_1016_j_engappai_2022_105325
crossref_primary_10_3390_horticulturae9040498
crossref_primary_10_1155_2022_4648105
crossref_primary_10_3390_electronics12092006
crossref_primary_10_1016_j_compag_2022_106791
crossref_primary_10_3390_agriculture12111821
crossref_primary_10_1016_j_compag_2022_107085
crossref_primary_10_1016_j_eswa_2022_117462
crossref_primary_10_1007_s00371_021_02319_8
crossref_primary_10_1016_j_compag_2024_109187
crossref_primary_10_1109_LRA_2023_3234744
crossref_primary_10_1016_j_compag_2024_108774
crossref_primary_10_1002_rob_22140
crossref_primary_10_1016_j_compag_2024_109229
Cites_doi 10.13031/aim.201700164
10.1109/ACCESS.2019.2946369
10.1109/JAS.2020.1003027
10.1109/70.34770
10.3390/rs10111845
10.1177/1729881419896717
10.3390/robotics9040097
10.1016/j.rcim.2019.03.001
10.1016/j.biosystemseng.2017.11.005
10.1109/MHS.2017.8305235
10.1109/70.326576
10.1016/j.compag.2016.09.014
10.1364/OE.23.015205
10.1016/j.biosystemseng.2020.07.003
10.23919/AADECA.2018.8577360
10.1002/rob.21876
10.1109/ACCESS.2018.2868848
10.1016/j.biosystemseng.2019.03.007
10.1002/rob.21715
10.3389/fpls.2020.00510
10.1177/0278364917720510
10.1177/02783649922066213
10.3390/s19020428
10.1109/ACCESS.2020.3043662
10.1016/j.compag.2015.09.025
10.1016/j.compag.2017.12.034
10.1016/j.compag.2020.105508
10.1177/027836499501400301
10.1016/j.compag.2018.02.009
10.1109/ACCESS.2020.3005386
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Aug 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2021.106237
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2021_106237
S0168169921002544
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7SC
7SP
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c433t-ab56242d91170b53428afdd7b9d1ae9519b0961e002c507ff244005d7543d5483
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Fri Jul 11 11:37:07 EDT 2025
Sun Jul 13 04:07:15 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Tue Jul 01 01:58:22 EDT 2025
Fri Feb 23 02:38:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords SLAM
Fruit-picking robot
Stereo vision
Stereo matching
3D mapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-ab56242d91170b53428afdd7b9d1ae9519b0961e002c507ff244005d7543d5483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2561964240
PQPubID 2045491
ParticipantIDs proquest_miscellaneous_2551985337
proquest_journals_2561964240
crossref_primary_10_1016_j_compag_2021_106237
crossref_citationtrail_10_1016_j_compag_2021_106237
elsevier_sciencedirect_doi_10_1016_j_compag_2021_106237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Underwood, Hung, Whelan, Sukkarieh (b0170) 2016; 130
Zhang, Huang, You, Lin, Tang, Huang (b0190) 2020; 20
Zhang (b0195) 2000
Habibie, N., Nugraha, A.M., Anshori, A.Z., Ma’sum, M.A., Jatmiko, W., 2018. Fruit mapping mobile robot on simulated agricultural area in Gazebo simulator using simultaneous localization and mapping(SLAM), in: MHS 2017 - 28th 2017 International Symposium on Micro-NanoMechatronics and Human Science. IEEE, pp. 1–7. https://doi.org/10.1109/MHS.2017.8305235.
Tan, M., Le, Q. V, 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv Prepr. arXiv1905.11946.
Daniilidis (b0035) 1999; 18
Fan, Feng, Mannan, Khan, Shen, Saeed (b0045) 2018; 10
Aguiar, dos Santos, Cunha, Sobreira, Sousa (b0005) 2020; 9
Tang, Li, Wang, Chen, Feng, Zou, Huang (b0160) 2019; 59
Xiong, Lin, Liu, He, Tang, Yang, Zou (b0185) 2018; 166
Ivanov, Sergyienko, Tyrsa, Lindner, Flores-Fuentes, Rodriguez-Quinonez, Hernandez, Mercorelli (b0085) 2020; 7
Tang, Wang, Luo, Zou (b0155) 2020; 11
Zhao, Wang, Qi, Runge (b0200) 2020; 8
Jia, Yang, Liu, Wang, Liu, Wang, Fan, Zhao (b0090) 2015; 23
Ge, Xiong, Tenorio, From (b0065) 2019; 7
Tsai, Lenz (b0165) 1989; 5
Capua, F.R., Sansoni, S., Moreyra, M.L., 2018. Comparative Analysis of Visual-SLAM Algorithms Applied to Fruit Environments, in: 2018 Argentine Conference on Automatic Control, AADECA 2018. IEEE, pp. 1–6. https://doi.org/10.23919/AADECA.2018.8577360.
Gao, Li, Fan, Zhou, Yin, Wang, Song, Huang, Wang (b0055) 2018; 6
Hirschmuller (b0075) 2005
Shalal, Low, McCarthy, Hancock (b0135) 2015; 119
Li, Tang, Zou, Lin, Wang (b0100) 2020; 8
Chen, Tang, Zou, Huang, Huang, Zhou, Wang, Lian (b0025) 2020; 174
Wibowo, Sulistijono, Risnumawan (b0175) 2017
Horaud, Dornaika (b0080) 1995; 14
Lin, Tang, Zou, Xiong, Li (b0105) 2019; 19
Liu, Qi, Qin, Shi, Jia (b0110) 2018
Silwal, Davidson, Karkee, Mo, Zhang, Lewis (b0140) 2017; 34
Gan, H., Lee, W.S., Alchanatis, V., 2017. A Prototype of an Immature Citrus Fruit Yield Mapping System, in: 2017 ASABE Annual International Meeting. Am. Soc. Agric. Biol. Eng., p. 1. https://doi.org/10.13031/aim.201700164.
Chen, Wang, Zhang, Luo (b0030) 2018; 147
Williams, Jones, Nejati, Seabright, Bell, Penhall, Barnett, Duke, Scarfe, Ahn, Lim, MacDonald (b0180) 2019; 181
Pierzchała, Giguère, Astrup (b0125) 2018; 145
Dong, Roy, Isler (b0040) 2020; 37
Andreff, N., Horaud, R., Espiau, B., 1999. On-line hand-eye calibration, in: Second International Conference on 3-D Digital Imaging and Modeling (Cat. No. PR00062). IEEE, pp. 430–436.
Tan, Pang, Le (b0150) 2020
Ge, Xiong, From (b0060) 2020; 197
Chebrolu, Lottes, Schaefer, Winterhalter, Burgard, Stachniss (b0020) 2017; 36
Nellithimaru, Kantor (b0115) 2019
Ramírez-Hernández, Rodríguez-Quiñonez, Castro-Toscano, Hernández-Balbuena, Flores-Fuentes, Rascón-Carmona, Lindner, Sergiyenko (b0130) 2020; 17
Katikaridis, D., Moysiadis, V., Kateris, D., Bochtis, D., 2019. Large-Scale Point-Cloud Based Global Mapping for Orchard Operations.
Park, Martin (b0120) 1994; 10
Wibowo (10.1016/j.compag.2021.106237_b0175) 2017
Chen (10.1016/j.compag.2021.106237_b0030) 2018; 147
Williams (10.1016/j.compag.2021.106237_b0180) 2019; 181
Park (10.1016/j.compag.2021.106237_b0120) 1994; 10
Ge (10.1016/j.compag.2021.106237_b0065) 2019; 7
Zhang (10.1016/j.compag.2021.106237_b0190) 2020; 20
Li (10.1016/j.compag.2021.106237_b0100) 2020; 8
10.1016/j.compag.2021.106237_b0095
Pierzchała (10.1016/j.compag.2021.106237_b0125) 2018; 145
Underwood (10.1016/j.compag.2021.106237_b0170) 2016; 130
10.1016/j.compag.2021.106237_b0050
Zhang (10.1016/j.compag.2021.106237_b0195) 2000
Chebrolu (10.1016/j.compag.2021.106237_b0020) 2017; 36
10.1016/j.compag.2021.106237_b0070
Aguiar (10.1016/j.compag.2021.106237_b0005) 2020; 9
Hirschmuller (10.1016/j.compag.2021.106237_b0075) 2005
Nellithimaru (10.1016/j.compag.2021.106237_b0115) 2019
10.1016/j.compag.2021.106237_b0015
Liu (10.1016/j.compag.2021.106237_b0110) 2018
Lin (10.1016/j.compag.2021.106237_b0105) 2019; 19
Tan (10.1016/j.compag.2021.106237_b0150) 2020
Tang (10.1016/j.compag.2021.106237_b0155) 2020; 11
10.1016/j.compag.2021.106237_b0010
Dong (10.1016/j.compag.2021.106237_b0040) 2020; 37
Gao (10.1016/j.compag.2021.106237_b0055) 2018; 6
Horaud (10.1016/j.compag.2021.106237_b0080) 1995; 14
Zhao (10.1016/j.compag.2021.106237_b0200) 2020; 8
Ge (10.1016/j.compag.2021.106237_b0060) 2020; 197
Xiong (10.1016/j.compag.2021.106237_b0185) 2018; 166
Tang (10.1016/j.compag.2021.106237_b0160) 2019; 59
Silwal (10.1016/j.compag.2021.106237_b0140) 2017; 34
Fan (10.1016/j.compag.2021.106237_b0045) 2018; 10
Ivanov (10.1016/j.compag.2021.106237_b0085) 2020; 7
Ramírez-Hernández (10.1016/j.compag.2021.106237_b0130) 2020; 17
Chen (10.1016/j.compag.2021.106237_b0025) 2020; 174
Daniilidis (10.1016/j.compag.2021.106237_b0035) 1999; 18
Jia (10.1016/j.compag.2021.106237_b0090) 2015; 23
10.1016/j.compag.2021.106237_b0145
Shalal (10.1016/j.compag.2021.106237_b0135) 2015; 119
Tsai (10.1016/j.compag.2021.106237_b0165) 1989; 5
References_xml – volume: 17
  start-page: 1
  year: 2020
  end-page: 15
  ident: b0130
  article-title: Improve three-dimensional point localization accuracy in stereo vision systems using a novel camera calibration method
  publication-title: Int. J. Adv. Robot. Syst.
– start-page: 444
  year: 2017
  end-page: 449
  ident: b0175
  publication-title: End-to-end coconut harvesting robot
– volume: 36
  start-page: 1045
  year: 2017
  end-page: 1052
  ident: b0020
  article-title: Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields
  publication-title: Int. J. Rob. Res.
– volume: 59
  year: 2019
  ident: b0160
  article-title: Real-time detection of surface deformation and strain in recycled aggregate concrete-filled steel tubular columns via four-ocular vision
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 14
  start-page: 195
  year: 1995
  end-page: 210
  ident: b0080
  article-title: Hand-eye calibration
  publication-title: Int. J. Rob. Res.
– volume: 197
  start-page: 188
  year: 2020
  end-page: 202
  ident: b0060
  article-title: Symmetry-based 3D shape completion for fruit localisation for harvesting robots
  publication-title: Biosyst. Eng.
– start-page: 2648
  year: 2019
  end-page: 2656
  ident: b0115
  article-title: ROLS: Robust object-level SLAM for grape counting
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.
– start-page: 22
  year: 2000
  ident: b0195
  article-title: A flexible new technique for camera calibration
– volume: 7
  start-page: 147642
  year: 2019
  end-page: 147652
  ident: b0065
  article-title: Fruit localization and environment perception for strawberry harvesting robots
  publication-title: IEEE Access
– volume: 7
  start-page: 368
  year: 2020
  end-page: 385
  ident: b0085
  article-title: Influence of data clouds fusion from 3D real-Time vision system on robotic group dead reckoning in unknown terrain
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 130
  start-page: 83
  year: 2016
  end-page: 96
  ident: b0170
  article-title: Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors
  publication-title: Comput. Electron. Agric.
– volume: 119
  start-page: 254
  year: 2015
  end-page: 266
  ident: b0135
  article-title: Orchard mapping and mobile robot localisation using on-board camera and laser scanner data fusion - Part A: Tree detection
  publication-title: Comput. Electron. Agric.
– volume: 145
  start-page: 217
  year: 2018
  end-page: 225
  ident: b0125
  article-title: Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM
  publication-title: Comput. Electron. Agric.
– start-page: 10781
  year: 2020
  end-page: 10790
  ident: b0150
  publication-title: Efficientdet: Scalable and efficient object detection, in
– volume: 9
  start-page: 97
  year: 2020
  ident: b0005
  article-title: Localization and mapping for robots in agriculture and forestry: a survey
  publication-title: Robotics
– volume: 10
  year: 2018
  ident: b0045
  article-title: Estimating tree position, diameter at breast height, and tree height in real-time using a mobile phone with RGB-D SLAM
  publication-title: Remote Sens.
– volume: 10
  start-page: 717
  year: 1994
  end-page: 721
  ident: b0120
  article-title: Robot sensor calibration: solving AX= XB on the Euclidean group
  publication-title: IEEE Trans. Robot. Autom.
– reference: Capua, F.R., Sansoni, S., Moreyra, M.L., 2018. Comparative Analysis of Visual-SLAM Algorithms Applied to Fruit Environments, in: 2018 Argentine Conference on Automatic Control, AADECA 2018. IEEE, pp. 1–6. https://doi.org/10.23919/AADECA.2018.8577360.
– start-page: 8759
  year: 2018
  end-page: 8768
  ident: b0110
  article-title: Path aggregation network for instance segmentation, in
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 147
  start-page: 91
  year: 2018
  end-page: 108
  ident: b0030
  article-title: Multi-feature fusion tree trunk detection and orchard mobile robot localization using camera/ultrasonic sensors
  publication-title: Comput. Electron. Agric.
– volume: 8
  start-page: 221975
  year: 2020
  end-page: 221985
  ident: b0200
  article-title: Ground-level Mapping and Navigating for Agriculture based on IoT and Computer Vision
  publication-title: IEEE Access
– start-page: 807
  year: 2005
  end-page: 814
  ident: b0075
  article-title: Accurate and efficient stereo processing by semi-global matching and mutual information
  publication-title: Computer Vision and Pattern Recognition.
– volume: 23
  start-page: 15205
  year: 2015
  ident: b0090
  article-title: Improved camera calibration method based on perpendicularity compensation for binocular stereo vision measurement system
  publication-title: Opt. Express
– volume: 34
  start-page: 1140
  year: 2017
  end-page: 1159
  ident: b0140
  article-title: Design, integration, and field evaluation of a robotic apple harvester
  publication-title: J. F. Robot.
– volume: 18
  start-page: 286
  year: 1999
  end-page: 298
  ident: b0035
  article-title: Hand-eye calibration using dual quaternions
  publication-title: Int. J. Rob. Res.
– volume: 6
  start-page: 49248
  year: 2018
  end-page: 49268
  ident: b0055
  article-title: Review of wheeled mobile robots’ navigation problems and application prospects in agriculture
  publication-title: IEEE Access
– volume: 37
  start-page: 97
  year: 2020
  end-page: 121
  ident: b0040
  article-title: Semantic mapping for orchard environments by merging two-sides reconstructions of tree rows
  publication-title: J. F. Robot.
– volume: 11
  start-page: 510
  year: 2020
  ident: b0155
  article-title: Recognition and localization methods for vision-based fruit picking robots: a review
  publication-title: Front. Plant Sci.
– reference: Katikaridis, D., Moysiadis, V., Kateris, D., Bochtis, D., 2019. Large-Scale Point-Cloud Based Global Mapping for Orchard Operations.
– volume: 166
  start-page: 44
  year: 2018
  ident: b0185
  article-title: The recognition of litchi clusters and the calculation of picking point in a nocturnal natural environment
  publication-title: Biosyst. Eng.
– reference: Habibie, N., Nugraha, A.M., Anshori, A.Z., Ma’sum, M.A., Jatmiko, W., 2018. Fruit mapping mobile robot on simulated agricultural area in Gazebo simulator using simultaneous localization and mapping(SLAM), in: MHS 2017 - 28th 2017 International Symposium on Micro-NanoMechatronics and Human Science. IEEE, pp. 1–7. https://doi.org/10.1109/MHS.2017.8305235.
– reference: Gan, H., Lee, W.S., Alchanatis, V., 2017. A Prototype of an Immature Citrus Fruit Yield Mapping System, in: 2017 ASABE Annual International Meeting. Am. Soc. Agric. Biol. Eng., p. 1. https://doi.org/10.13031/aim.201700164.
– volume: 8
  start-page: 117746
  year: 2020
  end-page: 117758
  ident: b0100
  article-title: Detection of fruit-bearing branches and localization of litchi clusters for vision-based harvesting robots
  publication-title: IEEE Access
– volume: 174
  year: 2020
  ident: b0025
  article-title: Three-dimensional perception of orchard banana central stock enhanced by adaptive multi-vision technology
  publication-title: Comput. Electron. Agric.
– volume: 181
  start-page: 140
  year: 2019
  end-page: 156
  ident: b0180
  article-title: Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms
  publication-title: Biosyst. Eng.
– volume: 5
  start-page: 345
  year: 1989
  end-page: 358
  ident: b0165
  article-title: A new technique for fully autonomous and efficient 3 D robotics hand/eye calibration
  publication-title: IEEE Trans. Robot. Autom.
– reference: Andreff, N., Horaud, R., Espiau, B., 1999. On-line hand-eye calibration, in: Second International Conference on 3-D Digital Imaging and Modeling (Cat. No. PR00062). IEEE, pp. 430–436.
– volume: 19
  start-page: 428
  year: 2019
  ident: b0105
  article-title: Guava detection and pose estimation using a low-cost RGB-D sensor in the field
  publication-title: Sensors (Switzerland)
– reference: Tan, M., Le, Q. V, 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv Prepr. arXiv1905.11946.
– volume: 20
  year: 2020
  ident: b0190
  article-title: An autonomous fruit and vegetable harvester with a low-cost gripper using a 3D sensor
  publication-title: Sensors (Switzerland)
– ident: 10.1016/j.compag.2021.106237_b0010
– ident: 10.1016/j.compag.2021.106237_b0050
  doi: 10.13031/aim.201700164
– volume: 7
  start-page: 147642
  year: 2019
  ident: 10.1016/j.compag.2021.106237_b0065
  article-title: Fruit localization and environment perception for strawberry harvesting robots
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946369
– volume: 7
  start-page: 368
  year: 2020
  ident: 10.1016/j.compag.2021.106237_b0085
  article-title: Influence of data clouds fusion from 3D real-Time vision system on robotic group dead reckoning in unknown terrain
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003027
– volume: 5
  start-page: 345
  year: 1989
  ident: 10.1016/j.compag.2021.106237_b0165
  article-title: A new technique for fully autonomous and efficient 3 D robotics hand/eye calibration
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.34770
– volume: 10
  year: 2018
  ident: 10.1016/j.compag.2021.106237_b0045
  article-title: Estimating tree position, diameter at breast height, and tree height in real-time using a mobile phone with RGB-D SLAM
  publication-title: Remote Sens.
  doi: 10.3390/rs10111845
– volume: 17
  start-page: 1
  year: 2020
  ident: 10.1016/j.compag.2021.106237_b0130
  article-title: Improve three-dimensional point localization accuracy in stereo vision systems using a novel camera calibration method
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.1177/1729881419896717
– start-page: 22
  year: 2000
  ident: 10.1016/j.compag.2021.106237_b0195
– volume: 9
  start-page: 97
  year: 2020
  ident: 10.1016/j.compag.2021.106237_b0005
  article-title: Localization and mapping for robots in agriculture and forestry: a survey
  publication-title: Robotics
  doi: 10.3390/robotics9040097
– start-page: 444
  year: 2017
  ident: 10.1016/j.compag.2021.106237_b0175
– volume: 59
  year: 2019
  ident: 10.1016/j.compag.2021.106237_b0160
  article-title: Real-time detection of surface deformation and strain in recycled aggregate concrete-filled steel tubular columns via four-ocular vision
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.03.001
– volume: 166
  start-page: 44
  year: 2018
  ident: 10.1016/j.compag.2021.106237_b0185
  article-title: The recognition of litchi clusters and the calculation of picking point in a nocturnal natural environment
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2017.11.005
– ident: 10.1016/j.compag.2021.106237_b0070
  doi: 10.1109/MHS.2017.8305235
– start-page: 807
  year: 2005
  ident: 10.1016/j.compag.2021.106237_b0075
  article-title: Accurate and efficient stereo processing by semi-global matching and mutual information
  publication-title: Computer Vision and Pattern Recognition.
– volume: 10
  start-page: 717
  year: 1994
  ident: 10.1016/j.compag.2021.106237_b0120
  article-title: Robot sensor calibration: solving AX= XB on the Euclidean group
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.326576
– volume: 130
  start-page: 83
  year: 2016
  ident: 10.1016/j.compag.2021.106237_b0170
  article-title: Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.09.014
– volume: 23
  start-page: 15205
  year: 2015
  ident: 10.1016/j.compag.2021.106237_b0090
  article-title: Improved camera calibration method based on perpendicularity compensation for binocular stereo vision measurement system
  publication-title: Opt. Express
  doi: 10.1364/OE.23.015205
– volume: 197
  start-page: 188
  year: 2020
  ident: 10.1016/j.compag.2021.106237_b0060
  article-title: Symmetry-based 3D shape completion for fruit localisation for harvesting robots
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.07.003
– volume: 20
  year: 2020
  ident: 10.1016/j.compag.2021.106237_b0190
  article-title: An autonomous fruit and vegetable harvester with a low-cost gripper using a 3D sensor
  publication-title: Sensors (Switzerland)
– ident: 10.1016/j.compag.2021.106237_b0015
  doi: 10.23919/AADECA.2018.8577360
– volume: 37
  start-page: 97
  year: 2020
  ident: 10.1016/j.compag.2021.106237_b0040
  article-title: Semantic mapping for orchard environments by merging two-sides reconstructions of tree rows
  publication-title: J. F. Robot.
  doi: 10.1002/rob.21876
– volume: 6
  start-page: 49248
  year: 2018
  ident: 10.1016/j.compag.2021.106237_b0055
  article-title: Review of wheeled mobile robots’ navigation problems and application prospects in agriculture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2868848
– start-page: 2648
  year: 2019
  ident: 10.1016/j.compag.2021.106237_b0115
  article-title: ROLS: Robust object-level SLAM for grape counting
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.
– start-page: 8759
  year: 2018
  ident: 10.1016/j.compag.2021.106237_b0110
  article-title: Path aggregation network for instance segmentation, in
– volume: 181
  start-page: 140
  year: 2019
  ident: 10.1016/j.compag.2021.106237_b0180
  article-title: Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.03.007
– volume: 34
  start-page: 1140
  year: 2017
  ident: 10.1016/j.compag.2021.106237_b0140
  article-title: Design, integration, and field evaluation of a robotic apple harvester
  publication-title: J. F. Robot.
  doi: 10.1002/rob.21715
– volume: 11
  start-page: 510
  year: 2020
  ident: 10.1016/j.compag.2021.106237_b0155
  article-title: Recognition and localization methods for vision-based fruit picking robots: a review
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00510
– volume: 36
  start-page: 1045
  year: 2017
  ident: 10.1016/j.compag.2021.106237_b0020
  article-title: Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/0278364917720510
– ident: 10.1016/j.compag.2021.106237_b0145
– start-page: 10781
  year: 2020
  ident: 10.1016/j.compag.2021.106237_b0150
– volume: 18
  start-page: 286
  year: 1999
  ident: 10.1016/j.compag.2021.106237_b0035
  article-title: Hand-eye calibration using dual quaternions
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/02783649922066213
– volume: 19
  start-page: 428
  year: 2019
  ident: 10.1016/j.compag.2021.106237_b0105
  article-title: Guava detection and pose estimation using a low-cost RGB-D sensor in the field
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s19020428
– volume: 8
  start-page: 221975
  year: 2020
  ident: 10.1016/j.compag.2021.106237_b0200
  article-title: Ground-level Mapping and Navigating for Agriculture based on IoT and Computer Vision
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3043662
– volume: 119
  start-page: 254
  year: 2015
  ident: 10.1016/j.compag.2021.106237_b0135
  article-title: Orchard mapping and mobile robot localisation using on-board camera and laser scanner data fusion - Part A: Tree detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.09.025
– volume: 145
  start-page: 217
  year: 2018
  ident: 10.1016/j.compag.2021.106237_b0125
  article-title: Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.12.034
– volume: 174
  year: 2020
  ident: 10.1016/j.compag.2021.106237_b0025
  article-title: Three-dimensional perception of orchard banana central stock enhanced by adaptive multi-vision technology
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105508
– volume: 14
  start-page: 195
  year: 1995
  ident: 10.1016/j.compag.2021.106237_b0080
  article-title: Hand-eye calibration
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/027836499501400301
– volume: 147
  start-page: 91
  year: 2018
  ident: 10.1016/j.compag.2021.106237_b0030
  article-title: Multi-feature fusion tree trunk detection and orchard mobile robot localization using camera/ultrasonic sensors
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.009
– volume: 8
  start-page: 117746
  year: 2020
  ident: 10.1016/j.compag.2021.106237_b0100
  article-title: Detection of fruit-bearing branches and localization of litchi clusters for vision-based harvesting robots
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3005386
– ident: 10.1016/j.compag.2021.106237_b0095
SSID ssj0016987
Score 2.5881917
Snippet •A new form of orchard mapping framework integrating eye-in-hand stereovision and SLAM is proposed.•Large-scale, high-accuracy, and detailed global maps...
Large-scale, high-accuracy, and adaptive three-dimensional (3D) perception are the basic technical requirements for constructing a practical and stable...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106237
SubjectTerms 3D mapping
agriculture
calibration
color
computer vision
electronics
Field of view
Fruit-picking robot
fruits
lighting
Object recognition
orchards
Picking
Robots
Simultaneous localization and mapping
SLAM
Stereo matching
Stereo vision
vision
Vision systems
Title 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM
URI https://dx.doi.org/10.1016/j.compag.2021.106237
https://www.proquest.com/docview/2561964240
https://www.proquest.com/docview/2551985337
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QuMAB8RTjpSBxDVubtmmPFTCNx3aBSbtF7eJOQ6NFsB248Nuxm3QSSAiJY1NHrezY-dzaXxi7iILENyZJhAnVRASguiIGCaIIEZ2rrvGimJqTB8OoPwruxuF4jV01vTBUVuliv43pdbR2Ix2nzc7rbNZ5RLASe1GS-J4l2qIO9kDRKr_8XJV5oEBsW6YjzJZQummfq2u86jrvKWaJvodDiATUb9vTj0Bd7z69bbblYCNP7ZvtsDUod9lmOn1z1Bmwx4y85pbeg79kxLow5VXB51TpLd7REsCXji0WxQ2vapIkwxu-CJKHDxCzUtDHdE4EClBx23vOaeTxIR3ss1Hv5umqL9wZCmISSLkQWR5SB4hJ6ISZPJSYbWSFMSpPjJcBwqskp0NfAFU4QWhYFLjdo2MaFQbSYDYjD1irrEo4ZDzEZDn2vRx9NgoQF-UxGMizIDSF7yuANpON6vTEEYzTORdz3VSSPWurcE0K11bhbSZWs14twcYf8qqxiv62UDTuAX_MPGmMqJ2jvmtEfERJhrimzc5Xt9HF6L9JVkK1JBlUE8IaqY7-_fBjtkFXtnTwhLXQ3HCKcGaRn9Xr9Yytp7f3_eEX7cTyyA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwEB2VcoA9ID5FoYCRuJpu4iROjlVhVaDtpa20NyuJJ1VX3aSi7WEv_HZmYqcSSGglrvZYiWY89ptk5g3ApyTKQmuzTNpYlzJCfSlTVCirmNC5vrRBknJx8nyRTNfR9-v4ugeTrhaG0yr92e_O9Pa09iMjr83RfrsdLQmspEGSZWHgiLYewMOI3JfbGHz-dc7zIInU1UwnFC6ReFc_1yZ5tYneGwoTw4CGCArof91Pf53U7fVz9RSeeNwoxu7VnkEP6-dwMd789NwZ-AKs-iIcv4e4zZl2YSOaSuw41VseyBQoTp4ulsStaFqWJCs6wgiWxzuU21ry13TBDArYCFd8LnhkORvPX8L66utqMpW-iYIsI6WOMi9iLgGxGbeYKWJF4UZeWauLzAY5Er7KCu76gqTDkrBhVdF9T55pdRwpS-GMegX9uqnxNYiYouU0DApy2iQiYFSkaLHIo9hWYagRB6A61ZnSM4xzo4ud6VLJboxTuGGFG6fwAcjzqr1j2LhHXndWMX_sFEOXwD0rh50RjffUgyHIx5xkBGwG8PE8TT7GP07yGpsTy5CaCNco_ea_H_4BHk1X85mZfVv8eAuPecblEQ6hT6bHd4RtjsX7du_-Bnx19FY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+global+mapping+of+large-scale+unstructured+orchard+integrating+eye-in-hand+stereo+vision+and+SLAM&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Chen%2C+Mingyou&rft.au=Tang%2C+Yunchao&rft.au=Zou%2C+Xiangjun&rft.au=Huang%2C+Zhaofeng&rft.date=2021-08-01&rft.pub=Elsevier+BV&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=187&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compag.2021.106237&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon