Uncertainty Quantification of Soil Organic Carbon Estimation from Remote Sensing Data with Conformal Prediction
Soil organic carbon (SOC) contents and stocks provide valuable insights into soil health, nutrient cycling, greenhouse gas emissions, and overall ecosystem productivity. Given this, remote sensing data coupled with advanced machine learning (ML) techniques have eased SOC level estimation while revea...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 3; p. 438 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil organic carbon (SOC) contents and stocks provide valuable insights into soil health, nutrient cycling, greenhouse gas emissions, and overall ecosystem productivity. Given this, remote sensing data coupled with advanced machine learning (ML) techniques have eased SOC level estimation while revealing its patterns across different ecosystems. However, despite these advances, the intricacies of training reliable and yet certain SOC models for specific end-users remain a great challenge. To address this, we need robust SOC uncertainty quantification techniques. Here, we introduce a methodology that leverages conformal prediction to address the uncertainty in estimating SOC contents while using remote sensing data. Conformal prediction generates statistically reliable uncertainty intervals for predictions made by ML models. Our analysis, performed on the LUCAS dataset in Europe and incorporating a suite of relevant environmental covariates, underscores the efficacy of integrating conformal prediction with another ML model, specifically random forest. In addition, we conducted a comparative assessment of our results against prevalent uncertainty quantification methods for SOC prediction, employing different evaluation metrics to assess both model uncertainty and accuracy. Our methodology showcases the utility of the generated prediction sets as informative indicators of uncertainty. These sets accurately identify samples that pose prediction challenges, providing valuable insights for end-users seeking reliable predictions in the complexities of SOC estimation. |
---|---|
AbstractList | Soil organic carbon (SOC) contents and stocks provide valuable insights into soil health, nutrient cycling, greenhouse gas emissions, and overall ecosystem productivity. Given this, remote sensing data coupled with advanced machine learning (ML) techniques have eased SOC level estimation while revealing its patterns across different ecosystems. However, despite these advances, the intricacies of training reliable and yet certain SOC models for specific end-users remain a great challenge. To address this, we need robust SOC uncertainty quantification techniques. Here, we introduce a methodology that leverages conformal prediction to address the uncertainty in estimating SOC contents while using remote sensing data. Conformal prediction generates statistically reliable uncertainty intervals for predictions made by ML models. Our analysis, performed on the LUCAS dataset in Europe and incorporating a suite of relevant environmental covariates, underscores the efficacy of integrating conformal prediction with another ML model, specifically random forest. In addition, we conducted a comparative assessment of our results against prevalent uncertainty quantification methods for SOC prediction, employing different evaluation metrics to assess both model uncertainty and accuracy. Our methodology showcases the utility of the generated prediction sets as informative indicators of uncertainty. These sets accurately identify samples that pose prediction challenges, providing valuable insights for end-users seeking reliable predictions in the complexities of SOC estimation. |
Audience | Academic |
Author | Alamdar, Setareh Amani, Meisam Scholten, Thomas Kebonye, Ndiye Michael Kakhani, Nafiseh |
Author_xml | – sequence: 1 givenname: Nafiseh orcidid: 0000-0002-5526-6725 surname: Kakhani fullname: Kakhani, Nafiseh – sequence: 2 givenname: Setareh surname: Alamdar fullname: Alamdar, Setareh – sequence: 3 givenname: Ndiye Michael orcidid: 0000-0001-9246-1987 surname: Kebonye fullname: Kebonye, Ndiye Michael – sequence: 4 givenname: Meisam orcidid: 0000-0002-9495-4010 surname: Amani fullname: Amani, Meisam – sequence: 5 givenname: Thomas orcidid: 0000-0002-4875-2602 surname: Scholten fullname: Scholten, Thomas |
BookMark | eNptUdFqFDEUDVLBWvviFwR8EWFrJslMJo9lrVooVK19DncyN2uWmaQmWUr_3uxOsVJMHnI5nHNu7j2vyVGIAQl527AzITT7mHLTMcGk6F-QY84UX0mu-dE_9StymvOW1SNEo5k8JvE2WEwFfCgP9PsOQvHOWyg-BhodvYl-otdpA8FbuoY0VPgiFz8vDJfiTH_gHAvSGwzZhw39BAXovS-_6DoGF9MME_2WcPR2L3lDXjqYMp4-vifk9vPFz_XX1dX1l8v1-dXKSiHKCjR2wJlVjLVays4y4P04SuWsG1grJe-b1raiAW17xG6EYWQt8mYUuoXWihNyufiOEbbmLtUfpwcTwZsDENPGQCreTmhUp7gYtRWy6WWPXY-DUtq1qAbNUTXV6_3idZfi7x3mYmafLU4TBIy7bOrKmexFJ_fUd8-o27hLoU5q6volY7w9GJ4trA3U_r5uqSSw9Y44e1tDdb7i56rnrIo6XgUfFoFNMeeE7u9EDTP77M1T9pXMnpGtL4e8ahc__U_yB_vysbo |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3446042 crossref_primary_10_1016_j_srs_2024_100180 |
Cites_doi | 10.1111/ejss.13226 10.1016/j.envsoft.2021.105139 10.1016/j.geoderma.2018.08.024 10.1080/03650340.2020.1831693 10.1111/j.1365-2486.2009.01953.x 10.1038/s41467-023-39338-z 10.1016/j.cageo.2010.07.005 10.1109/ACCESS.2022.3188649 10.1016/j.catena.2013.09.009 10.1016/j.geoderma.2013.12.005 10.1002/jpln.201900390 10.1038/ncomms7707 10.1016/j.geoderma.2011.03.011 10.1016/0016-7061(91)90076-6 10.1016/j.geodrs.2016.01.005 10.1007/978-3-030-32236-6_51 10.1111/j.1365-2389.2011.01365.x 10.1016/j.agee.2011.10.004 10.1002/9780470517277 10.5194/soil-8-587-2022 10.1016/j.trac.2010.05.006 10.1016/j.catena.2017.01.033 10.1038/sdata.2017.191 10.1016/j.geoderma.2010.11.013 10.1109/CVPR.2019.00283 10.1016/S0016-7061(01)00067-2 10.1111/ejss.12193 10.1098/rspb.2020.0421 10.1002/sta4.261 10.1038/s41598-022-05476-5 10.1016/j.ecoser.2020.101073 10.3389/frym.2020.00107 10.1007/s12665-018-8032-z 10.1126/sciadv.aba1715 10.1016/j.geoderma.2017.01.002 10.1016/j.geoderma.2013.07.031 10.1016/j.geoderma.2023.116585 10.3390/rs12071095 10.1016/j.rse.2023.113682 10.1109/ICCVW60793.2023.00072 10.1109/TNNLS.2022.3217694 10.1016/j.ecolmodel.2020.109257 10.1109/ICCVW60793.2023.00068 10.1038/s41558-023-01627-2 10.1257/jep.15.4.143 10.1029/2008WR006839 10.1016/j.geoderma.2007.06.003 10.1016/S0016-7061(03)00223-4 10.1016/j.still.2021.105284 10.1016/j.geodrs.2016.12.001 10.1002/joc.1276 10.1038/s41586-019-0912-1 10.1016/j.spasta.2021.100572 10.1007/s10994-021-05946-3 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 10.1016/j.geoderma.2016.12.017 10.1038/s41559-019-1084-y |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs16030438 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_76723d9c341848e68eb779f5e7b92e71 A782092462 10_3390_rs16030438 |
GeographicLocations | Germany Europe |
GeographicLocations_xml | – name: Germany – name: Europe |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-a9e6a20c70059446c0a28dd47fcfb05442815c531a9c8ee6dabd05e21d395a5c3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:32:14 EDT 2025 Fri Jul 11 06:53:03 EDT 2025 Fri Jul 25 09:36:04 EDT 2025 Tue Jun 10 20:57:24 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 Tue Jul 01 03:11:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-a9e6a20c70059446c0a28dd47fcfb05442815c531a9c8ee6dabd05e21d395a5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9246-1987 0000-0002-5526-6725 0000-0002-9495-4010 0000-0002-4875-2602 |
OpenAccessLink | https://www.proquest.com/docview/2924002571?pq-origsite=%requestingapplication% |
PQID | 2924002571 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_76723d9c341848e68eb779f5e7b92e71 proquest_miscellaneous_3040483641 proquest_journals_2924002571 gale_infotracacademiconefile_A782092462 crossref_primary_10_3390_rs16030438 crossref_citationtrail_10_3390_rs16030438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 20240101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Vaysse (ref_28) 2017; 291 Hoffmann (ref_67) 2014; 113 Solomatine (ref_33) 2009; 45 Abatzoglou (ref_51) 2018; 5 ref_57 Jackson (ref_1) 2000; 10 Atwell (ref_10) 2022; 68 ref_56 ref_11 Nelson (ref_17) 2011; 62 ref_18 Tamburini (ref_54) 2020; 6 Orr (ref_6) 2020; 287 Don (ref_59) 2007; 141 Baird (ref_68) 2009; 184 Condran (ref_34) 2022; 10 ref_61 Lin (ref_8) 2016; 7 Hong (ref_9) 2022; 217 Saia (ref_35) 2020; 435 Beillouin (ref_3) 2023; 14 Shafer (ref_43) 2008; 9 Hijmans (ref_52) 2005; 25 ref_21 Sesia (ref_47) 2020; 9 ref_63 Powlson (ref_7) 2012; 146 Kasraei (ref_26) 2021; 144 Waegeman (ref_39) 2021; 110 Schmidinger (ref_19) 2023; 437 Koenker (ref_49) 2001; 15 Cannon (ref_30) 2011; 37 Takeuchi (ref_48) 2006; 7 Karunaratne (ref_32) 2014; 219 ref_72 Stumpf (ref_14) 2017; 153 Malone (ref_22) 2011; 160 ref_36 Rillig (ref_4) 2023; 13 Lagacherie (ref_27) 2019; 337 Gries (ref_70) 2020; 183 Lange (ref_71) 2015; 6 Carter (ref_60) 1991; 49 McBratney (ref_12) 2003; 117 ref_38 ref_37 Reich (ref_5) 2020; 4 Ballabio (ref_66) 2015; 66 Takoutsing (ref_15) 2022; 73 Behrens (ref_13) 2014; 213 Padarian (ref_24) 2017; 9 Reichstein (ref_62) 2019; 566 Palagos (ref_64) 2010; 29 Fouedjio (ref_23) 2019; 78 Meinshausen (ref_29) 2006; 7 ref_46 Heuvelink (ref_16) 2022; 47 ref_45 ref_44 ref_42 ref_41 ref_40 Sakhaee (ref_53) 2022; 8 Goovaerts (ref_20) 2001; 103 Valle (ref_25) 2023; 295 Barreto (ref_69) 2022; 8 Yang (ref_55) 2020; 42 Minasny (ref_2) 2017; 292 Feeney (ref_65) 2022; 12 Baumann (ref_58) 2009; 15 Minasny (ref_31) 2011; 163 |
References_xml | – volume: 73 start-page: e13226 year: 2022 ident: ref_15 article-title: Accounting for analytical and proximal soil sensing errors in digital soil mapping publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.13226 – volume: 144 start-page: 105139 year: 2021 ident: ref_26 article-title: Quantile regression as a generic approach for estimating uncertainty of digital soil maps produced from machine-learning publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2021.105139 – volume: 337 start-page: 1320 year: 2019 ident: ref_27 article-title: How far can the uncertainty on a Digital Soil Map be known?: A numerical experiment using pseudo values of clay content obtained from Vis-SWIR hyperspectral imagery publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.024 – volume: 68 start-page: 297 year: 2022 ident: ref_10 article-title: Soil organic carbon characterization in a tropical ecosystem under different land uses using proximal soil sensing technique publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2020.1831693 – volume: 15 start-page: 3001 year: 2009 ident: ref_58 article-title: Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2009.01953.x – volume: 14 start-page: 3700 year: 2023 ident: ref_3 article-title: A global meta-analysis of soil organic carbon in the Anthropocene publication-title: Nat. Commun. doi: 10.1038/s41467-023-39338-z – volume: 37 start-page: 1277 year: 2011 ident: ref_30 article-title: Quantile regression neural networks: Implementation in R and application to precipitation downscaling publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.07.005 – volume: 10 start-page: 73786 year: 2022 ident: ref_34 article-title: Machine learning in precision agriculture: A survey on trends, applications and evaluations over two decades publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3188649 – volume: 113 start-page: 107 year: 2014 ident: ref_67 article-title: Assessment of variability and uncertainty of soil organic carbon in a mountainous boreal forest (Canadian Rocky Mountains, Alberta) publication-title: Catena doi: 10.1016/j.catena.2013.09.009 – volume: 219 start-page: 14 year: 2014 ident: ref_32 article-title: Catchment scale mapping of measureable soil organic carbon fractions publication-title: Geoderma doi: 10.1016/j.geoderma.2013.12.005 – volume: 183 start-page: 292 year: 2020 ident: ref_70 article-title: Regional and local scale variations in soil organic carbon stocks in West Greenland publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201900390 – ident: ref_61 – volume: 6 start-page: 6707 year: 2015 ident: ref_71 article-title: Plant diversity increases soil microbial activity and soil carbon storage publication-title: Nat. Commun. doi: 10.1038/ncomms7707 – volume: 7 start-page: 1231 year: 2006 ident: ref_48 article-title: Nonparametric quantile estimation publication-title: J. Mach. Learn. Res. – volume: 163 start-page: 150 year: 2011 ident: ref_31 article-title: Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation publication-title: Geoderma doi: 10.1016/j.geoderma.2011.03.011 – volume: 49 start-page: 199 year: 1991 ident: ref_60 article-title: Slope gradient and aspect effects on soils developed from sandstone in Pennsylvania publication-title: Geoderma doi: 10.1016/0016-7061(91)90076-6 – ident: ref_56 – volume: 7 start-page: 67 year: 2016 ident: ref_8 article-title: Modeling deep soil properties on California grassland hillslopes using LiDAR digital elevation models publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2016.01.005 – ident: ref_36 doi: 10.1007/978-3-030-32236-6_51 – volume: 62 start-page: 417 year: 2011 ident: ref_17 article-title: An error budget for different sources of error in digital soil mapping publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2011.01365.x – volume: 146 start-page: 23 year: 2012 ident: ref_7 article-title: The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: A case study publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.10.004 – ident: ref_21 doi: 10.1002/9780470517277 – volume: 8 start-page: 587 year: 2022 ident: ref_53 article-title: Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms publication-title: Soil doi: 10.5194/soil-8-587-2022 – volume: 29 start-page: 1073 year: 2010 ident: ref_64 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2010.05.006 – volume: 153 start-page: 30 year: 2017 ident: ref_14 article-title: Uncertainty-guided sampling to improve digital soil maps publication-title: Catena doi: 10.1016/j.catena.2017.01.033 – ident: ref_38 – ident: ref_45 – volume: 5 start-page: 170191 year: 2018 ident: ref_51 article-title: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015 publication-title: Sci. Data doi: 10.1038/sdata.2017.191 – ident: ref_72 – volume: 160 start-page: 614 year: 2011 ident: ref_22 article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes publication-title: Geoderma doi: 10.1016/j.geoderma.2010.11.013 – ident: ref_37 doi: 10.1109/CVPR.2019.00283 – volume: 103 start-page: 3 year: 2001 ident: ref_20 article-title: Geostatistical modelling of uncertainty in soil science publication-title: Geoderma doi: 10.1016/S0016-7061(01)00067-2 – volume: 66 start-page: 121 year: 2015 ident: ref_66 article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12193 – volume: 287 start-page: 20200421 year: 2020 ident: ref_6 article-title: Towards a unified study of multiple stressors: Divisions and common goals across research disciplines publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2020.0421 – volume: 9 start-page: e261 year: 2020 ident: ref_47 article-title: A comparison of some conformal quantile regression methods publication-title: Stat doi: 10.1002/sta4.261 – volume: 12 start-page: 1379 year: 2022 ident: ref_65 article-title: Multiple soil map comparison highlights challenges for predicting topsoil organic carbon concentration at national scale publication-title: Sci. Rep. doi: 10.1038/s41598-022-05476-5 – volume: 42 start-page: 101073 year: 2020 ident: ref_55 article-title: Emergy-based ecosystem services valuation and classification management applied to China’s grasslands publication-title: Ecosyst. Serv. doi: 10.1016/j.ecoser.2020.101073 – volume: 8 start-page: 107 year: 2022 ident: ref_69 article-title: Decomposition in peatlands: Who are the players and what affects them? publication-title: Front. Young Minds doi: 10.3389/frym.2020.00107 – volume: 78 start-page: 38 year: 2019 ident: ref_23 article-title: Exploring prediction uncertainty of spatial data in geostatistical and machine learning approaches publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-8032-z – volume: 6 start-page: eaba1715 year: 2020 ident: ref_54 article-title: Agricultural diversification promotes multiple ecosystem services without compromising yield publication-title: Sci. Adv. doi: 10.1126/sciadv.aba1715 – volume: 7 start-page: 983 year: 2006 ident: ref_29 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – ident: ref_63 – ident: ref_18 – ident: ref_44 – volume: 292 start-page: 59 year: 2017 ident: ref_2 article-title: Soil carbon 4 per mille publication-title: Geoderma doi: 10.1016/j.geoderma.2017.01.002 – volume: 213 start-page: 578 year: 2014 ident: ref_13 article-title: Hyper-scale digital soil mapping and soil formation analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.031 – volume: 437 start-page: 116585 year: 2023 ident: ref_19 article-title: Validation of uncertainty predictions in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116585 – ident: ref_11 doi: 10.3390/rs12071095 – volume: 295 start-page: 113682 year: 2023 ident: ref_25 article-title: Quantifying uncertainty in land-use land-cover classification using conformal statistics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113682 – ident: ref_40 doi: 10.1109/ICCVW60793.2023.00072 – ident: ref_42 doi: 10.1109/TNNLS.2022.3217694 – volume: 435 start-page: 109257 year: 2020 ident: ref_35 article-title: Transitioning machine learning from theory to practice in natural resources management publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2020.109257 – ident: ref_41 doi: 10.1109/ICCVW60793.2023.00068 – ident: ref_50 – volume: 13 start-page: 478 year: 2023 ident: ref_4 article-title: Increasing the number of stressors reduces soil ecosystem services worldwide publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-023-01627-2 – volume: 15 start-page: 143 year: 2001 ident: ref_49 article-title: Quantile regression publication-title: J. Econ. Perspect. doi: 10.1257/jep.15.4.143 – volume: 45 start-page: W00B11 year: 2009 ident: ref_33 article-title: A novel method to estimate model uncertainty using machine learning techniques publication-title: Water Resour. Res. doi: 10.1029/2008WR006839 – volume: 141 start-page: 272 year: 2007 ident: ref_59 article-title: Spatial and vertical variation of soil carbon at two grassland sites—implications for measuring soil carbon stocks publication-title: Geoderma doi: 10.1016/j.geoderma.2007.06.003 – volume: 117 start-page: 3 year: 2003 ident: ref_12 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 217 start-page: 105284 year: 2022 ident: ref_9 article-title: Fusion of visible-to-near-infrared and mid-infrared spectroscopy to estimate soil organic carbon publication-title: Soil Tillage Res. doi: 10.1016/j.still.2021.105284 – volume: 9 start-page: 17 year: 2017 ident: ref_24 article-title: Chile and the Chilean soil grid: A contribution to GlobalSoilMap publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2016.12.001 – ident: ref_46 – volume: 25 start-page: 1965 year: 2005 ident: ref_52 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: Int. J. Climatol. A J. R. Meteorol. Soc. doi: 10.1002/joc.1276 – volume: 184 start-page: 1 year: 2009 ident: ref_68 article-title: Understanding carbon cycling in Northern peatlands: Recent developments and future prospects publication-title: Carbon Cycl. North. Peatlands – volume: 566 start-page: 195 year: 2019 ident: ref_62 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 47 start-page: 100572 year: 2022 ident: ref_16 article-title: Measurement error-filtered machine learning in digital soil mapping publication-title: Spat. Stat. doi: 10.1016/j.spasta.2021.100572 – volume: 9 start-page: 371 year: 2008 ident: ref_43 article-title: A Tutorial on Conformal Prediction publication-title: J. Mach. Learn. Res. – ident: ref_57 – volume: 110 start-page: 457 year: 2021 ident: ref_39 article-title: Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods publication-title: Mach. Learn. doi: 10.1007/s10994-021-05946-3 – volume: 10 start-page: 423 year: 2000 ident: ref_1 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – volume: 291 start-page: 55 year: 2017 ident: ref_28 article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.017 – volume: 4 start-page: 210 year: 2020 ident: ref_5 article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-019-1084-y |
SSID | ssj0000331904 |
Score | 2.446864 |
Snippet | Soil organic carbon (SOC) contents and stocks provide valuable insights into soil health, nutrient cycling, greenhouse gas emissions, and overall ecosystem... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 438 |
SubjectTerms | Accuracy Algorithms Carbon Carbon content conformal prediction data collection digital soil mapping ecosystems Emissions Estimation Europe Greenhouse gases Machine learning Methods Model accuracy model uncertainty Monte Carlo simulation Neural networks Nutrient cycles Organic carbon Organic soils prediction Predictions Remote sensing Sensors soil organic carbon soil quality Soil sciences Soils Statistical analysis Uncertainty uncertainty quantification Vegetation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlIdYaJERSIhD1Kzt2PGx9KEKCQSUlXqz_JgA0iqpdrOH_vvO2Om2SCAuXB0ncuY9tucbxt5aX_vUGlUpNP6ValOobJK-aqCtwaCD1JIKhT991mcL9fGiubjT6ovuhBV44EK4A6ONkMlGtLatakG3EIyxXQMmWAG5elygz7uTTGUbLFG0alXwSCXm9QerNTVUpnOv3zxQBur_mznOPub0EXs4BYf8sCxql92D_jG7P_Up_3n1hA0L5FE-wx-v-NeNLzd9MnH50PHz4deSl-rKyI_8KuDwCepwKU_kVErCvwEyB_g5XVzvf_BjP3pOm7Gcav8ogF3yLys6vaFXnrLF6cn3o7NqaplQRSXlWHkL2os6mozDonSsvWhTUqaLXcDoDJONeRNR77yNLYBOPqS6ATFP0ja-ifIZ2-mHHp4zDlFgMgPCS-hUEnWIHboypSH4ecAsZMbe35DRxQlPnNpaLB3mFURyd0vyGXuznXtZUDT-OOsDcWM7g5Cv8wDKg5vkwf1LHmbsHfHSkX7icqKfygzwpwjpyh0SQCAmnVrM2N4Nu92kuGsnLF2qRTuGH3q9fYwqR-covodhs3a4WALi12r-4n-s-CV7IDBSKvs6e2xnXG1gHyOdMbzKQn0Ne9z66A priority: 102 providerName: Directory of Open Access Journals |
Title | Uncertainty Quantification of Soil Organic Carbon Estimation from Remote Sensing Data with Conformal Prediction |
URI | https://www.proquest.com/docview/2924002571 https://www.proquest.com/docview/3040483641 https://doaj.org/article/76723d9c341848e68eb779f5e7b92e71 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R5ACXiqcwlGgRSIiDVXu99q5PKG0TKkSr0hCpt9W-3CJFdus4h_57ZuxNKiTgaq8te-c9s_MNIR9LnWgnBY85KP-YS2fi0mU6zr1MvAADWWTYKHx2Xpwu-ber_Cok3NbhWOVWJ_aK2jUWc-SHrMTTjsBg6ZfbuxinRmF1NYzQ2CNjUMFSjsj4aHZ-cbnLsiQZsFjCB1zSDOL7w3aNg5Wx_vWHJeoB-_-llntbM39K9oOTSKcDVZ-RR75-Th6HeeU39y9IswRa9bX87p7-2OjhxE-_ybSp6KL5taJDl6Wlx7o1cHkGsjy0KVJsKaGXHojk6QIPsNfX9ER3mmJSlmIPIDqyK3rRYhUHH3lJlvPZz-PTOIxOiC3Psi7WpS80S6zo8Vh4YRPNpHNcVLYy4KVB0JHmFuRPl1Z6XzhtXJJ7lrqszHVus1dkVDe1f02otwyCGs905ivuWGJsBSaNF97o1EA0EpHP221UNuCK43iLlYL4ArdcPWx5RD7s1t4OaBp_XXWE1NitQATs_kLTXqsgUEoUgmWutGCFJZe-kN4IUVa5F6ZkXqQR-YS0VCin8DlWh3YD-ClEvFJTBAoEnipYRA625FZBgNfqgd0i8n53G0QP6ym69s1mreBjEZC_4Omb_7_iLXnCwBcaMjcHZNS1G_8OfJnOTMienH-dkPH05Oz7YhLYd9JnBn4D9wD35w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOZQLYhWBAkaAEIeoieM4yQGh0naY0kVAO1JvrpeXgjSalExGaP4Uv5H3skyFBNx6tR3L8fv8FvstjL0qTGR8nslQIvMPZe5tWPjEhCnkEWQoIFVCgcJHx2o8kZ_O0rM19muIhSG3yoEntozaV47uyLdEQd6OCLD4_eWPkKpG0evqUEKjg8UBLH-iyTZ_t7-L9H0txGjvdGcc9lUFQieTpAlNAcqIyGVtqhKpXGRE7r3MSldaVGBQH49Th9A0hcsBlDfWRymI2CdFalKX4Lw32E2cqyBjLx99XN3pRAkCOpJdFlTsj7bqOZVxpte2P-ReWx7gX0KglWyjO-x2r5Ly7Q5Dd9kazO6xjb46-rflfVZNEBmt50Cz5F8WpvMvaknKq5KfVN-nvIvpdHzH1Bab95BzdEGRnAJY-FdASAA_IXf52QXfNY3hdAXMKeKQ1OYp_1zTmxF98oBNrmVLH7L1WTWDR4yDE2hCgTAJlNKLyLoSBahUYE1s0fYJ2NthG7Xrs5hTMY2pRmuGtlxfbXnAXq7GXna5O_466gNRYzWC8m23DVV9ofvjqzOVicQXDmV-LnNQOdgsK8oUMlsIyOKAvSFaauIKuBxn-uAG_CnKr6W3KS0hIliJgG0O5NY9u5jrK3AH7MWqGw86vd6YGVSLucbFUvp_JePH_5_iOdsYnx4d6sP944Mn7JZALay7M9pk6029gKeoRTX2WQtdzs6v-6z8BraLMAc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwEviKvoNsAIEOIhamI7cfKA0La22hhUZaPS3jzHPhlIVTPaVKh_jV_HOUnaCQl422viWI7P53PzuTD2OrOh9alWgULmH6jU50HmpQ1iSEPQKCATSYnCn0fJ0UR9PI_Pt9ivdS4MhVWueWLNqH3pyEfeExlFOyLAol7RhkWM-8MPVz8C6iBFN63rdhoNRE5g9RPNt8X74z7S-o0Qw8HXw6Og7TAQOCVlFdgMEitCp-uyJSpxoRWp90oXrshRmUHdPIodwtRmLgVIvM19GIOIvMxiGzuJ895i25qsog7bPhiMxqcbD08oEd6hamqiSpmFvfmCmjrT3dsfUrBuFvAvkVDLueF9dq9VUPl-g6gHbAtmD9mdtlf6t9UjVk4QJ3UcQbXiX5a2iTaqCczLgp-V36e8yfB0_NDOc3w8QD7SpEhySmfhp4AAAX5GwfOzS963leXkEOaUf0hK9JSP53SDRJ88ZpMb2dQnrDMrZ_CUcXACDSoQVkKhvAhzV6A4VQnkNsrREuqyd-ttNK6taU6tNaYGbRvacnO95V32ajP2qqnk8ddRB0SNzQiqvl0_KOeXpj3MRidaSJ851ABSlUKSQq51VsSg80yAjrrsLdHSEI_A5TjbpjrgT1G1LbNPRQoRz4nosr01uU3LPBbmGupd9nLzGo893eXYGZTLhcHFUjOAREU7_5_iBbuN58R8Oh6d7LK7AlWyxoG0xzrVfAnPUKWq8uctdjm7uOnj8hvL6DWZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+Quantification+of+Soil+Organic+Carbon+Estimation+from+Remote+Sensing+Data+with+Conformal+Prediction&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Kakhani%2C+Nafiseh&rft.au=Alamdar%2C+Setareh&rft.au=Ndiye%2C+Michael+Kebonye&rft.au=Meisam+Amani&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=3&rft.spage=438&rft_id=info:doi/10.3390%2Frs16030438&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |