MSISR-STF: Spatiotemporal Fusion via Multilevel Single-Image Super-Resolution
Due to technological limitations and budget constraints, spatiotemporal image fusion uses the complementarity of high temporal–low spatial resolution (HTLS) and high spatial–low temporal resolution (HSLT) data to obtain high temporal and spatial resolution (HTHS) fusion data, which can effectively s...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 24; p. 5675 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to technological limitations and budget constraints, spatiotemporal image fusion uses the complementarity of high temporal–low spatial resolution (HTLS) and high spatial–low temporal resolution (HSLT) data to obtain high temporal and spatial resolution (HTHS) fusion data, which can effectively satisfy the demand for HTHS data. However, some existing spatiotemporal image fusion models ignore the large difference in spatial resolution, which yields worse results for spatial information under the same conditions. Based on the flexible spatiotemporal data fusion (FSDAF) framework, this paper proposes a multilevel single-image super-resolution (SISR) method to solve this issue under the large difference in spatial resolution. The following are the advantages of the proposed method. First, multilevel super-resolution (SR) can effectively avoid the limitation of a single SR method for a large spatial resolution difference. In addition, the issue of noise accumulation caused by multilevel SR can be alleviated by learning-based SR (the cross-scale internal graph neural network (IGNN)) and then interpolation-based SR (the thin plate spline (TPS)). Finally, we add the reference information to the super-resolution, which can effectively control the noise generation. This method has been subjected to comprehensive experimentation using two authentic datasets, affirming that our proposed method surpasses the current state-of-the-art spatiotemporal image fusion methodologies in terms of performance and effectiveness. |
---|---|
AbstractList | Due to technological limitations and budget constraints, spatiotemporal image fusion uses the complementarity of high temporal–low spatial resolution (HTLS) and high spatial–low temporal resolution (HSLT) data to obtain high temporal and spatial resolution (HTHS) fusion data, which can effectively satisfy the demand for HTHS data. However, some existing spatiotemporal image fusion models ignore the large difference in spatial resolution, which yields worse results for spatial information under the same conditions. Based on the flexible spatiotemporal data fusion (FSDAF) framework, this paper proposes a multilevel single-image super-resolution (SISR) method to solve this issue under the large difference in spatial resolution. The following are the advantages of the proposed method. First, multilevel super-resolution (SR) can effectively avoid the limitation of a single SR method for a large spatial resolution difference. In addition, the issue of noise accumulation caused by multilevel SR can be alleviated by learning-based SR (the cross-scale internal graph neural network (IGNN)) and then interpolation-based SR (the thin plate spline (TPS)). Finally, we add the reference information to the super-resolution, which can effectively control the noise generation. This method has been subjected to comprehensive experimentation using two authentic datasets, affirming that our proposed method surpasses the current state-of-the-art spatiotemporal image fusion methodologies in terms of performance and effectiveness. |
Audience | Academic |
Author | Han, Wei Feng, Ruyi Chen, Jia Zheng, Xiongwei Fan, Junqing Yu, Shengnan |
Author_xml | – sequence: 1 givenname: Xiongwei surname: Zheng fullname: Zheng, Xiongwei – sequence: 2 givenname: Ruyi surname: Feng fullname: Feng, Ruyi – sequence: 3 givenname: Junqing surname: Fan fullname: Fan, Junqing – sequence: 4 givenname: Wei orcidid: 0000-0003-3882-1616 surname: Han fullname: Han, Wei – sequence: 5 givenname: Shengnan surname: Yu fullname: Yu, Shengnan – sequence: 6 givenname: Jia orcidid: 0000-0002-9896-1656 surname: Chen fullname: Chen, Jia |
BookMark | eNptkV1rFDEUhgepYK298RcMeCPC1HzNZONdKa5d6CJ06nU4m5wsWTKTMZkp9N-bdcVKMbnIB8_7Hs5531ZnYxyxqt5TcsW5Ip9Tpi0TbSfbV9U5I5I1gil29s_9TXWZ84GUxTlVRJxX222_6e-b_mH9pe4nmH2ccZhiglCvl-zjWD96qLdLmH3ARwx178d9wGYzwB7rfpkwNfeYY1iKdHxXvXYQMl7-OS-qH-uvDze3zd33b5ub67vGCM7nRtnOwgosIDrhuALssJMOkJvjw8HOQLtTDik3jO52rnVOYJFSKiwnwC-qzcnXRjjoKfkB0pOO4PXvj5j2GtLsTUDdEblCh6DQgGBUrhRFS6i1TCprSVe8Pp68phR_LphnPfhsMAQYMS5ZcyKI4EpIUdAPL9BDXNJYOtWsTFOxVpK2UFcnag-lvh9dnBOYsi0O3pTIXBmlvpZSMUlWUhbBp5PApJhzQve3I0r0MVn9nGyByQvY-PmY21iq-PA_yS-c8KdJ |
CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3385998 crossref_primary_10_3390_app14010333 crossref_primary_10_1016_j_rse_2025_114640 |
Cites_doi | 10.1016/j.rse.2013.03.021 10.1016/j.rse.2014.10.018 10.1016/j.future.2013.12.018 10.1145/3510414 10.1080/01431161.2016.1271471 10.1109/TGRS.2022.3230439 10.3390/s16020207 10.1016/j.rse.2008.02.010 10.1109/TGRS.2016.2596290 10.1016/j.rse.2010.05.032 10.1109/CVPRW.2017.151 10.1016/j.rse.2014.09.012 10.1016/j.rse.2017.05.011 10.1109/JSTARS.2018.2797894 10.3390/rs8060452 10.3390/rs9010021 10.1016/j.rse.2015.11.016 10.1016/S0034-4257(02)00084-6 10.1109/TGRS.2020.3023432 10.1117/1.JRS.6.063507 10.1109/TGRS.2022.3215431 10.1109/TGRS.2020.2994260 10.1109/36.763276 10.1080/2150704X.2013.769283 10.1109/MGRS.2015.2434351 10.3390/rs5126346 10.1109/TPAMI.2015.2439281 10.1016/j.rse.2009.03.007 10.1109/JSTARS.2023.3296468 10.1109/TNNLS.2019.2957527 10.1016/j.rse.2017.10.046 10.1109/TGRS.2017.2775103 10.1109/TPAMI.2004.1261081 10.3390/s23042341 10.1016/j.rse.2016.07.028 10.1109/ICCV.2017.167 10.1109/34.24792 10.1109/JSTARS.2023.3252585 10.1109/TGRS.2012.2213095 10.1109/LGRS.2015.2402644 10.1109/TIP.2003.819861 10.1109/TGRS.2006.872081 10.3390/rs9121310 10.3390/rs10040527 10.1109/ACCESS.2020.3011258 10.1109/TGRS.2012.2186638 10.1109/LGRS.2008.919685 10.3390/rs5105346 10.3390/s150924002 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15245675 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library ProQuest SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_6078efea9eca4217891ed01dd279dd06 A779270877 10_3390_rs15245675 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-9d6da8adaeef4f39ae6e67fae3c39aefabca5b9fe13c21bbf5ff4e433114d30a3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:02:16 EDT 2025 Fri Jul 11 02:54:19 EDT 2025 Fri Jul 25 09:35:22 EDT 2025 Tue Jun 10 20:58:56 EDT 2025 Thu Apr 24 23:13:14 EDT 2025 Tue Jul 01 03:11:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-9d6da8adaeef4f39ae6e67fae3c39aefabca5b9fe13c21bbf5ff4e433114d30a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9896-1656 0000-0003-3882-1616 |
OpenAccessLink | https://www.proquest.com/docview/2904925705?pq-origsite=%requestingapplication% |
PQID | 2904925705 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6078efea9eca4217891ed01dd279dd06 proquest_miscellaneous_3040439474 proquest_journals_2904925705 gale_infotracacademiconefile_A779270877 crossref_primary_10_3390_rs15245675 crossref_citationtrail_10_3390_rs15245675 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Guo (ref_15) 2022; 60 Tan (ref_37) 2022; 60 Lu (ref_22) 2016; 184 Jiang (ref_23) 2022; 60 ref_55 ref_53 Bookstein (ref_51) 1989; 31 Liu (ref_49) 2023; 16 Wu (ref_19) 2012; 6 Senf (ref_3) 2015; 156 Dong (ref_46) 2015; 38 Song (ref_36) 2018; 11 Xu (ref_39) 2015; 12 Clevers (ref_18) 2008; 5 Lin (ref_50) 2004; 26 Wang (ref_54) 2004; 13 Masek (ref_1) 2008; 112 Hou (ref_38) 2022; 60 Li (ref_25) 2013; 135 ref_29 ref_28 Zhou (ref_24) 2022; 60 Xu (ref_48) 2020; 11 Li (ref_16) 2021; 59 Zhukov (ref_17) 1999; 37 Zhu (ref_41) 2016; 172 Zhu (ref_11) 2010; 114 Li (ref_33) 2020; 8 Tao (ref_34) 2017; 56 Wang (ref_14) 2018; 204 ref_35 Zhou (ref_52) 2020; 33 Hilker (ref_10) 2009; 113 Zhang (ref_20) 2013; 5 Chen (ref_44) 2020; 59 Song (ref_32) 2012; 51 Li (ref_43) 2017; 196 Wu (ref_13) 2017; 38 Huang (ref_26) 2013; 4 Liu (ref_30) 2022; 54 Shen (ref_27) 2016; 54 Jing (ref_45) 2023; 16 Wu (ref_21) 2015; 15 ref_47 ref_42 Fu (ref_12) 2013; 5 ref_2 Dou (ref_5) 2014; 37 Vogelmann (ref_4) 2001; 67 Justice (ref_7) 2002; 83 Huang (ref_31) 2012; 50 Gevaert (ref_40) 2015; 156 ref_8 Gao (ref_6) 2015; 3 Gao (ref_9) 2006; 44 |
References_xml | – volume: 135 start-page: 52 year: 2013 ident: ref_25 article-title: Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.03.021 – ident: ref_55 – volume: 156 start-page: 527 year: 2015 ident: ref_3 article-title: Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.10.018 – volume: 37 start-page: 367 year: 2014 ident: ref_5 article-title: Modeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing images publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2013.12.018 – volume: 54 start-page: 221:1 year: 2022 ident: ref_30 article-title: A Survey on Active Deep Learning: From Model Driven to Data Driven publication-title: ACM Comput. Surv. doi: 10.1145/3510414 – volume: 38 start-page: 706 year: 2017 ident: ref_13 article-title: Improving spatiotemporal reflectance fusion using image inpainting and steering kernel regression techniques publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1271471 – volume: 60 start-page: 1 year: 2022 ident: ref_37 article-title: A Flexible Reference-Insensitive Spatiotemporal Fusion Model for Remote Sensing Images Using Conditional Generative Adversarial Network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3230439 – ident: ref_42 doi: 10.3390/s16020207 – volume: 112 start-page: 2914 year: 2008 ident: ref_1 article-title: North American forest disturbance mapped from a decadal Landsat record publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.02.010 – volume: 54 start-page: 7135 year: 2016 ident: ref_27 article-title: An integrated framework for the spatio-temporal-spectral fusion of remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2596290 – volume: 114 start-page: 2610 year: 2010 ident: ref_11 article-title: An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.05.032 – ident: ref_47 doi: 10.1109/CVPRW.2017.151 – volume: 156 start-page: 34 year: 2015 ident: ref_40 article-title: A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.09.012 – volume: 196 start-page: 293 year: 2017 ident: ref_43 article-title: Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.05.011 – volume: 60 start-page: 1 year: 2022 ident: ref_24 article-title: Generalized Linear Spectral Mixing Model for Spatial–Temporal–Spectral Fusion publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 11 start-page: 821 year: 2018 ident: ref_36 article-title: Spatiotemporal satellite image fusion using deep convolutional neural networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2797894 – ident: ref_28 doi: 10.3390/rs8060452 – ident: ref_35 doi: 10.3390/rs9010021 – volume: 172 start-page: 165 year: 2016 ident: ref_41 article-title: A flexible spatiotemporal method for fusing satellite images with different resolutions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.016 – volume: 83 start-page: 3 year: 2002 ident: ref_7 article-title: An overview of MODIS Land data processing and product status publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00084-6 – volume: 59 start-page: 5851 year: 2020 ident: ref_44 article-title: CycleGAN-STF: Spatiotemporal Fusion via CycleGAN-Based Image Generation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3023432 – volume: 6 start-page: 063507 year: 2012 ident: ref_19 article-title: Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.6.063507 – volume: 60 start-page: 1 year: 2022 ident: ref_38 article-title: RFSDAF: A New Spatiotemporal Fusion Method Robust to Registration Errors publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3215431 – volume: 59 start-page: 629 year: 2021 ident: ref_16 article-title: Superpixel-Based Reweighted Low-Rank and Total Variation Sparse Unmixing for Hyperspectral Remote Sensing Imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2994260 – volume: 37 start-page: 1212 year: 1999 ident: ref_17 article-title: Unmixing-based multisensor multiresolution image fusion publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.763276 – volume: 60 start-page: 1 year: 2022 ident: ref_15 article-title: A Flexible Object-Level Processing Strategy to Enhance the Weight Function-Based Spatiotemporal Fusion Method publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 4 start-page: 561 year: 2013 ident: ref_26 article-title: Unified fusion of remote-sensing imagery: Generating simultaneously high-resolution synthetic spatial–temporal–spectral earth observations publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2013.769283 – volume: 3 start-page: 47 year: 2015 ident: ref_6 article-title: Fusing Landsat and MODIS data for vegetation monitoring publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2015.2434351 – volume: 5 start-page: 6346 year: 2013 ident: ref_12 article-title: An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model publication-title: Remote Sens. doi: 10.3390/rs5126346 – volume: 38 start-page: 295 year: 2015 ident: ref_46 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – volume: 113 start-page: 1613 year: 2009 ident: ref_10 article-title: A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.03.007 – volume: 60 start-page: 1 year: 2022 ident: ref_23 article-title: Unmixing-Based Spatiotemporal Image Fusion Accounting for Complex Land Cover Changes publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 16 start-page: 6723 year: 2023 ident: ref_45 article-title: A Rigorously-Incremental Spatiotemporal Data Fusion Method for Fusing Remote Sensing Images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2023.3296468 – volume: 11 start-page: 4747 year: 2020 ident: ref_48 article-title: Hyperspectral Images Super-Resolution via Learning High-Order Coupled Tensor Ring Representation publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2957527 – volume: 204 start-page: 31 year: 2018 ident: ref_14 article-title: Spatio-temporal fusion for daily Sentinel-2 images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.046 – volume: 56 start-page: 2107 year: 2017 ident: ref_34 article-title: Improving satellite estimates of the fraction of absorbed photosynthetically active radiation through data integration: Methodology and validation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2775103 – volume: 26 start-page: 83 year: 2004 ident: ref_50 article-title: Fundamental limits of reconstruction-based superresolution algorithms under local translation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1261081 – ident: ref_2 doi: 10.3390/s23042341 – volume: 184 start-page: 374 year: 2016 ident: ref_22 article-title: Land cover change detection by integrating object-based data blending model of Landsat and MODIS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.07.028 – ident: ref_53 doi: 10.1109/ICCV.2017.167 – volume: 31 start-page: 567 year: 1989 ident: ref_51 article-title: Principal warps: Thin-plate splines and the decomposition of deformations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.24792 – volume: 16 start-page: 3945 year: 2023 ident: ref_49 article-title: Gradient Prior Dilated Convolution Network for Remote Sensing Image Super-Resolution publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2023.3252585 – volume: 51 start-page: 1883 year: 2012 ident: ref_32 article-title: Spatiotemporal satellite image fusion through one-pair image learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2213095 – volume: 12 start-page: 1362 year: 2015 ident: ref_39 article-title: Spatial and temporal image fusion via regularized spatial unmixing publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2402644 – volume: 13 start-page: 600 year: 2004 ident: ref_54 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 44 start-page: 2207 year: 2006 ident: ref_9 article-title: On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.872081 – ident: ref_29 doi: 10.3390/rs9121310 – volume: 33 start-page: 3499 year: 2020 ident: ref_52 article-title: Cross-scale internal graph neural network for image super-resolution publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_8 doi: 10.3390/rs10040527 – volume: 8 start-page: 209199 year: 2020 ident: ref_33 article-title: Spatiotemporal Remote-Sensing Image Fusion With Patch-Group Compressed Sensing publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011258 – volume: 50 start-page: 3707 year: 2012 ident: ref_31 article-title: Spatiotemporal reflectance fusion via sparse representation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2186638 – volume: 67 start-page: 650 year: 2001 ident: ref_4 article-title: Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources publication-title: Photogramm. Eng. Remote Sens. – volume: 5 start-page: 453 year: 2008 ident: ref_18 article-title: Unmixing-based Landsat TM and MERIS FR data fusion publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2008.919685 – volume: 5 start-page: 5346 year: 2013 ident: ref_20 article-title: An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data publication-title: Remote Sens. doi: 10.3390/rs5105346 – volume: 15 start-page: 24002 year: 2015 ident: ref_21 article-title: Generating daily synthetic Landsat imagery by combining Landsat and MODIS data publication-title: Sensors doi: 10.3390/s150924002 |
SSID | ssj0000331904 |
Score | 2.3754053 |
Snippet | Due to technological limitations and budget constraints, spatiotemporal image fusion uses the complementarity of high temporal–low spatial resolution (HTLS)... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5675 |
SubjectTerms | Algorithms Artificial intelligence Comparative analysis Complementarity Computer vision data collection Data fusion Data integration Graph neural networks graphs IGNN image analysis Image processing Image resolution Interpolation Methods Multilevel Neural networks Noise control Noise generation Remote sensing Satellites SISR Spatial data Spatial discrimination Spatial resolution spatial variation Spatiotemporal data spatiotemporal image fusion Technology application Temporal resolution Thin plates TPS |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE9cXFQXxEGybtDHeVFx2hfVgFbyFNJmgsO7KPgT_vTNtXfegePG23YYynZnkm6Qz3zB2nIJyWYg190oILnXw3GoXUzKVlmnACDrQgX7vLu88ytun7Gmu1RflhNX0wLXiznLEMAhgNTgrMX4-1wn4OPE-Vdr7mmwbMW9uM1WtwQJdK5Y1H6nAff3ZaIxIhdECJRTOIVBF1P_bclxhTHuVrTTBYXRZC7XGFmCwzpaaPuXPHxus1yu6xT0vHtoXUVHlQjfUUv2oPaVzr-j9xUZVUW2fsoGiApGpD7z7istGVEzfYMTpwL52t0322L55uO7wpiECd1KICdc-9_bcegsQZBDaQg65ChaEo4tgS2ezUgdIhEuTsgxZCBKoJiqRXsRWbLHFwXAA2yyKM3wWorPHiFHqMikz_JnmTkDilfNli51-Kcm4hi2cmlb0De4aSKHmW6EtdjQb-1ZzZPw46op0PRtBvNbVH2ht01jb_GXtFjshSxmafSiOs00RAb4U8ViZS6V0qojksMX2voxpmmk5Nin6hKa-fSjN4ew2Tij6SmIHMJyOjYhlVS6s5M5_SLzLlqlDfZ0Bs8cWJ6Mp7GMcMykPKpf9BF448Ug priority: 102 providerName: Directory of Open Access Journals |
Title | MSISR-STF: Spatiotemporal Fusion via Multilevel Single-Image Super-Resolution |
URI | https://www.proquest.com/docview/2904925705 https://www.proquest.com/docview/3040439474 https://doaj.org/article/6078efea9eca4217891ed01dd279dd06 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R3QNcEE8RWlZBICEOVp3YiWMuaAsNLWIr1LRSb5bjR0Ha7i77QOLf40m8Ww7ALQ_LSsbjeXnmG4DXuROm8FQSKxgjXHpLtDQUk6kkz32woD0G9Cdn5ckl_3xVXMWA2yqmVW5lYieo7dxgjPwwlxRx9AQt3i9-EOwahaersYXGHgyDCK6qAQyPjs--nu-iLJQFFqO8xyVlwb8_XK6CxgpWAyYW_qGJOsD-f4nlTtfUD-B-NBLTcb-qD-GOmz2Cu7Ff-bdfj2EyaU6bc9Jc1O_SpsuJjhBT07TeYPwr_fldp11x7RSzgtImaKipI6c3QXykzWbhlgQD9z3bPYHL-vjiwwmJjRGI4YytibSl1ZW22jnPPZPala4UXjtm8Mbr1uiild5lzORZ2_rCe-6wNirjllHNnsJgNp-5Z5DSIswVtLQNliOXbdYW4TIvDXOZFca2CbzdEkmZiBqOzSumKngPSFB1S9AEXu3GLnqsjL-OOkJa70YgvnX3YL68VnG7qDJYLs47LZ3RPHhNlcycpZm1uZDW0jKBN7hSCndh-ByjYzFB-CnEs1JjIWQuEOwwgYPtYqq4PVfqlpkSeLl7HTYWnpbomZtvVopR3pUNC_78_1Pswz3sQd_nuBzAYL3cuBfBUlm3I9ir6k8jGI4_Tr40o8ico87v_w31QO0X |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlUC6IpwgUCAKEOFh1bCdeIyFUHssu7fZAtlJvxvGDVlp2l32A-lN8IzN5bDkAt96SeGQ54xnPw_Mg5BkPyuWRaeqVEFTq6KnVjmEwlZY8ggYd0aE_OioGx_LTSX6yRX51uTAYVtmdifVB7WcOfeR7XDOso6dY_mb-nWLXKLxd7VpoNGRxEM5_gsm2fD18D_v7nPP-h_G7AW27ClAnhVhR7Qtve9bbEKKMQttQhEJFG4TDl2grZ_NKx5AJx7OqinmMMmBiUSa9YFbAvFfIVfig0djr9T9ufDoMgGCZTRVUGGd7iyXIR9BRMIzxD7lXtwf4lxCoJVv_BrneqqTpfkNDN8lWmN4iO2139NPz22Q0KoflZ1qO-6_Sso7AbgtaTdL-Gr1t6Y8zm9apvBOMQUpLkIeTQIff4LBKy_U8LCheEzREfoccXwrC7pLt6Wwa7pGU5TAX6AQe9FSpq6zK4ZEXToTMK-erhLzskGRcW6McW2VMDNgqiFBzgdCEPN3AzpvKHH-Feou43kBgNe36w2zx1bTMaQrQk0IMVgdnJdhoPZ0FzzLvudLesyIhL3CnDPI8LMfZNnUBfgqrZ5l9pTRXWFoxIbvdZpr2MFiaC9JNyJPNMLAx3s3YaZitl0YwWScpK3n__1M8JjuD8ejQHA6PDh6Qaxx0ria6Zpdsrxbr8BB0pFX1qCbMlHy5bE74DQLxKWc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFRSCXhBnMJQwAgQ4sHK2rv2dpEQammjhpKoqlupb9v1HoAUkpAD1F_j65ixnZQH4K1vPkYre3bunQPgZealzQNTiZOcJ0IFlxhlGSVTKZEFtKADBfQHw-LgVHw8y8824NeqFobSKlcysRbUbmIpRt7NFKM-epLl3dCmRRzt9d5Pvyc0QYpOWlfjNBoSOfQXP9F9m7_r7-Fev8qy3v7Jh4OknTCQWMH5IlGucGbbOON9EIEr4wtfyGA8t3QTTGVNXqngU26ztKpCHoLwVGSUCseZ4bjuNdiU5BV1YHN3f3h0vI7wMATDj256onKuWHc2R22JFgslNf6hBethAf9SCbWe692GW62BGu80FHUHNvz4LtxoZ6V_ubgHg0HZL4-T8qT3Ni7rfOy2vdUo7i0p9hb_-GriurB3RBlJcYnaceST_jcUXXG5nPpZQocGDcnfh9MrQdkD6IwnY_8QYpbjWmghOLRaharSKsfLrLDcp05aV0XwZoUkbduO5TQ4Y6TRcyGE6kuERvBiDTtt-nT8FWqXcL2GoN7a9YPJ7LNuWVUXaDX54I3y1gj02LZV6h1Lncukco4VEbymndIkAfBzrGkLGfCnqJeW3pFSZZIaLUawtdpM3YqGub4k5Aier18jU9NJjRn7yXKuORN1ybIUj_6_xDO4jlygP_WHh4_hZoYGWJNqswWdxWzpn6DBtKietpQZw_lVM8NvYgQu-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSISR-STF%3A+Spatiotemporal+Fusion+via+Multilevel+Single-Image+Super-Resolution&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zheng%2C+Xiongwei&rft.au=Feng%2C+Ruyi&rft.au=Fan%2C+Junqing&rft.au=Han%2C+Wei&rft.date=2023-12-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=24&rft.spage=5675&rft_id=info:doi/10.3390%2Frs15245675&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15245675 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |