A Downscaling Method Based on MODIS Product for Hourly ERA5 Reanalysis of Land Surface Temperature

Land surface temperature (LST) is a critical parameter for the dynamic simulation of land surface processes and for analyzing variations on regional or global scales. Obtaining LST with high spatiotemporal resolution is a subject of intensive and ongoing research. This study proposes a pixel-wise te...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 18; p. 4441
Main Authors Wang, Ning, Tian, Jia, Su, Shanshan, Tian, Qingjiu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Land surface temperature (LST) is a critical parameter for the dynamic simulation of land surface processes and for analyzing variations on regional or global scales. Obtaining LST with high spatiotemporal resolution is a subject of intensive and ongoing research. This study proposes a pixel-wise temporal alignment iterative linear regression model for downscaling based on MODIS LST products. This approach allows us to address the problem of high temporal resolution but low spatial resolution of the ERA5 reanalysis LST product while remaining immune to the pixel loss caused by clouds. The hourly ERA5 LST of the study area for 2012–2021 was downscaled to a 1000 m resolution, and its accuracy was verified by comparison with measured data from meteorological stations. The downscaled LST offers intricate details and is faithful to the LST characteristics of distinct land-cover categories. In comparison with other downscaling techniques, the proposed technique is more stable and preserves the spatial distribution of the ERA5 LST with minimal missing pixels. The pixel-wise average R2 and mean absolute error for the MODIS view times are 0.87 and 2.7 K, respectively, for cloud-free conditions on a 1000 m scale. The accuracy verification using data from meteorological stations indicates that the overall error is lower during cloudless periods rather than during overcast periods, during the night rather than during the day, and at MODIS view times rather than at non-view times. The maximum and minimum mean errors are 0.13 K for cloud-free periods and −0.98 K for cloudy periods, indicating a slight underestimation and overestimation, respectively. Conversely, the maximum and minimum mean absolute errors are 2.01 K for the daytime and 0.85 K for the nighttime. Therefore, the model ensures higher accuracy during cloudy periods with only the clear-sky LST used as input data, making it suitable for long-term, all-weather ERA5 LST downscaling.
AbstractList Land surface temperature (LST) is a critical parameter for the dynamic simulation of land surface processes and for analyzing variations on regional or global scales. Obtaining LST with high spatiotemporal resolution is a subject of intensive and ongoing research. This study proposes a pixel-wise temporal alignment iterative linear regression model for downscaling based on MODIS LST products. This approach allows us to address the problem of high temporal resolution but low spatial resolution of the ERA5 reanalysis LST product while remaining immune to the pixel loss caused by clouds. The hourly ERA5 LST of the study area for 2012–2021 was downscaled to a 1000 m resolution, and its accuracy was verified by comparison with measured data from meteorological stations. The downscaled LST offers intricate details and is faithful to the LST characteristics of distinct land-cover categories. In comparison with other downscaling techniques, the proposed technique is more stable and preserves the spatial distribution of the ERA5 LST with minimal missing pixels. The pixel-wise average R2 and mean absolute error for the MODIS view times are 0.87 and 2.7 K, respectively, for cloud-free conditions on a 1000 m scale. The accuracy verification using data from meteorological stations indicates that the overall error is lower during cloudless periods rather than during overcast periods, during the night rather than during the day, and at MODIS view times rather than at non-view times. The maximum and minimum mean errors are 0.13 K for cloud-free periods and −0.98 K for cloudy periods, indicating a slight underestimation and overestimation, respectively. Conversely, the maximum and minimum mean absolute errors are 2.01 K for the daytime and 0.85 K for the nighttime. Therefore, the model ensures higher accuracy during cloudy periods with only the clear-sky LST used as input data, making it suitable for long-term, all-weather ERA5 LST downscaling.
Land surface temperature (LST) is a critical parameter for the dynamic simulation of land surface processes and for analyzing variations on regional or global scales. Obtaining LST with high spatiotemporal resolution is a subject of intensive and ongoing research. This study proposes a pixel-wise temporal alignment iterative linear regression model for downscaling based on MODIS LST products. This approach allows us to address the problem of high temporal resolution but low spatial resolution of the ERA5 reanalysis LST product while remaining immune to the pixel loss caused by clouds. The hourly ERA5 LST of the study area for 2012–2021 was downscaled to a 1000 m resolution, and its accuracy was verified by comparison with measured data from meteorological stations. The downscaled LST offers intricate details and is faithful to the LST characteristics of distinct land-cover categories. In comparison with other downscaling techniques, the proposed technique is more stable and preserves the spatial distribution of the ERA5 LST with minimal missing pixels. The pixel-wise average R[sup.2] and mean absolute error for the MODIS view times are 0.87 and 2.7 K, respectively, for cloud-free conditions on a 1000 m scale. The accuracy verification using data from meteorological stations indicates that the overall error is lower during cloudless periods rather than during overcast periods, during the night rather than during the day, and at MODIS view times rather than at non-view times. The maximum and minimum mean errors are 0.13 K for cloud-free periods and −0.98 K for cloudy periods, indicating a slight underestimation and overestimation, respectively. Conversely, the maximum and minimum mean absolute errors are 2.01 K for the daytime and 0.85 K for the nighttime. Therefore, the model ensures higher accuracy during cloudy periods with only the clear-sky LST used as input data, making it suitable for long-term, all-weather ERA5 LST downscaling.
Land surface temperature (LST) is a critical parameter for the dynamic simulation of land surface processes and for analyzing variations on regional or global scales. Obtaining LST with high spatiotemporal resolution is a subject of intensive and ongoing research. This study proposes a pixel-wise temporal alignment iterative linear regression model for downscaling based on MODIS LST products. This approach allows us to address the problem of high temporal resolution but low spatial resolution of the ERA5 reanalysis LST product while remaining immune to the pixel loss caused by clouds. The hourly ERA5 LST of the study area for 2012–2021 was downscaled to a 1000 m resolution, and its accuracy was verified by comparison with measured data from meteorological stations. The downscaled LST offers intricate details and is faithful to the LST characteristics of distinct land-cover categories. In comparison with other downscaling techniques, the proposed technique is more stable and preserves the spatial distribution of the ERA5 LST with minimal missing pixels. The pixel-wise average R² and mean absolute error for the MODIS view times are 0.87 and 2.7 K, respectively, for cloud-free conditions on a 1000 m scale. The accuracy verification using data from meteorological stations indicates that the overall error is lower during cloudless periods rather than during overcast periods, during the night rather than during the day, and at MODIS view times rather than at non-view times. The maximum and minimum mean errors are 0.13 K for cloud-free periods and −0.98 K for cloudy periods, indicating a slight underestimation and overestimation, respectively. Conversely, the maximum and minimum mean absolute errors are 2.01 K for the daytime and 0.85 K for the nighttime. Therefore, the model ensures higher accuracy during cloudy periods with only the clear-sky LST used as input data, making it suitable for long-term, all-weather ERA5 LST downscaling.
Audience Academic
Author Wang, Ning
Tian, Jia
Tian, Qingjiu
Su, Shanshan
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0009-0001-8870-9887
  surname: Wang
  fullname: Wang, Ning
– sequence: 2
  givenname: Jia
  orcidid: 0000-0001-8766-8465
  surname: Tian
  fullname: Tian, Jia
– sequence: 3
  givenname: Shanshan
  surname: Su
  fullname: Su, Shanshan
– sequence: 4
  givenname: Qingjiu
  orcidid: 0000-0003-0986-6479
  surname: Tian
  fullname: Tian, Qingjiu
BookMark eNptkU1vEzEQhleoSJTSC7_AEheElOKvjb3H0BYaKVVRW87WrD0OjjZ2sHdV5d_jEASowj54PHredzQzr5uTmCI2zVtGL4To6MdcWMu0lJK9aE45VXwmecdP_olfNeelbGg9QrCOytOmX5Cr9BSLhSHENbnF8Xty5BMUdCRFcnt3tXwgX3Nykx2JT5ncpCkPe3J9v2jJPUKEYV9CIcmTFURHHqbswSJ5xO0OM4xTxjfNSw9DwfPf71nz7fP14-XNbHX3ZXm5WM2sFGKcAfXo51qg5nOmbIvodScsb6EXjqn6Q6md6rDtveeV7iXv5Rwko1gxJs6a5dHXJdiYXQ5byHuTIJhfiZTXBvIY7IBGeQW9OozBSel820sGTDrHPLfC97p6vT967XL6MWEZzTYUi8MAEdNUjKCSSqUZoxV99wzd1BHVuRTD9byrvWh-MLw4Umuo9UP0acxg63W4Dbbu0YeaXyjFNGWKzavgw1Fgcyolo__TEaPmsG7zd90Vps9gG0YYQ4q1Shj-J_kJZ2esQg
CitedBy_id crossref_primary_10_1109_JSEN_2024_3472076
crossref_primary_10_1109_JSTARS_2024_3503578
crossref_primary_10_5194_tc_18_5595_2024
crossref_primary_10_1007_s00704_024_05159_3
crossref_primary_10_1109_MGRS_2024_3421268
crossref_primary_10_1038_s41598_024_83944_w
crossref_primary_10_1016_j_jag_2024_104341
crossref_primary_10_1029_2024JD041543
Cites_doi 10.1016/j.rse.2006.10.006
10.3390/rs13234935
10.1016/j.rse.2012.12.014
10.1016/j.rse.2010.05.032
10.1109/LGRS.2013.2257668
10.1029/2004JD005566
10.1016/j.rse.2019.05.007
10.1016/j.rse.2019.111495
10.1016/j.rse.2021.112612
10.1016/j.rse.2017.04.008
10.1007/s00271-011-0287-z
10.3390/rs12091471
10.3390/rs9050401
10.1080/01431160110115041
10.2747/1548-1603.43.1.78
10.1016/j.rse.2010.04.012
10.1109/TGRS.2020.2999943
10.1016/j.rse.2014.09.013
10.1016/j.rse.2016.03.006
10.1109/TGRS.2009.2033180
10.1109/JSTARS.2019.2896923
10.1080/01431161.2018.1508920
10.1016/j.rse.2014.03.016
10.1016/S0034-4257(03)00036-1
10.2136/vzj2018.04.0072
10.1016/j.rse.2012.04.024
10.3390/rs9050410
10.1016/j.rse.2014.02.003
10.1109/36.508406
10.1109/TGRS.2020.2998945
10.1016/j.isprsjprs.2022.03.009
10.1016/j.rse.2008.09.016
10.3390/rs8040274
10.1016/j.isprsjprs.2014.08.009
10.1016/j.rse.2011.03.008
10.1109/TGRS.2010.2060342
10.5194/amt-10-3453-2017
10.1109/TGRS.2016.2585198
10.1175/JAMC-D-18-0256.1
10.1109/TGRS.2006.872081
10.3390/rs8100827
10.1016/j.rse.2021.112361
10.1016/j.rse.2020.112104
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15184441
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database


CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_7f7ab70003d44df5b41a14dd1f2c3fb8
A771801716
10_3390_rs15184441
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-a0fef683e82617c5eef893c25ab3d17ef8e48d79e5bff2a0fb42b46a410e3c213
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:29:54 EDT 2025
Fri Jul 11 03:44:11 EDT 2025
Fri Jul 25 09:33:49 EDT 2025
Tue May 27 03:55:44 EDT 2025
Tue Jul 01 03:11:18 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-a0fef683e82617c5eef893c25ab3d17ef8e48d79e5bff2a0fb42b46a410e3c213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-8870-9887
0000-0001-8766-8465
0000-0003-0986-6479
OpenAccessLink https://doaj.org/article/7f7ab70003d44df5b41a14dd1f2c3fb8
PQID 2869617828
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_7f7ab70003d44df5b41a14dd1f2c3fb8
proquest_miscellaneous_3040478110
proquest_journals_2869617828
gale_infotracacademiconefile_A771801716
crossref_primary_10_3390_rs15184441
crossref_citationtrail_10_3390_rs15184441
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Weng (ref_10) 2014; 145
Wu (ref_11) 2015; 156
Hutengs (ref_20) 2016; 178
Wang (ref_30) 2005; 110
Li (ref_24) 2019; 12
Yin (ref_14) 2021; 59
ref_35
ref_32
Benali (ref_36) 2012; 124
Duan (ref_19) 2016; 54
Wan (ref_28) 1996; 34
Liu (ref_29) 2018; 17
Wu (ref_1) 2022; 187
Hrisko (ref_2) 2020; 237
Duan (ref_25) 2017; 195
Agam (ref_17) 2007; 107
ref_39
ref_38
Hong (ref_43) 2021; 264
Sharifnezhadazizi (ref_31) 2019; 58
Wendt (ref_34) 2017; 10
Zhu (ref_13) 2010; 114
Mostovoy (ref_37) 2006; 43
Zhao (ref_27) 2020; 251
Yu (ref_42) 2019; 230
Kustas (ref_16) 2003; 85
Chen (ref_7) 2011; 13
Li (ref_41) 2021; 59
Gao (ref_12) 2006; 44
Zhan (ref_15) 2011; 49
Dominguez (ref_18) 2011; 115
Huang (ref_26) 2019; 40
Wang (ref_3) 2021; 257
ref_22
ref_44
Langer (ref_5) 2010; 114
Singh (ref_33) 2012; 30
Ermida (ref_40) 2014; 148
Weng (ref_8) 2014; 97
Julien (ref_4) 2009; 113
Yang (ref_23) 2010; 48
Dash (ref_6) 2002; 23
Zhan (ref_9) 2013; 131
Keramitsoglou (ref_21) 2013; 10
References_xml – volume: 107
  start-page: 545
  year: 2007
  ident: ref_17
  article-title: A Vegetation Index Based Technique for Spatial Sharpening of Thermal Imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.10.006
– ident: ref_44
  doi: 10.3390/rs13234935
– volume: 131
  start-page: 119
  year: 2013
  ident: ref_9
  article-title: Disaggregation of Remotely Sensed Land Surface Temperature: Literature Survey, Taxonomy, Issues, and Caveats
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.014
– volume: 114
  start-page: 2610
  year: 2010
  ident: ref_13
  article-title: An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.05.032
– volume: 10
  start-page: 1253
  year: 2013
  ident: ref_21
  article-title: Downscaling Geostationary Land Surface Temperature Imagery for Urban Analysis
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2257668
– volume: 110
  start-page: D11109
  year: 2005
  ident: ref_30
  article-title: Estimation of Surface Long Wave Radiation and Broadband Emissivity Using Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature/Emissivity Products
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2004JD005566
– volume: 230
  start-page: 111188
  year: 2019
  ident: ref_42
  article-title: Supplement of the Radiance-Based Method to Validate Satellite-Derived Land Surface Temperature Products over Heterogeneous Land Surfaces
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.05.007
– volume: 237
  start-page: 111495
  year: 2020
  ident: ref_2
  article-title: Urban Air Temperature Model Using GOES-16 LST and a Diurnal Regressive Neural Network Algorithm
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111495
– volume: 264
  start-page: 112612
  year: 2021
  ident: ref_43
  article-title: A Simple yet Robust Framework to Estimate Accurate Daily Mean Land Surface Temperature from Thermal Observations of Tandem Polar Orbiters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112612
– volume: 195
  start-page: 107
  year: 2017
  ident: ref_25
  article-title: A Framework for the Retrieval of All-Weather Land Surface Temperature at a High Spatial Resolution from Polar-Orbiting Thermal Infrared and Passive Microwave Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.04.008
– volume: 30
  start-page: 303
  year: 2012
  ident: ref_33
  article-title: Estimating Seasonal Evapotranspiration from Temporal Satellite Images
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-011-0287-z
– ident: ref_39
  doi: 10.3390/rs12091471
– ident: ref_32
  doi: 10.3390/rs9050401
– volume: 23
  start-page: 2563
  year: 2002
  ident: ref_6
  article-title: Land Surface Temperature and Emissivity Estimation from Passive Sensor Data: Theory and Practice-Current Trends
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110115041
– volume: 43
  start-page: 78
  year: 2006
  ident: ref_37
  article-title: Statistical Estimation of Daily Maximum and Minimum Air Temperatures from MODIS LST Data over the State of Mississippi
  publication-title: Gisci. Remote Sens.
  doi: 10.2747/1548-1603.43.1.78
– volume: 114
  start-page: 2059
  year: 2010
  ident: ref_5
  article-title: Spatial and Temporal Variations of Summer Surface Temperatures of Wet Polygonal Tundra in Siberia-Implications for MODIS LST Based Permafrost Monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.04.012
– volume: 59
  start-page: 1808
  year: 2021
  ident: ref_14
  article-title: Spatiotemporal Fusion of Land Surface Temperature Based on a Convolutional Neural Network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2999943
– volume: 156
  start-page: 169
  year: 2015
  ident: ref_11
  article-title: Integrated Fusion of Multi-Scale Polar-Orbiting and Geostationary Satellite Observations for the Mapping of High Spatial and Temporal Resolution Land Surface Temperature
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.09.013
– volume: 178
  start-page: 127
  year: 2016
  ident: ref_20
  article-title: Downscaling Land Surface Temperatures at Regional Scales with Random Forest Regression
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.006
– volume: 48
  start-page: 2170
  year: 2010
  ident: ref_23
  article-title: A Novel Method to Estimate Subpixel Temperature by Fusing Solar-Reflective and Thermal-Infrared Remote-Sensing Data with an Artificial Neural Network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2033180
– volume: 12
  start-page: 2299
  year: 2019
  ident: ref_24
  article-title: Evaluation of Machine Learning Algorithms in Spatial Downscaling of MODIS Land Surface Temperature
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2896923
– volume: 40
  start-page: 1828
  year: 2019
  ident: ref_26
  article-title: A Physically Based Algorithm for Retrieving Land Surface Temperature under Cloudy Conditions from AMSR2 Passive Microwave Measurements
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1508920
– volume: 148
  start-page: 16
  year: 2014
  ident: ref_40
  article-title: Validation of Remotely Sensed Surface Temperature over an Oak Woodland Landscape—The Problem of Viewing and Illumination Geometries
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.016
– volume: 85
  start-page: 429
  year: 2003
  ident: ref_16
  article-title: Estimating Subpixel Surface Temperatures and Energy Fluxes from the Vegetation Index-Radiometric Temperature Relationship
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00036-1
– volume: 17
  start-page: 180072
  year: 2018
  ident: ref_29
  article-title: The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2018.04.0072
– volume: 124
  start-page: 108
  year: 2012
  ident: ref_36
  article-title: Estimating Air Surface Temperature in Portugal Using MODIS LST Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.04.024
– ident: ref_38
  doi: 10.3390/rs9050410
– volume: 145
  start-page: 55
  year: 2014
  ident: ref_10
  article-title: Generating Daily Land Surface Temperature at Landsat Resolution by Fusing Landsat and MODIS Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.003
– volume: 34
  start-page: 892
  year: 1996
  ident: ref_28
  article-title: A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.508406
– volume: 59
  start-page: 1794
  year: 2021
  ident: ref_41
  article-title: Temperature-Based and Radiance-Based Validation of the Collection 6 MYD11 and MYD21 Land Surface Temperature Products Over Barren Surfaces in Northwestern China
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2998945
– volume: 187
  start-page: 259
  year: 2022
  ident: ref_1
  article-title: Downscaling Land Surface Temperature: A Framework Based on Geographically and Temporally Neural Network Weighted Autoregressive Model with Spatio-Temporal Fused Scaling Factors
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.03.009
– volume: 113
  start-page: 329
  year: 2009
  ident: ref_4
  article-title: The Yearly Land Cover Dynamics (YLCD) Method: An Analysis of Global Vegetation from NDVI and LST Parameters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.016
– ident: ref_22
  doi: 10.3390/rs8040274
– volume: 13
  start-page: 140
  year: 2011
  ident: ref_7
  article-title: A Simple Retrieval Method of Land Surface Temperature from AMSR-E Passive Microwave Data—A Case Study over Southern China during the Strong Snow Disaster of 2008
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 97
  start-page: 78
  year: 2014
  ident: ref_8
  article-title: Modeling Diurnal Land Temperature Cycles over Los Angeles Using Downscaled GOES Imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.08.009
– volume: 115
  start-page: 1772
  year: 2011
  ident: ref_18
  article-title: High-Resolution Urban Thermal Sharpener (HUTS)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.03.008
– volume: 49
  start-page: 773
  year: 2011
  ident: ref_15
  article-title: Sharpening Thermal Imageries: A Generalized Theoretical Framework From an Assimilation Perspective
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2060342
– volume: 10
  start-page: 3453
  year: 2017
  ident: ref_34
  article-title: Smoothing Data Series by Means of Cubic Splines: Quality of Approximation and Introduction of a Repeating Spline Approach
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-10-3453-2017
– volume: 54
  start-page: 6458
  year: 2016
  ident: ref_19
  article-title: Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression: Case Study in Northern China
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2585198
– volume: 58
  start-page: 1279
  year: 2019
  ident: ref_31
  article-title: A Global Analysis of Land Surface Temperature Diurnal Cycle Using MODIS Observations
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-18-0256.1
– volume: 44
  start-page: 2207
  year: 2006
  ident: ref_12
  article-title: On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.872081
– ident: ref_35
  doi: 10.3390/rs8100827
– volume: 257
  start-page: 112361
  year: 2021
  ident: ref_3
  article-title: Modeling the Angular Effect of MODIS LST in Urban Areas: A Case Study of Toulouse, France
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112361
– volume: 251
  start-page: 112104
  year: 2020
  ident: ref_27
  article-title: Estimating Lake Temperature Profile and Evaporation Losses by Leveraging MODIS LST Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112104
SSID ssj0000331904
Score 2.4149275
Snippet Land surface temperature (LST) is a critical parameter for the dynamic simulation of land surface processes and for analyzing variations on regional or global...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4441
SubjectTerms Algorithms
Clouds
Comparative analysis
Datasets
Distribution
downscaling
Earth temperature
Electronic data processing
ERA5 reanalysis data
Forecasts and trends
Iterative methods
Land cover
Land surface temperature
Measurement
Model accuracy
MODIS
Neural networks
Pixels
Radiation
Regression analysis
Regression models
Remote sensing
Satellite imaging
Satellites
Spacecraft
Spatial discrimination
Spatial distribution
Spatial resolution
Support vector machines
surface temperature
Technology application
temporal alignment
Temporal resolution
Vegetation
Weather forecasting
Weather stations
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFUR4iUCpXICEOUZN4EicntEu3WhBbqm0r9Wb5WQ5VUvZx6L9nJvFuhQQ9JplYyYzn4bHnG8Y-OvQbFkKWBk8lOboxaQO2SU1hgkF30sgep2B2Wk0v4ftVeRUTbst4rHJjE3tD7TpLOfKjoq4aKmcr6i-3v1PqGkW7q7GFxmO2iya4xsXX7nhyejbfZlkygVMsgwGXVOD6_mixRB9XA0D-lyfqAfv_Z5Z7X3PynD2LQSIfDVLdY498-4I9if3Kf929ZGbEjyktjAxG18NnfRtoPkaP5HjX8tnP42_n_GwAc-UYlvIpDnlzxyfzUcnnXkckEt4F_kO3jp-vF0Fbzy88RtEDyvIrdnkyufg6TWO3hNSCEKtUZ8GHqha-JpB1W3ofMBaxRamNcLnEKw-1k40vTQgFUhsoDFQa8swjWS5es522a_0bxpscjR644Ep8RwZrgnAgq8pjOGSLSifs84ZzykYocepocaNwSUFcVvdcTtiHLe3tAKDxT6oxCWBLQaDX_Y1uca2iDikZpDaShOoAv640kOscnMtDYUUwdcI-kfgUqSZ-jtWxwgB_ikCu1EiiI-7xgRK2v5Gwijq7VPczLGGH28eobbSFolvfrZdKoM3ri3Oztw8P8Y49pcb0w2m0fbazWqz9ewxfVuYgztE_xbTvyg
  priority: 102
  providerName: ProQuest
Title A Downscaling Method Based on MODIS Product for Hourly ERA5 Reanalysis of Land Surface Temperature
URI https://www.proquest.com/docview/2869617828
https://www.proquest.com/docview/3040478110
https://doaj.org/article/7f7ab70003d44df5b41a14dd1f2c3fb8
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5ROLSXqkAR28LKCKSKQ0QSO3FyzLK73VYsRbsgcbP8FAeUrfZx4N937IQFJBCXnqIkE8sZj-cbJ55vAE4M4oZmLo6c9Sk5slRRyXQZqVQ5hXBS8sBTML7MRzfs9212-6zUl98T1tADN4o7445LxX3obhgzLlMskQkzJnGppk6FNF_EvGeLqeCDKZpWzBo-Uorr-rP5ArGtYIwlLxAoEPW_5Y4Dxgy_wOc2OCRV06lt2LD1Dnxs65TfPeyCqkjffw5GxSLkkHEo_0x6iESGzGoy_tP_NSVXDYkrwXCUjLDJ-wcymFQZmVjZMpCQmSMXsjZkupo7qS25thg9N-zKX-FmOLg-H0VtlYRIM0qXkYyddXlBbeHJ1XVmrcMYRKeZVNQkHM8sKwwvbaacS1FasVSxXLIktiiW0D3YrGe13QdSJujsUMkmw2e408qh0nmeWwyDdJrLDpw-ak7olkLcV7K4F7iU8FoWT1ruwPFa9m9DnPGqVM8PwFrCk12HC2gCojUB8Z4JdOCHHz7hpyR2R8s2swBfypNbiYojAAdeoA4cPI6waOfqQqRFXvpEyRQbOlrfxlnmf53I2s5WC0HR14Wk3Pjb_-jxd_jky9Y3e9UOYHM5X9lDDG6WqgsfiuHPLmxV_fHFFI-9weXVpBus-x9-ZPuP
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXRHmI0FKMACEOURPHeR1QtWW77NLdgtqt1Jvxkx6qpOxDaP8Uv7FjJ9kKCbj1mGRiJZ7xfOPHfAPwViNuKGaj0BqXkiNKGZZMlaGk0kqEkzL3PAWTk2x4zr5cpBcb8LvLhXHHKjuf6B21rpVbI9-nRVa6dDZaHFz_DF3VKLe72pXQaMzi2Kx-4ZRt_nHUR_2-o3RwNP00DNuqAqFiSbIIRWSNzYrEFI6MXKXGWMRsRVMhEx3neGVYofPSpNJaitKSUckyweLIoFicYLv34D62VboRVQw-r9d0ogQNOmINCyo-j_Znc0TUgjEW_4F7vjzAv0DAI9vgETxsQ1LSa2xoGzZM9Ri22urol6snIHuk7xahUZ0IdGTii06TQ8Q_TeqKTL72R2fkW0MdSzAIJkNs8mpFjk57KTk1ouU9IbUlY1FpcracWaEMmRqM2RtO56dwfie9-Aw2q7oyz4GUMbpYpq1O8Z3cKmkTzfIsMxh8KZqJAD50PcdVS1zu6mdccZzAuF7mt70cwJu17HVD1_FXqUOngLWEo9j2N-rZD96OWJ7bXMjcKVUz_LpUsljETOvYUpVYWQTw3qmPO0eAn6NEm8-AP-UotXgvR9j3bEQB7HYa5q2HmPNbew7g9foxjm23YSMqUy_nPEEP61OBoxf_b-IVbA2nkzEfj06Od-ABxUCsOQe3C5uL2dK8xMBpIfe8tRL4ftfD4waqqSyj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAIEOJgxd5dvw4IJSRRQpsQpa3U23afcKjsNg-h_DV-HbO2kwoJuPVoe7yyd2bnm33MNwDvDOKG5i4MnPUpOTJXQc51HiiqnEI4ydOKp2AyTUZn_Ot5fL4Hv7a5MP5Y5dYnVo7alNqvkXdoluQ-nY1mHdcci5j1h5-vrgNfQcrvtG7LadQmcmQ3P3H6tvw07qOu31M6HJx-GQVNhYFAc8ZWgQyddUnGbOaJyXVsrUP81jSWipkoxSvLM5PmNlbOUZRWnCqeSB6FFsUihu3egf0UZ0VhC_Z7g-lsvlvhCRmad8hrTlTG8rCzWCK-Zpzz6A8UrIoF_AsSKpwbPoQHTYBKurVFPYI9WzyGe02t9B-bJ6C6pO-XpFG5CHtkUpWgJj1EQ0PKgky-9ccnZFYTyRIMickIm7zckMG8G5O5lQ0LCikdOZaFISfrhZPaklOLEXzN8PwUzm6lH59BqygL-xxIHqHD5caZGN9JnVaOGZ4micVQTNNEtuHjtueEbmjMfTWNS4HTGd_L4qaX2_B2J3tVk3f8VarnFbCT8ITb1Y1y8V0041ekLpUq9Uo1HL8uVjySETcmclQzp7I2fPDqE94t4Odo2WQ34E95gi3RTTEIqLiJ2nC41bBo_MVS3Fh3G97sHuNI99s3srDleikY-tsqMTg8-H8Tr-EuDg1xPJ4evYD7FKOy-lDcIbRWi7V9iVHUSr1qzJXAxW2PkN9_NDI1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Downscaling+Method+Based+on+MODIS+Product+for+Hourly+ERA5+Reanalysis+of+Land+Surface+Temperature&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ning+Wang&rft.au=Jia+Tian&rft.au=Shanshan+Su&rft.au=Qingjiu+Tian&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=18&rft.spage=4441&rft_id=info:doi/10.3390%2Frs15184441&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7f7ab70003d44df5b41a14dd1f2c3fb8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon