Uncertainty Quantification of Soil Organic Carbon Estimation from Remote Sensing Data with Conformal Prediction

Soil organic carbon (SOC) contents and stocks provide valuable insights into soil health, nutrient cycling, greenhouse gas emissions, and overall ecosystem productivity. Given this, remote sensing data coupled with advanced machine learning (ML) techniques have eased SOC level estimation while revea...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 3; p. 438
Main Authors Kakhani, Nafiseh, Alamdar, Setareh, Kebonye, Ndiye Michael, Amani, Meisam, Scholten, Thomas
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil organic carbon (SOC) contents and stocks provide valuable insights into soil health, nutrient cycling, greenhouse gas emissions, and overall ecosystem productivity. Given this, remote sensing data coupled with advanced machine learning (ML) techniques have eased SOC level estimation while revealing its patterns across different ecosystems. However, despite these advances, the intricacies of training reliable and yet certain SOC models for specific end-users remain a great challenge. To address this, we need robust SOC uncertainty quantification techniques. Here, we introduce a methodology that leverages conformal prediction to address the uncertainty in estimating SOC contents while using remote sensing data. Conformal prediction generates statistically reliable uncertainty intervals for predictions made by ML models. Our analysis, performed on the LUCAS dataset in Europe and incorporating a suite of relevant environmental covariates, underscores the efficacy of integrating conformal prediction with another ML model, specifically random forest. In addition, we conducted a comparative assessment of our results against prevalent uncertainty quantification methods for SOC prediction, employing different evaluation metrics to assess both model uncertainty and accuracy. Our methodology showcases the utility of the generated prediction sets as informative indicators of uncertainty. These sets accurately identify samples that pose prediction challenges, providing valuable insights for end-users seeking reliable predictions in the complexities of SOC estimation.
AbstractList Soil organic carbon (SOC) contents and stocks provide valuable insights into soil health, nutrient cycling, greenhouse gas emissions, and overall ecosystem productivity. Given this, remote sensing data coupled with advanced machine learning (ML) techniques have eased SOC level estimation while revealing its patterns across different ecosystems. However, despite these advances, the intricacies of training reliable and yet certain SOC models for specific end-users remain a great challenge. To address this, we need robust SOC uncertainty quantification techniques. Here, we introduce a methodology that leverages conformal prediction to address the uncertainty in estimating SOC contents while using remote sensing data. Conformal prediction generates statistically reliable uncertainty intervals for predictions made by ML models. Our analysis, performed on the LUCAS dataset in Europe and incorporating a suite of relevant environmental covariates, underscores the efficacy of integrating conformal prediction with another ML model, specifically random forest. In addition, we conducted a comparative assessment of our results against prevalent uncertainty quantification methods for SOC prediction, employing different evaluation metrics to assess both model uncertainty and accuracy. Our methodology showcases the utility of the generated prediction sets as informative indicators of uncertainty. These sets accurately identify samples that pose prediction challenges, providing valuable insights for end-users seeking reliable predictions in the complexities of SOC estimation.
Audience Academic
Author Alamdar, Setareh
Amani, Meisam
Scholten, Thomas
Kebonye, Ndiye Michael
Kakhani, Nafiseh
Author_xml – sequence: 1
  givenname: Nafiseh
  orcidid: 0000-0002-5526-6725
  surname: Kakhani
  fullname: Kakhani, Nafiseh
– sequence: 2
  givenname: Setareh
  surname: Alamdar
  fullname: Alamdar, Setareh
– sequence: 3
  givenname: Ndiye Michael
  orcidid: 0000-0001-9246-1987
  surname: Kebonye
  fullname: Kebonye, Ndiye Michael
– sequence: 4
  givenname: Meisam
  orcidid: 0000-0002-9495-4010
  surname: Amani
  fullname: Amani, Meisam
– sequence: 5
  givenname: Thomas
  orcidid: 0000-0002-4875-2602
  surname: Scholten
  fullname: Scholten, Thomas
BookMark eNptUdFqFDEUDVLBWvviFwR8EWFrJslMJo9lrVooVK19DncyN2uWmaQmWUr_3uxOsVJMHnI5nHNu7j2vyVGIAQl527AzITT7mHLTMcGk6F-QY84UX0mu-dE_9StymvOW1SNEo5k8JvE2WEwFfCgP9PsOQvHOWyg-BhodvYl-otdpA8FbuoY0VPgiFz8vDJfiTH_gHAvSGwzZhw39BAXovS-_6DoGF9MME_2WcPR2L3lDXjqYMp4-vifk9vPFz_XX1dX1l8v1-dXKSiHKCjR2wJlVjLVays4y4P04SuWsG1grJe-b1raiAW17xG6EYWQt8mYUuoXWihNyufiOEbbmLtUfpwcTwZsDENPGQCreTmhUp7gYtRWy6WWPXY-DUtq1qAbNUTXV6_3idZfi7x3mYmafLU4TBIy7bOrKmexFJ_fUd8-o27hLoU5q6volY7w9GJ4trA3U_r5uqSSw9Y44e1tDdb7i56rnrIo6XgUfFoFNMeeE7u9EDTP77M1T9pXMnpGtL4e8ahc__U_yB_vysbo
CitedBy_id crossref_primary_10_1109_TGRS_2024_3446042
crossref_primary_10_1016_j_srs_2024_100180
Cites_doi 10.1111/ejss.13226
10.1016/j.envsoft.2021.105139
10.1016/j.geoderma.2018.08.024
10.1080/03650340.2020.1831693
10.1111/j.1365-2486.2009.01953.x
10.1038/s41467-023-39338-z
10.1016/j.cageo.2010.07.005
10.1109/ACCESS.2022.3188649
10.1016/j.catena.2013.09.009
10.1016/j.geoderma.2013.12.005
10.1002/jpln.201900390
10.1038/ncomms7707
10.1016/j.geoderma.2011.03.011
10.1016/0016-7061(91)90076-6
10.1016/j.geodrs.2016.01.005
10.1007/978-3-030-32236-6_51
10.1111/j.1365-2389.2011.01365.x
10.1016/j.agee.2011.10.004
10.1002/9780470517277
10.5194/soil-8-587-2022
10.1016/j.trac.2010.05.006
10.1016/j.catena.2017.01.033
10.1038/sdata.2017.191
10.1016/j.geoderma.2010.11.013
10.1109/CVPR.2019.00283
10.1016/S0016-7061(01)00067-2
10.1111/ejss.12193
10.1098/rspb.2020.0421
10.1002/sta4.261
10.1038/s41598-022-05476-5
10.1016/j.ecoser.2020.101073
10.3389/frym.2020.00107
10.1007/s12665-018-8032-z
10.1126/sciadv.aba1715
10.1016/j.geoderma.2017.01.002
10.1016/j.geoderma.2013.07.031
10.1016/j.geoderma.2023.116585
10.3390/rs12071095
10.1016/j.rse.2023.113682
10.1109/ICCVW60793.2023.00072
10.1109/TNNLS.2022.3217694
10.1016/j.ecolmodel.2020.109257
10.1109/ICCVW60793.2023.00068
10.1038/s41558-023-01627-2
10.1257/jep.15.4.143
10.1029/2008WR006839
10.1016/j.geoderma.2007.06.003
10.1016/S0016-7061(03)00223-4
10.1016/j.still.2021.105284
10.1016/j.geodrs.2016.12.001
10.1002/joc.1276
10.1038/s41586-019-0912-1
10.1016/j.spasta.2021.100572
10.1007/s10994-021-05946-3
10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
10.1016/j.geoderma.2016.12.017
10.1038/s41559-019-1084-y
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs16030438
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_76723d9c341848e68eb779f5e7b92e71
A782092462
10_3390_rs16030438
GeographicLocations Germany
Europe
GeographicLocations_xml – name: Germany
– name: Europe
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-a9e6a20c70059446c0a28dd47fcfb05442815c531a9c8ee6dabd05e21d395a5c3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:32:14 EDT 2025
Fri Jul 11 06:53:03 EDT 2025
Fri Jul 25 09:36:04 EDT 2025
Tue Jun 10 20:57:24 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Tue Jul 01 03:11:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-a9e6a20c70059446c0a28dd47fcfb05442815c531a9c8ee6dabd05e21d395a5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9246-1987
0000-0002-5526-6725
0000-0002-9495-4010
0000-0002-4875-2602
OpenAccessLink https://www.proquest.com/docview/2924002571?pq-origsite=%requestingapplication%
PQID 2924002571
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_76723d9c341848e68eb779f5e7b92e71
proquest_miscellaneous_3040483641
proquest_journals_2924002571
gale_infotracacademiconefile_A782092462
crossref_primary_10_3390_rs16030438
crossref_citationtrail_10_3390_rs16030438
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Vaysse (ref_28) 2017; 291
Hoffmann (ref_67) 2014; 113
Solomatine (ref_33) 2009; 45
Abatzoglou (ref_51) 2018; 5
ref_57
Jackson (ref_1) 2000; 10
Atwell (ref_10) 2022; 68
ref_56
ref_11
Nelson (ref_17) 2011; 62
ref_18
Tamburini (ref_54) 2020; 6
Orr (ref_6) 2020; 287
Don (ref_59) 2007; 141
Baird (ref_68) 2009; 184
Condran (ref_34) 2022; 10
ref_61
Lin (ref_8) 2016; 7
Hong (ref_9) 2022; 217
Saia (ref_35) 2020; 435
Beillouin (ref_3) 2023; 14
Shafer (ref_43) 2008; 9
Hijmans (ref_52) 2005; 25
ref_21
Sesia (ref_47) 2020; 9
ref_63
Powlson (ref_7) 2012; 146
Kasraei (ref_26) 2021; 144
Waegeman (ref_39) 2021; 110
Schmidinger (ref_19) 2023; 437
Koenker (ref_49) 2001; 15
Cannon (ref_30) 2011; 37
Takeuchi (ref_48) 2006; 7
Karunaratne (ref_32) 2014; 219
ref_72
Stumpf (ref_14) 2017; 153
Malone (ref_22) 2011; 160
ref_36
Rillig (ref_4) 2023; 13
Lagacherie (ref_27) 2019; 337
Gries (ref_70) 2020; 183
Lange (ref_71) 2015; 6
Carter (ref_60) 1991; 49
McBratney (ref_12) 2003; 117
ref_38
ref_37
Reich (ref_5) 2020; 4
Ballabio (ref_66) 2015; 66
Takoutsing (ref_15) 2022; 73
Behrens (ref_13) 2014; 213
Padarian (ref_24) 2017; 9
Reichstein (ref_62) 2019; 566
Palagos (ref_64) 2010; 29
Fouedjio (ref_23) 2019; 78
Meinshausen (ref_29) 2006; 7
ref_46
Heuvelink (ref_16) 2022; 47
ref_45
ref_44
ref_42
ref_41
ref_40
Sakhaee (ref_53) 2022; 8
Goovaerts (ref_20) 2001; 103
Valle (ref_25) 2023; 295
Barreto (ref_69) 2022; 8
Yang (ref_55) 2020; 42
Minasny (ref_2) 2017; 292
Feeney (ref_65) 2022; 12
Baumann (ref_58) 2009; 15
Minasny (ref_31) 2011; 163
References_xml – volume: 73
  start-page: e13226
  year: 2022
  ident: ref_15
  article-title: Accounting for analytical and proximal soil sensing errors in digital soil mapping
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.13226
– volume: 144
  start-page: 105139
  year: 2021
  ident: ref_26
  article-title: Quantile regression as a generic approach for estimating uncertainty of digital soil maps produced from machine-learning
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2021.105139
– volume: 337
  start-page: 1320
  year: 2019
  ident: ref_27
  article-title: How far can the uncertainty on a Digital Soil Map be known?: A numerical experiment using pseudo values of clay content obtained from Vis-SWIR hyperspectral imagery
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.024
– volume: 68
  start-page: 297
  year: 2022
  ident: ref_10
  article-title: Soil organic carbon characterization in a tropical ecosystem under different land uses using proximal soil sensing technique
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2020.1831693
– volume: 15
  start-page: 3001
  year: 2009
  ident: ref_58
  article-title: Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2009.01953.x
– volume: 14
  start-page: 3700
  year: 2023
  ident: ref_3
  article-title: A global meta-analysis of soil organic carbon in the Anthropocene
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39338-z
– volume: 37
  start-page: 1277
  year: 2011
  ident: ref_30
  article-title: Quantile regression neural networks: Implementation in R and application to precipitation downscaling
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.07.005
– volume: 10
  start-page: 73786
  year: 2022
  ident: ref_34
  article-title: Machine learning in precision agriculture: A survey on trends, applications and evaluations over two decades
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3188649
– volume: 113
  start-page: 107
  year: 2014
  ident: ref_67
  article-title: Assessment of variability and uncertainty of soil organic carbon in a mountainous boreal forest (Canadian Rocky Mountains, Alberta)
  publication-title: Catena
  doi: 10.1016/j.catena.2013.09.009
– volume: 219
  start-page: 14
  year: 2014
  ident: ref_32
  article-title: Catchment scale mapping of measureable soil organic carbon fractions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.12.005
– volume: 183
  start-page: 292
  year: 2020
  ident: ref_70
  article-title: Regional and local scale variations in soil organic carbon stocks in West Greenland
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201900390
– ident: ref_61
– volume: 6
  start-page: 6707
  year: 2015
  ident: ref_71
  article-title: Plant diversity increases soil microbial activity and soil carbon storage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7707
– volume: 7
  start-page: 1231
  year: 2006
  ident: ref_48
  article-title: Nonparametric quantile estimation
  publication-title: J. Mach. Learn. Res.
– volume: 163
  start-page: 150
  year: 2011
  ident: ref_31
  article-title: Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.03.011
– volume: 49
  start-page: 199
  year: 1991
  ident: ref_60
  article-title: Slope gradient and aspect effects on soils developed from sandstone in Pennsylvania
  publication-title: Geoderma
  doi: 10.1016/0016-7061(91)90076-6
– ident: ref_56
– volume: 7
  start-page: 67
  year: 2016
  ident: ref_8
  article-title: Modeling deep soil properties on California grassland hillslopes using LiDAR digital elevation models
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2016.01.005
– ident: ref_36
  doi: 10.1007/978-3-030-32236-6_51
– volume: 62
  start-page: 417
  year: 2011
  ident: ref_17
  article-title: An error budget for different sources of error in digital soil mapping
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2011.01365.x
– volume: 146
  start-page: 23
  year: 2012
  ident: ref_7
  article-title: The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: A case study
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2011.10.004
– ident: ref_21
  doi: 10.1002/9780470517277
– volume: 8
  start-page: 587
  year: 2022
  ident: ref_53
  article-title: Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
  publication-title: Soil
  doi: 10.5194/soil-8-587-2022
– volume: 29
  start-page: 1073
  year: 2010
  ident: ref_64
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2010.05.006
– volume: 153
  start-page: 30
  year: 2017
  ident: ref_14
  article-title: Uncertainty-guided sampling to improve digital soil maps
  publication-title: Catena
  doi: 10.1016/j.catena.2017.01.033
– ident: ref_38
– ident: ref_45
– volume: 5
  start-page: 170191
  year: 2018
  ident: ref_51
  article-title: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.191
– ident: ref_72
– volume: 160
  start-page: 614
  year: 2011
  ident: ref_22
  article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.11.013
– ident: ref_37
  doi: 10.1109/CVPR.2019.00283
– volume: 103
  start-page: 3
  year: 2001
  ident: ref_20
  article-title: Geostatistical modelling of uncertainty in soil science
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(01)00067-2
– volume: 66
  start-page: 121
  year: 2015
  ident: ref_66
  article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12193
– volume: 287
  start-page: 20200421
  year: 2020
  ident: ref_6
  article-title: Towards a unified study of multiple stressors: Divisions and common goals across research disciplines
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2020.0421
– volume: 9
  start-page: e261
  year: 2020
  ident: ref_47
  article-title: A comparison of some conformal quantile regression methods
  publication-title: Stat
  doi: 10.1002/sta4.261
– volume: 12
  start-page: 1379
  year: 2022
  ident: ref_65
  article-title: Multiple soil map comparison highlights challenges for predicting topsoil organic carbon concentration at national scale
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-05476-5
– volume: 42
  start-page: 101073
  year: 2020
  ident: ref_55
  article-title: Emergy-based ecosystem services valuation and classification management applied to China’s grasslands
  publication-title: Ecosyst. Serv.
  doi: 10.1016/j.ecoser.2020.101073
– volume: 8
  start-page: 107
  year: 2022
  ident: ref_69
  article-title: Decomposition in peatlands: Who are the players and what affects them?
  publication-title: Front. Young Minds
  doi: 10.3389/frym.2020.00107
– volume: 78
  start-page: 38
  year: 2019
  ident: ref_23
  article-title: Exploring prediction uncertainty of spatial data in geostatistical and machine learning approaches
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-8032-z
– volume: 6
  start-page: eaba1715
  year: 2020
  ident: ref_54
  article-title: Agricultural diversification promotes multiple ecosystem services without compromising yield
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba1715
– volume: 7
  start-page: 983
  year: 2006
  ident: ref_29
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– ident: ref_63
– ident: ref_18
– ident: ref_44
– volume: 292
  start-page: 59
  year: 2017
  ident: ref_2
  article-title: Soil carbon 4 per mille
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.01.002
– volume: 213
  start-page: 578
  year: 2014
  ident: ref_13
  article-title: Hyper-scale digital soil mapping and soil formation analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.031
– volume: 437
  start-page: 116585
  year: 2023
  ident: ref_19
  article-title: Validation of uncertainty predictions in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2023.116585
– ident: ref_11
  doi: 10.3390/rs12071095
– volume: 295
  start-page: 113682
  year: 2023
  ident: ref_25
  article-title: Quantifying uncertainty in land-use land-cover classification using conformal statistics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113682
– ident: ref_40
  doi: 10.1109/ICCVW60793.2023.00072
– ident: ref_42
  doi: 10.1109/TNNLS.2022.3217694
– volume: 435
  start-page: 109257
  year: 2020
  ident: ref_35
  article-title: Transitioning machine learning from theory to practice in natural resources management
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2020.109257
– ident: ref_41
  doi: 10.1109/ICCVW60793.2023.00068
– ident: ref_50
– volume: 13
  start-page: 478
  year: 2023
  ident: ref_4
  article-title: Increasing the number of stressors reduces soil ecosystem services worldwide
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-023-01627-2
– volume: 15
  start-page: 143
  year: 2001
  ident: ref_49
  article-title: Quantile regression
  publication-title: J. Econ. Perspect.
  doi: 10.1257/jep.15.4.143
– volume: 45
  start-page: W00B11
  year: 2009
  ident: ref_33
  article-title: A novel method to estimate model uncertainty using machine learning techniques
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR006839
– volume: 141
  start-page: 272
  year: 2007
  ident: ref_59
  article-title: Spatial and vertical variation of soil carbon at two grassland sites—implications for measuring soil carbon stocks
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.06.003
– volume: 117
  start-page: 3
  year: 2003
  ident: ref_12
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 217
  start-page: 105284
  year: 2022
  ident: ref_9
  article-title: Fusion of visible-to-near-infrared and mid-infrared spectroscopy to estimate soil organic carbon
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2021.105284
– volume: 9
  start-page: 17
  year: 2017
  ident: ref_24
  article-title: Chile and the Chilean soil grid: A contribution to GlobalSoilMap
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2016.12.001
– ident: ref_46
– volume: 25
  start-page: 1965
  year: 2005
  ident: ref_52
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: Int. J. Climatol. A J. R. Meteorol. Soc.
  doi: 10.1002/joc.1276
– volume: 184
  start-page: 1
  year: 2009
  ident: ref_68
  article-title: Understanding carbon cycling in Northern peatlands: Recent developments and future prospects
  publication-title: Carbon Cycl. North. Peatlands
– volume: 566
  start-page: 195
  year: 2019
  ident: ref_62
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 47
  start-page: 100572
  year: 2022
  ident: ref_16
  article-title: Measurement error-filtered machine learning in digital soil mapping
  publication-title: Spat. Stat.
  doi: 10.1016/j.spasta.2021.100572
– volume: 9
  start-page: 371
  year: 2008
  ident: ref_43
  article-title: A Tutorial on Conformal Prediction
  publication-title: J. Mach. Learn. Res.
– ident: ref_57
– volume: 110
  start-page: 457
  year: 2021
  ident: ref_39
  article-title: Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-021-05946-3
– volume: 10
  start-page: 423
  year: 2000
  ident: ref_1
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– volume: 291
  start-page: 55
  year: 2017
  ident: ref_28
  article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.017
– volume: 4
  start-page: 210
  year: 2020
  ident: ref_5
  article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-019-1084-y
SSID ssj0000331904
Score 2.446864
Snippet Soil organic carbon (SOC) contents and stocks provide valuable insights into soil health, nutrient cycling, greenhouse gas emissions, and overall ecosystem...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 438
SubjectTerms Accuracy
Algorithms
Carbon
Carbon content
conformal prediction
data collection
digital soil mapping
ecosystems
Emissions
Estimation
Europe
Greenhouse gases
Machine learning
Methods
Model accuracy
model uncertainty
Monte Carlo simulation
Neural networks
Nutrient cycles
Organic carbon
Organic soils
prediction
Predictions
Remote sensing
Sensors
soil organic carbon
soil quality
Soil sciences
Soils
Statistical analysis
Uncertainty
uncertainty quantification
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlIdYaJERSIhD1Kzt2PGx9KEKCQSUlXqz_JgA0iqpdrOH_vvO2Om2SCAuXB0ncuY9tucbxt5aX_vUGlUpNP6ValOobJK-aqCtwaCD1JIKhT991mcL9fGiubjT6ovuhBV44EK4A6ONkMlGtLatakG3EIyxXQMmWAG5elygz7uTTGUbLFG0alXwSCXm9QerNTVUpnOv3zxQBur_mznOPub0EXs4BYf8sCxql92D_jG7P_Up_3n1hA0L5FE-wx-v-NeNLzd9MnH50PHz4deSl-rKyI_8KuDwCepwKU_kVErCvwEyB_g5XVzvf_BjP3pOm7Gcav8ogF3yLys6vaFXnrLF6cn3o7NqaplQRSXlWHkL2os6mozDonSsvWhTUqaLXcDoDJONeRNR77yNLYBOPqS6ATFP0ja-ifIZ2-mHHp4zDlFgMgPCS-hUEnWIHboypSH4ecAsZMbe35DRxQlPnNpaLB3mFURyd0vyGXuznXtZUDT-OOsDcWM7g5Cv8wDKg5vkwf1LHmbsHfHSkX7icqKfygzwpwjpyh0SQCAmnVrM2N4Nu92kuGsnLF2qRTuGH3q9fYwqR-covodhs3a4WALi12r-4n-s-CV7IDBSKvs6e2xnXG1gHyOdMbzKQn0Ne9z66A
  priority: 102
  providerName: Directory of Open Access Journals
Title Uncertainty Quantification of Soil Organic Carbon Estimation from Remote Sensing Data with Conformal Prediction
URI https://www.proquest.com/docview/2924002571
https://www.proquest.com/docview/3040483641
https://doaj.org/article/76723d9c341848e68eb779f5e7b92e71
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R5ACXiqcwlGgRSIiDVXu99q5PKG0TKkSr0hCpt9W-3CJFdus4h_57ZuxNKiTgaq8te-c9s_MNIR9LnWgnBY85KP-YS2fi0mU6zr1MvAADWWTYKHx2Xpwu-ber_Cok3NbhWOVWJ_aK2jUWc-SHrMTTjsBg6ZfbuxinRmF1NYzQ2CNjUMFSjsj4aHZ-cbnLsiQZsFjCB1zSDOL7w3aNg5Wx_vWHJeoB-_-llntbM39K9oOTSKcDVZ-RR75-Th6HeeU39y9IswRa9bX87p7-2OjhxE-_ybSp6KL5taJDl6Wlx7o1cHkGsjy0KVJsKaGXHojk6QIPsNfX9ER3mmJSlmIPIDqyK3rRYhUHH3lJlvPZz-PTOIxOiC3Psi7WpS80S6zo8Vh4YRPNpHNcVLYy4KVB0JHmFuRPl1Z6XzhtXJJ7lrqszHVus1dkVDe1f02otwyCGs905ivuWGJsBSaNF97o1EA0EpHP221UNuCK43iLlYL4ArdcPWx5RD7s1t4OaBp_XXWE1NitQATs_kLTXqsgUEoUgmWutGCFJZe-kN4IUVa5F6ZkXqQR-YS0VCin8DlWh3YD-ClEvFJTBAoEnipYRA625FZBgNfqgd0i8n53G0QP6ym69s1mreBjEZC_4Omb_7_iLXnCwBcaMjcHZNS1G_8OfJnOTMienH-dkPH05Oz7YhLYd9JnBn4D9wD35w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOZQLYhWBAkaAEIeoieM4yQGh0naY0kVAO1JvrpeXgjSalExGaP4Uv5H3skyFBNx6tR3L8fv8FvstjL0qTGR8nslQIvMPZe5tWPjEhCnkEWQoIFVCgcJHx2o8kZ_O0rM19muIhSG3yoEntozaV47uyLdEQd6OCLD4_eWPkKpG0evqUEKjg8UBLH-iyTZ_t7-L9H0txGjvdGcc9lUFQieTpAlNAcqIyGVtqhKpXGRE7r3MSldaVGBQH49Th9A0hcsBlDfWRymI2CdFalKX4Lw32E2cqyBjLx99XN3pRAkCOpJdFlTsj7bqOZVxpte2P-ReWx7gX0KglWyjO-x2r5Ly7Q5Dd9kazO6xjb46-rflfVZNEBmt50Cz5F8WpvMvaknKq5KfVN-nvIvpdHzH1Bab95BzdEGRnAJY-FdASAA_IXf52QXfNY3hdAXMKeKQ1OYp_1zTmxF98oBNrmVLH7L1WTWDR4yDE2hCgTAJlNKLyLoSBahUYE1s0fYJ2NthG7Xrs5hTMY2pRmuGtlxfbXnAXq7GXna5O_466gNRYzWC8m23DVV9ofvjqzOVicQXDmV-LnNQOdgsK8oUMlsIyOKAvSFaauIKuBxn-uAG_CnKr6W3KS0hIliJgG0O5NY9u5jrK3AH7MWqGw86vd6YGVSLucbFUvp_JePH_5_iOdsYnx4d6sP944Mn7JZALay7M9pk6029gKeoRTX2WQtdzs6v-6z8BraLMAc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwEviKvoNsAIEOIhamI7cfKA0La22hhUZaPS3jzHPhlIVTPaVKh_jV_HOUnaCQl422viWI7P53PzuTD2OrOh9alWgULmH6jU50HmpQ1iSEPQKCATSYnCn0fJ0UR9PI_Pt9ivdS4MhVWueWLNqH3pyEfeExlFOyLAol7RhkWM-8MPVz8C6iBFN63rdhoNRE5g9RPNt8X74z7S-o0Qw8HXw6Og7TAQOCVlFdgMEitCp-uyJSpxoRWp90oXrshRmUHdPIodwtRmLgVIvM19GIOIvMxiGzuJ895i25qsog7bPhiMxqcbD08oEd6hamqiSpmFvfmCmjrT3dsfUrBuFvAvkVDLueF9dq9VUPl-g6gHbAtmD9mdtlf6t9UjVk4QJ3UcQbXiX5a2iTaqCczLgp-V36e8yfB0_NDOc3w8QD7SpEhySmfhp4AAAX5GwfOzS963leXkEOaUf0hK9JSP53SDRJ88ZpMb2dQnrDMrZ_CUcXACDSoQVkKhvAhzV6A4VQnkNsrREuqyd-ttNK6taU6tNaYGbRvacnO95V32ajP2qqnk8ddRB0SNzQiqvl0_KOeXpj3MRidaSJ851ABSlUKSQq51VsSg80yAjrrsLdHSEI_A5TjbpjrgT1G1LbNPRQoRz4nosr01uU3LPBbmGupd9nLzGo893eXYGZTLhcHFUjOAREU7_5_iBbuN58R8Oh6d7LK7AlWyxoG0xzrVfAnPUKWq8uctdjm7uOnj8hvL6DWZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+Quantification+of+Soil+Organic+Carbon+Estimation+from+Remote+Sensing+Data+with+Conformal+Prediction&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Kakhani%2C+Nafiseh&rft.au=Alamdar%2C+Setareh&rft.au=Ndiye%2C+Michael+Kebonye&rft.au=Meisam+Amani&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=3&rft.spage=438&rft_id=info:doi/10.3390%2Frs16030438&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon