A Downscaling Method Based on MODIS Product for Hourly ERA5 Reanalysis of Land Surface Temperature
Land surface temperature (LST) is a critical parameter for the dynamic simulation of land surface processes and for analyzing variations on regional or global scales. Obtaining LST with high spatiotemporal resolution is a subject of intensive and ongoing research. This study proposes a pixel-wise te...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 18; p. 4441 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Land surface temperature (LST) is a critical parameter for the dynamic simulation of land surface processes and for analyzing variations on regional or global scales. Obtaining LST with high spatiotemporal resolution is a subject of intensive and ongoing research. This study proposes a pixel-wise temporal alignment iterative linear regression model for downscaling based on MODIS LST products. This approach allows us to address the problem of high temporal resolution but low spatial resolution of the ERA5 reanalysis LST product while remaining immune to the pixel loss caused by clouds. The hourly ERA5 LST of the study area for 2012–2021 was downscaled to a 1000 m resolution, and its accuracy was verified by comparison with measured data from meteorological stations. The downscaled LST offers intricate details and is faithful to the LST characteristics of distinct land-cover categories. In comparison with other downscaling techniques, the proposed technique is more stable and preserves the spatial distribution of the ERA5 LST with minimal missing pixels. The pixel-wise average R2 and mean absolute error for the MODIS view times are 0.87 and 2.7 K, respectively, for cloud-free conditions on a 1000 m scale. The accuracy verification using data from meteorological stations indicates that the overall error is lower during cloudless periods rather than during overcast periods, during the night rather than during the day, and at MODIS view times rather than at non-view times. The maximum and minimum mean errors are 0.13 K for cloud-free periods and −0.98 K for cloudy periods, indicating a slight underestimation and overestimation, respectively. Conversely, the maximum and minimum mean absolute errors are 2.01 K for the daytime and 0.85 K for the nighttime. Therefore, the model ensures higher accuracy during cloudy periods with only the clear-sky LST used as input data, making it suitable for long-term, all-weather ERA5 LST downscaling. |
---|---|
AbstractList | Land surface temperature (LST) is a critical parameter for the dynamic simulation of land surface processes and for analyzing variations on regional or global scales. Obtaining LST with high spatiotemporal resolution is a subject of intensive and ongoing research. This study proposes a pixel-wise temporal alignment iterative linear regression model for downscaling based on MODIS LST products. This approach allows us to address the problem of high temporal resolution but low spatial resolution of the ERA5 reanalysis LST product while remaining immune to the pixel loss caused by clouds. The hourly ERA5 LST of the study area for 2012–2021 was downscaled to a 1000 m resolution, and its accuracy was verified by comparison with measured data from meteorological stations. The downscaled LST offers intricate details and is faithful to the LST characteristics of distinct land-cover categories. In comparison with other downscaling techniques, the proposed technique is more stable and preserves the spatial distribution of the ERA5 LST with minimal missing pixels. The pixel-wise average R2 and mean absolute error for the MODIS view times are 0.87 and 2.7 K, respectively, for cloud-free conditions on a 1000 m scale. The accuracy verification using data from meteorological stations indicates that the overall error is lower during cloudless periods rather than during overcast periods, during the night rather than during the day, and at MODIS view times rather than at non-view times. The maximum and minimum mean errors are 0.13 K for cloud-free periods and −0.98 K for cloudy periods, indicating a slight underestimation and overestimation, respectively. Conversely, the maximum and minimum mean absolute errors are 2.01 K for the daytime and 0.85 K for the nighttime. Therefore, the model ensures higher accuracy during cloudy periods with only the clear-sky LST used as input data, making it suitable for long-term, all-weather ERA5 LST downscaling. Land surface temperature (LST) is a critical parameter for the dynamic simulation of land surface processes and for analyzing variations on regional or global scales. Obtaining LST with high spatiotemporal resolution is a subject of intensive and ongoing research. This study proposes a pixel-wise temporal alignment iterative linear regression model for downscaling based on MODIS LST products. This approach allows us to address the problem of high temporal resolution but low spatial resolution of the ERA5 reanalysis LST product while remaining immune to the pixel loss caused by clouds. The hourly ERA5 LST of the study area for 2012–2021 was downscaled to a 1000 m resolution, and its accuracy was verified by comparison with measured data from meteorological stations. The downscaled LST offers intricate details and is faithful to the LST characteristics of distinct land-cover categories. In comparison with other downscaling techniques, the proposed technique is more stable and preserves the spatial distribution of the ERA5 LST with minimal missing pixels. The pixel-wise average R[sup.2] and mean absolute error for the MODIS view times are 0.87 and 2.7 K, respectively, for cloud-free conditions on a 1000 m scale. The accuracy verification using data from meteorological stations indicates that the overall error is lower during cloudless periods rather than during overcast periods, during the night rather than during the day, and at MODIS view times rather than at non-view times. The maximum and minimum mean errors are 0.13 K for cloud-free periods and −0.98 K for cloudy periods, indicating a slight underestimation and overestimation, respectively. Conversely, the maximum and minimum mean absolute errors are 2.01 K for the daytime and 0.85 K for the nighttime. Therefore, the model ensures higher accuracy during cloudy periods with only the clear-sky LST used as input data, making it suitable for long-term, all-weather ERA5 LST downscaling. Land surface temperature (LST) is a critical parameter for the dynamic simulation of land surface processes and for analyzing variations on regional or global scales. Obtaining LST with high spatiotemporal resolution is a subject of intensive and ongoing research. This study proposes a pixel-wise temporal alignment iterative linear regression model for downscaling based on MODIS LST products. This approach allows us to address the problem of high temporal resolution but low spatial resolution of the ERA5 reanalysis LST product while remaining immune to the pixel loss caused by clouds. The hourly ERA5 LST of the study area for 2012–2021 was downscaled to a 1000 m resolution, and its accuracy was verified by comparison with measured data from meteorological stations. The downscaled LST offers intricate details and is faithful to the LST characteristics of distinct land-cover categories. In comparison with other downscaling techniques, the proposed technique is more stable and preserves the spatial distribution of the ERA5 LST with minimal missing pixels. The pixel-wise average R² and mean absolute error for the MODIS view times are 0.87 and 2.7 K, respectively, for cloud-free conditions on a 1000 m scale. The accuracy verification using data from meteorological stations indicates that the overall error is lower during cloudless periods rather than during overcast periods, during the night rather than during the day, and at MODIS view times rather than at non-view times. The maximum and minimum mean errors are 0.13 K for cloud-free periods and −0.98 K for cloudy periods, indicating a slight underestimation and overestimation, respectively. Conversely, the maximum and minimum mean absolute errors are 2.01 K for the daytime and 0.85 K for the nighttime. Therefore, the model ensures higher accuracy during cloudy periods with only the clear-sky LST used as input data, making it suitable for long-term, all-weather ERA5 LST downscaling. |
Audience | Academic |
Author | Wang, Ning Tian, Jia Tian, Qingjiu Su, Shanshan |
Author_xml | – sequence: 1 givenname: Ning orcidid: 0009-0001-8870-9887 surname: Wang fullname: Wang, Ning – sequence: 2 givenname: Jia orcidid: 0000-0001-8766-8465 surname: Tian fullname: Tian, Jia – sequence: 3 givenname: Shanshan surname: Su fullname: Su, Shanshan – sequence: 4 givenname: Qingjiu orcidid: 0000-0003-0986-6479 surname: Tian fullname: Tian, Qingjiu |
BookMark | eNptkU1vEzEQhleoSJTSC7_AEheElOKvjb3H0BYaKVVRW87WrD0OjjZ2sHdV5d_jEASowj54PHredzQzr5uTmCI2zVtGL4To6MdcWMu0lJK9aE45VXwmecdP_olfNeelbGg9QrCOytOmX5Cr9BSLhSHENbnF8Xty5BMUdCRFcnt3tXwgX3Nykx2JT5ncpCkPe3J9v2jJPUKEYV9CIcmTFURHHqbswSJ5xO0OM4xTxjfNSw9DwfPf71nz7fP14-XNbHX3ZXm5WM2sFGKcAfXo51qg5nOmbIvodScsb6EXjqn6Q6md6rDtveeV7iXv5Rwko1gxJs6a5dHXJdiYXQ5byHuTIJhfiZTXBvIY7IBGeQW9OozBSel820sGTDrHPLfC97p6vT967XL6MWEZzTYUi8MAEdNUjKCSSqUZoxV99wzd1BHVuRTD9byrvWh-MLw4Umuo9UP0acxg63W4Dbbu0YeaXyjFNGWKzavgw1Fgcyolo__TEaPmsG7zd90Vps9gG0YYQ4q1Shj-J_kJZ2esQg |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3472076 crossref_primary_10_1109_JSTARS_2024_3503578 crossref_primary_10_5194_tc_18_5595_2024 crossref_primary_10_1007_s00704_024_05159_3 crossref_primary_10_1109_MGRS_2024_3421268 crossref_primary_10_1038_s41598_024_83944_w crossref_primary_10_1016_j_jag_2024_104341 crossref_primary_10_1029_2024JD041543 |
Cites_doi | 10.1016/j.rse.2006.10.006 10.3390/rs13234935 10.1016/j.rse.2012.12.014 10.1016/j.rse.2010.05.032 10.1109/LGRS.2013.2257668 10.1029/2004JD005566 10.1016/j.rse.2019.05.007 10.1016/j.rse.2019.111495 10.1016/j.rse.2021.112612 10.1016/j.rse.2017.04.008 10.1007/s00271-011-0287-z 10.3390/rs12091471 10.3390/rs9050401 10.1080/01431160110115041 10.2747/1548-1603.43.1.78 10.1016/j.rse.2010.04.012 10.1109/TGRS.2020.2999943 10.1016/j.rse.2014.09.013 10.1016/j.rse.2016.03.006 10.1109/TGRS.2009.2033180 10.1109/JSTARS.2019.2896923 10.1080/01431161.2018.1508920 10.1016/j.rse.2014.03.016 10.1016/S0034-4257(03)00036-1 10.2136/vzj2018.04.0072 10.1016/j.rse.2012.04.024 10.3390/rs9050410 10.1016/j.rse.2014.02.003 10.1109/36.508406 10.1109/TGRS.2020.2998945 10.1016/j.isprsjprs.2022.03.009 10.1016/j.rse.2008.09.016 10.3390/rs8040274 10.1016/j.isprsjprs.2014.08.009 10.1016/j.rse.2011.03.008 10.1109/TGRS.2010.2060342 10.5194/amt-10-3453-2017 10.1109/TGRS.2016.2585198 10.1175/JAMC-D-18-0256.1 10.1109/TGRS.2006.872081 10.3390/rs8100827 10.1016/j.rse.2021.112361 10.1016/j.rse.2020.112104 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15184441 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_7f7ab70003d44df5b41a14dd1f2c3fb8 A771801716 10_3390_rs15184441 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-a0fef683e82617c5eef893c25ab3d17ef8e48d79e5bff2a0fb42b46a410e3c213 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:29:54 EDT 2025 Fri Jul 11 03:44:11 EDT 2025 Fri Jul 25 09:33:49 EDT 2025 Tue May 27 03:55:44 EDT 2025 Tue Jul 01 03:11:18 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-a0fef683e82617c5eef893c25ab3d17ef8e48d79e5bff2a0fb42b46a410e3c213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0001-8870-9887 0000-0001-8766-8465 0000-0003-0986-6479 |
OpenAccessLink | https://doaj.org/article/7f7ab70003d44df5b41a14dd1f2c3fb8 |
PQID | 2869617828 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7f7ab70003d44df5b41a14dd1f2c3fb8 proquest_miscellaneous_3040478110 proquest_journals_2869617828 gale_infotracacademiconefile_A771801716 crossref_primary_10_3390_rs15184441 crossref_citationtrail_10_3390_rs15184441 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Weng (ref_10) 2014; 145 Wu (ref_11) 2015; 156 Hutengs (ref_20) 2016; 178 Wang (ref_30) 2005; 110 Li (ref_24) 2019; 12 Yin (ref_14) 2021; 59 ref_35 ref_32 Benali (ref_36) 2012; 124 Duan (ref_19) 2016; 54 Wan (ref_28) 1996; 34 Liu (ref_29) 2018; 17 Wu (ref_1) 2022; 187 Hrisko (ref_2) 2020; 237 Duan (ref_25) 2017; 195 Agam (ref_17) 2007; 107 ref_39 ref_38 Hong (ref_43) 2021; 264 Sharifnezhadazizi (ref_31) 2019; 58 Wendt (ref_34) 2017; 10 Zhu (ref_13) 2010; 114 Mostovoy (ref_37) 2006; 43 Zhao (ref_27) 2020; 251 Yu (ref_42) 2019; 230 Kustas (ref_16) 2003; 85 Chen (ref_7) 2011; 13 Li (ref_41) 2021; 59 Gao (ref_12) 2006; 44 Zhan (ref_15) 2011; 49 Dominguez (ref_18) 2011; 115 Huang (ref_26) 2019; 40 Wang (ref_3) 2021; 257 ref_22 ref_44 Langer (ref_5) 2010; 114 Singh (ref_33) 2012; 30 Ermida (ref_40) 2014; 148 Weng (ref_8) 2014; 97 Julien (ref_4) 2009; 113 Yang (ref_23) 2010; 48 Dash (ref_6) 2002; 23 Zhan (ref_9) 2013; 131 Keramitsoglou (ref_21) 2013; 10 |
References_xml | – volume: 107 start-page: 545 year: 2007 ident: ref_17 article-title: A Vegetation Index Based Technique for Spatial Sharpening of Thermal Imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.10.006 – ident: ref_44 doi: 10.3390/rs13234935 – volume: 131 start-page: 119 year: 2013 ident: ref_9 article-title: Disaggregation of Remotely Sensed Land Surface Temperature: Literature Survey, Taxonomy, Issues, and Caveats publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.014 – volume: 114 start-page: 2610 year: 2010 ident: ref_13 article-title: An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.05.032 – volume: 10 start-page: 1253 year: 2013 ident: ref_21 article-title: Downscaling Geostationary Land Surface Temperature Imagery for Urban Analysis publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2257668 – volume: 110 start-page: D11109 year: 2005 ident: ref_30 article-title: Estimation of Surface Long Wave Radiation and Broadband Emissivity Using Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature/Emissivity Products publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2004JD005566 – volume: 230 start-page: 111188 year: 2019 ident: ref_42 article-title: Supplement of the Radiance-Based Method to Validate Satellite-Derived Land Surface Temperature Products over Heterogeneous Land Surfaces publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.05.007 – volume: 237 start-page: 111495 year: 2020 ident: ref_2 article-title: Urban Air Temperature Model Using GOES-16 LST and a Diurnal Regressive Neural Network Algorithm publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111495 – volume: 264 start-page: 112612 year: 2021 ident: ref_43 article-title: A Simple yet Robust Framework to Estimate Accurate Daily Mean Land Surface Temperature from Thermal Observations of Tandem Polar Orbiters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112612 – volume: 195 start-page: 107 year: 2017 ident: ref_25 article-title: A Framework for the Retrieval of All-Weather Land Surface Temperature at a High Spatial Resolution from Polar-Orbiting Thermal Infrared and Passive Microwave Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.04.008 – volume: 30 start-page: 303 year: 2012 ident: ref_33 article-title: Estimating Seasonal Evapotranspiration from Temporal Satellite Images publication-title: Irrig. Sci. doi: 10.1007/s00271-011-0287-z – ident: ref_39 doi: 10.3390/rs12091471 – ident: ref_32 doi: 10.3390/rs9050401 – volume: 23 start-page: 2563 year: 2002 ident: ref_6 article-title: Land Surface Temperature and Emissivity Estimation from Passive Sensor Data: Theory and Practice-Current Trends publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110115041 – volume: 43 start-page: 78 year: 2006 ident: ref_37 article-title: Statistical Estimation of Daily Maximum and Minimum Air Temperatures from MODIS LST Data over the State of Mississippi publication-title: Gisci. Remote Sens. doi: 10.2747/1548-1603.43.1.78 – volume: 114 start-page: 2059 year: 2010 ident: ref_5 article-title: Spatial and Temporal Variations of Summer Surface Temperatures of Wet Polygonal Tundra in Siberia-Implications for MODIS LST Based Permafrost Monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.04.012 – volume: 59 start-page: 1808 year: 2021 ident: ref_14 article-title: Spatiotemporal Fusion of Land Surface Temperature Based on a Convolutional Neural Network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2999943 – volume: 156 start-page: 169 year: 2015 ident: ref_11 article-title: Integrated Fusion of Multi-Scale Polar-Orbiting and Geostationary Satellite Observations for the Mapping of High Spatial and Temporal Resolution Land Surface Temperature publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.09.013 – volume: 178 start-page: 127 year: 2016 ident: ref_20 article-title: Downscaling Land Surface Temperatures at Regional Scales with Random Forest Regression publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.006 – volume: 48 start-page: 2170 year: 2010 ident: ref_23 article-title: A Novel Method to Estimate Subpixel Temperature by Fusing Solar-Reflective and Thermal-Infrared Remote-Sensing Data with an Artificial Neural Network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2033180 – volume: 12 start-page: 2299 year: 2019 ident: ref_24 article-title: Evaluation of Machine Learning Algorithms in Spatial Downscaling of MODIS Land Surface Temperature publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2896923 – volume: 40 start-page: 1828 year: 2019 ident: ref_26 article-title: A Physically Based Algorithm for Retrieving Land Surface Temperature under Cloudy Conditions from AMSR2 Passive Microwave Measurements publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1508920 – volume: 148 start-page: 16 year: 2014 ident: ref_40 article-title: Validation of Remotely Sensed Surface Temperature over an Oak Woodland Landscape—The Problem of Viewing and Illumination Geometries publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.016 – volume: 85 start-page: 429 year: 2003 ident: ref_16 article-title: Estimating Subpixel Surface Temperatures and Energy Fluxes from the Vegetation Index-Radiometric Temperature Relationship publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00036-1 – volume: 17 start-page: 180072 year: 2018 ident: ref_29 article-title: The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China publication-title: Vadose Zone J. doi: 10.2136/vzj2018.04.0072 – volume: 124 start-page: 108 year: 2012 ident: ref_36 article-title: Estimating Air Surface Temperature in Portugal Using MODIS LST Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.04.024 – ident: ref_38 doi: 10.3390/rs9050410 – volume: 145 start-page: 55 year: 2014 ident: ref_10 article-title: Generating Daily Land Surface Temperature at Landsat Resolution by Fusing Landsat and MODIS Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.02.003 – volume: 34 start-page: 892 year: 1996 ident: ref_28 article-title: A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.508406 – volume: 59 start-page: 1794 year: 2021 ident: ref_41 article-title: Temperature-Based and Radiance-Based Validation of the Collection 6 MYD11 and MYD21 Land Surface Temperature Products Over Barren Surfaces in Northwestern China publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2998945 – volume: 187 start-page: 259 year: 2022 ident: ref_1 article-title: Downscaling Land Surface Temperature: A Framework Based on Geographically and Temporally Neural Network Weighted Autoregressive Model with Spatio-Temporal Fused Scaling Factors publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.03.009 – volume: 113 start-page: 329 year: 2009 ident: ref_4 article-title: The Yearly Land Cover Dynamics (YLCD) Method: An Analysis of Global Vegetation from NDVI and LST Parameters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.09.016 – ident: ref_22 doi: 10.3390/rs8040274 – volume: 13 start-page: 140 year: 2011 ident: ref_7 article-title: A Simple Retrieval Method of Land Surface Temperature from AMSR-E Passive Microwave Data—A Case Study over Southern China during the Strong Snow Disaster of 2008 publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 97 start-page: 78 year: 2014 ident: ref_8 article-title: Modeling Diurnal Land Temperature Cycles over Los Angeles Using Downscaled GOES Imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.08.009 – volume: 115 start-page: 1772 year: 2011 ident: ref_18 article-title: High-Resolution Urban Thermal Sharpener (HUTS) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.03.008 – volume: 49 start-page: 773 year: 2011 ident: ref_15 article-title: Sharpening Thermal Imageries: A Generalized Theoretical Framework From an Assimilation Perspective publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2060342 – volume: 10 start-page: 3453 year: 2017 ident: ref_34 article-title: Smoothing Data Series by Means of Cubic Splines: Quality of Approximation and Introduction of a Repeating Spline Approach publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-10-3453-2017 – volume: 54 start-page: 6458 year: 2016 ident: ref_19 article-title: Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression: Case Study in Northern China publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2585198 – volume: 58 start-page: 1279 year: 2019 ident: ref_31 article-title: A Global Analysis of Land Surface Temperature Diurnal Cycle Using MODIS Observations publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-18-0256.1 – volume: 44 start-page: 2207 year: 2006 ident: ref_12 article-title: On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.872081 – ident: ref_35 doi: 10.3390/rs8100827 – volume: 257 start-page: 112361 year: 2021 ident: ref_3 article-title: Modeling the Angular Effect of MODIS LST in Urban Areas: A Case Study of Toulouse, France publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112361 – volume: 251 start-page: 112104 year: 2020 ident: ref_27 article-title: Estimating Lake Temperature Profile and Evaporation Losses by Leveraging MODIS LST Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112104 |
SSID | ssj0000331904 |
Score | 2.4149275 |
Snippet | Land surface temperature (LST) is a critical parameter for the dynamic simulation of land surface processes and for analyzing variations on regional or global... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4441 |
SubjectTerms | Algorithms Clouds Comparative analysis Datasets Distribution downscaling Earth temperature Electronic data processing ERA5 reanalysis data Forecasts and trends Iterative methods Land cover Land surface temperature Measurement Model accuracy MODIS Neural networks Pixels Radiation Regression analysis Regression models Remote sensing Satellite imaging Satellites Spacecraft Spatial discrimination Spatial distribution Spatial resolution Support vector machines surface temperature Technology application temporal alignment Temporal resolution Vegetation Weather forecasting Weather stations |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFUR4iUCpXICEOUZN4EicntEu3WhBbqm0r9Wb5WQ5VUvZx6L9nJvFuhQQ9JplYyYzn4bHnG8Y-OvQbFkKWBk8lOboxaQO2SU1hgkF30sgep2B2Wk0v4ftVeRUTbst4rHJjE3tD7TpLOfKjoq4aKmcr6i-3v1PqGkW7q7GFxmO2iya4xsXX7nhyejbfZlkygVMsgwGXVOD6_mixRB9XA0D-lyfqAfv_Z5Z7X3PynD2LQSIfDVLdY498-4I9if3Kf929ZGbEjyktjAxG18NnfRtoPkaP5HjX8tnP42_n_GwAc-UYlvIpDnlzxyfzUcnnXkckEt4F_kO3jp-vF0Fbzy88RtEDyvIrdnkyufg6TWO3hNSCEKtUZ8GHqha-JpB1W3ofMBaxRamNcLnEKw-1k40vTQgFUhsoDFQa8swjWS5es522a_0bxpscjR644Ep8RwZrgnAgq8pjOGSLSifs84ZzykYocepocaNwSUFcVvdcTtiHLe3tAKDxT6oxCWBLQaDX_Y1uca2iDikZpDaShOoAv640kOscnMtDYUUwdcI-kfgUqSZ-jtWxwgB_ikCu1EiiI-7xgRK2v5Gwijq7VPczLGGH28eobbSFolvfrZdKoM3ri3Oztw8P8Y49pcb0w2m0fbazWqz9ewxfVuYgztE_xbTvyg priority: 102 providerName: ProQuest |
Title | A Downscaling Method Based on MODIS Product for Hourly ERA5 Reanalysis of Land Surface Temperature |
URI | https://www.proquest.com/docview/2869617828 https://www.proquest.com/docview/3040478110 https://doaj.org/article/7f7ab70003d44df5b41a14dd1f2c3fb8 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5ROLSXqkAR28LKCKSKQ0QSO3FyzLK73VYsRbsgcbP8FAeUrfZx4N937IQFJBCXnqIkE8sZj-cbJ55vAE4M4oZmLo6c9Sk5slRRyXQZqVQ5hXBS8sBTML7MRzfs9212-6zUl98T1tADN4o7445LxX3obhgzLlMskQkzJnGppk6FNF_EvGeLqeCDKZpWzBo-Uorr-rP5ArGtYIwlLxAoEPW_5Y4Dxgy_wOc2OCRV06lt2LD1Dnxs65TfPeyCqkjffw5GxSLkkHEo_0x6iESGzGoy_tP_NSVXDYkrwXCUjLDJ-wcymFQZmVjZMpCQmSMXsjZkupo7qS25thg9N-zKX-FmOLg-H0VtlYRIM0qXkYyddXlBbeHJ1XVmrcMYRKeZVNQkHM8sKwwvbaacS1FasVSxXLIktiiW0D3YrGe13QdSJujsUMkmw2e408qh0nmeWwyDdJrLDpw-ak7olkLcV7K4F7iU8FoWT1ruwPFa9m9DnPGqVM8PwFrCk12HC2gCojUB8Z4JdOCHHz7hpyR2R8s2swBfypNbiYojAAdeoA4cPI6waOfqQqRFXvpEyRQbOlrfxlnmf53I2s5WC0HR14Wk3Pjb_-jxd_jky9Y3e9UOYHM5X9lDDG6WqgsfiuHPLmxV_fHFFI-9weXVpBus-x9-ZPuP |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXRHmI0FKMACEOURPHeR1QtWW77NLdgtqt1Jvxkx6qpOxDaP8Uv7FjJ9kKCbj1mGRiJZ7xfOPHfAPwViNuKGaj0BqXkiNKGZZMlaGk0kqEkzL3PAWTk2x4zr5cpBcb8LvLhXHHKjuf6B21rpVbI9-nRVa6dDZaHFz_DF3VKLe72pXQaMzi2Kx-4ZRt_nHUR_2-o3RwNP00DNuqAqFiSbIIRWSNzYrEFI6MXKXGWMRsRVMhEx3neGVYofPSpNJaitKSUckyweLIoFicYLv34D62VboRVQw-r9d0ogQNOmINCyo-j_Znc0TUgjEW_4F7vjzAv0DAI9vgETxsQ1LSa2xoGzZM9Ri22urol6snIHuk7xahUZ0IdGTii06TQ8Q_TeqKTL72R2fkW0MdSzAIJkNs8mpFjk57KTk1ouU9IbUlY1FpcracWaEMmRqM2RtO56dwfie9-Aw2q7oyz4GUMbpYpq1O8Z3cKmkTzfIsMxh8KZqJAD50PcdVS1zu6mdccZzAuF7mt70cwJu17HVD1_FXqUOngLWEo9j2N-rZD96OWJ7bXMjcKVUz_LpUsljETOvYUpVYWQTw3qmPO0eAn6NEm8-AP-UotXgvR9j3bEQB7HYa5q2HmPNbew7g9foxjm23YSMqUy_nPEEP61OBoxf_b-IVbA2nkzEfj06Od-ABxUCsOQe3C5uL2dK8xMBpIfe8tRL4ftfD4waqqSyj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAIEOJgxd5dvw4IJSRRQpsQpa3U23afcKjsNg-h_DV-HbO2kwoJuPVoe7yyd2bnm33MNwDvDOKG5i4MnPUpOTJXQc51HiiqnEI4ydOKp2AyTUZn_Ot5fL4Hv7a5MP5Y5dYnVo7alNqvkXdoluQ-nY1mHdcci5j1h5-vrgNfQcrvtG7LadQmcmQ3P3H6tvw07qOu31M6HJx-GQVNhYFAc8ZWgQyddUnGbOaJyXVsrUP81jSWipkoxSvLM5PmNlbOUZRWnCqeSB6FFsUihu3egf0UZ0VhC_Z7g-lsvlvhCRmad8hrTlTG8rCzWCK-Zpzz6A8UrIoF_AsSKpwbPoQHTYBKurVFPYI9WzyGe02t9B-bJ6C6pO-XpFG5CHtkUpWgJj1EQ0PKgky-9ccnZFYTyRIMickIm7zckMG8G5O5lQ0LCikdOZaFISfrhZPaklOLEXzN8PwUzm6lH59BqygL-xxIHqHD5caZGN9JnVaOGZ4micVQTNNEtuHjtueEbmjMfTWNS4HTGd_L4qaX2_B2J3tVk3f8VarnFbCT8ITb1Y1y8V0041ekLpUq9Uo1HL8uVjySETcmclQzp7I2fPDqE94t4Odo2WQ34E95gi3RTTEIqLiJ2nC41bBo_MVS3Fh3G97sHuNI99s3srDleikY-tsqMTg8-H8Tr-EuDg1xPJ4evYD7FKOy-lDcIbRWi7V9iVHUSr1qzJXAxW2PkN9_NDI1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Downscaling+Method+Based+on+MODIS+Product+for+Hourly+ERA5+Reanalysis+of+Land+Surface+Temperature&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ning+Wang&rft.au=Jia+Tian&rft.au=Shanshan+Su&rft.au=Qingjiu+Tian&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=18&rft.spage=4441&rft_id=info:doi/10.3390%2Frs15184441&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7f7ab70003d44df5b41a14dd1f2c3fb8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |