A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness
While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement....
Saved in:
Published in | American journal of physiology. Heart and circulatory physiology Vol. 309; no. 4; pp. H663 - H675 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
15.08.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0363-6135 1522-1539 1522-1539 |
DOI | 10.1152/ajpheart.00175.2015 |
Cover
Loading…
Abstract | While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. |
---|---|
AbstractList | While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis.While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. This work presents a new methodology for the theoretical assessment of computed physiological indexes and algorithms based on pulse wave analysis. We created a database of virtual healthy subjects using a 1D model of the arterial hemodynamics. This study presents its application to central and peripheral foot-to-foot pulse wave velocities . While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1 ) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2 ) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3 ) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. |
Author | Alastruey, Jordi Willemet, Marie Chowienczyk, Phil |
Author_xml | – sequence: 1 givenname: Marie surname: Willemet fullname: Willemet, Marie organization: Division of Imaging Sciences and Biomedical Engineering, St. Thomas' Hospital, King's College London, London, United Kingdom; and – sequence: 2 givenname: Phil surname: Chowienczyk fullname: Chowienczyk, Phil organization: Department of Clinical Pharmacology, St Thomas' Hospital, King's College London, London, United Kingdom – sequence: 3 givenname: Jordi surname: Alastruey fullname: Alastruey, Jordi organization: Division of Imaging Sciences and Biomedical Engineering, St. Thomas' Hospital, King's College London, London, United Kingdom; and |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26055792$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu2zAQJIoEjZP2CwoUBHrpRQ4pihJ1KRAEfQEBcmnPxIpe1TRk0SUpB_6BfndXzgNtDjnxsTODnd05ZydjGJGxd1IspdTlJWx2a4SYl0LIRi9LIfUrtqBKWUit2hO2EKpWRS2VPmPnKW2EELqp1Wt2VtZC66YtF-zPFV9Bhg4S8tDzvY95goGT8JDXB56mboMuJ54Dh5Qw0W2NHJybIrjDTOlDyEUOxXzy3TSQ0B3ske9xCM5nj4kgkWPKfgvZh3EmQYjZO05_fT-S6ht22gNR3z6cF-znl88_rr8VN7dfv19f3RSuUioXIExnRC2MJAMOaAyNWHUrRNd2NITWOKNkLelVOnTQiBKdMDV02hisVKcu2Kd73d3UbXHlcMwRBruL1Fs82ADe_l8Z_dr-CntbadW0VUUCHx8EYvg9kSm79cnhMMCIYUpWNqLSZWuEJuiHZ9BNmOJI9o6oplJazoLv_-3oqZXHFRFA3QNcDClF7J8gUtg5CPYxCPYYBDsHgVjtMxbt4jh-suWHF7l_AXQEvkc |
CODEN | AJPPDI |
CitedBy_id | crossref_primary_10_1038_s41598_017_05807_x crossref_primary_10_4236_jbise_2023_166006 crossref_primary_10_1002_cnm_70020 crossref_primary_10_1002_cnm_3497 crossref_primary_10_1007_s10439_016_1625_3 crossref_primary_10_1016_j_jbiomech_2017_08_027 crossref_primary_10_1007_s10439_024_03573_2 crossref_primary_10_3390_s22103934 crossref_primary_10_1109_MIM_2021_9400954 crossref_primary_10_1109_TBME_2019_2902721 crossref_primary_10_1161_HYPERTENSIONAHA_117_09706 crossref_primary_10_1371_journal_pcbi_1007259 crossref_primary_10_1051_mmnp_2018054 crossref_primary_10_1016_j_ifacol_2020_12_625 crossref_primary_10_1016_j_jbiomech_2016_03_037 crossref_primary_10_1016_j_bspc_2021_102649 crossref_primary_10_1016_j_medengphy_2017_02_007 crossref_primary_10_1152_ajpheart_00218_2019 crossref_primary_10_1088_1361_6579_aaca80 crossref_primary_10_3389_fbioe_2021_737055 crossref_primary_10_1002_cnm_3303 crossref_primary_10_1016_j_bspc_2021_103092 crossref_primary_10_1152_japplphysiol_00769_2018 crossref_primary_10_1007_s11517_021_02424_9 crossref_primary_10_1016_j_ejphar_2021_174218 crossref_primary_10_1016_j_jbiomech_2020_109707 crossref_primary_10_1152_ajpheart_00705_2022 crossref_primary_10_1002_cnm_3701 crossref_primary_10_1109_TBME_2019_2928416 crossref_primary_10_1161_HYPERTENSIONAHA_116_08089 crossref_primary_10_1016_j_jocs_2022_101691 crossref_primary_10_1152_ajpheart_00392_2021 crossref_primary_10_1038_s41598_022_09256_z crossref_primary_10_1080_10255842_2017_1423290 crossref_primary_10_3390_jpm12111861 crossref_primary_10_1098_rsta_2019_0558 crossref_primary_10_1002_cnm_3312 crossref_primary_10_1002_cnm_3797 crossref_primary_10_1152_ajpheart_00454_2023 crossref_primary_10_1016_j_artres_2017_04_003 crossref_primary_10_1016_j_jcp_2016_03_036 crossref_primary_10_1007_s10237_024_01916_5 crossref_primary_10_1038_s41598_020_65616_7 crossref_primary_10_2139_ssrn_4192630 crossref_primary_10_1016_j_bspc_2024_106999 crossref_primary_10_1016_j_ifacol_2021_10_312 crossref_primary_10_1155_2024_5868010 crossref_primary_10_1007_s10439_022_03098_6 crossref_primary_10_1017_jfm_2023_996 crossref_primary_10_1109_OJEMB_2020_2988179 crossref_primary_10_1007_s10237_020_01393_6 crossref_primary_10_1093_ehjdh_ztab089 crossref_primary_10_1186_s12938_019_0660_3 crossref_primary_10_1155_2021_6661181 crossref_primary_10_3389_fphys_2023_1097879 crossref_primary_10_1055_a_2053_7613 crossref_primary_10_1016_j_jocs_2017_07_006 crossref_primary_10_1016_j_compbiomed_2025_109849 crossref_primary_10_1016_j_cmpb_2022_106781 crossref_primary_10_1088_1361_6579_abf1b1 crossref_primary_10_1088_1361_6579_aa8de3 crossref_primary_10_1097_HJH_0000000000002608 crossref_primary_10_1016_j_jbiomech_2016_11_001 crossref_primary_10_1016_j_cmpb_2022_107192 crossref_primary_10_1088_1361_6579_ac23a7 crossref_primary_10_1016_j_ifacol_2024_11_100 crossref_primary_10_1007_s12265_021_10181_1 crossref_primary_10_1152_ajpheart_00304_2023 crossref_primary_10_1177_0954411920926094 |
Cites_doi | 10.1001/jama.300.2.197 10.1016/j.medengphy.2011.04.003 10.1002/cnm.1117 10.1097/HJH.0b013e32832e94e7 10.1152/ajpheart.00570.2010 10.1016/j.jacc.2009.10.061 10.1038/sj.jhh.1002259 10.1161/01.HYP.26.1.48 10.1007/s10439-012-0688-z 10.1016/j.medengphy.2013.04.012 10.1161/HYPERTENSIONAHA.112.194779 10.1017/CBO9781139013406 10.1080/10255840600857767 10.1114/1.1326031 10.1016/j.jbiomech.2007.05.027 10.1016/S0950-821X(05)80127-6 10.1161/01.HYP.35.2.637 10.1152/ajpheart.1979.237.5.H550 10.1161/01.HYP.33.5.1111 10.1093/eurheartj/ehq165 10.1016/j.jbiomech.2010.12.002 10.1161/HYPERTENSIONAHA.109.134379 10.1161/01.HYP.37.5.1236 10.1161/01.CIR.96.1.308 10.1016/j.medengphy.2010.06.010 10.1016/S0301-5629(97)00082-3 10.1152/ajpheart.00037.2009 10.1016/S0895-7061(01)02319-6 10.1161/01.CIR.80.6.1652 10.1097/HJH.0b013e3280115bea 10.1152/ajpheart.00821.2010 10.1109/TBME.2003.812201 10.1016/j.jbiomech.2011.05.041 10.1093/eurheartj/ehl254 10.1016/j.jbiomech.2007.09.014 10.1109/EMBC.2014.6943999 10.1161/01.CIR.82.1.114 10.1161/01.HYP.0000128420.01881.aa 10.1177/1358863X07083392 10.1291/hypres.29.989 10.1007/s10439-010-9945-1 10.2174/157340212800840708 10.1161/01.HYP.0000154229.97341.d2 10.1017/S0022112007005344 10.1016/j.jbiomech.2012.03.028 10.1186/1471-2261-14-5 10.1007/s10439-013-0854-y 10.1097/00004872-199208001-00023 10.1016/j.jcmg.2008.06.010 10.1016/j.jbiomech.2013.10.007 10.1038/sj.jhh.1001838 10.2337/diacare.26.7.2133 |
ContentType | Journal Article |
Copyright | Copyright © 2015 the American Physiological Society. Copyright American Physiological Society Aug 15, 2015 Copyright © 2015 the American Physiological Society 2015 American Physiological Society |
Copyright_xml | – notice: Copyright © 2015 the American Physiological Society. – notice: Copyright American Physiological Society Aug 15, 2015 – notice: Copyright © 2015 the American Physiological Society 2015 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
DOI | 10.1152/ajpheart.00175.2015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1539 |
EndPage | H675 |
ExternalDocumentID | PMC4537944 3780609761 26055792 10_1152_ajpheart_00175_2015 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation grantid: SP/14/8/31352 – fundername: British Heart Foundation grantid: FS/09/030/27812 – fundername: Wellcome Trust grantid: WT 088641/Z/09/Z – fundername: British Heart Foundation (BHF) grantid: FS/09/030/27812 – fundername: King's College London Medical Engineering Centre (Wellcome Trust EPSRC Centre of Excellence in Medical Engineering) grantid: WT 088641/Z/09/Z – fundername: Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/K031546/1 |
GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 AAFWJ AAYXX ABJNI ACBEA ACIWK ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP BTFSW CITATION E3Z EBS EJD EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 UKR W8F WH7 WOQ XSW YSK ~02 CGR CUY CVF ECM EIF NPM 7QP 7QR 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c433t-a08b806081605ca11570dbdeec9b01798c83161c9b2ceca702ec086ab588e43b3 |
ISSN | 0363-6135 1522-1539 |
IngestDate | Thu Aug 21 18:26:56 EDT 2025 Fri Jul 11 03:01:39 EDT 2025 Mon Jun 30 16:42:21 EDT 2025 Sat May 31 02:13:51 EDT 2025 Tue Jul 01 01:16:30 EDT 2025 Thu Apr 24 23:01:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | numerical 1D model aortic stiffness brachial-ankle PWV database of virtual subjects carotid-femoral PWV |
Language | English |
License | Copyright © 2015 the American Physiological Society. Licensed under Creative Commons Attribution CC-BY 3.0: © the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c433t-a08b806081605ca11570dbdeec9b01798c83161c9b2ceca702ec086ab588e43b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4537944 |
PMID | 26055792 |
PQID | 1704743514 |
PQPubID | 48261 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4537944 proquest_miscellaneous_1704529805 proquest_journals_1704743514 pubmed_primary_26055792 crossref_primary_10_1152_ajpheart_00175_2015 crossref_citationtrail_10_1152_ajpheart_00175_2015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-15 |
PublicationDateYYYYMMDD | 2015-08-15 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda – name: Bethesda, MD |
PublicationTitle | American journal of physiology. Heart and circulatory physiology |
PublicationTitleAlternate | Am J Physiol Heart Circ Physiol |
PublicationYear | 2015 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | Avolio AP (B6) 1985; 71 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B35 B36 B37 B38 B39 B1 B2 B3 B5 B7 B8 B9 B40 B41 B42 Nichols WW (B34) 2005 B43 Alastruey J (B4) 2012 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B54 B11 B55 B12 B13 B14 B15 B16 B17 B18 B19 |
References_xml | – ident: B16 doi: 10.1001/jama.300.2.197 – ident: B28 doi: 10.1016/j.medengphy.2011.04.003 – ident: B33 doi: 10.1002/cnm.1117 – ident: B46 doi: 10.1097/HJH.0b013e32832e94e7 – ident: B50 doi: 10.1152/ajpheart.00570.2010 – ident: B52 doi: 10.1016/j.jacc.2009.10.061 – ident: B55 doi: 10.1038/sj.jhh.1002259 – ident: B5 doi: 10.1161/01.HYP.26.1.48 – ident: B45 doi: 10.1007/s10439-012-0688-z – ident: B54 doi: 10.1016/j.medengphy.2013.04.012 – ident: B53 doi: 10.1161/HYPERTENSIONAHA.112.194779 – ident: B14 doi: 10.1017/CBO9781139013406 – ident: B18 doi: 10.1080/10255840600857767 – ident: B35 doi: 10.1114/1.1326031 – ident: B29 doi: 10.1016/j.jbiomech.2007.05.027 – ident: B41 doi: 10.1016/S0950-821X(05)80127-6 – ident: B51 doi: 10.1161/01.HYP.35.2.637 – volume-title: McDonald's Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles year: 2005 ident: B34 – ident: B40 doi: 10.1152/ajpheart.1979.237.5.H550 – ident: B10 doi: 10.1161/01.HYP.33.5.1111 – ident: B47 doi: 10.1093/eurheartj/ehq165 – ident: B2 doi: 10.1016/j.jbiomech.2010.12.002 – ident: B7 doi: 10.1161/HYPERTENSIONAHA.109.134379 – ident: B25 doi: 10.1161/01.HYP.37.5.1236 – ident: B19 doi: 10.1161/01.CIR.96.1.308 – ident: B27 doi: 10.1016/j.medengphy.2010.06.010 – ident: B1 doi: 10.1016/S0301-5629(97)00082-3 – volume: 71 start-page: 202 year: 1985 ident: B6 publication-title: Hypertension – ident: B38 doi: 10.1152/ajpheart.00037.2009 – ident: B37 doi: 10.1016/S0895-7061(01)02319-6 – ident: B24 doi: 10.1161/01.CIR.80.6.1652 – ident: B48 doi: 10.1097/HJH.0b013e3280115bea – ident: B39 doi: 10.1152/ajpheart.00821.2010 – ident: B42 doi: 10.1109/TBME.2003.812201 – ident: B3 doi: 10.1016/j.jbiomech.2011.05.041 – ident: B26 doi: 10.1093/eurheartj/ehl254 – ident: B9 doi: 10.1016/j.jbiomech.2007.09.014 – ident: B17 doi: 10.1109/EMBC.2014.6943999 – ident: B21 doi: 10.1161/01.CIR.82.1.114 – ident: B31 doi: 10.1161/01.HYP.0000128420.01881.aa – ident: B36 doi: 10.1177/1358863X07083392 – ident: B23 doi: 10.1291/hypres.29.989 – ident: B49 doi: 10.1007/s10439-010-9945-1 – ident: B32 doi: 10.2174/157340212800840708 – ident: B30 doi: 10.1161/01.HYP.0000154229.97341.d2 – ident: B8 doi: 10.1017/S0022112007005344 – ident: B22 doi: 10.1016/j.jbiomech.2012.03.028 – ident: B15 doi: 10.1186/1471-2261-14-5 – start-page: 401 volume-title: 11th International Conference on Pressure Surges year: 2012 ident: B4 – ident: B20 doi: 10.1007/s10439-013-0854-y – ident: B12 doi: 10.1097/00004872-199208001-00023 – ident: B44 doi: 10.1016/j.jcmg.2008.06.010 – ident: B11 doi: 10.1016/j.jbiomech.2013.10.007 – ident: B43 doi: 10.1038/sj.jhh.1001838 – ident: B13 doi: 10.2337/diacare.26.7.2133 |
SSID | ssj0005763 |
Score | 2.4665413 |
Snippet | While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness,... This work presents a new methodology for the theoretical assessment of computed physiological indexes and algorithms based on pulse wave analysis. We created a... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | H663 |
SubjectTerms | Adult Aged Algorithms Aorta - physiology Coronary vessels Datasets as Topic Female Geometry Healthy Volunteers Humans Integrative Cardiovascular Physiology and Pathophysiology Male Middle Aged Physiology Pulse Wave Analysis - methods Pulse Wave Analysis - standards Signal-To-Noise Ratio Vascular Stiffness Velocity |
Title | A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26055792 https://www.proquest.com/docview/1704743514 https://www.proquest.com/docview/1704529805 https://pubmed.ncbi.nlm.nih.gov/PMC4537944 |
Volume | 309 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FIiFeELRcAgUtEuIluDj2ri-PUQSKioJAaqW-WfZ6raYlduTaVOkH8MP8ADN7cZy2QtAXJ7Z3bSdzPDuzO3OGkHesCFwv9QNHBDx3GA9DJ0UuQoBHJDiTeTTGROH512B2zA5P-Mlg8LsXtdQ22YG4ujWv5C5ShWMgV8yS_Q_JdheFA_Ad5AtbkDBs_0nGkxEGeOJAhDbfz0WtkkF0auN6dNFmZypWA8zLVK3tKiszFaKtscg7dCmqqnGaysHP0aqFYXJ0ieWIMJBIKK5VTQkOemDZ2ZZphU8ygmNFUdoADktkaxeAeowUavJEzd4fYNZTrWPaxaLGEFi1xr9p0Z8Gkktp04kWHfymp9UlaqOr9bmdD-owC45AU7d6Dv4QnOpFf0pjzHGOVid19rIIcAywd1d4NWGsPQWJa9Bgjuie0ihwcK5Bi8d9De-7cQ_KrKevZ4FRr9Ls6jIuN8cVjjy16dkKy4w3uHwVcowL3GoN4FgtFdTQSeShLvJ3jc7723zKuA9akN0j9z3wbbDsxpfvG4p7cAB9u8COP85QZcETfLzl_khmbW62bVndcJeuR_32zKijx-SR8X_oRIP5CRnIcpfsTUoAwnJN39NOGOtd8mBuAj_2yK8JtVCnVUEN1KmBOrVQp01FNdQpQJ1aqGOXPtSpgjpFqNMN1KFJTTdQx04a6rSD-lNy_PnT0XTmmBIijmC-3zipG2WRG2B1GZeLFJml3DzLpRRxhmNRJCIffB7Y84QUaeh6UoCTn2Y8iiTzM_8Z2SmrUr4gNMpBZjETXiRzlmOZhIIVeZCnYEXHbsaHxLN_fyIMvz6WefmRKD-be4kVX6LEl6D4huRD12ml6WX-3nzfyjUx7_FFMg5dBn4AeD5D8rY7DaMELv2lpaxa3YZ7ceTCJZ5rGHT3s_gZknALIF0DZKDfPlMuThUTvUHyyzv3fEUebhTAPtlBLfEarPwme6Peij_4VQlq |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+database+of+virtual+healthy+subjects+to+assess+the+accuracy+of+foot-to-foot+pulse+wave+velocities+for+estimation+of+aortic+stiffness&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Willemet%2C+Marie&rft.au=Chowienczyk%2C+Phil&rft.au=Alastruey%2C+Jordi&rft.date=2015-08-15&rft.pub=American+Physiological+Society&rft.issn=0363-6135&rft.eissn=1522-1539&rft.volume=309&rft.issue=4&rft.spage=H663&rft.epage=H675&rft_id=info:doi/10.1152%2Fajpheart.00175.2015&rft_id=info%3Apmid%2F26055792&rft.externalDocID=PMC4537944 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon |