MSISR-STF: Spatiotemporal Fusion via Multilevel Single-Image Super-Resolution

Due to technological limitations and budget constraints, spatiotemporal image fusion uses the complementarity of high temporal–low spatial resolution (HTLS) and high spatial–low temporal resolution (HSLT) data to obtain high temporal and spatial resolution (HTHS) fusion data, which can effectively s...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 24; p. 5675
Main Authors Zheng, Xiongwei, Feng, Ruyi, Fan, Junqing, Han, Wei, Yu, Shengnan, Chen, Jia
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to technological limitations and budget constraints, spatiotemporal image fusion uses the complementarity of high temporal–low spatial resolution (HTLS) and high spatial–low temporal resolution (HSLT) data to obtain high temporal and spatial resolution (HTHS) fusion data, which can effectively satisfy the demand for HTHS data. However, some existing spatiotemporal image fusion models ignore the large difference in spatial resolution, which yields worse results for spatial information under the same conditions. Based on the flexible spatiotemporal data fusion (FSDAF) framework, this paper proposes a multilevel single-image super-resolution (SISR) method to solve this issue under the large difference in spatial resolution. The following are the advantages of the proposed method. First, multilevel super-resolution (SR) can effectively avoid the limitation of a single SR method for a large spatial resolution difference. In addition, the issue of noise accumulation caused by multilevel SR can be alleviated by learning-based SR (the cross-scale internal graph neural network (IGNN)) and then interpolation-based SR (the thin plate spline (TPS)). Finally, we add the reference information to the super-resolution, which can effectively control the noise generation. This method has been subjected to comprehensive experimentation using two authentic datasets, affirming that our proposed method surpasses the current state-of-the-art spatiotemporal image fusion methodologies in terms of performance and effectiveness.
AbstractList Due to technological limitations and budget constraints, spatiotemporal image fusion uses the complementarity of high temporal–low spatial resolution (HTLS) and high spatial–low temporal resolution (HSLT) data to obtain high temporal and spatial resolution (HTHS) fusion data, which can effectively satisfy the demand for HTHS data. However, some existing spatiotemporal image fusion models ignore the large difference in spatial resolution, which yields worse results for spatial information under the same conditions. Based on the flexible spatiotemporal data fusion (FSDAF) framework, this paper proposes a multilevel single-image super-resolution (SISR) method to solve this issue under the large difference in spatial resolution. The following are the advantages of the proposed method. First, multilevel super-resolution (SR) can effectively avoid the limitation of a single SR method for a large spatial resolution difference. In addition, the issue of noise accumulation caused by multilevel SR can be alleviated by learning-based SR (the cross-scale internal graph neural network (IGNN)) and then interpolation-based SR (the thin plate spline (TPS)). Finally, we add the reference information to the super-resolution, which can effectively control the noise generation. This method has been subjected to comprehensive experimentation using two authentic datasets, affirming that our proposed method surpasses the current state-of-the-art spatiotemporal image fusion methodologies in terms of performance and effectiveness.
Audience Academic
Author Han, Wei
Feng, Ruyi
Chen, Jia
Zheng, Xiongwei
Fan, Junqing
Yu, Shengnan
Author_xml – sequence: 1
  givenname: Xiongwei
  surname: Zheng
  fullname: Zheng, Xiongwei
– sequence: 2
  givenname: Ruyi
  surname: Feng
  fullname: Feng, Ruyi
– sequence: 3
  givenname: Junqing
  surname: Fan
  fullname: Fan, Junqing
– sequence: 4
  givenname: Wei
  orcidid: 0000-0003-3882-1616
  surname: Han
  fullname: Han, Wei
– sequence: 5
  givenname: Shengnan
  surname: Yu
  fullname: Yu, Shengnan
– sequence: 6
  givenname: Jia
  orcidid: 0000-0002-9896-1656
  surname: Chen
  fullname: Chen, Jia
BookMark eNptkV1rFDEUhgepYK298RcMeCPC1HzNZONdKa5d6CJ06nU4m5wsWTKTMZkp9N-bdcVKMbnIB8_7Hs5531ZnYxyxqt5TcsW5Ip9Tpi0TbSfbV9U5I5I1gil29s_9TXWZ84GUxTlVRJxX222_6e-b_mH9pe4nmH2ccZhiglCvl-zjWD96qLdLmH3ARwx178d9wGYzwB7rfpkwNfeYY1iKdHxXvXYQMl7-OS-qH-uvDze3zd33b5ub67vGCM7nRtnOwgosIDrhuALssJMOkJvjw8HOQLtTDik3jO52rnVOYJFSKiwnwC-qzcnXRjjoKfkB0pOO4PXvj5j2GtLsTUDdEblCh6DQgGBUrhRFS6i1TCprSVe8Pp68phR_LphnPfhsMAQYMS5ZcyKI4EpIUdAPL9BDXNJYOtWsTFOxVpK2UFcnag-lvh9dnBOYsi0O3pTIXBmlvpZSMUlWUhbBp5PApJhzQve3I0r0MVn9nGyByQvY-PmY21iq-PA_yS-c8KdJ
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3385998
crossref_primary_10_3390_app14010333
crossref_primary_10_1016_j_rse_2025_114640
Cites_doi 10.1016/j.rse.2013.03.021
10.1016/j.rse.2014.10.018
10.1016/j.future.2013.12.018
10.1145/3510414
10.1080/01431161.2016.1271471
10.1109/TGRS.2022.3230439
10.3390/s16020207
10.1016/j.rse.2008.02.010
10.1109/TGRS.2016.2596290
10.1016/j.rse.2010.05.032
10.1109/CVPRW.2017.151
10.1016/j.rse.2014.09.012
10.1016/j.rse.2017.05.011
10.1109/JSTARS.2018.2797894
10.3390/rs8060452
10.3390/rs9010021
10.1016/j.rse.2015.11.016
10.1016/S0034-4257(02)00084-6
10.1109/TGRS.2020.3023432
10.1117/1.JRS.6.063507
10.1109/TGRS.2022.3215431
10.1109/TGRS.2020.2994260
10.1109/36.763276
10.1080/2150704X.2013.769283
10.1109/MGRS.2015.2434351
10.3390/rs5126346
10.1109/TPAMI.2015.2439281
10.1016/j.rse.2009.03.007
10.1109/JSTARS.2023.3296468
10.1109/TNNLS.2019.2957527
10.1016/j.rse.2017.10.046
10.1109/TGRS.2017.2775103
10.1109/TPAMI.2004.1261081
10.3390/s23042341
10.1016/j.rse.2016.07.028
10.1109/ICCV.2017.167
10.1109/34.24792
10.1109/JSTARS.2023.3252585
10.1109/TGRS.2012.2213095
10.1109/LGRS.2015.2402644
10.1109/TIP.2003.819861
10.1109/TGRS.2006.872081
10.3390/rs9121310
10.3390/rs10040527
10.1109/ACCESS.2020.3011258
10.1109/TGRS.2012.2186638
10.1109/LGRS.2008.919685
10.3390/rs5105346
10.3390/s150924002
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15245675
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
ProQuest SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_6078efea9eca4217891ed01dd279dd06
A779270877
10_3390_rs15245675
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-9d6da8adaeef4f39ae6e67fae3c39aefabca5b9fe13c21bbf5ff4e433114d30a3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:02:16 EDT 2025
Fri Jul 11 02:54:19 EDT 2025
Fri Jul 25 09:35:22 EDT 2025
Tue Jun 10 20:58:56 EDT 2025
Thu Apr 24 23:13:14 EDT 2025
Tue Jul 01 03:11:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-9d6da8adaeef4f39ae6e67fae3c39aefabca5b9fe13c21bbf5ff4e433114d30a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9896-1656
0000-0003-3882-1616
OpenAccessLink https://www.proquest.com/docview/2904925705?pq-origsite=%requestingapplication%
PQID 2904925705
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_6078efea9eca4217891ed01dd279dd06
proquest_miscellaneous_3040439474
proquest_journals_2904925705
gale_infotracacademiconefile_A779270877
crossref_primary_10_3390_rs15245675
crossref_citationtrail_10_3390_rs15245675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Guo (ref_15) 2022; 60
Tan (ref_37) 2022; 60
Lu (ref_22) 2016; 184
Jiang (ref_23) 2022; 60
ref_55
ref_53
Bookstein (ref_51) 1989; 31
Liu (ref_49) 2023; 16
Wu (ref_19) 2012; 6
Senf (ref_3) 2015; 156
Dong (ref_46) 2015; 38
Song (ref_36) 2018; 11
Xu (ref_39) 2015; 12
Clevers (ref_18) 2008; 5
Lin (ref_50) 2004; 26
Wang (ref_54) 2004; 13
Masek (ref_1) 2008; 112
Hou (ref_38) 2022; 60
Li (ref_25) 2013; 135
ref_29
ref_28
Zhou (ref_24) 2022; 60
Xu (ref_48) 2020; 11
Li (ref_16) 2021; 59
Zhukov (ref_17) 1999; 37
Zhu (ref_41) 2016; 172
Zhu (ref_11) 2010; 114
Li (ref_33) 2020; 8
Tao (ref_34) 2017; 56
Wang (ref_14) 2018; 204
ref_35
Zhou (ref_52) 2020; 33
Hilker (ref_10) 2009; 113
Zhang (ref_20) 2013; 5
Chen (ref_44) 2020; 59
Song (ref_32) 2012; 51
Li (ref_43) 2017; 196
Wu (ref_13) 2017; 38
Huang (ref_26) 2013; 4
Liu (ref_30) 2022; 54
Shen (ref_27) 2016; 54
Jing (ref_45) 2023; 16
Wu (ref_21) 2015; 15
ref_47
ref_42
Fu (ref_12) 2013; 5
ref_2
Dou (ref_5) 2014; 37
Vogelmann (ref_4) 2001; 67
Justice (ref_7) 2002; 83
Huang (ref_31) 2012; 50
Gevaert (ref_40) 2015; 156
ref_8
Gao (ref_6) 2015; 3
Gao (ref_9) 2006; 44
References_xml – volume: 135
  start-page: 52
  year: 2013
  ident: ref_25
  article-title: Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.03.021
– ident: ref_55
– volume: 156
  start-page: 527
  year: 2015
  ident: ref_3
  article-title: Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.10.018
– volume: 37
  start-page: 367
  year: 2014
  ident: ref_5
  article-title: Modeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing images
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2013.12.018
– volume: 54
  start-page: 221:1
  year: 2022
  ident: ref_30
  article-title: A Survey on Active Deep Learning: From Model Driven to Data Driven
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3510414
– volume: 38
  start-page: 706
  year: 2017
  ident: ref_13
  article-title: Improving spatiotemporal reflectance fusion using image inpainting and steering kernel regression techniques
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1271471
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_37
  article-title: A Flexible Reference-Insensitive Spatiotemporal Fusion Model for Remote Sensing Images Using Conditional Generative Adversarial Network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3230439
– ident: ref_42
  doi: 10.3390/s16020207
– volume: 112
  start-page: 2914
  year: 2008
  ident: ref_1
  article-title: North American forest disturbance mapped from a decadal Landsat record
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.010
– volume: 54
  start-page: 7135
  year: 2016
  ident: ref_27
  article-title: An integrated framework for the spatio-temporal-spectral fusion of remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2596290
– volume: 114
  start-page: 2610
  year: 2010
  ident: ref_11
  article-title: An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.05.032
– ident: ref_47
  doi: 10.1109/CVPRW.2017.151
– volume: 156
  start-page: 34
  year: 2015
  ident: ref_40
  article-title: A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.09.012
– volume: 196
  start-page: 293
  year: 2017
  ident: ref_43
  article-title: Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.05.011
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_24
  article-title: Generalized Linear Spectral Mixing Model for Spatial–Temporal–Spectral Fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 821
  year: 2018
  ident: ref_36
  article-title: Spatiotemporal satellite image fusion using deep convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2797894
– ident: ref_28
  doi: 10.3390/rs8060452
– ident: ref_35
  doi: 10.3390/rs9010021
– volume: 172
  start-page: 165
  year: 2016
  ident: ref_41
  article-title: A flexible spatiotemporal method for fusing satellite images with different resolutions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.016
– volume: 83
  start-page: 3
  year: 2002
  ident: ref_7
  article-title: An overview of MODIS Land data processing and product status
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00084-6
– volume: 59
  start-page: 5851
  year: 2020
  ident: ref_44
  article-title: CycleGAN-STF: Spatiotemporal Fusion via CycleGAN-Based Image Generation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3023432
– volume: 6
  start-page: 063507
  year: 2012
  ident: ref_19
  article-title: Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.6.063507
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_38
  article-title: RFSDAF: A New Spatiotemporal Fusion Method Robust to Registration Errors
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3215431
– volume: 59
  start-page: 629
  year: 2021
  ident: ref_16
  article-title: Superpixel-Based Reweighted Low-Rank and Total Variation Sparse Unmixing for Hyperspectral Remote Sensing Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2994260
– volume: 37
  start-page: 1212
  year: 1999
  ident: ref_17
  article-title: Unmixing-based multisensor multiresolution image fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.763276
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_15
  article-title: A Flexible Object-Level Processing Strategy to Enhance the Weight Function-Based Spatiotemporal Fusion Method
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 4
  start-page: 561
  year: 2013
  ident: ref_26
  article-title: Unified fusion of remote-sensing imagery: Generating simultaneously high-resolution synthetic spatial–temporal–spectral earth observations
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2013.769283
– volume: 3
  start-page: 47
  year: 2015
  ident: ref_6
  article-title: Fusing Landsat and MODIS data for vegetation monitoring
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2015.2434351
– volume: 5
  start-page: 6346
  year: 2013
  ident: ref_12
  article-title: An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model
  publication-title: Remote Sens.
  doi: 10.3390/rs5126346
– volume: 38
  start-page: 295
  year: 2015
  ident: ref_46
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 113
  start-page: 1613
  year: 2009
  ident: ref_10
  article-title: A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.03.007
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_23
  article-title: Unmixing-Based Spatiotemporal Image Fusion Accounting for Complex Land Cover Changes
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 16
  start-page: 6723
  year: 2023
  ident: ref_45
  article-title: A Rigorously-Incremental Spatiotemporal Data Fusion Method for Fusing Remote Sensing Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2023.3296468
– volume: 11
  start-page: 4747
  year: 2020
  ident: ref_48
  article-title: Hyperspectral Images Super-Resolution via Learning High-Order Coupled Tensor Ring Representation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2957527
– volume: 204
  start-page: 31
  year: 2018
  ident: ref_14
  article-title: Spatio-temporal fusion for daily Sentinel-2 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.046
– volume: 56
  start-page: 2107
  year: 2017
  ident: ref_34
  article-title: Improving satellite estimates of the fraction of absorbed photosynthetically active radiation through data integration: Methodology and validation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2775103
– volume: 26
  start-page: 83
  year: 2004
  ident: ref_50
  article-title: Fundamental limits of reconstruction-based superresolution algorithms under local translation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1261081
– ident: ref_2
  doi: 10.3390/s23042341
– volume: 184
  start-page: 374
  year: 2016
  ident: ref_22
  article-title: Land cover change detection by integrating object-based data blending model of Landsat and MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.07.028
– ident: ref_53
  doi: 10.1109/ICCV.2017.167
– volume: 31
  start-page: 567
  year: 1989
  ident: ref_51
  article-title: Principal warps: Thin-plate splines and the decomposition of deformations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.24792
– volume: 16
  start-page: 3945
  year: 2023
  ident: ref_49
  article-title: Gradient Prior Dilated Convolution Network for Remote Sensing Image Super-Resolution
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2023.3252585
– volume: 51
  start-page: 1883
  year: 2012
  ident: ref_32
  article-title: Spatiotemporal satellite image fusion through one-pair image learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2213095
– volume: 12
  start-page: 1362
  year: 2015
  ident: ref_39
  article-title: Spatial and temporal image fusion via regularized spatial unmixing
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2402644
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_54
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 44
  start-page: 2207
  year: 2006
  ident: ref_9
  article-title: On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.872081
– ident: ref_29
  doi: 10.3390/rs9121310
– volume: 33
  start-page: 3499
  year: 2020
  ident: ref_52
  article-title: Cross-scale internal graph neural network for image super-resolution
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_8
  doi: 10.3390/rs10040527
– volume: 8
  start-page: 209199
  year: 2020
  ident: ref_33
  article-title: Spatiotemporal Remote-Sensing Image Fusion With Patch-Group Compressed Sensing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011258
– volume: 50
  start-page: 3707
  year: 2012
  ident: ref_31
  article-title: Spatiotemporal reflectance fusion via sparse representation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2186638
– volume: 67
  start-page: 650
  year: 2001
  ident: ref_4
  article-title: Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 5
  start-page: 453
  year: 2008
  ident: ref_18
  article-title: Unmixing-based Landsat TM and MERIS FR data fusion
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2008.919685
– volume: 5
  start-page: 5346
  year: 2013
  ident: ref_20
  article-title: An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data
  publication-title: Remote Sens.
  doi: 10.3390/rs5105346
– volume: 15
  start-page: 24002
  year: 2015
  ident: ref_21
  article-title: Generating daily synthetic Landsat imagery by combining Landsat and MODIS data
  publication-title: Sensors
  doi: 10.3390/s150924002
SSID ssj0000331904
Score 2.3754053
Snippet Due to technological limitations and budget constraints, spatiotemporal image fusion uses the complementarity of high temporal–low spatial resolution (HTLS)...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5675
SubjectTerms Algorithms
Artificial intelligence
Comparative analysis
Complementarity
Computer vision
data collection
Data fusion
Data integration
Graph neural networks
graphs
IGNN
image analysis
Image processing
Image resolution
Interpolation
Methods
Multilevel
Neural networks
Noise control
Noise generation
Remote sensing
Satellites
SISR
Spatial data
Spatial discrimination
Spatial resolution
spatial variation
Spatiotemporal data
spatiotemporal image fusion
Technology application
Temporal resolution
Thin plates
TPS
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE9cXFQXxEGybtDHeVFx2hfVgFbyFNJmgsO7KPgT_vTNtXfegePG23YYynZnkm6Qz3zB2nIJyWYg190oILnXw3GoXUzKVlmnACDrQgX7vLu88ytun7Gmu1RflhNX0wLXiznLEMAhgNTgrMX4-1wn4OPE-Vdr7mmwbMW9uM1WtwQJdK5Y1H6nAff3ZaIxIhdECJRTOIVBF1P_bclxhTHuVrTTBYXRZC7XGFmCwzpaaPuXPHxus1yu6xT0vHtoXUVHlQjfUUv2oPaVzr-j9xUZVUW2fsoGiApGpD7z7istGVEzfYMTpwL52t0322L55uO7wpiECd1KICdc-9_bcegsQZBDaQg65ChaEo4tgS2ezUgdIhEuTsgxZCBKoJiqRXsRWbLHFwXAA2yyKM3wWorPHiFHqMikz_JnmTkDilfNli51-Kcm4hi2cmlb0De4aSKHmW6EtdjQb-1ZzZPw46op0PRtBvNbVH2ht01jb_GXtFjshSxmafSiOs00RAb4U8ViZS6V0qojksMX2voxpmmk5Nin6hKa-fSjN4ew2Tij6SmIHMJyOjYhlVS6s5M5_SLzLlqlDfZ0Bs8cWJ6Mp7GMcMykPKpf9BF448Ug
  priority: 102
  providerName: Directory of Open Access Journals
Title MSISR-STF: Spatiotemporal Fusion via Multilevel Single-Image Super-Resolution
URI https://www.proquest.com/docview/2904925705
https://www.proquest.com/docview/3040439474
https://doaj.org/article/6078efea9eca4217891ed01dd279dd06
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R3QNcEE8RWlZBICEOVp3YiWMuaAsNLWIr1LRSb5bjR0Ha7i77QOLf40m8Ww7ALQ_LSsbjeXnmG4DXuROm8FQSKxgjXHpLtDQUk6kkz32woD0G9Cdn5ckl_3xVXMWA2yqmVW5lYieo7dxgjPwwlxRx9AQt3i9-EOwahaersYXGHgyDCK6qAQyPjs--nu-iLJQFFqO8xyVlwb8_XK6CxgpWAyYW_qGJOsD-f4nlTtfUD-B-NBLTcb-qD-GOmz2Cu7Ff-bdfj2EyaU6bc9Jc1O_SpsuJjhBT07TeYPwr_fldp11x7RSzgtImaKipI6c3QXykzWbhlgQD9z3bPYHL-vjiwwmJjRGI4YytibSl1ZW22jnPPZPala4UXjtm8Mbr1uiild5lzORZ2_rCe-6wNirjllHNnsJgNp-5Z5DSIswVtLQNliOXbdYW4TIvDXOZFca2CbzdEkmZiBqOzSumKngPSFB1S9AEXu3GLnqsjL-OOkJa70YgvnX3YL68VnG7qDJYLs47LZ3RPHhNlcycpZm1uZDW0jKBN7hSCndh-ByjYzFB-CnEs1JjIWQuEOwwgYPtYqq4PVfqlpkSeLl7HTYWnpbomZtvVopR3pUNC_78_1Pswz3sQd_nuBzAYL3cuBfBUlm3I9ir6k8jGI4_Tr40o8ico87v_w31QO0X
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlUC6IpwgUCAKEOFh1bCdeIyFUHssu7fZAtlJvxvGDVlp2l32A-lN8IzN5bDkAt96SeGQ54xnPw_Mg5BkPyuWRaeqVEFTq6KnVjmEwlZY8ggYd0aE_OioGx_LTSX6yRX51uTAYVtmdifVB7WcOfeR7XDOso6dY_mb-nWLXKLxd7VpoNGRxEM5_gsm2fD18D_v7nPP-h_G7AW27ClAnhVhR7Qtve9bbEKKMQttQhEJFG4TDl2grZ_NKx5AJx7OqinmMMmBiUSa9YFbAvFfIVfig0djr9T9ufDoMgGCZTRVUGGd7iyXIR9BRMIzxD7lXtwf4lxCoJVv_BrneqqTpfkNDN8lWmN4iO2139NPz22Q0KoflZ1qO-6_Sso7AbgtaTdL-Gr1t6Y8zm9apvBOMQUpLkIeTQIff4LBKy_U8LCheEzREfoccXwrC7pLt6Wwa7pGU5TAX6AQe9FSpq6zK4ZEXToTMK-erhLzskGRcW6McW2VMDNgqiFBzgdCEPN3AzpvKHH-Feou43kBgNe36w2zx1bTMaQrQk0IMVgdnJdhoPZ0FzzLvudLesyIhL3CnDPI8LMfZNnUBfgqrZ5l9pTRXWFoxIbvdZpr2MFiaC9JNyJPNMLAx3s3YaZitl0YwWScpK3n__1M8JjuD8ejQHA6PDh6Qaxx0ria6Zpdsrxbr8BB0pFX1qCbMlHy5bE74DQLxKWc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFRSCXhBnMJQwAgQ4sHK2rv2dpEQammjhpKoqlupb9v1HoAUkpAD1F_j65ixnZQH4K1vPkYre3bunQPgZealzQNTiZOcJ0IFlxhlGSVTKZEFtKADBfQHw-LgVHw8y8824NeqFobSKlcysRbUbmIpRt7NFKM-epLl3dCmRRzt9d5Pvyc0QYpOWlfjNBoSOfQXP9F9m7_r7-Fev8qy3v7Jh4OknTCQWMH5IlGucGbbOON9EIEr4wtfyGA8t3QTTGVNXqngU26ztKpCHoLwVGSUCseZ4bjuNdiU5BV1YHN3f3h0vI7wMATDj256onKuWHc2R22JFgslNf6hBethAf9SCbWe692GW62BGu80FHUHNvz4LtxoZ6V_ubgHg0HZL4-T8qT3Ni7rfOy2vdUo7i0p9hb_-GriurB3RBlJcYnaceST_jcUXXG5nPpZQocGDcnfh9MrQdkD6IwnY_8QYpbjWmghOLRaharSKsfLrLDcp05aV0XwZoUkbduO5TQ4Y6TRcyGE6kuERvBiDTtt-nT8FWqXcL2GoN7a9YPJ7LNuWVUXaDX54I3y1gj02LZV6h1Lncukco4VEbymndIkAfBzrGkLGfCnqJeW3pFSZZIaLUawtdpM3YqGub4k5Aier18jU9NJjRn7yXKuORN1ybIUj_6_xDO4jlygP_WHh4_hZoYGWJNqswWdxWzpn6DBtKietpQZw_lVM8NvYgQu-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSISR-STF%3A+Spatiotemporal+Fusion+via+Multilevel+Single-Image+Super-Resolution&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zheng%2C+Xiongwei&rft.au=Feng%2C+Ruyi&rft.au=Fan%2C+Junqing&rft.au=Han%2C+Wei&rft.date=2023-12-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=24&rft.spage=5675&rft_id=info:doi/10.3390%2Frs15245675&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15245675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon