3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM
•A new form of orchard mapping framework integrating eye-in-hand stereovision and SLAM is proposed.•Large-scale, high-accuracy, and detailed global maps supporting high-quality orchard picking are obtained.•The proposed hand-eye calibration method is efficient and beats the compared methods.•The pro...
Saved in:
Published in | Computers and electronics in agriculture Vol. 187; p. 106237 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.08.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A new form of orchard mapping framework integrating eye-in-hand stereovision and SLAM is proposed.•Large-scale, high-accuracy, and detailed global maps supporting high-quality orchard picking are obtained.•The proposed hand-eye calibration method is efficient and beats the compared methods.•The proposed stereo matching method is highly adapted to dynamic and complex orchard environment.•The framework generates a more detailed global map than the commercial products used for comparison.
Large-scale, high-accuracy, and adaptive three-dimensional (3D) perception are the basic technical requirements for constructing a practical and stable fruit-picking robot. The latest vision-based fruit-picking robots have been able to adapt to the complex background, uneven lighting and low color contrast of the orchard environment. However, most of them have, until now, been limited to a small field of view or rigid sampling manners. Although the simultaneous localization and mapping (SLAM) methods have the potential to realize large scale sensing, it was critically revealed in this study that the classic SLAM pipeline is not completely adapted to orchard picking tasks. In this study, the eye-in-hand stereo vision and SLAM system were integrated to provide detailed global map supporting long-term, flexible and large-scale orchard picking. To be specific, a mobile robot based on eye-in-hand vision was built and an effective hand-eye calibration method was proposed; a state-of-the-art object detection network was trained and used to establish a dynamic stereo matching method adapted well to complex orchard environments; a SLAM system was deployed and combined with the above eye-in-hand stereo vision system to obtain a detailed, wide 3D orchard map. The main contribution of this work is to build a new global mapping framework compatible to the nature of orchard picking tasks. Compared with the existing studies, this work pays more attention to the structural details of the orchard. Experimental results indicated that the constructed global map achieved both large-scale and high-resolution. This is an exploratory work providing theoretical and technical references for the future research on more stable, accurate and practical mobile fruit picking robots. |
---|---|
AbstractList | Large-scale, high-accuracy, and adaptive three-dimensional (3D) perception are the basic technical requirements for constructing a practical and stable fruit-picking robot. The latest vision-based fruit-picking robots have been able to adapt to the complex background, uneven lighting and low color contrast of the orchard environment. However, most of them have, until now, been limited to a small field of view or rigid sampling manners. Although the simultaneous localization and mapping (SLAM) methods have the potential to realize large scale sensing, it was critically revealed in this study that the classic SLAM pipeline is not completely adapted to orchard picking tasks. In this study, the eye-in-hand stereo vision and SLAM system were integrated to provide detailed global map supporting long-term, flexible and large-scale orchard picking. To be specific, a mobile robot based on eye-in-hand vision was built and an effective hand-eye calibration method was proposed; a state-of-the-art object detection network was trained and used to establish a dynamic stereo matching method adapted well to complex orchard environments; a SLAM system was deployed and combined with the above eye-in-hand stereo vision system to obtain a detailed, wide 3D orchard map. The main contribution of this work is to build a new global mapping framework compatible to the nature of orchard picking tasks. Compared with the existing studies, this work pays more attention to the structural details of the orchard. Experimental results indicated that the constructed global map achieved both large-scale and high-resolution. This is an exploratory work providing theoretical and technical references for the future research on more stable, accurate and practical mobile fruit picking robots. •A new form of orchard mapping framework integrating eye-in-hand stereovision and SLAM is proposed.•Large-scale, high-accuracy, and detailed global maps supporting high-quality orchard picking are obtained.•The proposed hand-eye calibration method is efficient and beats the compared methods.•The proposed stereo matching method is highly adapted to dynamic and complex orchard environment.•The framework generates a more detailed global map than the commercial products used for comparison. Large-scale, high-accuracy, and adaptive three-dimensional (3D) perception are the basic technical requirements for constructing a practical and stable fruit-picking robot. The latest vision-based fruit-picking robots have been able to adapt to the complex background, uneven lighting and low color contrast of the orchard environment. However, most of them have, until now, been limited to a small field of view or rigid sampling manners. Although the simultaneous localization and mapping (SLAM) methods have the potential to realize large scale sensing, it was critically revealed in this study that the classic SLAM pipeline is not completely adapted to orchard picking tasks. In this study, the eye-in-hand stereo vision and SLAM system were integrated to provide detailed global map supporting long-term, flexible and large-scale orchard picking. To be specific, a mobile robot based on eye-in-hand vision was built and an effective hand-eye calibration method was proposed; a state-of-the-art object detection network was trained and used to establish a dynamic stereo matching method adapted well to complex orchard environments; a SLAM system was deployed and combined with the above eye-in-hand stereo vision system to obtain a detailed, wide 3D orchard map. The main contribution of this work is to build a new global mapping framework compatible to the nature of orchard picking tasks. Compared with the existing studies, this work pays more attention to the structural details of the orchard. Experimental results indicated that the constructed global map achieved both large-scale and high-resolution. This is an exploratory work providing theoretical and technical references for the future research on more stable, accurate and practical mobile fruit picking robots. |
ArticleNumber | 106237 |
Author | Zhou, Hao Zou, Xiangjun Chen, Mingyou Tang, Yunchao Chen, Siyu Huang, Zhaofeng |
Author_xml | – sequence: 1 givenname: Mingyou surname: Chen fullname: Chen, Mingyou organization: Key Laboratory of Key Technology on Agricultural Machine and Equipment, College of Engineering, South China Agricultural University, Guangzhou 510642, China – sequence: 2 givenname: Yunchao surname: Tang fullname: Tang, Yunchao email: ryan.twain@zhku.edu.cn organization: College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510006, China – sequence: 3 givenname: Xiangjun surname: Zou fullname: Zou, Xiangjun email: xjzou1@163.com organization: Key Laboratory of Key Technology on Agricultural Machine and Equipment, College of Engineering, South China Agricultural University, Guangzhou 510642, China – sequence: 4 givenname: Zhaofeng surname: Huang fullname: Huang, Zhaofeng organization: Key Laboratory of Key Technology on Agricultural Machine and Equipment, College of Engineering, South China Agricultural University, Guangzhou 510642, China – sequence: 5 givenname: Hao surname: Zhou fullname: Zhou, Hao organization: Key Laboratory of Key Technology on Agricultural Machine and Equipment, College of Engineering, South China Agricultural University, Guangzhou 510642, China – sequence: 6 givenname: Siyu surname: Chen fullname: Chen, Siyu organization: Key Laboratory of Key Technology on Agricultural Machine and Equipment, College of Engineering, South China Agricultural University, Guangzhou 510642, China |
BookMark | eNqFkE1v1DAQhi1UJLaFf8DBEhcu2forccwBqWqhIC3iAJwtx56kXmXtYDuV-u_xKpx6gNNoRs_7avRcoosQAyD0lpI9JbS7Pu5tPC1m2jPCaD11jMsXaEd7yRpJibxAu4r1De2UeoUucz6Suqte7pDjd3ia42BmfDLL4sOE44hnkyZosjUz4DXkklZb1gQOx2QfTHLYhwJTMuXMwxM0PjQPJjicCySI-NFnHwM-X34cbr69Ri9HM2d483deoV-fP_28_dIcvt9_vb05NFZwXhoztB0TzClKJRlaLlhvRufkoBw1oFqqBqI6CoQw2xI5jkwIQlonW8FdK3p-hd5vvUuKv1fIRZ98tjDPJkBcs2Zt7ehbzmVF3z1Dj3FNoX5XqY6qTjBBKiU2yqaYc4JRL8mfTHrSlOizen3Um3p9Vq839TX24VnM-lJlxVCS8fP_wh-3MFRTjx6SztZDsOB8Alu0i_7fBX8AZT-iKg |
CitedBy_id | crossref_primary_10_1016_j_autcon_2023_105262 crossref_primary_10_3390_agronomy11122440 crossref_primary_10_3390_agriculture15040407 crossref_primary_10_1016_j_compag_2022_107197 crossref_primary_10_3390_app13158790 crossref_primary_10_1109_LRA_2022_3176448 crossref_primary_10_1111_jfpe_14117 crossref_primary_10_1155_2021_5256940 crossref_primary_10_3390_s21196467 crossref_primary_10_1016_j_compag_2023_108446 crossref_primary_10_3390_rs14030716 crossref_primary_10_1088_1361_6501_ac4f01 crossref_primary_10_1016_j_compag_2022_107584 crossref_primary_10_1016_j_aei_2025_103224 crossref_primary_10_3390_agriengineering6030193 crossref_primary_10_1155_2021_6221119 crossref_primary_10_1016_j_jksus_2022_102298 crossref_primary_10_1016_j_engappai_2022_105703 crossref_primary_10_3390_rs14030681 crossref_primary_10_3390_agronomy12071520 crossref_primary_10_1016_j_compag_2024_109487 crossref_primary_10_1016_j_compag_2023_108298 crossref_primary_10_1016_j_compag_2023_108453 crossref_primary_10_1016_j_dt_2021_12_010 crossref_primary_10_1016_j_compag_2023_108217 crossref_primary_10_1016_j_robot_2023_104514 crossref_primary_10_1109_ACCESS_2021_3111021 crossref_primary_10_3390_electronics11040647 crossref_primary_10_1109_ACCESS_2021_3110978 crossref_primary_10_3390_s23052640 crossref_primary_10_1016_j_compag_2023_107691 crossref_primary_10_1016_j_compag_2024_108621 crossref_primary_10_1016_j_asej_2021_101675 crossref_primary_10_1002_rob_22077 crossref_primary_10_1007_s11119_022_09981_5 crossref_primary_10_1016_j_compag_2022_106800 crossref_primary_10_3390_rs14020431 crossref_primary_10_3389_fpls_2022_881904 crossref_primary_10_1371_journal_pone_0282297 crossref_primary_10_1016_j_engappai_2023_105826 crossref_primary_10_1016_j_measurement_2024_115924 crossref_primary_10_1109_ACCESS_2023_3331815 crossref_primary_10_3390_rs14020396 crossref_primary_10_1016_j_compag_2024_109141 crossref_primary_10_3390_rs13173547 crossref_primary_10_1109_JSEN_2024_3369657 crossref_primary_10_3389_fpls_2022_1042035 crossref_primary_10_1002_rob_22187 crossref_primary_10_1016_j_compag_2021_106586 crossref_primary_10_1016_j_compag_2023_107834 crossref_primary_10_1155_2021_3224164 crossref_primary_10_3390_agronomy12020391 crossref_primary_10_1016_j_engappai_2022_104709 crossref_primary_10_3390_electronics12030665 crossref_primary_10_3390_rs13173455 crossref_primary_10_3390_agronomy14040697 crossref_primary_10_1016_j_compag_2024_109177 crossref_primary_10_1049_tje2_12419 crossref_primary_10_1155_2021_1392362 crossref_primary_10_3390_agronomy14061279 crossref_primary_10_1016_j_compag_2024_109736 crossref_primary_10_1002_rob_22297 crossref_primary_10_1002_rob_22166 crossref_primary_10_3389_fpls_2024_1337638 crossref_primary_10_3390_agriculture12071008 crossref_primary_10_3390_s22218407 crossref_primary_10_3390_s21154986 crossref_primary_10_3390_agronomy13092237 crossref_primary_10_3390_jimaging9120258 crossref_primary_10_1016_j_jag_2022_102759 crossref_primary_10_3389_fpls_2022_972445 crossref_primary_10_1016_j_fbp_2024_12_007 crossref_primary_10_1016_j_engappai_2022_105733 crossref_primary_10_3389_fpls_2022_955256 crossref_primary_10_3389_fpls_2022_960686 crossref_primary_10_3390_s22010160 crossref_primary_10_3390_machines9100233 crossref_primary_10_3390_rs14061374 crossref_primary_10_3389_fpls_2021_705021 crossref_primary_10_1109_ACCESS_2024_3440183 crossref_primary_10_3390_s22052031 crossref_primary_10_37221_eaef_17_1_1 crossref_primary_10_3390_agronomy12123054 crossref_primary_10_3390_rs14184465 crossref_primary_10_24003_emitter_v10i2_700 crossref_primary_10_1007_s11119_023_10009_9 crossref_primary_10_1016_j_engappai_2022_105325 crossref_primary_10_3390_horticulturae9040498 crossref_primary_10_1155_2022_4648105 crossref_primary_10_3390_electronics12092006 crossref_primary_10_1016_j_compag_2022_106791 crossref_primary_10_3390_agriculture12111821 crossref_primary_10_1016_j_compag_2022_107085 crossref_primary_10_1016_j_eswa_2022_117462 crossref_primary_10_1007_s00371_021_02319_8 crossref_primary_10_1016_j_compag_2024_109187 crossref_primary_10_1109_LRA_2023_3234744 crossref_primary_10_1016_j_compag_2024_108774 crossref_primary_10_1002_rob_22140 crossref_primary_10_1016_j_compag_2024_109229 |
Cites_doi | 10.13031/aim.201700164 10.1109/ACCESS.2019.2946369 10.1109/JAS.2020.1003027 10.1109/70.34770 10.3390/rs10111845 10.1177/1729881419896717 10.3390/robotics9040097 10.1016/j.rcim.2019.03.001 10.1016/j.biosystemseng.2017.11.005 10.1109/MHS.2017.8305235 10.1109/70.326576 10.1016/j.compag.2016.09.014 10.1364/OE.23.015205 10.1016/j.biosystemseng.2020.07.003 10.23919/AADECA.2018.8577360 10.1002/rob.21876 10.1109/ACCESS.2018.2868848 10.1016/j.biosystemseng.2019.03.007 10.1002/rob.21715 10.3389/fpls.2020.00510 10.1177/0278364917720510 10.1177/02783649922066213 10.3390/s19020428 10.1109/ACCESS.2020.3043662 10.1016/j.compag.2015.09.025 10.1016/j.compag.2017.12.034 10.1016/j.compag.2020.105508 10.1177/027836499501400301 10.1016/j.compag.2018.02.009 10.1109/ACCESS.2020.3005386 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Aug 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Aug 2021 |
DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
DOI | 10.1016/j.compag.2021.106237 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-7107 |
ExternalDocumentID | 10_1016_j_compag_2021_106237 S0168169921002544 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7SC 7SP 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-ab56242d91170b53428afdd7b9d1ae9519b0961e002c507ff244005d7543d5483 |
IEDL.DBID | .~1 |
ISSN | 0168-1699 |
IngestDate | Fri Jul 11 11:37:07 EDT 2025 Sun Jul 13 04:07:15 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Tue Jul 01 01:58:22 EDT 2025 Fri Feb 23 02:38:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SLAM Fruit-picking robot Stereo vision Stereo matching 3D mapping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-ab56242d91170b53428afdd7b9d1ae9519b0961e002c507ff244005d7543d5483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2561964240 |
PQPubID | 2045491 |
ParticipantIDs | proquest_miscellaneous_2551985337 proquest_journals_2561964240 crossref_primary_10_1016_j_compag_2021_106237 crossref_citationtrail_10_1016_j_compag_2021_106237 elsevier_sciencedirect_doi_10_1016_j_compag_2021_106237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Underwood, Hung, Whelan, Sukkarieh (b0170) 2016; 130 Zhang, Huang, You, Lin, Tang, Huang (b0190) 2020; 20 Zhang (b0195) 2000 Habibie, N., Nugraha, A.M., Anshori, A.Z., Ma’sum, M.A., Jatmiko, W., 2018. Fruit mapping mobile robot on simulated agricultural area in Gazebo simulator using simultaneous localization and mapping(SLAM), in: MHS 2017 - 28th 2017 International Symposium on Micro-NanoMechatronics and Human Science. IEEE, pp. 1–7. https://doi.org/10.1109/MHS.2017.8305235. Tan, M., Le, Q. V, 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv Prepr. arXiv1905.11946. Daniilidis (b0035) 1999; 18 Fan, Feng, Mannan, Khan, Shen, Saeed (b0045) 2018; 10 Aguiar, dos Santos, Cunha, Sobreira, Sousa (b0005) 2020; 9 Tang, Li, Wang, Chen, Feng, Zou, Huang (b0160) 2019; 59 Xiong, Lin, Liu, He, Tang, Yang, Zou (b0185) 2018; 166 Ivanov, Sergyienko, Tyrsa, Lindner, Flores-Fuentes, Rodriguez-Quinonez, Hernandez, Mercorelli (b0085) 2020; 7 Tang, Wang, Luo, Zou (b0155) 2020; 11 Zhao, Wang, Qi, Runge (b0200) 2020; 8 Jia, Yang, Liu, Wang, Liu, Wang, Fan, Zhao (b0090) 2015; 23 Ge, Xiong, Tenorio, From (b0065) 2019; 7 Tsai, Lenz (b0165) 1989; 5 Capua, F.R., Sansoni, S., Moreyra, M.L., 2018. Comparative Analysis of Visual-SLAM Algorithms Applied to Fruit Environments, in: 2018 Argentine Conference on Automatic Control, AADECA 2018. IEEE, pp. 1–6. https://doi.org/10.23919/AADECA.2018.8577360. Gao, Li, Fan, Zhou, Yin, Wang, Song, Huang, Wang (b0055) 2018; 6 Hirschmuller (b0075) 2005 Shalal, Low, McCarthy, Hancock (b0135) 2015; 119 Li, Tang, Zou, Lin, Wang (b0100) 2020; 8 Chen, Tang, Zou, Huang, Huang, Zhou, Wang, Lian (b0025) 2020; 174 Wibowo, Sulistijono, Risnumawan (b0175) 2017 Horaud, Dornaika (b0080) 1995; 14 Lin, Tang, Zou, Xiong, Li (b0105) 2019; 19 Liu, Qi, Qin, Shi, Jia (b0110) 2018 Silwal, Davidson, Karkee, Mo, Zhang, Lewis (b0140) 2017; 34 Gan, H., Lee, W.S., Alchanatis, V., 2017. A Prototype of an Immature Citrus Fruit Yield Mapping System, in: 2017 ASABE Annual International Meeting. Am. Soc. Agric. Biol. Eng., p. 1. https://doi.org/10.13031/aim.201700164. Chen, Wang, Zhang, Luo (b0030) 2018; 147 Williams, Jones, Nejati, Seabright, Bell, Penhall, Barnett, Duke, Scarfe, Ahn, Lim, MacDonald (b0180) 2019; 181 Pierzchała, Giguère, Astrup (b0125) 2018; 145 Dong, Roy, Isler (b0040) 2020; 37 Andreff, N., Horaud, R., Espiau, B., 1999. On-line hand-eye calibration, in: Second International Conference on 3-D Digital Imaging and Modeling (Cat. No. PR00062). IEEE, pp. 430–436. Tan, Pang, Le (b0150) 2020 Ge, Xiong, From (b0060) 2020; 197 Chebrolu, Lottes, Schaefer, Winterhalter, Burgard, Stachniss (b0020) 2017; 36 Nellithimaru, Kantor (b0115) 2019 Ramírez-Hernández, Rodríguez-Quiñonez, Castro-Toscano, Hernández-Balbuena, Flores-Fuentes, Rascón-Carmona, Lindner, Sergiyenko (b0130) 2020; 17 Katikaridis, D., Moysiadis, V., Kateris, D., Bochtis, D., 2019. Large-Scale Point-Cloud Based Global Mapping for Orchard Operations. Park, Martin (b0120) 1994; 10 Wibowo (10.1016/j.compag.2021.106237_b0175) 2017 Chen (10.1016/j.compag.2021.106237_b0030) 2018; 147 Williams (10.1016/j.compag.2021.106237_b0180) 2019; 181 Park (10.1016/j.compag.2021.106237_b0120) 1994; 10 Ge (10.1016/j.compag.2021.106237_b0065) 2019; 7 Zhang (10.1016/j.compag.2021.106237_b0190) 2020; 20 Li (10.1016/j.compag.2021.106237_b0100) 2020; 8 10.1016/j.compag.2021.106237_b0095 Pierzchała (10.1016/j.compag.2021.106237_b0125) 2018; 145 Underwood (10.1016/j.compag.2021.106237_b0170) 2016; 130 10.1016/j.compag.2021.106237_b0050 Zhang (10.1016/j.compag.2021.106237_b0195) 2000 Chebrolu (10.1016/j.compag.2021.106237_b0020) 2017; 36 10.1016/j.compag.2021.106237_b0070 Aguiar (10.1016/j.compag.2021.106237_b0005) 2020; 9 Hirschmuller (10.1016/j.compag.2021.106237_b0075) 2005 Nellithimaru (10.1016/j.compag.2021.106237_b0115) 2019 10.1016/j.compag.2021.106237_b0015 Liu (10.1016/j.compag.2021.106237_b0110) 2018 Lin (10.1016/j.compag.2021.106237_b0105) 2019; 19 Tan (10.1016/j.compag.2021.106237_b0150) 2020 Tang (10.1016/j.compag.2021.106237_b0155) 2020; 11 10.1016/j.compag.2021.106237_b0010 Dong (10.1016/j.compag.2021.106237_b0040) 2020; 37 Gao (10.1016/j.compag.2021.106237_b0055) 2018; 6 Horaud (10.1016/j.compag.2021.106237_b0080) 1995; 14 Zhao (10.1016/j.compag.2021.106237_b0200) 2020; 8 Ge (10.1016/j.compag.2021.106237_b0060) 2020; 197 Xiong (10.1016/j.compag.2021.106237_b0185) 2018; 166 Tang (10.1016/j.compag.2021.106237_b0160) 2019; 59 Silwal (10.1016/j.compag.2021.106237_b0140) 2017; 34 Fan (10.1016/j.compag.2021.106237_b0045) 2018; 10 Ivanov (10.1016/j.compag.2021.106237_b0085) 2020; 7 Ramírez-Hernández (10.1016/j.compag.2021.106237_b0130) 2020; 17 Chen (10.1016/j.compag.2021.106237_b0025) 2020; 174 Daniilidis (10.1016/j.compag.2021.106237_b0035) 1999; 18 Jia (10.1016/j.compag.2021.106237_b0090) 2015; 23 10.1016/j.compag.2021.106237_b0145 Shalal (10.1016/j.compag.2021.106237_b0135) 2015; 119 Tsai (10.1016/j.compag.2021.106237_b0165) 1989; 5 |
References_xml | – volume: 17 start-page: 1 year: 2020 end-page: 15 ident: b0130 article-title: Improve three-dimensional point localization accuracy in stereo vision systems using a novel camera calibration method publication-title: Int. J. Adv. Robot. Syst. – start-page: 444 year: 2017 end-page: 449 ident: b0175 publication-title: End-to-end coconut harvesting robot – volume: 36 start-page: 1045 year: 2017 end-page: 1052 ident: b0020 article-title: Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields publication-title: Int. J. Rob. Res. – volume: 59 year: 2019 ident: b0160 article-title: Real-time detection of surface deformation and strain in recycled aggregate concrete-filled steel tubular columns via four-ocular vision publication-title: Robot. Comput. Integr. Manuf. – volume: 14 start-page: 195 year: 1995 end-page: 210 ident: b0080 article-title: Hand-eye calibration publication-title: Int. J. Rob. Res. – volume: 197 start-page: 188 year: 2020 end-page: 202 ident: b0060 article-title: Symmetry-based 3D shape completion for fruit localisation for harvesting robots publication-title: Biosyst. Eng. – start-page: 2648 year: 2019 end-page: 2656 ident: b0115 article-title: ROLS: Robust object-level SLAM for grape counting publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. – start-page: 22 year: 2000 ident: b0195 article-title: A flexible new technique for camera calibration – volume: 7 start-page: 147642 year: 2019 end-page: 147652 ident: b0065 article-title: Fruit localization and environment perception for strawberry harvesting robots publication-title: IEEE Access – volume: 7 start-page: 368 year: 2020 end-page: 385 ident: b0085 article-title: Influence of data clouds fusion from 3D real-Time vision system on robotic group dead reckoning in unknown terrain publication-title: IEEE/CAA J. Autom. Sin. – volume: 130 start-page: 83 year: 2016 end-page: 96 ident: b0170 article-title: Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors publication-title: Comput. Electron. Agric. – volume: 119 start-page: 254 year: 2015 end-page: 266 ident: b0135 article-title: Orchard mapping and mobile robot localisation using on-board camera and laser scanner data fusion - Part A: Tree detection publication-title: Comput. Electron. Agric. – volume: 145 start-page: 217 year: 2018 end-page: 225 ident: b0125 article-title: Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM publication-title: Comput. Electron. Agric. – start-page: 10781 year: 2020 end-page: 10790 ident: b0150 publication-title: Efficientdet: Scalable and efficient object detection, in – volume: 9 start-page: 97 year: 2020 ident: b0005 article-title: Localization and mapping for robots in agriculture and forestry: a survey publication-title: Robotics – volume: 10 year: 2018 ident: b0045 article-title: Estimating tree position, diameter at breast height, and tree height in real-time using a mobile phone with RGB-D SLAM publication-title: Remote Sens. – volume: 10 start-page: 717 year: 1994 end-page: 721 ident: b0120 article-title: Robot sensor calibration: solving AX= XB on the Euclidean group publication-title: IEEE Trans. Robot. Autom. – reference: Capua, F.R., Sansoni, S., Moreyra, M.L., 2018. Comparative Analysis of Visual-SLAM Algorithms Applied to Fruit Environments, in: 2018 Argentine Conference on Automatic Control, AADECA 2018. IEEE, pp. 1–6. https://doi.org/10.23919/AADECA.2018.8577360. – start-page: 8759 year: 2018 end-page: 8768 ident: b0110 article-title: Path aggregation network for instance segmentation, in publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 147 start-page: 91 year: 2018 end-page: 108 ident: b0030 article-title: Multi-feature fusion tree trunk detection and orchard mobile robot localization using camera/ultrasonic sensors publication-title: Comput. Electron. Agric. – volume: 8 start-page: 221975 year: 2020 end-page: 221985 ident: b0200 article-title: Ground-level Mapping and Navigating for Agriculture based on IoT and Computer Vision publication-title: IEEE Access – start-page: 807 year: 2005 end-page: 814 ident: b0075 article-title: Accurate and efficient stereo processing by semi-global matching and mutual information publication-title: Computer Vision and Pattern Recognition. – volume: 23 start-page: 15205 year: 2015 ident: b0090 article-title: Improved camera calibration method based on perpendicularity compensation for binocular stereo vision measurement system publication-title: Opt. Express – volume: 34 start-page: 1140 year: 2017 end-page: 1159 ident: b0140 article-title: Design, integration, and field evaluation of a robotic apple harvester publication-title: J. F. Robot. – volume: 18 start-page: 286 year: 1999 end-page: 298 ident: b0035 article-title: Hand-eye calibration using dual quaternions publication-title: Int. J. Rob. Res. – volume: 6 start-page: 49248 year: 2018 end-page: 49268 ident: b0055 article-title: Review of wheeled mobile robots’ navigation problems and application prospects in agriculture publication-title: IEEE Access – volume: 37 start-page: 97 year: 2020 end-page: 121 ident: b0040 article-title: Semantic mapping for orchard environments by merging two-sides reconstructions of tree rows publication-title: J. F. Robot. – volume: 11 start-page: 510 year: 2020 ident: b0155 article-title: Recognition and localization methods for vision-based fruit picking robots: a review publication-title: Front. Plant Sci. – reference: Katikaridis, D., Moysiadis, V., Kateris, D., Bochtis, D., 2019. Large-Scale Point-Cloud Based Global Mapping for Orchard Operations. – volume: 166 start-page: 44 year: 2018 ident: b0185 article-title: The recognition of litchi clusters and the calculation of picking point in a nocturnal natural environment publication-title: Biosyst. Eng. – reference: Habibie, N., Nugraha, A.M., Anshori, A.Z., Ma’sum, M.A., Jatmiko, W., 2018. Fruit mapping mobile robot on simulated agricultural area in Gazebo simulator using simultaneous localization and mapping(SLAM), in: MHS 2017 - 28th 2017 International Symposium on Micro-NanoMechatronics and Human Science. IEEE, pp. 1–7. https://doi.org/10.1109/MHS.2017.8305235. – reference: Gan, H., Lee, W.S., Alchanatis, V., 2017. A Prototype of an Immature Citrus Fruit Yield Mapping System, in: 2017 ASABE Annual International Meeting. Am. Soc. Agric. Biol. Eng., p. 1. https://doi.org/10.13031/aim.201700164. – volume: 8 start-page: 117746 year: 2020 end-page: 117758 ident: b0100 article-title: Detection of fruit-bearing branches and localization of litchi clusters for vision-based harvesting robots publication-title: IEEE Access – volume: 174 year: 2020 ident: b0025 article-title: Three-dimensional perception of orchard banana central stock enhanced by adaptive multi-vision technology publication-title: Comput. Electron. Agric. – volume: 181 start-page: 140 year: 2019 end-page: 156 ident: b0180 article-title: Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms publication-title: Biosyst. Eng. – volume: 5 start-page: 345 year: 1989 end-page: 358 ident: b0165 article-title: A new technique for fully autonomous and efficient 3 D robotics hand/eye calibration publication-title: IEEE Trans. Robot. Autom. – reference: Andreff, N., Horaud, R., Espiau, B., 1999. On-line hand-eye calibration, in: Second International Conference on 3-D Digital Imaging and Modeling (Cat. No. PR00062). IEEE, pp. 430–436. – volume: 19 start-page: 428 year: 2019 ident: b0105 article-title: Guava detection and pose estimation using a low-cost RGB-D sensor in the field publication-title: Sensors (Switzerland) – reference: Tan, M., Le, Q. V, 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv Prepr. arXiv1905.11946. – volume: 20 year: 2020 ident: b0190 article-title: An autonomous fruit and vegetable harvester with a low-cost gripper using a 3D sensor publication-title: Sensors (Switzerland) – ident: 10.1016/j.compag.2021.106237_b0010 – ident: 10.1016/j.compag.2021.106237_b0050 doi: 10.13031/aim.201700164 – volume: 7 start-page: 147642 year: 2019 ident: 10.1016/j.compag.2021.106237_b0065 article-title: Fruit localization and environment perception for strawberry harvesting robots publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946369 – volume: 7 start-page: 368 year: 2020 ident: 10.1016/j.compag.2021.106237_b0085 article-title: Influence of data clouds fusion from 3D real-Time vision system on robotic group dead reckoning in unknown terrain publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2020.1003027 – volume: 5 start-page: 345 year: 1989 ident: 10.1016/j.compag.2021.106237_b0165 article-title: A new technique for fully autonomous and efficient 3 D robotics hand/eye calibration publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.34770 – volume: 10 year: 2018 ident: 10.1016/j.compag.2021.106237_b0045 article-title: Estimating tree position, diameter at breast height, and tree height in real-time using a mobile phone with RGB-D SLAM publication-title: Remote Sens. doi: 10.3390/rs10111845 – volume: 17 start-page: 1 year: 2020 ident: 10.1016/j.compag.2021.106237_b0130 article-title: Improve three-dimensional point localization accuracy in stereo vision systems using a novel camera calibration method publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881419896717 – start-page: 22 year: 2000 ident: 10.1016/j.compag.2021.106237_b0195 – volume: 9 start-page: 97 year: 2020 ident: 10.1016/j.compag.2021.106237_b0005 article-title: Localization and mapping for robots in agriculture and forestry: a survey publication-title: Robotics doi: 10.3390/robotics9040097 – start-page: 444 year: 2017 ident: 10.1016/j.compag.2021.106237_b0175 – volume: 59 year: 2019 ident: 10.1016/j.compag.2021.106237_b0160 article-title: Real-time detection of surface deformation and strain in recycled aggregate concrete-filled steel tubular columns via four-ocular vision publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2019.03.001 – volume: 166 start-page: 44 year: 2018 ident: 10.1016/j.compag.2021.106237_b0185 article-title: The recognition of litchi clusters and the calculation of picking point in a nocturnal natural environment publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2017.11.005 – ident: 10.1016/j.compag.2021.106237_b0070 doi: 10.1109/MHS.2017.8305235 – start-page: 807 year: 2005 ident: 10.1016/j.compag.2021.106237_b0075 article-title: Accurate and efficient stereo processing by semi-global matching and mutual information publication-title: Computer Vision and Pattern Recognition. – volume: 10 start-page: 717 year: 1994 ident: 10.1016/j.compag.2021.106237_b0120 article-title: Robot sensor calibration: solving AX= XB on the Euclidean group publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.326576 – volume: 130 start-page: 83 year: 2016 ident: 10.1016/j.compag.2021.106237_b0170 article-title: Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.09.014 – volume: 23 start-page: 15205 year: 2015 ident: 10.1016/j.compag.2021.106237_b0090 article-title: Improved camera calibration method based on perpendicularity compensation for binocular stereo vision measurement system publication-title: Opt. Express doi: 10.1364/OE.23.015205 – volume: 197 start-page: 188 year: 2020 ident: 10.1016/j.compag.2021.106237_b0060 article-title: Symmetry-based 3D shape completion for fruit localisation for harvesting robots publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.07.003 – volume: 20 year: 2020 ident: 10.1016/j.compag.2021.106237_b0190 article-title: An autonomous fruit and vegetable harvester with a low-cost gripper using a 3D sensor publication-title: Sensors (Switzerland) – ident: 10.1016/j.compag.2021.106237_b0015 doi: 10.23919/AADECA.2018.8577360 – volume: 37 start-page: 97 year: 2020 ident: 10.1016/j.compag.2021.106237_b0040 article-title: Semantic mapping for orchard environments by merging two-sides reconstructions of tree rows publication-title: J. F. Robot. doi: 10.1002/rob.21876 – volume: 6 start-page: 49248 year: 2018 ident: 10.1016/j.compag.2021.106237_b0055 article-title: Review of wheeled mobile robots’ navigation problems and application prospects in agriculture publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2868848 – start-page: 2648 year: 2019 ident: 10.1016/j.compag.2021.106237_b0115 article-title: ROLS: Robust object-level SLAM for grape counting publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. – start-page: 8759 year: 2018 ident: 10.1016/j.compag.2021.106237_b0110 article-title: Path aggregation network for instance segmentation, in – volume: 181 start-page: 140 year: 2019 ident: 10.1016/j.compag.2021.106237_b0180 article-title: Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2019.03.007 – volume: 34 start-page: 1140 year: 2017 ident: 10.1016/j.compag.2021.106237_b0140 article-title: Design, integration, and field evaluation of a robotic apple harvester publication-title: J. F. Robot. doi: 10.1002/rob.21715 – volume: 11 start-page: 510 year: 2020 ident: 10.1016/j.compag.2021.106237_b0155 article-title: Recognition and localization methods for vision-based fruit picking robots: a review publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00510 – volume: 36 start-page: 1045 year: 2017 ident: 10.1016/j.compag.2021.106237_b0020 article-title: Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields publication-title: Int. J. Rob. Res. doi: 10.1177/0278364917720510 – ident: 10.1016/j.compag.2021.106237_b0145 – start-page: 10781 year: 2020 ident: 10.1016/j.compag.2021.106237_b0150 – volume: 18 start-page: 286 year: 1999 ident: 10.1016/j.compag.2021.106237_b0035 article-title: Hand-eye calibration using dual quaternions publication-title: Int. J. Rob. Res. doi: 10.1177/02783649922066213 – volume: 19 start-page: 428 year: 2019 ident: 10.1016/j.compag.2021.106237_b0105 article-title: Guava detection and pose estimation using a low-cost RGB-D sensor in the field publication-title: Sensors (Switzerland) doi: 10.3390/s19020428 – volume: 8 start-page: 221975 year: 2020 ident: 10.1016/j.compag.2021.106237_b0200 article-title: Ground-level Mapping and Navigating for Agriculture based on IoT and Computer Vision publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3043662 – volume: 119 start-page: 254 year: 2015 ident: 10.1016/j.compag.2021.106237_b0135 article-title: Orchard mapping and mobile robot localisation using on-board camera and laser scanner data fusion - Part A: Tree detection publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.09.025 – volume: 145 start-page: 217 year: 2018 ident: 10.1016/j.compag.2021.106237_b0125 article-title: Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.12.034 – volume: 174 year: 2020 ident: 10.1016/j.compag.2021.106237_b0025 article-title: Three-dimensional perception of orchard banana central stock enhanced by adaptive multi-vision technology publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105508 – volume: 14 start-page: 195 year: 1995 ident: 10.1016/j.compag.2021.106237_b0080 article-title: Hand-eye calibration publication-title: Int. J. Rob. Res. doi: 10.1177/027836499501400301 – volume: 147 start-page: 91 year: 2018 ident: 10.1016/j.compag.2021.106237_b0030 article-title: Multi-feature fusion tree trunk detection and orchard mobile robot localization using camera/ultrasonic sensors publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.009 – volume: 8 start-page: 117746 year: 2020 ident: 10.1016/j.compag.2021.106237_b0100 article-title: Detection of fruit-bearing branches and localization of litchi clusters for vision-based harvesting robots publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3005386 – ident: 10.1016/j.compag.2021.106237_b0095 |
SSID | ssj0016987 |
Score | 2.5881917 |
Snippet | •A new form of orchard mapping framework integrating eye-in-hand stereovision and SLAM is proposed.•Large-scale, high-accuracy, and detailed global maps... Large-scale, high-accuracy, and adaptive three-dimensional (3D) perception are the basic technical requirements for constructing a practical and stable... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106237 |
SubjectTerms | 3D mapping agriculture calibration color computer vision electronics Field of view Fruit-picking robot fruits lighting Object recognition orchards Picking Robots Simultaneous localization and mapping SLAM Stereo matching Stereo vision vision Vision systems |
Title | 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM |
URI | https://dx.doi.org/10.1016/j.compag.2021.106237 https://www.proquest.com/docview/2561964240 https://www.proquest.com/docview/2551985337 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QuMAB8RTjpSBxDVubtmmPFTCNx3aBSbtF7eJOQ6NFsB248Nuxm3QSSAiJY1NHrezY-dzaXxi7iILENyZJhAnVRASguiIGCaIIEZ2rrvGimJqTB8OoPwruxuF4jV01vTBUVuliv43pdbR2Ix2nzc7rbNZ5RLASe1GS-J4l2qIO9kDRKr_8XJV5oEBsW6YjzJZQummfq2u86jrvKWaJvodDiATUb9vTj0Bd7z69bbblYCNP7ZvtsDUod9lmOn1z1Bmwx4y85pbeg79kxLow5VXB51TpLd7REsCXji0WxQ2vapIkwxu-CJKHDxCzUtDHdE4EClBx23vOaeTxIR3ss1Hv5umqL9wZCmISSLkQWR5SB4hJ6ISZPJSYbWSFMSpPjJcBwqskp0NfAFU4QWhYFLjdo2MaFQbSYDYjD1irrEo4ZDzEZDn2vRx9NgoQF-UxGMizIDSF7yuANpON6vTEEYzTORdz3VSSPWurcE0K11bhbSZWs14twcYf8qqxiv62UDTuAX_MPGmMqJ2jvmtEfERJhrimzc5Xt9HF6L9JVkK1JBlUE8IaqY7-_fBjtkFXtnTwhLXQ3HCKcGaRn9Xr9Yytp7f3_eEX7cTyyA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwEB2VcoA9ID5FoYCRuJpu4iROjlVhVaDtpa20NyuJJ1VX3aSi7WEv_HZmYqcSSGglrvZYiWY89ptk5g3ApyTKQmuzTNpYlzJCfSlTVCirmNC5vrRBknJx8nyRTNfR9-v4ugeTrhaG0yr92e_O9Pa09iMjr83RfrsdLQmspEGSZWHgiLYewMOI3JfbGHz-dc7zIInU1UwnFC6ReFc_1yZ5tYneGwoTw4CGCArof91Pf53U7fVz9RSeeNwoxu7VnkEP6-dwMd789NwZ-AKs-iIcv4e4zZl2YSOaSuw41VseyBQoTp4ulsStaFqWJCs6wgiWxzuU21ry13TBDArYCFd8LnhkORvPX8L66utqMpW-iYIsI6WOMi9iLgGxGbeYKWJF4UZeWauLzAY5Er7KCu76gqTDkrBhVdF9T55pdRwpS-GMegX9uqnxNYiYouU0DApy2iQiYFSkaLHIo9hWYagRB6A61ZnSM4xzo4ud6VLJboxTuGGFG6fwAcjzqr1j2LhHXndWMX_sFEOXwD0rh50RjffUgyHIx5xkBGwG8PE8TT7GP07yGpsTy5CaCNco_ea_H_4BHk1X85mZfVv8eAuPecblEQ6hT6bHd4RtjsX7du_-Bnx19FY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+global+mapping+of+large-scale+unstructured+orchard+integrating+eye-in-hand+stereo+vision+and+SLAM&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Chen%2C+Mingyou&rft.au=Tang%2C+Yunchao&rft.au=Zou%2C+Xiangjun&rft.au=Huang%2C+Zhaofeng&rft.date=2021-08-01&rft.pub=Elsevier+BV&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=187&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compag.2021.106237&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |